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Abstract:

Link discovery(LD) is an important task in data mining for counter-tersomiand is

the focus of DARPA's Evidence Extraction and Link DiscovéBFEL D) research pro-
gram. Link discovery concerns the identification of complebational patterns that
indicate potentially threatening activities in large amtsuof relational data. Most
data-mining methods assume data is in the form of a featectew(a single relational
table) and cannot handle multi-relational ddtaductive logic programmings a form
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of relational data mining that discovers rules in first-oridgic from multi-relational
data. This paper discusses the application of ILP to legnpatiterns for link discovery.

Keywords: Relational Data Mining, Inductive Logic Programming, ater-terrorism,
link discovery

1.1 Introduction

Since the events of September 11, 2001, the developmentasfriation technology
that could aid intelligence agencies in their efforts teedetind prevent terrorism has
become an important focus of attention. The Evidence Etitmaand Link Discovery
(EELD) program of the Defense Advanced Research Projecséyg(DARPA) is one
research project that attempts to address this issue. Thielisement of the EELD
program for developing advanced software for aiding thect&in of terrorist activity
pre-dates the events of 9/11. The program had its genesipmiminary DARPA
planning meeting held at Carnegie Mellon University aftex bpening of the Center
for Automated Learning and Discovery in June of 1998. Thiting discussed the
possible formation of a new DARPA research program focusedavel knowledge-
discovery and data-mining (KDD) methods appropriate farmter-terrorism.

The scope of the new program was subsequently expandedus &octhree re-
lated sub-tasks in detecting potential terrorist actifriyn numerous large information
sources in multiple formatsEvidence ExtractiofEE) is the task of obtaining struc-
tured evidence data from unstructured, natural-languagardents. EE builds on in-
formation extraction technology developed under DARPAKier MUC (Message Un-
derstanding Conference) programs [Lehnert & Sundheim1©8die & Lehnert1996]
and the current ACE (Automated Content Extraction) progedrthe National Insti-
tute of Standards and Technology (NIST)[NIST2003]ink Discovery(LD) is the
task of identifying known, complex, multi-relational paths that indicate potentially
threatening activities in large amounts of relational datais therefore a form of
pattern-matching that involves matching complex, muétational “patterns of inter-
est” against large amounts of data. Some of the input datalaomes from EE ap-
plied to news reports and other unstructured documentsr atput data comes from
existing relational databases on financial and other tadioses. FinallyPattern Learn-
ing (PL) concerns the automated discovery of new relationdepa for potentially
threatening activities. Since determining and authorirpmplete and accurate set
of formal patterns for detecting terrorist activities isifficult task, learning methods
may be useful for automatically acquiring such patternmfsupervised or unsuper-
vised data. Learned patterns can then be employed by an LiBnsye improve its
detection of threatening activities. The current EELD pemg focused on these three
sub-topics started in the summer of 2001. After 9/11, it we®iporated under the
new Information Awareness Office (IAO) at DARPA.

The data and patterns used in EELD include representatfopsaple, organiza-
tions, objects, and actions and many types of relations deivthem. The data is
perhaps best represented as a large graph of entities ¢edrma variety of relations.
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The areas ofink analysisandsocial network analysig sociology, criminology, and

intelligence [Jensen & Goldberg1998, Wasserman & Faugt18parrow1991] study
such networks using graph-theoretic representations mating and pattern learning
for counter terrorism therefore requires handling suchtirnelational, graph-theoretic
data.

Unfortunately, most current data-mining methods assuradalttia is from a sin-
gle relational table and consists of flat tuples of items,namarket-basket analysis.
This type of data is easily handled by machine learning tiegles that assume a
“propositional” (a.k.a “feature vector” or “attribute wad”) representation of examples
[Witten & Frank1999].Relational data miningRDM) [Dzeroski & Lavrat2001b], on
the other hand, concerns mining data from multiple relatitables that are richly con-
nected. Given the style of data needed for link discoveryepalearning for link dis-
covery requireselationaldata mining. The most widely studied methods for inducing
relational patterns are those iimductive logic programmingILP) [Muggleton1992,
Lavrac & Dzeroskil994]. ILP concerns the induction of Hatause rules in first-
order logic (i.e., logic programs) from data in first-ordegic. This paper discusses
our on-going work on applying ILP to pattern learning fordidiscovery as a part of
the EELD project.

1.2 Inductive Logic Programming (ILP)

ILP is the study of learning methods for data and rules thatrapresented in first-
order predicate logic. Predicate logic allows for quardifiariables and relations and
can represent concepts that are not expressible using éesuagscribed as feature
vectors. A relational database can be easily translatedimst-order logic and be used
as a source of data for ILP [Wrobel2001]. As an example, dmnghe following rules,
written in Prolog syntax (where the conclusion appears)fitbat define the uncle
relation:

uncle(X,Y) :- brother(X, 2),parent(Z,Y).
uncl e( X, Y) :- husband(X, 2),sister(Z, W, parent(WY).

The goal ofinductive logic programmingILP) is to infer rules of this sort given a
database of background facts and logical definitions ofratiations [Muggleton1992,
Lavrac & Dzeroskil994]. For example, an ILP system can I¢henabove rules for
uncle (thetarget predicatg given a set of positive and negative examples of uncle
relationships and a set of facts for the relations parenthler, sister, and husband (the
background predicat@g$or the members of a given extended family, such as:

uncl e(tom frank), uncl e(bob,john),

not uncl e(tom cindy), not uncl e(bob,tom

par ent (bob, frank), parent(cindy, frank), parent(alice,john),
parent (tomjohn), brother(tomcindy), sister(cindy,tom,
husband(tom al i ce), husband(bob, ci ndy).
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Alternatively, rules that logically define the brother amster relations could be sup-
plied and these relationships inferred from a more completef facts about only the
“basic” predicatespar ent , spouse, andgender .

If-then rules in first-order logic are formally referred tsldorn clauses A more
formal definition of the ILP problem follows:

e Given:

— Background knowledge?, a set of Horn clauses.
— Positive examples?, a set of Horn clauses (typically ground literals).
— Negative examplesy, a set of Horn clauses (typically ground literals).

¢ Find: A hypothesisH, a set of Horn clauses such that:

— Vp € P: HU B [= p (completeness)
— V¥n € N : HU B [~ n (consistency)

Avariety of algorithms for the ILP problem have been develbfDZzeroski & Lavrat2001a]
and applied to a variety of important data-mining probleBisgroski2001, Houstist al2000].
Nevertheless, relational data mining remains an underegped topic in the larger
KDD community. For example, recent textbooks on data miftian & Kamber2001,
Witten & Frank1999, Hand, Mannila, & Smyth2001] hardly mentthe topic. An in-
creasing number of applications require handling comméxictured data types, in-
cluding bioinformatics, web and text mining, and enginegriTherefore, we believe
it is an important topic for “next generation” data minings®ms. In particular, it is
critical for link discovery applications in counter-terigm.

One of the standard criticisms of ILP methods from a dataimgiperspective
is that they do not scale to large amounts of data. Since tpethgsis space of
possible logic programs is extremely large and since jusing individual hypothe-
ses requires potentially complex automated deduction, meéthods can have diffi-
culty processing large amounts of data. We have developeHoa® to help ad-
dress both of these aspects of computational complexitgst,Rve have developed
methods for controlling the number of hypotheses testeddweldping new search
methods that use stochastic search to more efficiently exphe space of hypothe-
ses [Zelezny, Srinivasan, & Page2002] or that combine aspdexisting top-down
and bottom-up methods (see section 1.3.2). Second, we laetoged methods for
automatically optimizing learned clauses by inserting'cirt the Prolog code so that
deduction is more efficient [Santos Costa, Srinivasan, & &4m2000]. However, as
discussed in section 1.4, scaling ILP to very large dataisedssignificant area for
future research.

1.3 Initial Work on ILP for Link Discovery

We tested several ILP algorithms on various EELD dataséts.clirrent EELD datasets
pertain to two domains that were chosen as “challenge pmedilan link discovery that

1In Prolog, cuts (!) are procedural operators that prevetgrilly computationally expensive back-
tracking where the programmer determines it is unnecessary
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have many of the underlying properties of the counter-tesmo problem — Nuclear
Smuggling and Contract Killing. The Contract-Killing domas further divided into
natural (real world) data manually collected and extra@tech news sources and syn-
thetic (artificial) data generated by simulators. Sectidhllpresents our experimental
results on the natural Smuggling and Contract-Killing defaile section 1.3.2 presents
results on the synthetic Contract-Killing data.

1.3.1 Experiments on Natural Data
The Nuclear-Smuggling Data

The Nuclear-Smuggling dataset consists of reports on Russiclear materials smug-
gling [McKay, Woessner, & Roule2001]. The Chronology of Msr and Radioactive
Smuggling Incidents is the basis for the analysis of pasterthe smuggling of Russian
nuclear materials. The information in the Chronology isdobhsn open-source report-
ing, primarily World News Connection (WNC) and Lexis-Nex&here are also some
articles obtained from various sources that have beenlatadsirom Italian, German
and Russian. The research from which the Chronology grevarbeg1994 and the
chronology itself first appeared as an appendix to a paper ibiaivs and Woessner
in 1995 [Williams & Woessner1995b, Williams & Woessner18p5The continually
evolving Chronology then was published twice as separgtensan the same journal
as part of the “Recent Events” section [Woessner1995, Wiee$997]. As part of the
EELD project, the coverage of the Chronology was extenddédeiach 2000 and grew
to include 572 incidents.

The data is provided in the form of a relational databases dhtabase contains
Objects (described in rows in tables), each of which hagtaites of differing types
(i.e., columnsin the tables), the values of which are predibly the source information
or the analyst. The Objects are of different types, whichdemoted by prefixes (E
EV_, and LK), and consist of the following:

¢ Entity Objects (E...): these consist of EOCATION, E.MATERIAL, E_OR-
GANIZATION, E_PERSON, ESOURCE, and BNEAPON;

e Event Objects (EV\...): these currently consist of the generic EWENT;

e Link Objects (LK....): used for expressing links between/among Entities and
Events,

The database has over 40 relational tables. The number lektupa relational table
varies from as many as 800 to as little as 2 or 3.

As a representative problem, we used ILP to learn rules foerdegning which
events in anincident atinked Such rules could be used to construct larger knowledge
structures that could be recognized as threats. Hencel, Ehgyistem is given positive
training examples of known “links” between events. We assath other events are
unrelated and therefore compose a set of negative examylesalso provide back-
ground knowledge that tHanked relation is commutative. Our training set consists of
140 positive examples and 140 distinct negative examptetoraly drawn from a full
set of 8,124 negative pairs of events. The linking problerthenNuclear-Smuggling
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data is thus quite challenging in that it is a heavily relaéiblearning problem over a
large number of relations, whereas traditional ILP appilices usually require a small
number of relations.

The Natural Contract-Killing Data

The dataset of contract killings was first compiled by O’Hagnd Cook [Cook & O’'Hayon2000]
in response to research on Russian organized crime thatuetered frequent refer-
ences to contract killings. The dataset was subsequentreled by the authors with
funding from the EELD program through Veridian Systems Biiwn [Williams2002].
The database consists of a chronology of incidents eachidedasing information
drawn from one or more news articles. As in the Nuclear-Sringglataset, informa-
tion in the chronology is based on open-source reportime@ally Foreign Broadcast
Information Service (FBIS) and Joint Publications Reske&@ervice (JPRS) journals,
and subsequently both FBIS on-line and the on-line versiond\News Connection
(WNC). These services and Lexis-Nexis were the main inféionaources.

The data is organized in relational tables in the same foemdhe Nuclear-Smu-
ggling data described in the previous section. The dataset in our experiments has
48 relational tables. The number of tuples in a relationalktaaries from as many as
1,000 to as few as 1. Each killing was categorized accordirane of three possible
motivations: “Rival,” “Obstacle,” or “Threat.” The ILP t&svas to determine whether
the motivation for a killing was categorized as “Rival” ortn@he motivation for this
learning task was to recognize patterns of activity thatcatg an underlying motive,
which in turn contributes to recognizing threats. The nundigositive examples in
this dataset is 38, while the number of negative example4.is 3

ILP Results on the Natural Data

ALEPH We used the ILP systemi&PH [Srinivasan2001] to learn rules for the natu-
ral datasets. By default, l&£PH uses a simple greedy set covering procedure that con-
structs a complete and consistent hypothesis one claugevat.dn the search for any
single clause, AEPH selects the first uncovered positive example as the seedoxam
saturateghis example, and performs an admissible search over tloe gfpalauses that
subsume this saturation, subject to a user-specified diength bound. Further details
aboutour use of AEPHIN these experiments are available from [de Castro Detted2002].

Ensembles Ensembleaim atimproving accuracy through combining the prediction

of multiple classifiers in order to obtain a single classifikr contrast with previous
approaches [Quinlan1996, Hoche & Wrobel2001], each dlesss a logical theory
generated by AEPH. Many methods have been presented for ensemble generation
[Dietterich1998]. We usbagging[Breiman1996a], a popular method that is known to
frequently create a more accurate ensemble. Bagging wgrksining each classifier

on a random sample from the training set. Bagging has thertaptadvantage that it

is effective on “unstable learning algorithms” [Breima®®®], where small variations

in the input data can cause large variations in the learremtighs. Most ILP algorithms

are unstable in this sense. A second advantage is that tigéngeaggorithm is highly
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l'inked(A E) :-
| k_event _person(_, Event A, PersonC, _, Rel ati onB, Rel ati onB, Descri pti onD),
| k_event _person(_, EventF, PersonC, _, Rel ati onB, Rel ati onB, Descri pti onD),
| k_material |ocation(_,Material G _, EventE, _, , , , ),
| k_event _material (_, EventF, Material G _, , _, ).

Figure 1.1: Nuclear-Smuggling Data: Sample Learned Rule

parallel [Dutraet al2003]. Further details about our approach to bagging for #sP
well as our experimental methodology, can be found in [ddrGd3utraet al2002].
Our experimental results are based on a five-fold crosskatidin, where five times we
train on 80% of the examples and then test what was learndteaenaining 20% (in
addition, each example is in one and only one test set).

For the task of identifying linked events in the Nuclear-$ling dataset, AEPH
produces an average testset accuracy of 85%. This is anyapent over the base-
line case (majority class—always guessing two events arkrked), which produces
an average accuracy of 78%. Bagging (with 25 different sktsiles) increases the
accuracy to almost 90%.

An example of a rule with good accuracy found by the systenh@ve in Fig-
ure 1.1. This rule covers 43 of the 140 positive examples andegative examples.
According to this rule, two smuggling evemsandE are related if evernd involves
a persorCwho is also involved in another evelit EventF involves some materidb
that appears in eveft In other words, a persddin eventAis involved in a third event
F that uses material from evekt PersonC played the same rolB, with description
D, in eventsA andF. The “_” symbols mean that those arguments were not relevant
for that rule. Figure 1.2 illustrates the connections betwevents, material and peo-
ple involved. Solid lines are direct connections shown by ltterals in the body of
the clause. The dotted line corresponds to the newly leacardept that describes a
connection between two events.

Inferred

Event A rs Event F ’n‘ Event E

sl
NG
Kol
e

Person C Material G
Figure 1.2: Pictorial representation of a learned rule.

The task of identifying the underlying motive in the Contr&dling data set is
much more difficult, with AEPH's accuracy at 59%, compared with the baseline ac-
curacy of 52%. Again, bagging improves the accuracy, thigtio 69%. The rule in
Figure 1.3 shows one logical clause the ILP system foundhisrdataset. The rule
covers 19 of the 38 positive examples and a single negatarmpbe. The rule says that
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rival Killing(EventA) :-
| k_event _event (_, Event B, Event A, Rel ati onC, Event Descri pti onD),
| k_event _event (_, Event B, Event E, Rel ati onC, Event Descri pti onD),
| k_event _event (_, Event E, EventF, _, Event Descri pti onD),
lk_org_org(_,_,_,EventF, _, ,_,_, ).

Figure 1.3: Natural Contract-Killing Data: Sample Learirde

eventAis a killing by a rival if we can follow a chain of events thatrowects eveni
to eventB, eventB to eventE, and evenk to an evenf that relates two organizations.
EventsA andE have the same kind of relatioRel at i onC, to B. All events in the
chain are subsets of the same incident

1.3.2 Experiments on Synthetic Data

The ease of generating large amounts and data and privasideoations have led the
EELD program to use synthetic data generated by simulatdest, we describe the
results we obtained from simulated data for the CK problerhis Tata was gener-
ated from a run of a Task-Based (TB) simulator developed byrimation Extraction
and Transport Incorporated (IET). The TB simulator outmaise files, which contain
complete and unadulterated descriptions of murder casesselcase files are then fil-
tered for observability, so that facts that would not be asitie to an investigator are
eliminated. To make the task more realistic, the simulatdpuwt is corrupted, e.g., by
misidentifying role players or incorrectly reporting gmmemberships. This filtered
and corrupted data form the evidence files. In the evideres, fiicts about each event
are represented as ground facts, such as:

nmur der ( Mur der 714)
perpetrator(Mrder714, Killer186)
crimeVictinm Murder714, MurderVictinb96)
devi ceTypeUsed( Murder 714, Pi stol Czech)

The synthetic dataset that we used consists of 632 murdetsev&ach murder
event has been labeled as either a positive or negative égarxhp murder-for-hire.
There are 133 positive and 499 negative examples in theatat@sr task was to learn
a theory to correctly classify an unlabeled event as eitlpaisitive or negative instance
of murder-for-hire. The amount of background knowledgeliis dataset is extremely
large; consisting of 52 distinct predicate names, and &®1hackground facts in all.

Scaling to large datasets in data mining typically refermtweasing thexumber
of training examples that can be processed. Another meadwemplexity that is
particularly relevant in relational data mining is tee of individual examples, i.e.
the number of facts used to describe each example. To ourledge, the challenge
problems developed for the EELD program are the largest HoBlpms attempted to
date in terms of the number of facts in the background knogéedn order to more
effectively process such large examples, we have develapesiv ILP method that
reduces the number of clauses that are generated and tested.
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BETH

The two standard approachesto ILP are bottom-up and tom-flawrac & Dzeroski1994].
Bottom-up methods like BEPH start with a very specific clause (calledbattom
clausg generated from a seed positive example and generalizefétrass possible
without covering negative examples. Top-down methodsHi&a [Quinlan1990] and
mFoIL [Lavrac & Dzeroski1l994] start with the most general (emptiguse and re-
peatedly specialize it until it no longer covers negativaregles. Both approaches
have problems scaling to large examples. When given largruata of background
knowledge, the bottom clause in bottom-up methods becomiextably large and the
increased branching factor in top-down methods greathyenags their search.

Since top-down and bottom-up approaches have both stieagthweaknesses, we
developed a hybrid method that helps reduce search whenrgawith large amounts
of background knowledge. It does not build a bottom clausegua seed example
beforesearching for a good clause. Instead, after a random se@adpéxé chosen,
it generates literals in a top-down fashion (i.e. guided bwurfstic search), except
the literals generated are constrained to cover the seedpea Based on this idea,
we have developed a system callBdttom-clauseExploration ThroughHeuristic-
search (ETH) in which the bottom clause is not constructed in advance"dist
covered” during the search for a good clause. Details of tgerithm are given in
[Tang, Mooney, & Melville2003].

Results and Discussion

The performance of 2EPH, mFoIL, and BETH was evaluated using 6-fold cross-
validation. The data for each fold was generated by separageof the TB simulator.
The facts produced by one run of the simulator, only pertaithé entities and rela-
tions generated in that run; hence the facts of each foldranelated to the others. For
each trial, one fold is set aside for testing, while the revimg data iscombinedfor
training. The total number of Prolog atoms in the data is sgelahat running more
than six folds is not feasibeTo test performance on varying amounts of training data,
learning curves were generated by testing the system adiairtg on increasing sub-
sets of the overall training data. Note that, for differeainps on the learning curve,
the background knowledge remains the same; only the nunfipesdive and negative
training examples given to the system varies.

We compared the three systems with respect to accuracy anihty time. Accu-
racy is defined as the number of correctly classified tessadis@led by the total num-
ber of test cases. The training time is measured as the CRicctimsumed during the
training phase. All the experiments were performed on a Hz Bentinum with dual
processors and 2 GB of RAM.B&H and mFoiL were implemented in Sicstus Prolog
version 3.8.5 and AEPH was implemented in Yap version 4.3.22. Although different
Prolog compilers were used, the Yap Prolog compiler has Besmonstrated to outper-

form the Sicstus Prolog compiler, particularly in ILP ajgplions [Santos Costal1999].
The following is a sample rule learned by BH:

2The maximum number of atoms that the Sicstus Prolog comgaliethandle is approximately a quarter
million.
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Figure 1.4: Learning Curves for Accuracy and Training Speed

System Accuracy CPU Time (mins) | # of Clauses| Bottom Clause Size
BETH | 94.80% (+/- 2.3%)| 23.39 (+/- 4.26) 4483 34

ALEPH | 96.91% (+/- 2.8%)| 598.92 (+/- 250.00) 63334 4061

mFoiL | 91.23% (+/- 4.8%)| 45.28 (+/- 5.40) 112904 n/a

Table 1.1: Results on classifyimgurder-for-hireevents given all the training dat#.
of Clausess the total number of clauses tested; &altom Clause Sizs the average
number of literals in the bottom clause constructed for etalise in the learned theory.
The 90% confidence intervals are given for tésturacyandCPU time

nmurder _for_hire(A):- nurder(A), eventCOccursAt (A H),
geogr aphi cal SubRegi ons(1, H), perpetrator(A B),
recipientfinfo(C, B), senderOfinfo(C D), social Participants(F, D),
soci al Participants(F, G, payer(E G, toPossessor(E D).

This rule covered 9 positive examples and 3 negative examflbe rule can be in-
terpreted asA is a murder-for-hire, ifA is a murder event, which occurs in a city in a
subregion of Russia, and in whighis the perpetrator, who received information from
D, who had a meeting with and received some money fGom

The results of our experiments are summarized in Figure A.4napshot of the
performance of the three ILP systems given 100% of the tigiexamples is shown
in Table 1.1. On the full training set,BH trains 25 times faster thanL&rPH while
losing only 2 percentage points in accuracy and it trainsdvais fast as m#iL while
gaining 3 percentage points in accuracy. Therefore, wewkhat its integration of
top-down and bottom-up search is an effective approachdtrgdpwith the problem of
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scaling ILP to large examples. The learning curves for tingitime further illustrate
that although BTH and mFoIL appear to scale linearly with the number of training
examples, AEPH's training-time growth is super-linear.

Systems like BTH and ALEPH construct literals based on actual ground atoms
in the background knowledge, guaranteeing that the sfsmibtlause covers at least
the seed example. On the other hand,anFgenerates more literals than necessary
by enumerating all possible combination of variables. Seawh combinations make
useless literals; adding any of them to the body of the ctinlanise makes specialized
clauses that do not cover any positive examples. Thugyimwastes CPU time con-
structing and testing these literals. Since the averagéiqak arity in the EELD data
was small (2), the speedup over miE was not as great, although much larger gains
would be expected for data that contains predicates withdrigrity.

1.4 Current and Future Research

An under-studied issue in relational data mining is scabifgprithms to very large
databases. Most research on ILP and RDM has been conduthedirachine learning
and artificial intelligence communities rather than in tiagadbase and systems commu-
nities. Consequently, there has been insufficient researslystems issues involved in
performing RDM in commercial relational-database systantsscaling algorithms to
extremely large datasets that will not fit in main memoryegrating ideas from sys-
tems work in data mining and deductive databases [Ramanacii@a& Harland1994]
would seem to be critical in addressing these issues.

On the issue of scaling, in addition to th& B+ system discussed in section 1.3.2,
we are currently working on efficiently learning complexaténal concepts from large
amounts of data by using stochastic sampling methods. Amshmrtcoming of ILP
is the computational demand that results from the large thgsis spaces searched.
Intelligently sampling these large spaces can providelexteperformance in much
less time [Srinivasan1999, Zelezny, Srinivasan, & Pag2R00

We are also developing algorithms that learn more robusbatilistic relational
concepts represented as stochastic logic programs [Miogd@@03] and variants. This
will enrich the expressiveness and robustness of learnadepds. As an alterna-
tive to stochastic logic programs, we are working on leagrdlauses in a constraint
logic programming language where the constraints are Baye®tworks [Page2000,
Costaet al2003].

One approach that we plan to investigate further is the usgppfoximate prior
knowledge to induce more accurate, comprehensible rakdticoncepts from fewer
training examples [Richards & Mooney1995]. The use of pkimowledge can greatly
reduce the burden on users; they can express the “easy’tasgabe task at hand
and then collect a small number of training examples to redimeé extend this prior
knowledge.

We also plan to use active learning to allow our ILP systensgtect more effective
training examples for interactively learning relationahcepts [Muggletoet al.1999].
By intelligently choosing the examples for users to labettdr extraction accuracy can
be obtained from fewer examples, thereby greatly redutiedtirden on the users of
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our ILP systems.

Another important issue related to data mining for coutgerarism is privacy
preservation. DARPA's counter-terrorism programs haweetied significant public
and media attention due to concerns about potential priviatations (e.g. [Clymer2003]).
Consequently, privacy-preserving data mining [Gehrk@&another very significant
“next generation” issue in data mining.

1.5 Related Work

Although it is the most widely studied, ILP is not the only apgch to relational data
mining. In particular, other participants in the EELD pragr are taking alternative
RDM approaches to pattern learning for link discovery. Tdgstion briefly reviews
these other approaches.

1.5.1 Graph-based Relational Learning

Some relational data mining methods are based on learmingstal patterns in graphs.
In particular, SUBDUE [Cook & Holder1994, Cook & Holder2QGflscovers highly
repetitive subgraphs in a labeled graph using the minimusarifgtion length (MDL)
principle. SUBDUE can be used to discover interesting subtitres in graphical data
as well as to classify and cluster graphs. Discovered patido not have to match the
data exactly since SUBDUE can employ an inexact graph-rirajgirocedure based
on graph edit-distance. SUBDUE has been successfullyegppd a number of im-
portant RDM problems in molecular biology, geology, andgwean analysis. It is also
currently being applied to discover patterns for link disexy as a part of the EELD
project (more details dtt t p: / / ai | ab. ut a. edu/ eel d/ ). Since relational data for
LD is easily represented as labeled graphs, graph-based RBtkiods like SUBDUE
are a natural approach.

1.5.2 Probabilistic Relational Models

Probabilistic relational model§PRM'’s) [Koller & Pfeffer1998] are an extension of
Bayesian networks for handling relational data. Methodddarning Bayesian net-
works have also been extended to produce algorithms focinglPRM'’s from data
[Friedmanet al.1999]. PRM’s have the nice property of integrating some ef dh-
vantages of both logical and probabilistic approaches twkedge representation and
reasoning. They combine some of the representational esipity of first-order logic
with the uncertain reasoning abilities of Bayesian netwoRRM'’s have been applied
to a number of interesting problems in molecular biologybwpage classification, and
analysis of movie data. They are also currently being agpbepattern learning for
link discovery as a part of the EELD project.
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1.5.3 Relational Feature Construction

One approach to learning from relational data is to first téiat or “propositional-
ize” the data by constructing features that capture soméefre¢lational informa-
tion and then applying a standard learning algorithm to #slting feature vectors
[Kramer, Lavrag, & Flach2001]. PROXIMITY [Neville & Jens2000] is a system that
constructs features for categorizing entities based ocdtegjories and other properties
of other entities to which it is related. It then uses an imtéve classification proce-
dure to dynamically update inferences about objects basezudier inferences about
related objects. PROXIMITY has been successfully appl@dampany and movie
data. Itis also currently being applied to pattern learfiordink discovery as a part of
the EELD project.

1.6 Conclusions

Link discovery is an important problem in automaticallyetsing potential threatening
activity from large, heterogeneous data sources. The DAEEPAD program is a

U.S. government research project exploring link discowran important problem in
the development of new counter-terrorism technology. hiear new link-discovery

patterns that indicate potentially threatening activstg idifficult data mining problem.
It requires discovering novel relational patterns in laag®unts of complex relational
data. In this work we have shown that ILP methods can extrdetésting and useful
rules from link-discovery data-bases containing up to meds of thousands of items.
To do so, we improved search efficiency and computation tisrepde over current
ILP systems.

Most existing data-mining methods assume flat data fromglesirelational table
and are not appropriate for link discovery. Relational daiaing techniques, such as
inductive logic programming, are needed. Many other proisien molecular biology
[Srinivasaret al1996], natural-language understanding [Zelle & Moonel9%eb
page classification [Cravest al2000], information extraction [Califf & Mooney1999,
Freitag1998], and other areas also require mining mulitienal data. However, re-
lational data mining requires exploring a much larger spH#geossible patterns and
performing complex inference and pattern matching. As altesurrent RDM meth-
ods are not sufficiently scalable to very large databasess&tuently, we believe that
relational data mining is one of the major research topitisérdevelopment of the next
generation of data mining systems, particularly those énattea of counter-terrorism.

Acknowledgments

This research is sponsored by the Defense Advanced Redeajgtts Agency and
managed by Rome Laboratory under contract F30602-01-2-08% views and con-
clusions contained in this document are those of the autlmdsshould not be in-
terpreted as necessarily representing the official pali@éher expressed or implied
of the Defense Advanced Research Projects Agency, Romerdialog or the United
States Government.



14 CHAPTER ONE

Vitor Santos Costa and Inés de Castro Dutra are on leawe @OPPE/Sistemas,
Federal University of Rio de Janeiro and were partially sufgdl by CNPg. Many
thanks to Hans Chalupksy’s group at IS, in particular to An®falente, who gave
us support on using the Task-based simulator. We would tikinank the Biomed-
ical Computing Group support staff and the Condor Team aCibmaputer Sciences
Department of the University of Wisconsin, Madison, forithavaluable help with
Condor. We also would like to thank Ashwin Srinivasan for édp with the A EPH
system.



Bibliography

[Breiman1996a] Breiman, L. 1996a. Bagging Predictor8lachine Learning
24(2):123-140.

[Breiman1996b] Breiman, L. 1996b. Stacked Regressiomdachine Learning
24(1):49-64.

[Califf & Mooney1999] Califf, M. E., and Mooney, R. J. 1999eRtional learning of
pattern-match rules for information extraction.Rroceedings of the 17th National
Conference on Atrtificial Intelligenc828-334.

[Clymer2003] Clymer, A. 2003. Pentagon Surveillance Plamlescribed as Less
Invasive.New York TimeMay(7).

[Cook & Holder1994] Cook, D. J., and Holder, L. B. 1994. Substure discovery
using minimum description length and background knowledgarnal of Artificial
Intelligence Research:231-255.

[Cook & Holder2000] Cook, D. J., and Holder, L. B. 2000. Grapdsed data mining.
IEEE Intelligent SystemE5(2):32—-41.

[Cook & O’'Hayon2000] Cook, W., and O’Hayon, G. 2000. Chrar} of Russian
killings. Transnational Organized Crimé(2).

[Costaet al2003] Costa, V. S.; Page, D.; Qazi, M.; and Cussens, J. 200B(EBN):
Constraint logic programming for probabilistic knowledde Proceedings of the
International Conference on Uncertainty in Artificial Ifitgence (UAI-03)

[Cowie & Lehnert1996] Cowie, J., and Lehnert, W. 1996. Infiation extraction.
Communications of the ACBB(1):80-91.

[Cravenet al2000] Craven, M.; DiPasquo, D.; Freitag, D.; McCallum, A.; K.
Mitchell, T.; Nigam, K.; and Slattery, S. 2000. Learning nstruct knowledge
bases from the World Wide Welrtificial Intelligencel118(1-2):69-113.

[de Castro Dutrat al2002] de Castro Dutra, I.; Page, D.; Costa, V. S.; and Shavlik
J. W. 2002. An empirical evaluation of bagging in inductiegit programming.
In Inductive Logic Programming, 12th International Confezenvolume 2583 of
Lecture Notes in Computer Sciend8—65. Sydney, Australia: Springer Verlag.

15



16 CHAPTER ONE

[Dietterich1998] Dietterich, T. G. 1998. Machine-leamgiresearch: Four current
directions.The Al Magazind 8(4):97-136.

[Dutraet al2003] Dutra, I. C.; Page, D.; Santos Costa, V.; Shavlik, Jantd Waddell,
M. 2003. Towards automatic management of embarassingaflebapplications.
In Proceedings of Europar 20Q8ecture Notes in Computer Science. Klagenfurt,
Austria: Springer Verlag.

[Dzeroski & Lavrat2001a] Dzeroski, S., and Lavra¢, NDO2a. An introduction to
inductive logic programming. In DZeroski, S., and Laynst eds. Relational Data
Mining. Berlin: Springer Verlag. 48—73.

[Dzeroski & Lavrat2001b] Dzeroski, S., and Lavrac, &ds. 2001bRelational Data
Mining. Berlin: Springer Verlag.

[Dzeroski2001] Dzeroski, S. 2001. Relational data mgrapplications: An overview.
In DZeroski, S., and Lavrac, N., ed®elational Data Mining Berlin: Springer
Verlag. 339-364.

[Freitag1998] Freitag, D. 1998. Information extractioarfr HTML: Application of
a general learning approach. Broceedings of the 16th National Conference on
Artificial Intelligence 517-523. Madison, WI: AAAI Press / The MIT Press.

[Friedmanet al.1999] Friedman, N.; Getoor, L.; Koller, D.; and Pfeffer, A.999.
Learning probabilistic relational models. Rroceedings of the 16th International
Joint Conference on Atrtificial Intelligenc&300-1307.

[Gehrke2002] Gehrke, J. 2002. Data mining for security arvbpy. SIGKDD Ex-
plorations4(2):i. Introduction to special issue on Privacy and Seguri

[Han & Kamber2001] Han, J., and Kamber, M. 200Rata Mining: Concepts and
TechniguesSan Francisco: Morgan Kauffmann Publishers.

[Hand, Mannila, & Smyth2001] Hand, D. J.; Mannila, H.; andy&m P. 2001.Prin-
ciples of Data Mining Cambridge, MA: MIT Press.

[Hoche & Wrobel2001] Hoche, S., and Wrobel, S. 2001. Retetidearning using
constrained confidence-rated boosting. In Rouveirol, @, ®ebag, M., edsBro-
ceedings of the 11th International Conference on Indudtiegic Programming
volume 2157 ot ecture Notes in Artificial Intelligen¢®&1—-64. Springer-Verlag.

[Houstiset al2000] Houstis, E. N.; Catlin, A. C.; Rice, J. R.; Verykios S/; Ramakr-
ishnan, N.; and Houstis, C. E. 2000. PYTHIA-II: a knowledtgibase system for
managing performance data and recommending scientifiwat ACM Transac-
tions on Mathematical Softwa®6(2):227-253.

[Jensen & Goldberg1998] Jensen, D., and Goldberg, H., e888.1AAAI Fall Sym-
posium on Artificial Intelligence for Link Analysislenlo Park, CA: AAAI Press.



R. J. MOONEY ET AL. 17

[Koller & Pfeffer1998] Koller, D., and Pfeffer, A. 1998. Pwabilistic frame-based
systems. IProceedings of the 16th National Conference on Atrtificiéligence
580-587. Madison, WI: AAAI Press / The MIT Press.

[Kramer, Lavrag, & Flach2001] Kramer, S.; Lavrat, N.; dfdch, P. 2001. Proposi-
tionalization approaches to relational data mining. Iref@ski, S., and Lavrac, N.,
eds.,Relational Data MiningBerlin: Springer Verlag. 262—-291.

[Lavrac & Dzeroski1l994] Lavrac, N., and Dzeroski, S. 1994ductive Logic Pro-
gramming: Techniques and Applicatiorislis Horwood.

[Lehnert & Sundheim1991] Lehnert, W., and Sundheim, B. 19®&lperformance
evaluation of text-analysis technologied. Magazinel2(3):81-94.

[McKay, Woessner, & Roule2001] McKay, S. J.; Woessner, P.awd Roule, T. J.
2001. Evidence extraction and link discovery (EELD) seegliproject, database
schema description, version 1.0. Technical Report 2862 im Systems Division.

[Muggletonet al1999] Muggleton, S.; Bryant, C.; Page, C.; and Sternberg] 889.
Combining active learning with inductive logic programmito close the loop in
machine learning. In Colton, S., e®roceedings of the AISB’99 Symposium on Al
and Scientific Creativity (informal proceedings)

[Muggleton1992] Muggleton, S. H., ed. 199fhductive Logic ProgrammingNew
York, NY: Academic Press.

[Muggleton2003] Muggleton, S. 2003. Stochastic logic pamgs. Journal of Logic
Programming To appear.

[Neville & Jensen2000] Neville, J., and Jensen, D. 2000@attee classification in re-
lational data. IrPapers from the AAAI-00 Workshop on Learning Statisticatide
from Relational Data Austin, TX: AAAI Press / The MIT Press.

[NIST2003] NIST. 2003. ACE - Automatic Content Extraction.
http://www.nist.gov/speech/tests/ace/.

[Page2000] Page, D. 2000. ILP: Just do it! In Lloyd, J.; Dahj,Furbach, U.;
Kerber, M.; Lau, K.-K.; Palamidessi, C.; Pereira, L.; Sayfiyand Stuckey, P., eds.,
Proceedings of Computational Logic 2Q@%—40. Springer Verlag.

[Quinlan1990] Quinlan, J. R. 1990. Learning logical deforis from relations Ma-
chine Learnings(3):239-266.

[Quinlan1996] Quinlan, J. R. 1996. Boosting first-orderridag. Algorithmic
Learning Theory, 7th International Workshop, Lecture NateComputer Science
1160:143-155.

[Ramamohanarao & Harland1994] Ramamohanarao, K., anchktirl. 1994. An
introduction to deductive database languages and systinBB Journal3:2.



18 CHAPTER ONE

[Richards & Mooney1995] Richards, B. L., and Mooney, R. J.93.9 Automated
refinement of first-order Horn-clause domain theorMachine Learnindl9(2):95—
131.

[Santos Costa, Srinivasan, & Camacho2000] Santos Cost@&ikivasan, A.; and Ca-
macho, R. 2000. A note on two simple transformations for maprg the efficiency
of an ILP system. In Cussens, J., and Frisch, A., éleceedings of the 10th In-
ternational Conference on Inductive Logic Programmiaglume 1866 ol ecture
Notes in Artificial Intelligence225—-242. Springer-Verlag.

[Santos Costal999] Santos Costa, V. 1999. Optimising bygeemulation for Prolog.
In LNCS 1702, Proceedings of PPDP961-267. Springer-Verlag.

[Sparrow1991] Sparrow, M. K. 1991. The application of nata@analysis to criminal
intelligence: An assessment of the prospeSiscial Network4.3:251-274.

[Srinivasanet al.1996] Srinivasan, A.; Muggleton, S. H.; Sternberg, M. Jd &ing,
R. D. 1996. Theories for mutagenicity: A study in first-or@erd feature-based
induction. Artificial Intelligence85:277-300.

[Srinivasan1999] Srinivasan, A. 1999. A study of two samglinethods for analysing
large datasets with ILFData Mining and Knowledge DiscoveB(1):95-123.

[Srinivasan2001] Srinivasan, A. 2001. The Aleph Manual URL:
http://oldwww.comlab.ox.ac.uk/oucl/groups/machléateph/alephtoc.html.

[Tang, Mooney, & Melville2003] Tang, L. R.; Mooney, R. J.;chMelville, P. 2003.
Scaling up ilp to large examples: Results on link discovencbunter-terrorism. In
submitted to the KDD-03 Workshop on Multi-Relational Datiidg.

[Wasserman & Faust1994] Wasserman, S., and Faust, K. Baszlal Network Anal-
ysis: Methods & ApplicationgCambridge, UK: Cambridge University Press.

[Williams & Woessner1995a] Williams, P., and Woessner, PL8B5a. Nuclear mate-
rial trafficking: An interim assessmentransnational Organized Crim#(2):206—
238.

[Williams & Woessner1995b] Williams, P., and Woessner, P.18995b. Nuclear ma-
terial trafficking: An interim assessment, ridgway viewntsi Technical Report 3,
Ridgway Center, University of Pittsburgh.

[Williams2002] Williams, P. 2002. Patterns, indicatonsdavarnings in link analysis:
The contract killings dataset. Technical Report 2878,dfari Systems Division.

[Witten & Frank1999] Witten, I. H., and Frank, E. 199%ata Mining: Practical
Machine Learning Tools and Techniques with Java Implentiemis San Francisco:
Morgan Kaufmann.

[Woessner1995] Woessner, P. N. 1995. Chronology of nusleaiggling incidents:
July 1991-may 1995Transnational Organized Crim#(2):288-329.



R. J. MOONEY ET AL. 19

[Woessner1997] Woessner, P. N. 1997. Chronology of ratli@aand nuclear ma-

terials smuggling incidents: July 1991-june 199Tansnational Organized Crime
3(1):114-209.

[Wrobel2001] Wrobel, S. 2001. Inductive logic programmfogknowledge discov-

ery in databases. In Dzeroski, S., and Lavrat, N., éRislational Data Mining
Berlin: Springer Verlag. 74-101.

[Zelezny, Srinivasan, & Page2002] Zelezny, F.; Srinivasan and Page, D. 2002.
Lattice-search runtime distributions may be heavy-tailéd Proceedings of the
12th International Conference on Inductive Logic Prograimgn Springer Verlag.

[Zelle & Mooney1996] Zelle, J. M., and Mooney, R. J. 1996. ireag to parse

database queries using inductive logic programmingProceedings of the 14th
National Conference on Artificial Intelligenc&050-1055.



