
Explaining Competitive-Level Programming Solutions using LLMs

Jierui Li ♥, Szymon Tworkowski♣,♠, Yingying Wu♦ and Raymond Mooney♥

♥The University of Texas at Austin, ♣University of Warsaw, ♠IDEAS NCBR
♦ University of Houston

{jierui, mooney}@cs.utexas.edu, szy.tworkowski@gmail.com, ywu68@uh.edu

Abstract

In this paper, we approach competitive-level
programming problem-solving as a compos-
ite task of reasoning and code generation. We
propose a novel method to automatically anno-
tate natural language explanations to <problem,
solution> pairs. We show that despite poor per-
formance in solving competitive-level program-
ming problems, state-of-the-art LLMs exhibit
a strong capacity in describing and explaining
solutions. Our explanation generation method-
ology can generate a structured solution expla-
nation for the problem containing descriptions
and analysis. To evaluate the quality of the
annotated explanations, we examine their effec-
tiveness in two aspects: 1) satisfying the human
programming expert who authored the oracle
solution, and 2) aiding LLMs in solving prob-
lems more effectively. The experimental results
on the CodeContests dataset demonstrate that
while LLM GPT3.5’s and GPT-4’s abilities in
describing the solution are comparable, GPT-4
shows a better understanding of the key idea
behind the solution.

1 Introduction

Recent Large Language Models (LLMs) have
shown impressive capabilities for various reason-
ing tasks, including multi-hop question answering
(Wang et al., 2022a; Lyu et al., 2023), common-
sense reasoning (Zelikman et al., 2022), symbolic
reasoning (Hua and Zhang, 2022), and math word
problem-solving (Zhou et al., 2023; Chen et al.,
2022b). The chain-of-thought prompting method
(Wei et al., 2022) explicitly instructs LLMs to gen-
erate intermediate steps until the final answer is
reached, enabling the model to decompose prob-
lems and solve them step-by-step. Nevertheless,
challenges persist when tackling complex reason-
ing tasks, such as competitive-level programming
problems. For instance, even powerful models
like GPT-4 outperform fewer than 5% of human
competitors in virtual contests from Codeforces

(OpenAI, 2023b). Competitive-level programming
problems epitomize problem-solving strategies for
algorithmic, mathematical, geometric, and graph-
theoretic problems. Solving them necessitates un-
derstanding problems, familiarity with algorithms,
reasoning skills, creative algorithm development,
and efficient, robust implementation.

Problem Statement: Sign Swap
Given an array of n integers a1, a2, . . . , an, where ai ≠

0, check if you can make this array sorted by using the
following operation any number of times (possibly zero).
An array is sorted if its elements are arranged in a non-
decreasing order. Select two indices i and j (1 ≤ i, j ≤ n)
such that ai and aj have different signs. In other words,
one must be positive and one must be negative. Swap the
signs of ai and aj . For example if you select ai = 3 and
aj = −2, then they will change to ai = −3 and aj = 2.

Solution:
a= [* map (i n t , i n p u t () . s p l i t ())]
h=sum (1 f o r v i n a i f v <0)
b =[abs (a [i]) * (−1 i f i <h e l s e 1) f o r

i i n r a n g e (l e n (a))]
p r i n t (’ yes ’ i f s o r t e d (b) ==b e l s e ’ no ’)
Solution Description: Move negative signs to the front of
the array and check if it’s already non-decreasing.

Solution Explanation: Swapping different signs for any
number of times means you can move negative signs ar-
bitrarily. A non-decreasing array must have negative el-
ements ahead of positive elements and moving negative
signs ahead is the optimal operation can be made.

GPT-3.5 Generated Program:
a = l i s t (map (i n t , i n p u t () . s p l i t ()))
neg_coun t = sum (1 f o r x i n a i f x < 0)
p o s _ c o u n t = l e n (a) − neg_coun t
w h i l e True :

i f neg_coun t > p o s _ c o u n t :
f o r i i n r a n g e (l e n (a)) :

i f a [i] < 0 : a [i] = −a [i] ; neg_coun t −= 1 ;
p o s _ c o u n t += 1 ; b r e a k

e l i f p o s _ c o u n t > neg_coun t :
f o r i i n r a n g e (l e n (a)) :

i f a [i] > 0 : a [i] = −a [i] ; p o s _ c o u n t −= 1 ;
neg_coun t += 1 ; b r e a k

e l s e : b r e a k
i f a l l (a [i] <= a [i +1] f o r i i n r a n g e (l e n (a) −1)) : p r i n t ("

YES")
e l s e : p r i n t ("NO")

Table 1: An example of a problem and solution from
Codeforces with human oracle Solution, Description,
and Explanation. The formatting in the problem is sim-
plified. Program generated by GPT-3.5 is incorrect.

Previous works on automatically solving pro-

ar
X

iv
:2

30
7.

05
33

7v
1

 [
cs

.C
L

]
 1

1
Ju

l 2
02

3

gramming problems focus on tasks mapping fairly
detailed natural language instructions to programs.
Li et al. (2022); Ni et al. (2023); Chen et al. (2022a)
verified and selected candidate programs by run-
ning them on human-written or automatically gen-
erated test cases. Shojaee et al. (2023); Chen et al.
(2023); Schäfer et al. (2023) incorporated execution
feedback as an intermediate step during code gener-
ation to enhance the programming ability of LLMs.
While these methods yield promising results for
fairly straightforward implementation tasks, they
fall short on algorithmic reasoning tasks.

Table 1 shows a sample problem from Code-
forces.1 Compared to most instruction-to-program
tasks, competitive-level programming, a problem-
to-program task, is more challenging. Before im-
plementing the program, one needs to first abstract
the problem and create a mathematical represen-
tation, come up with potential solutions, consider
time and space complexity constraints, and corner
cases, and finally identify a proper problem-solving
strategy.

In order to disentangle reasoning about the prob-
lem from code implementation, we advocate de-
composing the process of solving a programming
problem. Instead of directly generating a program
given the problem statement, we propose adding
explicit, intermediate reasoning steps in natural
language. These steps are more aligned with how
humans typically solve such problems and utilize
the idea of chain-of-thought.

However, while <problem, solution>2 pairs are
publicly available on the practice websites (Li et al.,
2022), natural language descriptions or explana-
tions of “how to solve the problem” are hard to
collect at scale, as it requires additional annotations
from programming experts. Hence, we propose to
automatically generate explanations using an LLM.
We found that: 1) Given both the problem and a
human-written program solution,

LLMs like GPT-3.5 and GPT-4 can describe the
solution in natural language reasonably well; and 2)
Given the automatically generated explanation as a
hint, LLMs perform better at solving the problem.

Our explanation generation methodology shown
in Figure 1 employs a hierarchical prompt, request-
ing a step-by-step explanation from detailed code
analysis to a broader understanding of the solution.

1
https://codeforces.com/problemset/problem/

1670/A
2A solution here refers to a correct program.

The 7 points can be categorized into Description-
Level (i.e., Point 1,3,4,5) and Analysis-Level (i.e.,
Point 2,6,7) of the problem and solution. To eval-
uate the quality of the generated explanations, we
examine their effectiveness in two respects: 1) be-
ing positively rated by the human programming
expert who authored the “oracle” solution, and 2)
aiding LLMs in solving the problems more effec-
tively. In the explanation-aided evaluation, Ex-
plainer generates the explanation given the oracle
solution while Solver generates programs from the
explanation. We use GPT-turbo-3.5 and GPT-4 as
the Explainer and GPT-turbo-3.5 as the Solver in
our experiments.

In the human evaluation, we ask human experts
who are the authors of solutions to score the expla-
nations from -2 to 2. They give the explanations
positive scores averaging 0.81 and 1.30 on GPT-
3.5 Explainer and GPT-4 Explainer respectively.
With respect to explanation-aided program synthe-
sis, we find that different points of the generated
explanations can guide the model to solve the prob-
lem better, with the solve rate at pass@10 (one of
the top 10 generated programs is deemed correct)
increasing from 6.1% to 42.4% on the CodeCon-
tests (Li et al., 2022) test set. In addition, we found
that GPT-turbo-3.5 performs significantly worse at
Analysis-Level explanations compared to GPT-4.
Both of them can generate high-quality Descrip-
tions.

The main contributions of this work are:

1. We advocate disentangling reasoning about
the problem and code generation in solving
competitive-level programming problems.

2. We propose a Specific-to-General prompt to
automatically generate structured natural lan-
guage explanations for <problem, solution>
pairs.

3. We demonstrate that this proposed method
yields convincing explanations that are posi-
tively scored by the program authors and serve
as effective hints to better solve the problems.

Though the main focus of this paper is not solv-
ing competitive-level programming problems. We
further discuss how such explanations can poten-
tially be used to improve problem-solving, which
we leave as a potential avenue for future research.

https://codeforces.com/problemset/problem/1670/A
https://codeforces.com/problemset/problem/1670/A

Figure 1: The explanation generation and evaluation framework and corresponding prompts (Top). An example of
the full explain prompt (Bottom Left) and model’s output is in Appendix Table 7. The blue points are descriptions
while the grey points are analysis. We give the explanation based on the oracle solution to the instructed solver as a
hint (Bottom Right) to evaluate the quality of the generated explanation.

2 Background

2.1 Challenges in Solving and Annotation

Competitive-level programming problems (Mirza-
yanov et al., 2020) are more indirect compared to
many code implementation tasks. Reasoning and
problem-solving strategies are usually necessary
before implementation (Skiena and Revilla, 2003;
Laaksonen, 2020); and they require solutions to
be both correct and efficient. While brute-force
solutions may be feasible for some problems, they
are frequently deemed inadequate due to their high
time and space complexity. Additionally, some
problems may intentionally obscure the key idea
behind the solution, presenting more puzzle-like
challenges.

The challenges in solving competitive-level pro-
gramming lie in not only the implementation phase
but also the reasoning process that precedes it,
which has not been adequately addressed by pre-
vious works. Consider the problem in Table 1, if
given a specific instruction, LLMs optimized for
code generation can generate the correct program.
However, the reasoning process of why it is correct
is not reflected in the problem or the program solu-
tion. To bridge the gap between the problem and
the solution, natural-language-explained solutions
and reasoning steps can be potentially helpful.

Annotating explanations on how to solve those
questions can be difficult and time-consuming,
even for highly skilled programming competitors.
Solutions are written under a time constraint, and

competitors compromise readability for fast imple-
mentation. Therefore, solutions are often hard to
understand by others without natural language ex-
planation. Small-scale solution explanations, also
known as editorials, can be found in some blogs on
the Internet, but collecting large-scale editorials in
a unified format is still infeasible. In this paper, we
tackle how to use LLMs to generate silver-standard
explanations automatically, thereby addressing the
need for accessible and comprehensive solution
explanations in competitive-level programming.

2.2 Problem Formulation
We formalize our task with a problem set consisting
of n problems P = {p1, p2,⋯, pn}; each problem
pi is a text sequence that describes the following
aspects clearly.

• Problem statement: a natural language de-
scription of the problem, as the first cell in
Table 1.

• Input/Output: the format and input/output con-
straints (e.g. ranges) for the submitted pro-
gram s.

• Example: An example of a correct pair of
input/output.

• Note (Optional): Explanation of the Example
input/output.

Each pi corresponds to a set of oracle human
solutions Si = {s1i , s2i ,⋯, s

t
i} where t is the num-

ber of total solutions of pi, we then select top k

Figure 2: The Baseline Solver Prompt and General-to-
Specific (G2S) Prompt which asks LLMs to follow the
reasoning steps till it reaches the state of implementa-
tion.

solutions following 2 simple rules: (1) We only
consider correct human solutions, i.e., those that
have passed the online judge system; (2) Solu-
tions in Si are ranked according to their program-
ming language and size in bytes, with a preference
for Python-implemented solutions and shorter pro-
grams.

All experiments in this paper are zero-shot on
large language models without fine-tuning.

2.3 General-to-Specific Prompting Solver

Before delving into the explanations, we first dis-
cuss the general capacity of LLMs to solve those
problems directly from problem to generated so-
lution or thinking step-by-step. We note that our
methodology requires using instruction-finetuned
language models (Ouyang et al., 2022), as we pro-
vide zero-shot instructions in our prompt.

We designed a general-to-specific reasoning
chain, which is inspired by humans’ step-by-step
thought processes in solving such problems. As
shown in Figure 2, we prompt the LLM to start
from a general understanding of the problem and
potential algorithms to use, then gradually transit to
a more specific and detailed level of understanding,
till finally implementing a program in Python.

For each problem, we generate k programs
{g1i , g2i ,⋯, g

k
i } with LLMs as the k candidates to

conduct a solve@k evaluation, as defined by Chen
et al. (2021). In other words, if any of the generated
k programs is considered as a correct solution, then
this problem is regarded as solved.

When experimenting with GPT-turbo-3.5 on the

165 problems in the test set of CodeContests, the
proposed general-to-specific prompt can boost the
solve@10 from 6.1% to 9.1%. Through reasoning
general-to-specific, the LLM can perform a bit bet-
ter at solving programming problems. However,
upon examining the failed cases, we discovered
that for most problems, the model makes a mis-
take at a very early stage, ultimately resulting in a
completely incorrect solution.

3 Method

In the process of problem-solving, a human typ-
ically constructs a solution by progressing from
a general idea to a detailed code implementation.
However, explaining that solution involves a re-
verse approach. This entails examining the code
on a line-by-line basis, interpreting the role of each
function, and then rationalizing the algorithmic
steps in relation to the original problem. There-
fore, we design a specific-to-general explanation
generation method.

3.1 Specific-to-General Solution Explaining

Previous works have demonstrated the ability of
LLMs to explain code; therefore, we investigated
generating explanations automatically using an
LLM with both the problem and sample solution as
input. For a problem-solution pair {pi, sji} where
j ≤ k, an explanation e

j
i is generated. For each

problem pi, a set of explanations Ei is generated
given different solutions {s1i , s2i ,⋯, s

k
i }.

Although simple prompts such as ’explain the
solution’ may generate useful explanations, these
often lack crucial information and are difficult to
evaluate due to their output’s diversity. To tackle
this issue, we deliberately control aspects of the
explanations, requiring them to include a ’problem
summary’ that demonstrates our understanding of
the problem and three levels of ’natural language
description of the problem,’ illustrating our ability
to comprehend the solution from a low-level to a
high-level perspective. These can be considered
as ’Description-level’ explanations. The elements
such as ’used algorithm,’ ’time complexity,’ and
’proof of correctness’ fall under ’Analysis-level’
explanations, showcasing the language model’s
overall analysis and understanding of the solution.
The method for this specific-to-general explanation
prompt is detailed in the left part of 1.

Format-guided-generated explanations are clear
and structured, thus making it easier to disentan-

gle information and evaluate each aspect. In our
experiment, over 99% of explanations contain all
defined points, with less than 1% skipping some
later points due to the length constraint.

In addition, thinking from detailed code-level
implementation can also provide the intermediate
steps in context. The LLM can reach a better gen-
eral understanding of the solution by looking at its
previously generated general descriptions.

3.2 Explanation Instructed Solver

In order to evaluate the quality of generated expla-
nations, we design an automatic metric to test how
much it can aid in solving the problem if included
in the instruction. In this setting, we give both the
original problem as well as one of Description-level
points to the LLM Solver with the corresponding
prompt given in the right part of Figure 1. If a
given instruction enables the LLM Solver to solve
a problem it was previously unable to solve, we
consider that instruction to be more informative
than one that does not yield such an outcome.

4 Experiments

4.1 Experimental Setup

Model We use both GPT-3.5-turbo and GPT-
4 (OpenAI, 2023a,b) as the Explainer for expla-
nation generation.3 We use GPT-3.5-turbo for all
our experiments as Solver LLM for code genera-
tion. We will refer to it as GPT-3.5 for simplicity.
The temperature t is set to 0 wherever only one
sample is needed, and 0.2 otherwise. Max-length
of text is set to 4096, and we skipped 0.7% of cases
where the max length is exceeded.

Data To ensure the effectiveness and accuracy of
our results, given that GPT-3.5 may have seen some
<problem, solution> pairs in its training data, we
use the CodeContests test set as our main dataset
in this paper. It contains 165 real online contest
problems from Codeforces, the earliest of which
dates back to Oct 2021, which is after the knowl-
edge cutoff of GPT-3.5 and GPT-4 (Sep. 2021).
Additionally, we extract a small subset of 50 more
recent problems from Codeforces for human eval-
uation. Table 2 are statistics based on their level-
of-difficulty ratings. Problems with ratings over
2k are considered very difficult, most of which can
only be solved by medal-winning competitors.

3Due to the usage limit of GPT-4, we run larger scale
experiments only on GPT-3.5-turbo.

Ratings
Dataset total [800, 1000] (1000, 1500] (1500, 2000] (2000, 3600]

CodeContests 165 18.2% 17.0% 20.0% 44.8%
Our Data 50 34% 46% 20% 0%

Table 2: Difficulty statistics (higher ratings = more diffi-
cult) for the dataset. The problems in our dataset exclude
hard problems (rating over 2k), as they exceed the rating
of our annotators.

Metric We employ pass@k (Chen et al., 2021)
as our evaluation metric for solve rate. For each
problem pi, we sample k programs generated from
GPT-3.5 and evaluate them using Solve Rate@k
metric: the percentage of programs that pass all
hidden test cases when submitted to Codeforces’
online judge. We first filter the programs by their
output on the public test cases before submitting
them and also measure Pass Public@k: the per-
centage of programs that pass the public test cases
given in the examples. The above metrics are ab-
breviated as ‘solve@k’ and ‘public@k’.

4.2 Human Evaluation

We measured the quality of LLM-generated expla-
nations using human evaluation. We collect 50
<problem, solution> pairs from Codeforces, ensur-
ing that their format remained consistent with those
in CodeContests.

Author Likert Scores Recognizing that under-
standing and explaining others’ solutions can be a
challenging task for programmers, we employed
an annotator-centered evaluation approach. We ex-
tracted solutions and corresponding problems from
Codeforces for an expert annotator. The Explainer
then generates an explanation for the annotator’s
solution, which was subsequently scored by the
author of the explained solution. Note that each
explanation is scored by the author of the solution
being explained.

We generated explanations for 50 problems with
ratings ranging from 800 to 2000, along with their
corresponding solutions, and provided these ex-
planations to human experts. They were asked to
assign a Likert score from −2 (very poor) to 2 (ex-
cellent).

The evaluation consists of ten questions, each
one corresponding to a specific aspect of the ex-
planation. We separately assess the quality of the
response to each point of our G2S prompt (see Fig-
ure 1). Furthermore, we developed three criteria to
evaluate various aspects of the overall explanation:

Figure 3: Human Likert scores (−2: very poor to 2: ex-
cellent) evaluating various aspects of the explanations.

1. Usefulness: How useful is the explanation as
guidance to solve the problem?

2. Clearness: How good is the explanation in
terms of describing everything clearly and
avoiding ambiguity?

3. Understanding: How much does the LLM
understand the key idea behind the solution?

The average Likert scores over 50 problems are
shown in Figure 3. Regarding the scores for the so-
lution descriptions (Step-by-Step Solution Descrip-
tion, Explanation of the Solution, Solution in One
Sentence) and usefulness, both GPT-3.5 and GPT-4
Explainer are positively rated by expert annotators,
with an average of 1.16 and 1.36 respectively.

However, GPT-3.5 receives near zero or nega-
tive scores on questions including why it’s correct,
clearness, and understanding, showing its inade-
quate ability to grasp the key idea behind the so-
lution, while GPT-4 performs better (0.68 ∼ 0.88
score higher) on these aspects. This reveals a clear
difference in the abilities of GPT-3.5 and GPT-4 to
reason and analyze competitive-level programming
solutions.

Qualitative Analysis We observed several inter-
esting aspects of the explanations generated by the
models. Models can effectively explain code by
integrating the problem statement and the solution.
Step-by-step descriptions are often more concise
than line-by-line code reports by summarizing com-
plex operations and avoiding re-stating well-known
algorithms (e.g., depth-first-search).

A sample explanation from GPT-3.5 is given in
Table 3. It describes the solution very well in both
specific (step-by-step) and general (one-sentence)
levels. It summarizes the operations of ‘count < 0’
and ‘multiply -1 or 1’ into ‘negative on the left,
positive on the right’ and explains if it’s sorted,
then ‘yes’ otherwise, ‘no’. However, if we look

at the one-sentence description, there are ambigu-
ous terms like ‘original array’ or ‘move elements’,
which might mislead the problem-solving if inter-
preted incorrectly. This is due to natural languages’
ambiguous nature compared to programming lan-
guages.

Models exhibit shortcomings when explaining
solution correctness, as they may not comprehen-
sively account for conditions stipulated in the prob-
lem statement. For instance, when explaining Ex-
ample 1, it failed to recognize that “swapping signs
of 2 elements multiple times means moving signs
arbitrarily along the array” is a crucial condition,
which is not mentioned explicitly in natural lan-
guage. This highlights a potential limitation in the
models’ ability to extract and incorporate essen-
tial information from various parts of the problem
statement when generating explanations.

We also present the full input/output and our
scores for both successful and failed cases in ap-
pendix A.

4.3 Automatic Metrics: Improving Solutions

We further investigated the ability of generated ex-
planations to improve problem solving. Our funda-
mental assumption is that if an explanation accu-
rately describes the algorithm, it should be capable
of guiding the implementation of a correct solution.
Consequently, we experimented with versions of
the Instructed Solver Prompt in Figure 1, wherein
one point in the explanation (i.e., an aspect of the
solution) is provided to the GPT-3.5 Solver as a
hint for solving the problem.

We compare it with two baseline solvers that, un-
like our solver from Figure 1, are not conditioned
on explanations and only get the problem statement
as an input: zero-shot prompt (denoted as Baseline
in Table 4) and General to Specific (G2S) “step-by-
step” prompt shown in Figure 2. We also check that
explanations do not contain code snippets to ensure
the solutions are not directly leaked in explana-
tions. However, note that it is still not a completely
“fair” comparison, since the automatically gener-
ated ‘silver explanations’ are conditioned on oracle
solutions.

Main results For GPT-3.5, we measure pass@k
for k = {1, 5, 10}, but only pass@1 for GPT-4 due
to access limits. To sample k programs, we sample
k different human solutions for Explainer and then
generate a program for each explanation.

Results are shown in Table 4. Different

1). Brief Problem Summary: Given an array of n integers,
check if it can be sorted by swapping the signs of any two
elements with different signs.
2). Used Algorithm: The algorithm used is a simple imple-
mentation of the problem statement.
3). Step-by-step Solution Description:
1. Read the input array a.
2. Count the number of negative elements in the array and
store it in h.
3. Create a new array b by taking the absolute value of each
element in a and multiplying it by -1 if the index is less than
h, otherwise by 1.
4. Check if the sorted array b is equal to the original array b.
5. If they are equal, print "yes", otherwise print "no".
4). Explanation of the Solution: The solution works by
first counting the number of negative elements in the array.
We then create a new array b by taking the absolute value
of each element in a and multiplying it by -1 if the index is
less than h, otherwise by 1. This ensures that all negative
elements are on the left side of the array and all positive
elements are on the right side. We then check if the sorted
array b is equal to the original array b. If they are equal, it
means that we can sort the original array by swapping the
signs of any two elements with different signs.
5). Solution in one sentence: The solution works by count-
ing the number of negative elements in the array, creating a
new array with all negative elements on the left and positive
elements on the right, and checking if the sorted array is
equal to the original array.
6). Time Complexity: The time complexity of the solution
is O(nlogn) due to the sorting operation.
7). Proof of correctness (Why this is correct): The solution
is correct because it ensures that all negative elements are
on the left side of the array and all positive elements are
on the right side. This means that we can sort the array by
swapping the signs of any two elements with different signs.
The sorted array will be equal to the original array if and
only if we can sort the array using the given operation.

Table 3: GPT-3.5’s explanation to the example in Table
1, which understands and clearly describes the key idea
behind the solution. Note it comprehends the code from
a detailed level in ‘3)’ and a general level in ‘5)’. blue:
correct, red: incorrect)

Description-level aspects of explanations improve
both the solve rate and pass public rate. The most
detailed aspect, Step-by-Step Solution Description
(S-by-S), which provides a detailed natural lan-
guage description of the implementation, offers the
most significant benefit to problem-solving, result-
ing in a solve rate @1 that is 7.4 times higher than
the baseline. The impact of Explanation of the
Solution (Exp-Sol) and Solution in One Sentence
(OneSent) is comparatively lower due to their con-
cise nature, which offers a less clear path towards
the solution. However, providing information on
the algorithms used (UsedAlg) or the expected
time complexity (TC) does not improve GPT-3.5’s
problem-solving capabilities.

The pass@1 results for GPT-4 Explainer are
not significantly better than for GPT-3.5, indicat-

ing that they share similar capabilities in terms of
Description-level explanations.

GPT-3.5 Solver
solve@1 solve@5 solve@10 public@10

Baseline 1.8 3.6 6.1 13.9
G2S prompt 2.4 5.4 9.1 18.8

GPT-3.5 Solver With Silver Explanation
w/ UsedAlg 1.8 (1.2) 4.2 6.1 13.3
w/ S-by-S 13.3 (15.8) 32.2 42.4 47.9
w/ Exp-Sol 6.1 (4.8) 17.6 23.6 32.7
w/ OneSent 4.2 (4.2) 9.1 13.9 26.1
w/ TC(O(⋅)) 1.8 (2.4) 3.6 6.7 13.3

Table 4: Different aspects of the explanation’s effect on
improving program generation. Values are percentage
% and ‘solve’ and ‘public’ are short for ‘Solve Rate’
and ‘Pass Public Tests’. Solve@1 results in parentheses
are from GPT-4’s generated explanations. The bottom 5
rows correspond to Figure 1’s points 2,3,4,5, and 6 in
the left prompt.

Pass Public Tests vs. Solve One observation
from Table 4 is that solve@10 is significantly less
than public@10. For a program that passes the
public tests but fails the hidden tests, there are two
possibilities: 1) It is incorrect and only applies to a
subset of test data, including the public tests; 2) It
is inefficient. As discussed before, in competitive-
level programming, a “correct” but slow implemen-
tation does not count as a solution, as there are
constraints on time and space complexity. There-
fore, we further study programs that pass the public
tests but may fail hidden tests. As shown in Table 5,
the baseline has 48.9% of its programs rejected by
the online judge due to inefficiency, indicating that
GPT-3.5 tends to generate inefficient implementa-
tions (e.g., brute force solutions).

Solve Wrong Answer TLE Other
Baseline 35.1% 15.6% 48.9% 0%
G2S prompt 38.3% 14.1% 47.6% 0%

w/ UsedAlg 39.1% 18.9% 42.1% 0%
w/ S-by-S 75.6% 11.4% 11.4% 1.6%
w/ Exp-Sol 73.6% 11.9% 11.1% 1.4%
w/ OneSent 56.6% 27.9% 14.0% 1.5%

Table 5: Final judgement of generated programs that
pass the public tests. TLE means time limit exceeded,
and other includes memory limit exceeded and runtime
error.4

When provided hints from the solution descrip-
tion, the portion of TLE programs drops signifi-

4This is for all submissions, i.e., one problem might have
up to k submissions, which is different from the problem-wise
solve rate.

Figure 4: The aiding effects of 3 levels of Solution De-
scription over different difficulty ratings. The difference
in color shows the gain in solve@10. 5

cantly. Although GPT-3.5 may still make mistakes
in some details or fail to consider corner cases even
with hints from the explanation, it is better at avoid-
ing inefficient solutions.

Another interesting observation is that the
wrong answer rate for one-sentence explanation-
instructed solving is higher than the baseline. One
possible explanation is that it is challenging to in-
corporate corner case handling in a one-sentence
solution description, which makes GPT-3.5 more
likely to implement an almost-correct program.

Difficulty of the problem We further study the
aiding effect of three levels of Solution Description
on problems of different difficulty ratings. Code-
forces problems are given ratings, the higher the
ratings are, the more challenging the problem is.
Individuals who consistently solve problems with
ratings of 2000 are in the 93rd percentile of all par-
ticipants. As shown in Figure 4, the solve rate
decreases as the ratings increase and no explana-
tion can help solve complex problems. However,
for easier problems, even a one-sentence hint en-
ables GPT-3.5 to solve approximately 70% of prob-
lems, compared to the ∼ 30% baseline. Further-
more, hints can effectively help to solve medium-
difficulty problems which were previously unsolv-
able.

Sampling Strategies In our approach, we gener-
ate k programs and treat all of them as candidates
without re-ranking, making the sampling strategy
crucial. We therefore compared three strategies for
sampling k programs.

1. Sample k human solutions: for each pi, we
sample Si = {s1i , s2i ,⋯, s

k
i }, and for each of

5The outlier is because there’s only one rating=3100 prob-
lem in the CodeContests test set.

the solutionsji , we generate one explanation
e
j
i , and one corresponding program g

j
i .

2. Sample k explanations: We only take the first
solution si, and sample Ei = {e1i , e2i ,⋯, e

k
i },

for each explanation e
j
i , we generate one cor-

responding program g
j
i .

3. Sample k programs: We only sample 1 so-
lution si and one corresponding explana-
tion ei, then we sample k programs Gi =

{g1i , g2i ,⋯, g
k
i } given the explanations.

w/ OneSent public@10 solve@10
Baseline 13.9% 6.1%

Statg1. Sample 10 Human Solution si 26.1% 13.9%
Statg2. Sample 10 Explanation ei 24.8% 12.1%
Statg3. Sample 10 Programs gi 18.2% 6.7%

Statg3. 10 gi from GPT-4 explanation∗ 18.2% 10.9%

Table 6: Comparison of sampling strategies. Strategies
are numbered. Rows 2,3,4 are GPT-3.5 sampling 10
solutions/explanations/programs respectively, the last
row is GPT-4 Explainer sampling 10 programs from a
single explanation.

Table 6 shows that the first strategy of sampling
from 10 different human oracle solutions is the
most effective. Additionally, the second strategy of
sampling 10 explanations from one oracle solution
yields better results than sampling 10 programs
from one explanation (strategy 3). One potential
reason is that some human solutions may have poor
readability or employ complex implementations
that are hard to follow. By sampling different hu-
man oracle solutions, there is a higher likelihood
that explanations based on clear and concise solu-
tions can serve as better hints. Similarly, sampling
diverse explanations can mitigate the issue of mis-
leading, incorrect explanations. We also compared
the explanation quality of GPT-4 (i.e., only as an
Explainer) and found it to be superior to GPT-3.5
in the same setting (10.9% vs. 6.7%). We skipped
other settings due to experimental limitations.

5 Related work

5.1 Solving Competitive-level programming
problems

Early attempts to apply deep learning to solve
competitive-level programming problems (Balog
et al., 2017) utilized traditional approaches such
as SMT solvers and search to generate short pro-
grams for simple problems. Polosukhin and Ski-
danov (2018) collected a dataset of human-written

problem statements and solutions for Codeforces
problems and introduced sequence model baselines
that could solve a small subset of their dataset.
With the advent of Transformers, AlphaCode (Li
et al., 2022) achieved significant progress in solv-
ing competitive-level programming problems by
attaining a rating equivalent to the top 54% of par-
ticipants on Codeforces by finetuning LLMs in the
problem-to-solution scenario with the CodeCon-
tests dataset collected from Codeforces. Notably,
AlphaCode requires sampling 1M program candi-
dates per problem to achieve a 29.6% solve rate on
their test set. Zelikman et al. (2023) improves upon
AlphaCode by using fewer samples for the same
level of performance. Our study focuses on ex-
plaining solutions to problems, rather than directly
solving them. To the best of our knowledge, this
is the first attempt to explain competitive-level pro-
gramming solutions using language models, which
places a landmark of the reasoning and interpreting
ability of those models.

5.2 Reasoning with large language models
Wei et al. (2022) has demonstrated that by breaking
down the reasoning steps through chain-of-thought
(CoT) prompting, LLMs are able to solve challeng-
ing reasoning problems by following the correct
logic step-by-step. This method, along with ma-
jority voting, has led to notable advancements in
solving high-school-level mathematical problems
(Lewkowycz et al., 2022). Kojima et al. (2022)
generalize the idea of CoT to zero-shot learning.
Another technique that builds upon CoT is the
self-consistency decoding strategy (Wang et al.,
2022b). This approach samples diverse reasoning
paths and selects the most consistent answer, which
has shown to improve LLMs’ performance on com-
plex reasoning tasks by embracing multiple ways
of thinking. Additionally, Parsel (Zelikman et al.,
2023) proposed a framework that focuses on en-
hancing LLMs’ hierarchical multi-step reasoning
capabilities, particularly for tasks such as generat-
ing complex programs.

5.3 Code Comprehension with LLMs
Several existing works have explored generat-
ing code explanations using LLMs. MacNeil
et al. (2023) integrated LLM-generated code ex-
planations into an interactive e-book on web soft-
ware development, showing that students found
the generated explanations helpful. Leinonen
et al. (2023) compared LLM-generated explana-

tions with student-created explanations, finding
that the LLM-created explanations were easier to
understand and more accurate. Chen et al. (2023)
utilizes self-generated explanations as feedback to
its self-debug. In comparison, our work targets ex-
plaining competitive-level programming problems,
aiming not only to clarify the code implementation
but also to point out the key idea behind the solu-
tion, its correctness, choice of algorithms, and time
complexity.

6 Conclusion and Future Work

In this paper, we propose explaining competitive-
level programming solutions using LLMs. Given a
problem and its corresponding human oracle solu-
tion given, LLMs can generate structured explana-
tions that are positively scored by human authors.
Our evaluation demonstrates that both GPT-3.5 and
GPT-4 exhibit reasonable capabilities in generating
faithful and clear descriptions, which can guide
another LLM to better solve the problem. GPT-4
outperforms GPT-3.5 significantly in analyzing the
problem and solution, as well as capturing the key
ideas behind the solution.

Our automatic evaluation metric examines an
ideal scenario: when a hint is based on an ora-
cle human solution, it effectively guides the LLM
to generate improved programs for solving prob-
lems. However, a system should be able to learn
from human programming solutions to improve its
own problem-solving on novel problems without
guidance from a human solution. This raises the
question: Can the LLM-generated explanations be
utilized to improve subsequent problem-solving?

Our explanation method can potentially be ap-
plied to annotate large-scale data (e.g., the full
CodeContests training set), yielding thousands of
silver explanations that can be used to fine-tune
a reasoning model for competitive-level program-
ming problems. This approach could help bridge
the long-standing reasoning gap between problem
and program for complex programming problems.
Moving forward, we aim to further address solving
such problems by focusing on enhancing reasoning
for programming problems.

Limitations

One primary limitation of this work is that we ex-
perimented on only one dataset and two LLMs,
namely GPT-3.5 and GPT-4, so it’s unclear whether
our method can generalize well to other LLMs

or problem sources other than Codeforces. Here
we just assume that the competitive-level program-
ming problems are well defined so the distribution
shift won’t be large between sources.

Another limitation stems from the annotator-
centered nature of our human evaluation process,
which prevents us from assessing annotator agree-
ment. Individual annotators were only able to score
explanations based on their own solutions. While
we provided guidelines for assigning scores, the
evaluation process remains inherently subjective,
and interpretations may vary among different anno-
tators.

Ethics Statement

Our research is driven by the potential benefits
of improved problem-solving capabilities and a
deeper understanding of programming concepts for
developers and learners. However, we acknowl-
edge the ethical implications and potential risks
specific to our work.

This work focuses on the task of automatic code
generation, but we emphasize that it is not intended
to replace human efforts in programming. Machine-
generated programs may contain errors or vulner-
abilities, and it is crucial to thoroughly verify any
AI-generated code snippets before using them. Pro-
viding code explanations should not be seen as
an endorsement to blindly trust the generated pro-
grams. Users must carefully understand, verify,
and examine AI-generated code to ensure its cor-
rectness and safety.

Acknowledgement

This material is based on research that is sup-
ported in part by the Air Force Research Laboratory
(AFRL) and DARPA, for the KAIROS program un-
der agreement number FA8750-19-2-1003. The
views and conclusions contained herein are those
of the authors and should not be interpreted as
necessarily representing the official policies, either
expressed or implied, of DARPA, IARPA, NSF, or
the U.S. Government.

We sincerely thank our annotators, especially
smax, for their efforts in this work, and also all
reviewers for their valuable suggestions on this
paper.

References
Matej Balog, Alexander L. Gaunt, Marc Brockschmidt,

Sebastian Nowozin, and Daniel Tarlow. 2017. Deep-
coder: Learning to write programs. In International
Conference on Learning Representations.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2022a.
Codet: Code generation with generated tests.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2022b. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2023. Teaching large language models
to self-debug.

Wenyue Hua and Yongfeng Zhang. 2022. System 1
+ system 2 = better world: Neural-symbolic chain
of logic reasoning. In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages
601–612, Abu Dhabi, United Arab Emirates. Associ-
ation for Computational Linguistics.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances
in Neural Information Processing Systems.

Antti Laaksonen. 2020. Guide to Competitive Program-
ming - Learning and Improving Algorithms Through
Contests, Second Edition. Undergraduate Topics in
Computer Science. Springer.

Juho Leinonen, Paul Denny, Stephen MacNeil, Sami
Sarsa, Seth Bernstein, Joanne Kim, Andrew Tran,
and Arto Hellas. 2023. Comparing code explana-
tions created by students and large language models.
CoRR, abs/2304.03938.

https://openreview.net/forum?id=ByldLrqlx
https://openreview.net/forum?id=ByldLrqlx
http://arxiv.org/abs/2207.10397
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2211.12588
http://arxiv.org/abs/2211.12588
http://arxiv.org/abs/2211.12588
http://arxiv.org/abs/2304.05128
http://arxiv.org/abs/2304.05128
https://aclanthology.org/2022.findings-emnlp.42
https://aclanthology.org/2022.findings-emnlp.42
https://aclanthology.org/2022.findings-emnlp.42
https://doi.org/10.1007/978-3-030-39357-1
https://doi.org/10.1007/978-3-030-39357-1
https://doi.org/10.1007/978-3-030-39357-1
https://doi.org/10.48550/arXiv.2304.03938
https://doi.org/10.48550/arXiv.2304.03938

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay V. Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag,
Theo Gutman-Solo, Yuhuai Wu, Behnam Neyshabur,
Guy Gur-Ari, and Vedant Misra. 2022. Solving quan-
titative reasoning problems with language models.
CoRR, abs/2206.14858.

Yujia Li, David Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Ré mi Leblond, Tom Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal
Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-
Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel J. Mankowitz,
Esme Sutherland Robson, Pushmeet Kohli, Nando
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.
2022. Competition-level code generation with Al-
phaCode. Science, 378(6624):1092–1097.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,
Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. 2023. Faithful chain-of-
thought reasoning.

Stephen MacNeil, Andrew Tran, Arto Hellas, Joanne
Kim, Sami Sarsa, Paul Denny, Seth Bernstein, and
Juho Leinonen. 2023. Experiences from using code
explanations generated by large language models in
a web software development e-book. In Proceedings
of the 54th ACM Technical Symposium on Computer
Science Education, Volume 1, SIGCSE 2023, Toronto,
ON, Canada, March 15-18, 2023, pages 931–937.
ACM.

Mike Mirzayanov, Oksana Pavlova, Pavel Mavrin, Ro-
man A. Melnikov, A. S. Plotnikov, V. A. Parfenov,
and Andrew Stankevich. 2020. Codeforces as an
educational platform for learning programming in
digitalization.

Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoyanov,
Wen tau Yih, Sida I. Wang, and Xi Victoria Lin. 2023.
Lever: Learning to verify language-to-code genera-
tion with execution.

OpenAI. 2023a. ChatGPT: Optimizing Language
Models for Dialogue. https://openai.com/blog/
chatgpt.

OpenAI. 2023b. Gpt-4 technical report.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F. Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. CoRR, abs/2203.02155.

Illia Polosukhin and Alexander Skidanov. 2018. Neural
program search: Solving programming tasks from
description and examples. CoRR, abs/1802.04335.

Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank
Tip. 2023. Adaptive test generation using a large
language model.

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and
Chandan K. Reddy. 2023. Execution-based code
generation using deep reinforcement learning.

Steven Skiena and Miguel A. Revilla. 2003. Program-
ming challenges: the programming contest training
manual. SIGACT News, 34:68–74.

Boshi Wang, Xiang Deng, and Huan Sun. 2022a. Itera-
tively prompt pre-trained language models for chain
of thought. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 2714–2730, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, and Denny Zhou. 2022b. Self-
consistency improves chain of thought reasoning in
language models. CoRR, abs/2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903.

Eric Zelikman, Qian Huang, Gabriel Poesia, Noah D.
Goodman, and Nick Haber. 2023. Parsel: A (de-
)compositional framework for algorithmic reasoning
with language models.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Good-
man. 2022. Star: Bootstrapping reasoning with rea-
soning. Advances in Neural Information Processing
Systems, 35:15476–15488.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi.
2023. Least-to-most prompting enables complex rea-
soning in large language models.

https://doi.org/10.48550/arXiv.2206.14858
https://doi.org/10.48550/arXiv.2206.14858
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
http://arxiv.org/abs/2301.13379
http://arxiv.org/abs/2301.13379
https://doi.org/10.1145/3545945.3569785
https://doi.org/10.1145/3545945.3569785
https://doi.org/10.1145/3545945.3569785
http://arxiv.org/abs/2302.08468
http://arxiv.org/abs/2302.08468
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
http://arxiv.org/abs/2303.08774
https://doi.org/10.48550/arXiv.2203.02155
https://doi.org/10.48550/arXiv.2203.02155
http://arxiv.org/abs/1802.04335
http://arxiv.org/abs/1802.04335
http://arxiv.org/abs/1802.04335
http://arxiv.org/abs/2302.06527
http://arxiv.org/abs/2302.06527
http://arxiv.org/abs/2301.13816
http://arxiv.org/abs/2301.13816
https://aclanthology.org/2022.emnlp-main.174
https://aclanthology.org/2022.emnlp-main.174
https://aclanthology.org/2022.emnlp-main.174
https://doi.org/10.48550/arXiv.2203.11171
https://doi.org/10.48550/arXiv.2203.11171
https://doi.org/10.48550/arXiv.2203.11171
http://arxiv.org/abs/2212.10561
http://arxiv.org/abs/2212.10561
http://arxiv.org/abs/2212.10561
http://arxiv.org/abs/2205.10625
http://arxiv.org/abs/2205.10625

A Appendix

Case Study Table 7 presents an example of the
input/output of the model, which contains our
specific-to-general prompt as well as the compar-
ison between GPT3.5 and GPT4 generated expla-
nations. We can see that both GPT-3.5 and GPT-4
describe the problem and solution very well. Both
models correspond the solution logic to the prob-
lem situation correctly. In the analysis of why this
solution is correct, GPT-3.5 and GPT-4 mention the
key idea of increasing IQ backward means saving
IQ for the future.

Table 8 presents an incorrectly explained exam-
ple. LLMs can describe the problem and illustrate
the printing array operation as “moving the last
element to the head of the array”. However, both of
them fail to understand the purpose of placing the
maximum element in the front as they ignore one
crucial condition in the problem: all elements are
strictly positive. Nevertheless, GPT-4 maintains a
better understanding of the problem by noticing the
condition that the given array is already sorted in
non-decreasing order.

Input You are required to read and try to understand a competitive programming problem statement and interpret its correct
solution. Think carefully about why doing this can correctly solve the problem.
———–
Problem:Doremy is asked to test n contests. Contest i can only be tested on day i. The difficulty of contest i is ai . Initially,
Doremy’s IQ is q. On day i Doremy will choose whether to test contest i or not. She can only test a contest if her current IQ is
strictly greater than 0.
If Doremy chooses to test contest i on day i, the following happens:
if ai > q, Doremy will feel she is not wise enough, so q decreases by 1; otherwise, nothing changes.
Doremy wants to test as many contests as possible. Please give Doremy a solution.
Input
The input consists of multiple test cases. The first line contains a single integer t(1 ≤ t ≤ 10

4) — the number of test cases. The
description of the test cases follows.
The first line contains two integers n and q (1 ≤ n ≤ 10

5
,1 ≤ q ≤ 10

9) — the number of contests and Doremy’s IQ in the
beginning.
The second line contains n integers a1, a2,⋯, an(1 ≤ ai ≤ 10

9) — the difficulty of each contest.
It is guaranteed that the sum of n over all test cases does not exceed 10

5 .
Output
For each test case, you need to output a binary string s, where si = 1 if Doremy should choose to test contest i, and si = 0
otherwise. The number of ones in the string should be maximum possible, and she should never test a contest when her IQ is zero
or less.
If there are multiple solutions, you may output any.
Example Input
5
1 1
1
2 1
1 2
3 1
1 2 1
4 2
1 4 3 1
5 2
5 1 2 4 3

Example Output
1
11
110
1110
01111

Note
In the first test case, Doremy tests the only contest. Her IQ doesn’t decrease.
In the second test case, Doremy tests both contests. Her IQ decreases by 1 after testing contest 2.
In the third test case, Doremy tests contest 1 and 2. Her IQ decreases to 0 after testing contest 2, so she can’t test contest 3.

Hint: Here’s an accepted solution from an expert programmer.
Can you analyze the code and identify the algorithmic approach
used? Please also describe the steps of the algorithm in
natural language, explaining what every named variable means,
what each step does and how it works. If there is anything
non-obvious in the step, explain why it is done. Please notice
that in the algorithm, some conclusions might be first deduced
from conditions and directly used.
d e f s o l v e () :

n , q =map (i n t , i n p u t () . s p l i t ())
A= l i s t (map (i n t , i n p u t () . s p l i t ()))
A. r e v e r s e ()
q_now = 0
r e c o r d = []
f o r a i n A:

i f a > q_now and q_now <q : # can
t a k e o f f

r e c o r d . append (1)
q_now += 1

e l i f a > q_now and q_now >= q :
r e c o r d . append (0)

e l s e : r e c o r d . append (1)
p r i n t (" " . j o i n ([s t r (_) f o r _ i n

r e v e r s e d (r e c o r d)]))

t = i n t (i n p u t ())
f o r i i n r a n g e (t) :

s o l v e ()
Analyze the problem and the accepted code of the correct
solution. Avoid ambiguity in your description as possible. Each
part should be independently interpretable, i.e., each point
should be clear to readers who have no access to other points.
Answer in the following Format:
1). Brief Problem Summary:
2). Used Algorithm:
3). Step-by-step Solution Description:
4). Explanation of the Solution:
5). Solution in one sentence:
6). Time Complexity:
7). Proof of correctness (Why this is correct):

GPT-3.5’s Output:
1). Brief Problem Summary:
Doremy is asked to test n contests. Contest i can only be tested on day i. The difficulty of
contest i is ai . Initially, Doremy’s IQ is q. On day i Doremy will choose whether to test
contest i or not. She can only test a contest if her current IQ is strictly greater than 0.
Doremy wants to test as many contests as possible.
2). Used Algorithm:
Greedy Algorithm
3). Step-by-step Solution Description:
Read the number of test cases.
For each test case:

Read the number of contests and Doremy’s IQ in the beginning.
Read the difficulty of each contest.
Reverse the list of difficulties.
Initialize a variable qnow to 0 and an empty list record.
For each difficulty a in the reversed list of difficulties:

If a is greater than qnow and qnow is less than q, append 1 to the record list and
increase qnow by 1.

If a is greater than qnow and qnow is greater than or equal to q, append 0 to the
record list.

If a is less than or equal to qnow , append 1 to the record list.
Print the binary string obtained by reversing the record list.

4). Explanation of the Solution:
The solution uses a greedy approach to maximize the number of contests Doremy can test.
The idea is to start from the last contest and work backwards. For each contest, if its
difficulty is greater than Doremy’s current IQ and her IQ is less than the maximum allowed
IQ, she can choose to take off and decrease her IQ by 1. If the difficulty is greater than her
IQ and her IQ is already at the maximum allowed IQ, she cannot take off and must skip the
contest. If the difficulty is less than or equal to her IQ, she can test the contest. By working
backwards, we ensure that Doremy tests as many contests as possible while maintaining her
IQ above 0. Likert score: 2
5). Solution in one sentence:
The solution uses a greedy approach to maximize the number of contests Doremy can test by
working backwards from the last contest and choosing to test or skip each contest based on
its difficulty and Doremy’s current IQ.
6). Time Complexity:
The time complexity of the solution is O(n) for each test case, where n is the number of
contests.
7). Proof of correctness (Why this is correct):
The solution is correct because it uses a greedy approach that always chooses the optimal
solution at each step. By working backwards from the last contest, we ensure that Doremy
tests as many contests as possible while maintaining her IQ above 0. The solution is optimal
because if we skip a contest that we could have tested, we lose the opportunity to test it later
and we may not be able to test as many contests as possible. Therefore, the solution is
correct and optimal. Likert score: 2

GPT-4’s Output:
1). Brief Problem Summary:
Doremy wants to test as many contests as possible without her IQ dropping to 0 or less. The input
consists of multiple test cases, each containing the number of contests, Doremy’s initial IQ, and the
difficulty of each contest. The output should be a binary string indicating which contests Doremy
should test.
2). Used Algorithm:
The algorithm is a greedy algorithm that iterates through the contests in reverse order.
3). Step-by-step Solution Description:
Read the number of test cases T .
For each test case:

Read the number of contests n and Doremy’s initial IQ q.
Read the list of contest difficulties A and reverse it.
Initialize qnow to 0 and create an empty list called record.
Iterate through the reversed list of contest difficulties A:

If the current contest difficulty a is greater than qnow and qnow is less than q, append 1 to
the record list and increment qnow by 1.

If the current contest difficulty a is greater than qnow and qnow is greater than or equal to q,
append 0 to the record list.

Otherwise, append 1 to the record list.
Print the record list in reverse order as a string.

4). Explanation of the Solution:
The solution works by iterating through the contests in reverse order and deciding whether Doremy
should test the contest or not based on her current IQ (qnow) and the contest difficulty. If the
contest difficulty is greater than her current IQ and her current IQ is less than her initial IQ, she
should test the contest and her IQ will increase. If the contest difficulty is greater than her current IQ
and her current IQ is greater than or equal to her initial IQ, she should not test the contest.
Otherwise, she should test the contest as her IQ will not decrease. Likert score: 2
5). Solution in one sentence:
The solution is a greedy algorithm that iterates through the contests in reverse order and decides
whether Doremy should test the contest based on her current IQ and the contest difficulty.
6). Time Complexity:
The time complexity of the solution is O(n) for each test case, where n is the number of contests.
7). Proof of correctness (Why this is correct):
The algorithm is correct because it ensures that Doremy tests as many contests as possible without
her IQ dropping to 0 or less. By iterating through the contests in reverse order, the algorithm can
make the optimal decision for each contest based on her current IQ and the contest difficulty. If the
contest difficulty is greater than her current IQ and her current IQ is less than her initial IQ, she
should test the contest and her IQ will increase, allowing her to test more contests in the future. If
the contest difficulty is greater than her current IQ and her current IQ is greater than or equal to her
initial IQ, she should not test the contest as her IQ will decrease and she may not be able to test
future contests. Otherwise, she should test the contest as her IQ will not decrease, ensuring that she
can test as many contests as possible. Likert score: 1

Table 7: A full example of Input prompt and <problem, solution> pair and GPT’s generated explanation(output).
Likert scores are provided for points (4) and (7), all other points are scored 2 for both models as it describes the
problem and solution well. Both models get the key idea to work backward and choose to take the contest greedily.
Their analysis of when Doremy should take a contest is correct. One minor issue with GPT-4 is that its analysis does
not specify that its description(future, increase) is from a backward perspective. (see text in color, blue: correct, red:
incorrect).

Input
You are required to read and try to understand a competitive programming problem statement and interpret its correct solution. Think
carefully about why doing this can correctly solve the problem.
———–
Problem:
Problem: An array a is called ugly if it contains at least one element which is equal to the sum of all elements before it. If the array is
not ugly, it is beautiful.
For example: the array [6, 3, 9, 6] is ugly: the element 9 is equal to 6 + 3; the array [5, 5, 7] is ugly: the element 5 (the second one) is
equal to 5; the array [8, 4, 10, 14] is beautiful: 8 ≠ 0,4 ≠ 8,10 ≠ 8 + 4,14 ≠ 8 + 4 + 10, so there is no element which is equal to
the sum of all elements before it.
You are given an array a such that 1 ≤ a1 ≤ a2 ≤ ⋯ ≤ an ≤ 100 You have to reorder the elements of a in such a way that the
resulting array is beautiful. Note that you are not allowed to insert new elements or erase existing ones, you can only change the order
of elements of a. You are allowed to keep the array a unchanged, if it is beautiful.
Input
The first line contains one integer t(1 ≤ t ≤ 2000) — the number of test cases.
Each test case consists of two lines. The first line contains one integer n (2 ≤ n ≤ 50). The second line contains n integers
a1, a2, . . . , an (1 ≤ a1 ≤ a2 ≤ ⋯ ≤ an ≤ 100) Output
For each test case, print the answer as follows:
if it is impossible to reorder the elements of a in such a way that it becomes beautiful, print NO; otherwise, in the first line, print YES.
In the second line, print n integers — any beautiful array which can be obtained from a by reordering its elements. If there are multiple
such arrays, print any of them.
Example Input
4
4
3 3 6 6
2
10 10
5
1 2 3 4 5
3
1 4 4

Example Output
YES
3 6 3 6
NO
YES
2 4 1 5 3
YES
1 4 4

Hint: Here’s an accepted solution from an expert
programmer. Can you analyze the code and identify the
algorithmic approach used? Please also describe the steps
of the algorithm in natural language, explaining what
every named variable means, what each step does and
how it works. If there is anything non-obvious in the step,
explain why it is done. Please notice that in the algorithm,
some conclusions might be first deduced from conditions
and directly used.
t = i n t (i n p u t ())
f o r _ i n r a n g e (t) :

__ = i n p u t ()
a = l i s t (map (i n t , i n p u t () . s p l i t ()

))
i f a [0] == a [− 1] :

p r i n t ("NO")
e l s e :

p r i n t ("YES")
p r i n t (a [− 1] , end=" ")
p r i n t (* a [: − 1])

Analyze the problem and the accepted code of the correct
solution. Avoid ambiguity in your description as possible.
Each part should be independently interpretable, i.e., each
point should be clear to readers who have no access to
other points.
Answer in the following Format:
1). Brief Problem Summary:
2). Used Algorithm:
3). Step-by-step Solution Description:
4). Explanation of the Solution:
5). Solution in one sentence:
6). Time Complexity:
7). Proof of correctness (Why this is correct):

GPT-3.5’s Output:
1). Brief Problem Summary: Given an array, reorder its elements in such a way that the
resulting array is beautiful (i.e., no element is equal to the sum of all elements before it).
If it is impossible to reorder the elements to obtain a beautiful array, print "NO".
2). Used Algorithm: Greedy algorithm Likert score: -2
3). Step-by-step Solution Description:
a. Read the number of test cases, t.
b. For each test case:

i. Read the size of the array n and the array a.
ii. Check if the first and last elements of the array are equal. If they are, print "NO"

and move to the next test case.
iii. Otherwise, print "YES".
iv. Reorder the array by moving the last element to the beginning of the array.
v. Print the reordered array.

4). Explanation of the Solution: The solution uses a greedy approach to reorder the array.
If the first and last elements of the array are equal, it is impossible to reorder the array to
obtain a beautiful array. Otherwise, we can move the last element to the beginning of the
array to obtain a beautiful array. This is because the last element is not equal to the
sum of all elements before it, and moving it to the beginning ensures that no element is
equal to the sum of all elements before it. Likert score: -1

5). Solution in One Sentence: Reorder the array by moving the last element to the
beginning of the array to obtain a beautiful array, unless the first and last elements of the
array are equal.

6). Time Complexity: O(n), where n is the size of the array.

7). Proof of Correctness: If the first and last elements of the array are equal, it is
impossible to reorder the array to obtain a beautiful array. Otherwise, moving the last
element to the beginning of the array ensures that no element is equal to the sum of all
elements before it, since the last element is not equal to the sum of all elements
before it. Therefore, the solution is correct. Likert score: -2

GPT-4’s Output:
1). Brief Problem Summary: The problem requires us to reorder the elements of an array to make it
beautiful, which means no element in the array should be equal to the sum of all elements before it. We
are given multiple test cases, and for each test case, we must determine if it’s possible to reorder the
array to make it beautiful or not.
2). Used Algorithm: Greedy algorithm Likert score: -2
3). Step-by-step Solution Description:
a. Read the number of test cases, t.
b. For each test case:

i. Read the number of elements in the array, n.
ii. Read the elements of the array, a.
iii. Check if the first and last elements of the array are equal. If they are, print "NO".
iv. If not, print "YES" and print the reordered array by placing the last element of the array first

followed by the remaining elements in their original order.
4). Explanation of the Solution: The given solution relies on the fact that if the first and last elements
of the sorted array are equal, it’s impossible to reorder the elements in such a way to form a beautiful
array. This is because the first element will always be equal to the sum of all elements before it,
which is an empty sum, i.e., zero. So, in this case, we print "NO". If the first and last elements are not
equal, we can reorder the array to make it beautiful by placing the last element (the largest element) first
and keeping the remaining elements in their original order. This ensures that the largest element will
never be equal to the sum of all elements before it, as there are no elements before it. Since the
array is sorted, the remaining elements will also not satisfy the ugly condition. Likert score: -2
5). Solution in One Sentence: For each test case, print "NO" if the first and last elements of the sorted
array are equal, otherwise print "YES" and reorder the array by placing the largest element first and
keeping the remaining elements in their original order.
6). Time Complexity: O(t ∗n) where t is the number of test cases and n is the number of elements in
the array.
7). Proof of Correctness: As explained in point 4, the solution is correct because it checks the condition
that the first and last elements of the array are equal or not. If they are equal or not. If they are equal, it’s
impossible to make the array beautiful. If they are not equal, the largest element is placed first, ensuring
the ugly condition is not satisfied by any element in the reordered array. Since the array is sorted, the
remaining elements will also not satisfy the ugly condition. Likert score: -1

Table 8: The lemon-picking example. Likert scores are provided for points (2),(4) and (7), all other points are scored
2 for both models. Unlike GPT3.5, GPT4 notices that the input array is already sorted in non-decreasing order in the
problem statement but it still fails to explain why moving the largest element to the first positions makes the array
beautiful by ignoring the crucial condition that all elements are strictly positive. (see text in bold - blue: correct, red:
incorrect).

