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Abstract:
Link discovery(LD) is an important task in data mining for counter-terrorism and is
the focus of DARPA’s Evidence Extraction and Link Discovery(EELD) research pro-
gram. Link discovery concerns the identification of complexrelational patterns that
indicate potentially threatening activities in large amounts of relational data. Most
data-mining methods assume data is in the form of a feature-vector (a single relational
table) and cannot handle multi-relational data.Inductive logic programmingis a form
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of relational data mining that discovers rules in first-order logic from multi-relational
data. This paper discusses the application of ILP to learning patterns for link discovery.

Keywords: Relational Data Mining, Inductive Logic Programming, counter-terrorism,
link discovery

1.1 Introduction

Since the events of September 11, 2001, the development of information technology
that could aid intelligence agencies in their efforts to detect and prevent terrorism has
become an important focus of attention. The Evidence Extraction and Link Discovery
(EELD) program of the Defense Advanced Research Projects Agency (DARPA) is one
research project that attempts to address this issue. The establishment of the EELD
program for developing advanced software for aiding the detection of terrorist activity
pre-dates the events of 9/11. The program had its genesis at apreliminary DARPA
planning meeting held at Carnegie Mellon University after the opening of the Center
for Automated Learning and Discovery in June of 1998. This meeting discussed the
possible formation of a new DARPA research program focused on novel knowledge-
discovery and data-mining (KDD) methods appropriate for counter-terrorism.

The scope of the new program was subsequently expanded to focus on three re-
lated sub-tasks in detecting potential terrorist activityfrom numerous large information
sources in multiple formats.Evidence Extraction(EE) is the task of obtaining struc-
tured evidence data from unstructured, natural-language documents. EE builds on in-
formation extraction technology developed under DARPA’s earlier MUC (Message Un-
derstanding Conference) programs [Lehnert & Sundheim1991, Cowie & Lehnert1996]
and the current ACE (Automated Content Extraction) programat the National Insti-
tute of Standards and Technology (NIST)[NIST2003].Link Discovery(LD) is the
task of identifying known, complex, multi-relational patterns that indicate potentially
threatening activities in large amounts of relational data. It is therefore a form of
pattern-matching that involves matching complex, multi-relational “patterns of inter-
est” against large amounts of data. Some of the input data forLD comes from EE ap-
plied to news reports and other unstructured documents, other input data comes from
existing relational databases on financial and other transactions. Finally,Pattern Learn-
ing (PL) concerns the automated discovery of new relational patterns for potentially
threatening activities. Since determining and authoring acomplete and accurate set
of formal patterns for detecting terrorist activities is a difficult task, learning methods
may be useful for automatically acquiring such patterns from supervised or unsuper-
vised data. Learned patterns can then be employed by an LD system to improve its
detection of threatening activities. The current EELD program focused on these three
sub-topics started in the summer of 2001. After 9/11, it was incorporated under the
new Information Awareness Office (IAO) at DARPA.

The data and patterns used in EELD include representations of people, organiza-
tions, objects, and actions and many types of relations between them. The data is
perhaps best represented as a large graph of entities connected by a variety of relations.
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The areas oflink analysisandsocial network analysisin sociology, criminology, and
intelligence [Jensen & Goldberg1998, Wasserman & Faust1994, Sparrow1991] study
such networks using graph-theoretic representations. Data mining and pattern learning
for counter terrorism therefore requires handling such multi-relational, graph-theoretic
data.

Unfortunately, most current data-mining methods assume the data is from a sin-
gle relational table and consists of flat tuples of items, as in market-basket analysis.
This type of data is easily handled by machine learning techniques that assume a
“propositional” (a.k.a “feature vector” or “attribute value”) representation of examples
[Witten & Frank1999].Relational data mining(RDM) [Dz̆eroski & Lavrac̆2001b], on
the other hand, concerns mining data from multiple relational tables that are richly con-
nected. Given the style of data needed for link discovery, pattern learning for link dis-
covery requiresrelationaldata mining. The most widely studied methods for inducing
relational patterns are those ininductive logic programming(ILP) [Muggleton1992,
Lavrac & Dzeroski1994]. ILP concerns the induction of Horn-clause rules in first-
order logic (i.e., logic programs) from data in first-order logic. This paper discusses
our on-going work on applying ILP to pattern learning for link discovery as a part of
the EELD project.

1.2 Inductive Logic Programming (ILP)

ILP is the study of learning methods for data and rules that are represented in first-
order predicate logic. Predicate logic allows for quantified variables and relations and
can represent concepts that are not expressible using examples described as feature
vectors. A relational database can be easily translated into first-order logic and be used
as a source of data for ILP [Wrobel2001]. As an example, consider the following rules,
written in Prolog syntax (where the conclusion appears first), that define the uncle
relation:

uncle(X,Y) :- brother(X,Z),parent(Z,Y).
uncle(X,Y) :- husband(X,Z),sister(Z,W),parent(W,Y).

The goal ofinductive logic programming(ILP) is to infer rules of this sort given a
database of background facts and logical definitions of other relations [Muggleton1992,
Lavrac & Dzeroski1994]. For example, an ILP system can learnthe above rules for
uncle (thetarget predicate) given a set of positive and negative examples of uncle
relationships and a set of facts for the relations parent, brother, sister, and husband (the
background predicates) for the members of a given extended family, such as:

uncle(tom,frank), uncle(bob,john),
not uncle(tom,cindy), not uncle(bob,tom)
parent(bob,frank), parent(cindy,frank), parent(alice,john),
parent(tom,john), brother(tom,cindy), sister(cindy,tom),
husband(tom,alice), husband(bob,cindy).
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Alternatively, rules that logically define the brother and sister relations could be sup-
plied and these relationships inferred from a more completeset of facts about only the
“basic” predicates:parent, spouse, andgender.

If-then rules in first-order logic are formally referred to as Horn clauses. A more
formal definition of the ILP problem follows:� Given:

– Background knowledge,B, a set of Horn clauses.

– Positive examples,P , a set of Horn clauses (typically ground literals).

– Negative examples,N , a set of Horn clauses (typically ground literals).� Find: A hypothesis,H , a set of Horn clauses such that:

– 8p 2 P : H [B j= p (completeness)

– 8n 2 N : H [B 6j= n (consistency)

A variety of algorithms for the ILP problem have been developed [Dz̆eroski & Lavrac̆2001a]
and applied to a variety of important data-mining problems [Dz̆eroski2001, Houstiset al.2000].
Nevertheless, relational data mining remains an under-appreciated topic in the larger
KDD community. For example, recent textbooks on data mining[Han & Kamber2001,
Witten & Frank1999, Hand, Mannila, & Smyth2001] hardly mention the topic. An in-
creasing number of applications require handling complex,structured data types, in-
cluding bioinformatics, web and text mining, and engineering. Therefore, we believe
it is an important topic for “next generation” data mining systems. In particular, it is
critical for link discovery applications in counter-terrorism.

One of the standard criticisms of ILP methods from a data-mining perspective
is that they do not scale to large amounts of data. Since the hypothesis space of
possible logic programs is extremely large and since just testing individual hypothe-
ses requires potentially complex automated deduction, ILPmethods can have diffi-
culty processing large amounts of data. We have developed methods to help ad-
dress both of these aspects of computational complexity. First, we have developed
methods for controlling the number of hypotheses tested by developing new search
methods that use stochastic search to more efficiently explore the space of hypothe-
ses [Zelezny, Srinivasan, & Page2002] or that combine aspects of existing top-down
and bottom-up methods (see section 1.3.2). Second, we have developed methods for
automatically optimizing learned clauses by inserting cuts1 in the Prolog code so that
deduction is more efficient [Santos Costa, Srinivasan, & Camacho2000]. However, as
discussed in section 1.4, scaling ILP to very large data setsis a significant area for
future research.

1.3 Initial Work on ILP for Link Discovery

We tested several ILP algorithms on various EELD datasets. The current EELD datasets
pertain to two domains that were chosen as “challenge problems” in link discovery that

1In Prolog, cuts (!) are procedural operators that prevent potentially computationally expensive back-
tracking where the programmer determines it is unnecessary.
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have many of the underlying properties of the counter-terrorism problem – Nuclear
Smuggling and Contract Killing. The Contract-Killing domain is further divided into
natural (real world) data manually collected and extractedfrom news sources and syn-
thetic (artificial) data generated by simulators. Section 1.3.1 presents our experimental
results on the natural Smuggling and Contract-Killing data, while section 1.3.2 presents
results on the synthetic Contract-Killing data.

1.3.1 Experiments on Natural Data

The Nuclear-Smuggling Data

The Nuclear-Smuggling dataset consists of reports on Russian nuclear materials smug-
gling [McKay, Woessner, & Roule2001]. The Chronology of Nuclear and Radioactive
Smuggling Incidents is the basis for the analysis of patterns in the smuggling of Russian
nuclear materials. The information in the Chronology is based on open-source report-
ing, primarily World News Connection (WNC) and Lexis-Nexis. There are also some
articles obtained from various sources that have been translated from Italian, German
and Russian. The research from which the Chronology grew began in 1994 and the
chronology itself first appeared as an appendix to a paper by Williams and Woessner
in 1995 [Williams & Woessner1995b, Williams & Woessner1995a]. The continually
evolving Chronology then was published twice as separate papers in the same journal
as part of the “Recent Events” section [Woessner1995, Woessner1997]. As part of the
EELD project, the coverage of the Chronology was extended toMarch 2000 and grew
to include 572 incidents.

The data is provided in the form of a relational database. This database contains
Objects (described in rows in tables), each of which has Attributes of differing types
(i.e., columns in the tables), the values of which are provided by the source information
or the analyst. The Objects are of different types, which aredenoted by prefixes (E,
EV , and LK ), and consist of the following:� Entity Objects (E...): these consist of ELOCATION, E MATERIAL, E OR-

GANIZATION, E PERSON, ESOURCE, and EWEAPON;� Event Objects (EV...): these currently consist of the generic EVEVENT;� Link Objects (LK ...): used for expressing links between/among Entities and
Events,

The database has over 40 relational tables. The number of tuples in a relational table
varies from as many as 800 to as little as 2 or 3.

As a representative problem, we used ILP to learn rules for determining which
events in an incident arelinked. Such rules could be used to construct larger knowledge
structures that could be recognized as threats. Hence, the ILP system is given positive
training examples of known “links” between events. We assume all other events are
unrelated and therefore compose a set of negative examples.We also provide back-
ground knowledge that thelinked relation is commutative. Our training set consists of
140 positive examples and 140 distinct negative examples randomly drawn from a full
set of 8,124 negative pairs of events. The linking problem inthe Nuclear-Smuggling
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data is thus quite challenging in that it is a heavily relational learning problem over a
large number of relations, whereas traditional ILP applications usually require a small
number of relations.

The Natural Contract-Killing Data

The dataset of contract killings was first compiled by O’Hayon and Cook [Cook & O’Hayon2000]
in response to research on Russian organized crime that encountered frequent refer-
ences to contract killings. The dataset was subsequently expanded by the authors with
funding from the EELD program through Veridian Systems Division [Williams2002].
The database consists of a chronology of incidents each described using information
drawn from one or more news articles. As in the Nuclear-Smuggling dataset, informa-
tion in the chronology is based on open-source reporting, especially Foreign Broadcast
Information Service (FBIS) and Joint Publications Research Service (JPRS) journals,
and subsequently both FBIS on-line and the on-line version World News Connection
(WNC). These services and Lexis-Nexis were the main information sources.

The data is organized in relational tables in the same formatas the Nuclear-Smu-
ggling data described in the previous section. The dataset used in our experiments has
48 relational tables. The number of tuples in a relational table varies from as many as
1,000 to as few as 1. Each killing was categorized according to one of three possible
motivations: “Rival,” “Obstacle,” or “Threat.” The ILP task was to determine whether
the motivation for a killing was categorized as “Rival” or not. The motivation for this
learning task was to recognize patterns of activity that indicate an underlying motive,
which in turn contributes to recognizing threats. The number of positive examples in
this dataset is 38, while the number of negative examples is 34.

ILP Results on the Natural Data

ALEPH We used the ILP system ALEPH [Srinivasan2001] to learn rules for the natu-
ral datasets. By default, ALEPH uses a simple greedy set covering procedure that con-
structs a complete and consistent hypothesis one clause at atime. In the search for any
single clause, ALEPH selects the first uncovered positive example as the seed example,
saturatesthis example, and performs an admissible search over the space of clauses that
subsume this saturation, subject to a user-specified clauselength bound. Further details
about our use of ALEPH in these experiments are available from [de Castro Dutraet al.2002].

Ensembles Ensemblesaim at improving accuracy through combining the predictions
of multiple classifiers in order to obtain a single classifier. In contrast with previous
approaches [Quinlan1996, Hoche & Wrobel2001], each classifier is a logical theory
generated by ALEPH. Many methods have been presented for ensemble generation
[Dietterich1998]. We usebagging[Breiman1996a], a popular method that is known to
frequently create a more accurate ensemble. Bagging works by training each classifier
on a random sample from the training set. Bagging has the important advantage that it
is effective on “unstable learning algorithms” [Breiman1996b], where small variations
in the input data can cause large variations in the learned theories. Most ILP algorithms
are unstable in this sense. A second advantage is that the bagging algorithm is highly
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linked(A,E) :-
lk_event_person(_,EventA,PersonC,_,RelationB,RelationB,DescriptionD),
lk_event_person(_,EventF,PersonC,_,RelationB,RelationB,DescriptionD),
lk_material_location(_,MaterialG,_,EventE,_,_,_,_,_),
lk_event_material(_,EventF,MaterialG,_,_,_,_).

Figure 1.1: Nuclear-Smuggling Data: Sample Learned Rule

parallel [Dutraet al.2003]. Further details about our approach to bagging for ILP, as
well as our experimental methodology, can be found in [de Castro Dutraet al.2002].
Our experimental results are based on a five-fold cross-validation, where five times we
train on 80% of the examples and then test what was learned on the remaining 20% (in
addition, each example is in one and only one test set).

For the task of identifying linked events in the Nuclear-Smuggling dataset, ALEPH

produces an average testset accuracy of 85%. This is an improvement over the base-
line case (majority class—always guessing two events are not linked), which produces
an average accuracy of 78%. Bagging (with 25 different sets of rules) increases the
accuracy to almost 90%.

An example of a rule with good accuracy found by the system is shown in Fig-
ure 1.1. This rule covers 43 of the 140 positive examples and no negative examples.
According to this rule, two smuggling eventsA andE are related if eventA involves
a personC who is also involved in another eventF. EventF involves some materialG
that appears in eventE. In other words, a personC in eventA is involved in a third event
F that uses material from eventE. PersonC played the same roleB, with description
D, in eventsA andF. The “ ” symbols mean that those arguments were not relevant
for that rule. Figure 1.2 illustrates the connections between events, material and peo-
ple involved. Solid lines are direct connections shown by the literals in the body of
the clause. The dotted line corresponds to the newly learnedconcept that describes a
connection between two events.

Person C Material G

Event F Event EEvent A

Inferred

Figure 1.2: Pictorial representation of a learned rule.

The task of identifying the underlying motive in the Contract-Killing data set is
much more difficult, with ALEPH’s accuracy at 59%, compared with the baseline ac-
curacy of 52%. Again, bagging improves the accuracy, this time to 69%. The rule in
Figure 1.3 shows one logical clause the ILP system found for this dataset. The rule
covers 19 of the 38 positive examples and a single negative example. The rule says that
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rivalKilling(EventA) :-
lk_event_event(_,EventB,EventA,RelationC,EventDescriptionD),
lk_event_event(_,EventB,EventE,RelationC,EventDescriptionD),
lk_event_event(_,EventE,EventF,_,EventDescriptionD),
lk_org_org(_,_,_,EventF,_,_,_,_,_).

Figure 1.3: Natural Contract-Killing Data: Sample LearnedRule

eventA is a killing by a rival if we can follow a chain of events that connects eventA
to eventB, eventB to eventE, and eventE to an eventF that relates two organizations.
EventsA andE have the same kind of relation,RelationC, to B. All events in the
chain are subsets of the same incidentD.

1.3.2 Experiments on Synthetic Data

The ease of generating large amounts and data and privacy considerations have led the
EELD program to use synthetic data generated by simulators.Next, we describe the
results we obtained from simulated data for the CK problem. This data was gener-
ated from a run of a Task-Based (TB) simulator developed by Information Extraction
and Transport Incorporated (IET). The TB simulator outputscase files, which contain
complete and unadulterated descriptions of murder cases. These case files are then fil-
tered for observability, so that facts that would not be accessible to an investigator are
eliminated. To make the task more realistic, the simulator output is corrupted, e.g., by
misidentifying role players or incorrectly reporting group memberships. This filtered
and corrupted data form the evidence files. In the evidence files, facts about each event
are represented as ground facts, such as:

murder(Murder714)
perpetrator(Murder714, Killer186)
crimeVictim(Murder714, MurderVictim996)
deviceTypeUsed(Murder714, PistolCzech)

The synthetic dataset that we used consists of 632 murder events. Each murder
event has been labeled as either a positive or negative example of a murder-for-hire.
There are 133 positive and 499 negative examples in the dataset. Our task was to learn
a theory to correctly classify an unlabeled event as either apositive or negative instance
of murder-for-hire. The amount of background knowledge forthis dataset is extremely
large; consisting of 52 distinct predicate names, and 681,039 background facts in all.

Scaling to large datasets in data mining typically refers toincreasing thenumber
of training examples that can be processed. Another measureof complexity that is
particularly relevant in relational data mining is thesizeof individual examples, i.e.
the number of facts used to describe each example. To our knowledge, the challenge
problems developed for the EELD program are the largest ILP problems attempted to
date in terms of the number of facts in the background knowledge. In order to more
effectively process such large examples, we have developeda new ILP method that
reduces the number of clauses that are generated and tested.
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BETH

The two standard approaches to ILP are bottom-up and top-down [Lavrac & Dzeroski1994].
Bottom-up methods like ALEPH start with a very specific clause (called abottom
clause) generated from a seed positive example and generalize it asfar as possible
without covering negative examples. Top-down methods likeFOIL [Quinlan1990] and
mFOIL [Lavrac & Dzeroski1994] start with the most general (empty)clause and re-
peatedly specialize it until it no longer covers negative examples. Both approaches
have problems scaling to large examples. When given large amounts of background
knowledge, the bottom clause in bottom-up methods becomes intractably large and the
increased branching factor in top-down methods greatly impedes their search.

Since top-down and bottom-up approaches have both strengths and weaknesses, we
developed a hybrid method that helps reduce search when learning with large amounts
of background knowledge. It does not build a bottom clause using a seed example
beforesearching for a good clause. Instead, after a random seed example is chosen,
it generates literals in a top-down fashion (i.e. guided by heuristic search), except
the literals generated are constrained to cover the seed example. Based on this idea,
we have developed a system calledBottom-clauseExploration ThroughHeuristic-
search (BETH) in which the bottom clause is not constructed in advance but“dis-
covered” during the search for a good clause. Details of the algorithm are given in
[Tang, Mooney, & Melville2003].

Results and Discussion

The performance of ALEPH, mFOIL, and BETH was evaluated using 6-fold cross-
validation. The data for each fold was generated by separateruns of the TB simulator.
The facts produced by one run of the simulator, only pertain to the entities and rela-
tions generated in that run; hence the facts of each fold are unrelated to the others. For
each trial, one fold is set aside for testing, while the remaining data iscombinedfor
training. The total number of Prolog atoms in the data is so large that running more
than six folds is not feasible.2 To test performance on varying amounts of training data,
learning curves were generated by testing the system after training on increasing sub-
sets of the overall training data. Note that, for different points on the learning curve,
the background knowledge remains the same; only the number of positive and negative
training examples given to the system varies.

We compared the three systems with respect to accuracy and training time. Accu-
racy is defined as the number of correctly classified test cases divided by the total num-
ber of test cases. The training time is measured as the CPU time consumed during the
training phase. All the experiments were performed on a 1.1 GHz Pentinum with dual
processors and 2 GB of RAM. BETH and mFOIL were implemented in Sicstus Prolog
version 3.8.5 and ALEPH was implemented in Yap version 4.3.22. Although different
Prolog compilers were used, the Yap Prolog compiler has beendemonstrated to outper-
form the Sicstus Prolog compiler, particularly in ILP applications [Santos Costa1999].

The following is a sample rule learned by BETH:

2The maximum number of atoms that the Sicstus Prolog compilercan handle is approximately a quarter
million.
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Figure 1.4: Learning Curves for Accuracy and Training Speed

System Accuracy CPU Time (mins) # of Clauses Bottom Clause Size
BETH 94.80% (+/- 2.3%) 23.39 (+/- 4.26) 4483 34

ALEPH 96.91% (+/- 2.8%) 598.92 (+/- 250.00) 63334 4061
mFOIL 91.23% (+/- 4.8%) 45.28 (+/- 5.40) 112904 n/a

Table 1.1: Results on classifyingmurder-for-hireevents given all the training data.#
of Clausesis the total number of clauses tested; andBottom Clause Sizeis the average
number of literals in the bottom clause constructed for eachclause in the learned theory.
The 90% confidence intervals are given for testAccuracyandCPU time.

murder_for_hire(A):- murder(A), eventOccursAt(A,H),
geographicalSubRegions(I,H), perpetrator(A,B),
recipientOfinfo(C,B), senderOfinfo(C,D), socialParticipants(F,D),
socialParticipants(F,G), payer(E,G), toPossessor(E,D).

This rule covered 9 positive examples and 3 negative examples. The rule can be in-
terpreted as:A is a murder-for-hire, ifA is a murder event, which occurs in a city in a
subregion of Russia, and in whichB is the perpetrator, who received information from
D, who had a meeting with and received some money fromG.

The results of our experiments are summarized in Figure 1.4.A snapshot of the
performance of the three ILP systems given 100% of the training examples is shown
in Table 1.1. On the full training set, BETH trains 25 times faster than ALEPH while
losing only 2 percentage points in accuracy and it trains twice as fast as mFOIL while
gaining 3 percentage points in accuracy. Therefore, we believe that its integration of
top-down and bottom-up search is an effective approach to dealing with the problem of
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scaling ILP to large examples. The learning curves for training time further illustrate
that although BETH and mFOIL appear to scale linearly with the number of training
examples, ALEPH’s training-time growth is super-linear.

Systems like BETH and ALEPH construct literals based on actual ground atoms
in the background knowledge, guaranteeing that the specialized clause covers at least
the seed example. On the other hand, mFOIL generates more literals than necessary
by enumerating all possible combination of variables. Somesuch combinations make
useless literals; adding any of them to the body of the current clause makes specialized
clauses that do not cover any positive examples. Thus, mFOIL wastes CPU time con-
structing and testing these literals. Since the average predicate arity in the EELD data
was small (2), the speedup over mFOIL was not as great, although much larger gains
would be expected for data that contains predicates with higher arity.

1.4 Current and Future Research

An under-studied issue in relational data mining is scalingalgorithms to very large
databases. Most research on ILP and RDM has been conducted inthe machine learning
and artificial intelligence communities rather than in the database and systems commu-
nities. Consequently, there has been insufficient researchon systems issues involved in
performing RDM in commercial relational-database systemsand scaling algorithms to
extremely large datasets that will not fit in main memory. Integrating ideas from sys-
tems work in data mining and deductive databases [Ramamohanarao & Harland1994]
would seem to be critical in addressing these issues.

On the issue of scaling, in addition to the BETH system discussed in section 1.3.2,
we are currently working on efficiently learning complex relational concepts from large
amounts of data by using stochastic sampling methods. A major shortcoming of ILP
is the computational demand that results from the large hypothesis spaces searched.
Intelligently sampling these large spaces can provide excellent performance in much
less time [Srinivasan1999, Zelezny, Srinivasan, & Page2002].

We are also developing algorithms that learn more robust, probabilistic relational
concepts represented as stochastic logic programs [Muggleton2003] and variants. This
will enrich the expressiveness and robustness of learned concepts. As an alterna-
tive to stochastic logic programs, we are working on learning clauses in a constraint
logic programming language where the constraints are Bayesian networks [Page2000,
Costaet al.2003].

One approach that we plan to investigate further is the use ofapproximate prior
knowledge to induce more accurate, comprehensible relational concepts from fewer
training examples [Richards & Mooney1995]. The use of priorknowledge can greatly
reduce the burden on users; they can express the “easy” aspects of the task at hand
and then collect a small number of training examples to refineand extend this prior
knowledge.

We also plan to use active learning to allow our ILP systems toselect more effective
training examples for interactively learning relational concepts [Muggletonet al.1999].
By intelligently choosing the examples for users to label, better extraction accuracy can
be obtained from fewer examples, thereby greatly reducing the burden on the users of
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our ILP systems.

Another important issue related to data mining for counter-terrorism is privacy
preservation. DARPA’s counter-terrorism programs have attracted significant public
and media attention due to concerns about potential privacyviolations (e.g. [Clymer2003]).
Consequently, privacy-preservingdata mining [Gehrke2002] is another very significant
“next generation” issue in data mining.

1.5 Related Work

Although it is the most widely studied, ILP is not the only approach to relational data
mining. In particular, other participants in the EELD program are taking alternative
RDM approaches to pattern learning for link discovery. Thissection briefly reviews
these other approaches.

1.5.1 Graph-based Relational Learning

Some relational data mining methods are based on learning structural patterns in graphs.
In particular, SUBDUE [Cook & Holder1994, Cook & Holder2000] discovers highly
repetitive subgraphs in a labeled graph using the minimum description length (MDL)
principle. SUBDUE can be used to discover interesting substructures in graphical data
as well as to classify and cluster graphs. Discovered patterns do not have to match the
data exactly since SUBDUE can employ an inexact graph-matching procedure based
on graph edit-distance. SUBDUE has been successfully applied to a number of im-
portant RDM problems in molecular biology, geology, and program analysis. It is also
currently being applied to discover patterns for link discovery as a part of the EELD
project (more details athttp://ailab.uta.edu/eeld/). Since relational data for
LD is easily represented as labeled graphs, graph-based RDMmethods like SUBDUE
are a natural approach.

1.5.2 Probabilistic Relational Models

Probabilistic relational models(PRM’s) [Koller & Pfeffer1998] are an extension of
Bayesian networks for handling relational data. Methods for learning Bayesian net-
works have also been extended to produce algorithms for inducing PRM’s from data
[Friedmanet al.1999]. PRM’s have the nice property of integrating some of the ad-
vantages of both logical and probabilistic approaches to knowledge representation and
reasoning. They combine some of the representational expressivity of first-order logic
with the uncertain reasoning abilities of Bayesian networks. PRM’s have been applied
to a number of interesting problems in molecular biology, web-page classification, and
analysis of movie data. They are also currently being applied to pattern learning for
link discovery as a part of the EELD project.
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1.5.3 Relational Feature Construction

One approach to learning from relational data is to first “flatten” or “propositional-
ize” the data by constructing features that capture some of the relational informa-
tion and then applying a standard learning algorithm to the resulting feature vectors
[Kramer, Lavrac̆, & Flach2001]. PROXIMITY [Neville & Jensen2000] is a system that
constructs features for categorizing entities based on thecategories and other properties
of other entities to which it is related. It then uses an interactive classification proce-
dure to dynamically update inferences about objects based on earlier inferences about
related objects. PROXIMITY has been successfully applied to company and movie
data. It is also currently being applied to pattern learningfor link discovery as a part of
the EELD project.

1.6 Conclusions

Link discovery is an important problem in automatically detecting potential threatening
activity from large, heterogeneous data sources. The DARPAEELD program is a
U.S. government research project exploring link discoveryas an important problem in
the development of new counter-terrorism technology. Learning new link-discovery
patterns that indicate potentially threatening activity is a difficult data mining problem.
It requires discovering novel relational patterns in largeamounts of complex relational
data. In this work we have shown that ILP methods can extract interesting and useful
rules from link-discovery data-bases containing up to hundreds of thousands of items.
To do so, we improved search efficiency and computation time per node over current
ILP systems.

Most existing data-mining methods assume flat data from a single relational table
and are not appropriate for link discovery. Relational datamining techniques, such as
inductive logic programming, are needed. Many other problems in molecular biology
[Srinivasanet al.1996], natural-language understanding [Zelle & Mooney1996], web
page classification [Cravenet al.2000], information extraction [Califf & Mooney1999,
Freitag1998], and other areas also require mining multi-relational data. However, re-
lational data mining requires exploring a much larger spaceof possible patterns and
performing complex inference and pattern matching. As a result, current RDM meth-
ods are not sufficiently scalable to very large databases. Consequently, we believe that
relational data mining is one of the major research topics inthe development of the next
generation of data mining systems, particularly those in the area of counter-terrorism.
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