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Abstract

Enhancing Competitive-level Code Generation by Utilizing

Natural Language Reasoning

Jierui Li, PhD
The University of Texas at Austin, 2025

SUPERVISOR: Raymond Mooney

Recent progress in large language models (LLMs) has shown strong perfor-
mance in code generation. Models trained with long reasoning chains achieve promis-
ing results on complex competitive programming (CP) tasks. However, it remains
unclear where the main bottlenecks in solving such problems lie. This dissertation
studies these obstacles and explores how leveraging LLMs’ natural language reasoning

abilities can improve code generation for CP.

This proposal highlights three completed contributions:

e Explanation and Distilling: LLMs are effective at explaining solution code(Li
et al., 2023), and their ability to implement a verbal solution is stronger than
solving a problem directly. Based on this, we developed a supervised fine-
tuning method that distills LLM-generated explanations into chain-of-thought
style problem-solving steps(Li and Mooney, [2024).

e Agent-Guided CodeTree Search: We introduced CodeTree(Li et al.; 2025),
an agent system for code generation that iteratively thinks, solves, reflects,
refines, and verifies through an auto-expanded tree search until reaching the

final solution.



e AlgoSimBench Benchmark: We built AlgoSimBench(Li and Mooney, 2025),
a benchmark for evaluating LLMs’ ability to identify algorithmically similar
problems. We found that using attempted solutions to match problems improves

both end-to-end LLM selection and cosine similarity-based retrieval.
Finally, we outline two directions for future work.

e Task-Aware Code Representation: Develop a zero-shot code embedding method
that weighs tokens based on the task-specific prompt, focusing the representa-

tion on distinct aspects such as algorithm, functionality, and semantics.

e Retriever—LLM Training: Investigate why Retrieval-Augmented Generation (RAG)
shows limited improvement in coding tasks, with two hypotheses: (a) retrievers
fail to find useful context, and (b) LLMs struggle to use retrieved information
effectively. To address this, we plan to jointly train retrievers and LLMs on

context-dependent coding tasks.



Chapter 1: Introduction

Programming has become a central tool for solving problems across science, en-
gineering, and everyday applications. With the rise of large language models (LLMs),
code generation has advanced rapidly, making it possible to automate tasks that once
required expert knowledge. Yet competitive programming remains a particularly chal-
lenging domain: problems are complex, solutions demand precise reasoning, and small
errors often lead to failure. |Tang et al. (2023b)) argued that LLMs rely heavily on
semantic associations rather than formal symbolic reasoning, making them stronger
at NL-style reasoning but poor at true symbolic logic. Understanding how LLMs can
bridge the gap between natural language reasoning and executable code is therefore

both a practical and scientific question, and it forms the focus of this proposal.

1.1 Background and Motivation

Recent Large Language Models (LLMs) have shown impressive capabilities for
various reasoning tasks, including multi-hop question answering (Wang et al., 2022a;
Lyu et al., 2023), symbolic reasoning (Hua and Zhang, 2022), and math word problem-
solving (Chen et al.,[2022;|Zhou et al., 2023). Chain-of-thought (CoT) prompting (Wei
et al., [2022b)) addresses limitations of previous LLMs by instructing them to generate
intermediate steps towards the final answer, thereby decomposing complex problems

step-by-step.

LLMs trained on large corpora of natural language and code demonstrate
strong performance across a range of software engineering tasks, from writing utility
scripts to solving introductory programming challenges (Chen et al.;|2021; Hendrycks
et al., 2021a). These advances highlight the potential of LLMs to serve as general

assistants for reasoning about and generating functionally correct code.

However, challenges remain, particularly in complex reasoning tasks like algo-



rithmic programming. For example, the majority of human competitors still outper-
form advanced models like GPT-4 in Codeforces contests (OpenAl, 2023b). Complex
programming problems have stringent time and space complexity constraints, where
straightforward implementation methods often yield time-consuming brute-force so-

lutions.

This gap suggests that current LLMs, while highly capable in many natural
language tasks, continue to face bottlenecks in structured algorithmic reasoning and
reliable program synthesis. This dissertation explores a central thesis: the path to
superhuman performance in competitive programming lies in explicitly structuring
and leveraging the natural language reasoning capabilities of LLMs as a scaffold for

code generation.

1.2 Research Questions

To investigate this thesis, my research follows a deliberate methodological arc,
where the findings from each stage motivate the inquiry of the next. This progression

is guided by five core research questions.

1.2.1 Diagnose the Bottleneck

To generate the correct solution for a complex problem, we propose three
stages: 1)Find the appropriate strategy and solution to tackle the programming chal-
lenge. 2)Apply the strategy and finalize details of the exact method. 3)Implement

the solution as an executable program.

In (Li et al., 2023), we decompose LLMs’ capabilities in problem-solving code
generation to perform these 3 stages sequentially, and evaluate them separately. This
helps identify the bottleneck of solving complex competitive-level programming prob-
lems(CP). We want to answer the following research question: RQ1: In the process
of solving a complex programming problem, where is the primary bottle-

neck for LLMs?



1.2.2 Utilizing Natural Language Reasoning as a Scaffold

This diagnostic results from show that LLMs are good at explaining code,
and can faithfully implement natural-language-described verbal solutions into exe-
cutable programs, despite their poor abilities to directly solve them. This answers
to RQ1 and directly leads to RQ2: Can we use LLMs’ strength in explaining
and NL reasoning to improve their problem-solving ability? Human-written
rationales for solving algorithmic reasoning problems, known as editorials, are hard
to collect as they are often posted on personal blogs or as tutorial videos. An al-
ternative is to distill such natural-language-described problem-solving strategies from
larger models. Distilling explicit chain-of-thoughts (CoT) reasoning processes has
been shown to be an effective method to learn multi-step reasoning from larger mod-
els (Hsieh et al., 2023; Yue et al.; 2023). Usually, a teacher model is required to solve
a set of problems while giving CoT reasoning paths at the same time. However, when
facing challenging tasks where state-of-the-art models struggle to generate effective

solutions, it becomes infeasible to gather reasoning processes at scale.

We found from our previous research (Li et al. 2023) that LLMs are good
at explaining code, and Tang et al. (2023b) found that LLMs can learn Natural
language (NL) reasoning abilities more easily than they learn symbolic language (e.g.,

programming language) reasoning.

In our work (Li and Mooney, 2024), we synthesize explanations of human-
written code and utilize them as the chain-of-thoughts for a student model to learn.
In our experiments, we found that it’s more effective for LLMs to learn from natural

language descriptions than to directly learn from code, which answers to RQ2.

1.2.3 Structuring NL Reasoning Within an Agentic Framework

Having validated the principle of separation, the next logical challenge was to

build a system that could perform this process autonomously and robustly.

Modern code generation pipelines (Shinn et al., 2023; Wang et al., 2022b)) have



adapted a general “generate — execute — refine” framework towards more robust
code generation. In the previous works, we separated steps for complex CP problem-
solving code generation. In addition, we are interested in: RQ3: Can we always
separate natural language reasoning and verbal solution generation from
program implementation in each step of the pipeline? and RQ4: How can
we build an agent that systematically explores this decomposed reasoning

space?

1.2.4 Probing the Generalization of Algorithmic Reasoning

After developing a powerful problem-solving agent, the investigation naturally
turns to the limits of its understanding. While solving CP problems is a challenging
benchmark (Li et al., 2022b; [Shi et al., 2024), it is not clear if the skills learned
generalize beyond code generation. This raises our next question, RQ5: Does a
model’s ability to solve specific problems reflect a deeper, generalizable

understanding of the underlying algorithms?

1.3 Proposal Outline

The remainder of this proposal details the completed and future work that

addresses these research questions.

e Chapter 2 provides background on large language models for code generation

and frames the core tasks.

e Chapter 3 details the completed works and experimental results, presented in

the same order as the research questions described above.

e Chapter 4 outlines two proposed directions for future work, which directly ad-

dress the limitations on generalization identified in our investigation of RQ5.

e Chapter 5 concludes with a summary and a proposed timeline for completing

the dissertation.



Chapter 2: Background

2.1 Emergence of Large Language Models

Vaswani et al. (2017) proposed the Transformer architecture to only use the
self-attention mechanism to obtain context-rich representations of tokens while encod-
ing all tokens simultaneously. This design has opened the doors for efficient training
and inference of LLMs. Efforts have been made to improve the structure in terms
of attention mechanisms (Dao et al., 2022; Choromanski et al., 2022), more expres-
sive position embeddings (Shaw et al., 2018; Dai et al., 2019; Su et al.| 2023b)), and
efficiency (Shoeybi et al., [2020; |Kwon et al., 2023).

Devlin et al. (2019) follows the Transformer architecture and learns language
representation through pre-training on a large corpus. Other masked language models
have been developed to improve upon BERT (Liu et al., [2019; Beltagy et al., 2020;
Sanh et al., 2020; |Clark et al., 2020).

In parallel, a lineage of causal language models, pre-trained with an autoregres-
sive objective, gained prominence. This began with the Generative Pre-trained Trans-
former (GPT)(Radford et al., 2018) and evolved with GPT-2, which demonstrated
that a sufficiently scaled model could perform a variety of tasks without explicit su-
pervision, acting as an unsupervised multitask learner (Radford et al., [2019). This
trajectory culminated in models like GPT-3, where immense scale unlocked the emer-
gent ability of in-context learning (ICL), allowing the model to perform tasks given
only a few demonstrations in the prompt, without any gradient updates(Brown et al.|
2020; (Gao et al., 2021). Further research revealed that complex reasoning could be
elicited from these large models through Chain-of-Thought (CoT) prompting, which
encourages the model to generate intermediate reasoning steps before providing a

final answer (Wei et al., 2022bla; [Wang et al., [2023a).

The rapid growth in model size and capability was systematized by the dis-



covery of neural scaling laws, which established that model performance, measured
by cross-entropy loss, scales predictably as a power-law with model size, dataset size,
and the compute used for training (Kaplan et al., 2020; Hoffmann et al.,|2022). These
findings provided a principled framework for efficiently allocating computational bud-
gets, demonstrating that larger models are more sample-efficient and that the optimal

strategy involves training very large models on relatively modest amounts of data.

To adapt these powerful pre-trained models for specific downstream applica-
tions, various fine-tuning methodologies were developed. The Text-to-Text Transfer
Transformer (T5) introduced a unified framework that treats every NLP task as a
text-to-text problem, enabling a single model to be fine-tuned on a diverse mixture
of tasks (Raffel et al., 2023). Building on this, instruction tuning was proposed to
enhance zero-shot generalization by fine-tuning models on a collection of tasks de-
scribed via natural language instructions (Wei et al., 2022a; Chung et al., 2022; Sanh
et al., [2022; Wang et al., 2023b)). Concurrently, knowledge distillation emerged as a
key technique for model compression, enabling the transfer of capabilities from a large
"teacher” model to a smaller "student” model to create more efficient deployments

(Hinton et al., 2015; |Sun et al., 2019; Xu et al.).

As LLMs became more capable, aligning their behavior with human intent
became a critical challenge. Reinforcement Learning from Human Feedback (RLHF)
was established as a powerful, multi-stage process to steer models toward generating
outputs that are helpful, honest, and harmless. This process involves supervised fine-
tuning (SFT), training a reward model on human preference data, and then optimizing
the language model policy using reinforcement learning (Ouyang et al., |2022; Stiennon
et al., 2020). To simplify this complex and often unstable pipeline, subsequent work
introduced more direct alignment methods. Constitutional AI proposed using Al-
generated feedback (RLAIF) based on a set of principles to automate the preference
labeling process (Bai et al., [2022). More recently, Direct Preference Optimization
(DPO) and its variants have emerged as a stable and computationally lightweight

alternative that bypasses the explicit reward modeling step, optimizing the policy



directly on preference data through a simple classification loss (Rafailov et al., [2023;

Ethayarajh et al., 2024; [Shao et al., 2024).

Finally, to address the static nature of parametric knowledge and the tendency
for models to hallucinate, Retrieval-Augmented Generation (RAG) was developed.
This framework grounds LLMs in external, verifiable knowledge by combining a pre-
trained parametric model with a non-parametric memory, such as a dense vector index
of a text corpus. By retrieving relevant documents and providing them as context in
the prompt, RAG improves factual accuracy, allows for knowledge updates without
retraining, and enhances the interpretability of model outputs (Lewis et al.; 2020b;

Guu et al., 2020; Karpukhin et al.;, 2020).

2.2 Symbolic Reasoning with Large Language Models

“Symbolic reasoning represents concepts or objects as symbols instead of num-
bers and manipulates them according to logical rules. Neuro-symbolic AI combines the
deep learning capabilities of neural networks with symbolic reasoning for more robust
decision-making. This is a fairly recent advancement and is still an emerging area of

research.” (Caballar and Stryker| 2025)

Recent Large Language Models (LLMs) have shown impressive capabilities for
various reasoning tasks, including multi-hop question answering (Wang et al., 2022a;
Lyu et al.,[2023), commonsense reasoning (Zelikman et al., 2022), symbolic reasoning
(Hua and Zhang), 2022), and math word problem-solving (Zhou et al., [2023; |Chen
et al., [2022).

Gendron et al. (2024); Tang et al. (2023b)) argue that LLMs rely heavily on
semantics in tokens and contexts, and struggle more when semantics are inconsistent
or when symbolic/counter-commonsense reasoning is needed. Besides training LLMs
on symbolic reasoning tasks(MA et al., 2024), many methods are proposed to enhance

LLMs’ capabilities to do symbolic reasoning.



The chain of thought prompting method (Wei et al., 2022b) explicitly instructs
LLMs to generate intermediate steps until the final answer is reached, enabling the
model to decompose problems and solve them step by step. Wang et al. (2023a);
Zhou et al. (2023); Yao et al.| (2024) propose to approach the correct answer through
multipath. They leverage multiple generations on the same question to find the
correct answer. |Yao et al. (2023);|Schick et al.| (2023) decompose the reasoning process
into a chain of actions and utilize tools to perform actions. Similarly, |Chen et al.
(2022); |Zhu et al.| (2023) shift from textual steps to executable programs, leveraging

interpreters for exactness.

2.3 Code Generation and Programming Tasks

Programming has become a central tool for solving problems across science,
engineering, and industry. With the rise of large language models (LLMs), automatic
code generation has advanced rapidly, making it possible to automate tasks that
previously required expert programming knowledge. LLMs trained on large corpora of
natural language and code demonstrate strong performance across a range of software
engineering tasks, from writing utility scripts to solving introductory programming
challenges (Chen et al., [2021; |[Hendrycks et al., 2021a). These advances highlight the
potential of LLMs to serve as general assistants for reasoning about and generating

functionally correct code.

While generating correct code is a central goal, recent research has started
to explore the broader space of what “understanding code” means. One direction
focuses on code efficiency—generating programs that are not just correct but also op-
timal in time or space. Works like Shypula et al. (2024), BigOBench (Chambon et al.|
2025), and ECCO (Waghjale et al., [2024) evaluate models’ ability to reason about
and improve algorithmic efficiency in time and space. Similarly, NoFunEval (Singhal
et al., 2024) proposed to evaluate LLMs’ programming abilities beyond functional

correctness. Another important area is code reasoning—testing whether models can



simulate, explain, or analyze program behavior. CRUXEval (Gu et all 2024) tests
models’ ability to predict program outputs given specific inputs, revealing weaknesses
in dynamic reasoning. Pei et al. (2023) study whether models can identify invariants
and reason about variables during code execution. EquiBench (Wei et al., 2025)
poses the deceptively simple task of determining functional equivalence between two
programs. Efforts have also gone into understanding how well models can explain
programs. [Li et al. (2023) test LLMs on providing human-readable explanations of
competitive programming solutions, evaluating both clarity and faithfulness. Code-
Mind (Liu et al., 2024) proposes the reverse task—converting code into its natural
language specification (Code2NL)—as a counterpart to the well-studied NL2Code di-
rection. CodeRAGBench(Wang et al.,|2025) has studied if code retrieval can augment

better code generation tasks.

2.4 Competitive-level Programming Problem Solving

Despite these successes, competitive programming (CP) remains a particularly
difficult frontier. Problems in this domain are designed to test algorithmic thinking
under strict time and space constraints, where even small reasoning errors or inefficient
implementations lead to failure. While models like GPT-4 (OpenAl, 2023b)) can
occasionally produce correct solutions, they are still far from matching strong human
competitors in CP contests. This gap suggests that current LLMs, while highly
capable in many natural language tasks, continue to face bottlenecks in structured

algorithmic reasoning and reliable program synthesis.

One fundamental limitation lies in the type of reasoning LLMs perform. As
argued by Tang et al.| (2023b]), LLMs rely heavily on semantic associations and are
often stronger at natural language style reasoning than at strict symbolic logic. This
difference is important in programming: solving a problem requires identifying the
right algorithmic strategy, working out the technical details, and only then producing

correct code. Failures in any of these stages lead to incorrect solutions. Existing stud-



ies in multi-step reasoning, such as chain-of-thought prompting (Wei et al., 2022b),
show that explicitly structuring intermediate reasoning steps improves accuracy on
math and symbolic tasks (Zhou et al., |2023; Hua and Zhang, 2022), but CP poses

additional difficulties due to large search spaces and strict efficiency constraints.

At the same time, the strengths of LLMs provide an opportunity. Our prior
work has shown that models are surprisingly effective at generating explanations of
code, even when they fail to produce correct solutions (Li et al., 2023). This indicates
that natural language reasoning, when separated from direct code generation, can
be a powerful resource. Recent work in distillation (Hsieh et al.; 2023; Yue et al.,
2023) suggests that transferring reasoning traces into smaller models can improve
their problem-solving ability. These findings raise the possibility of harnessing LLMs’

explanatory abilities to overcome their weaknesses in direct program synthesis.

Beyond reasoning at the single-problem level, there is growing interest in agen-
tic approaches to code generation (Shinn et al., 2023; [Wang et al., [2022b)). Instead of
producing one-shot outputs, LLM agents can generate candidate programs, execute
them, reflect on the results, and iteratively refine their solutions. Such frameworks ad-
dress the brittleness of single-pass generation and move closer to the problem-solving
process used by human programmers. However, designing agent systems that can
efficiently explore large spaces of potential solutions remains challenging, especially

for competitive programming where the number of possible strategies is vast.

Another open question is whether models trained for CP-style reasoning can
generalize to broader forms of algorithmic understanding. Identifying algorithmically
similar problems (ASPs)—that is, recognizing when two problems can be solved with
the same underlying approach—represents one such capability. ASP identification is
important both for retrieval-based systems and for assessing whether models capture
deeper algorithmic structure rather than surface-level patterns. Early benchmarks
suggest that even state-of-the-art LLMs struggle in this setting, performing well below

human intuition.



Taken together, these observations motivate a systematic study of how LLMs
can bridge the gap between natural language reasoning and executable program syn-
thesis. The central theme of this dissertation is to leverage the strengths of LLMs in
explanation and natural language reasoning to improve their weaknesses in structured
problem solving, symbolic reasoning, and reliable code generation for competitive pro-

gramming tasks.

We pursue this theme through a sequence of investigations that form a coherent

ladder:

e First, we diagnose the bottlenecks in LLMs’ ability to solve CP problems by de-
composing the problem-solving process into strategy identification, detail elab-

oration, and implementation.

e Second, we develop methods that harness LLMs’ explanatory and natural lan-
guage reasoning abilities, distilling them into problem-solving hints and agent-

driven reasoning pipelines.

e Third, we extend beyond single-problem solving to benchmarks that test whether
models generalize algorithmic reasoning across tasks, focusing on ASP identifi-

cation and code retrieval.

e Finally, we outline future directions that build on these findings, including task-
aware code representation and integrated retriever-LLM training for context-

dependent coding.

By following this trajectory, the dissertation aims to both shed light on the
fundamental limitations of current LLMs in algorithmic reasoning and to propose
practical pathways for improvement. In the next section, we formalize the guiding

research questions that drive this agenda.



Chapter 3: Completed Works

3.1 Explaining CP Solutions Using LLMs

In this section, we (Li et al., 2023) aim to identify the gaps in LLMs’ capa-
bilities and answer RQ1: In the process of solving a complex programming

problem, where is the primary bottleneck for LLMs?

3.1.1 Overview

We approach competitive-level programming problem-solving as a composite
task of reasoning and code generation. We propose a novel method to automatically
annotate natural language explanations to < problem, solution> pairs. We show that
despite poor performance in solving competitive-level programming problems, state-
of-the-art LLMs exhibit a strong capacity in describing and explaining solutions. Our
explanation generation methodology can generate a structured solution explanation
for the problem containing descriptions and analysis. To evaluate the quality of the
annotated explanations, we examine their effectiveness in two aspects: 1) satisfying
the human programming expert who authored the oracle solution, and 2) aiding LLMs
in solving problems more effectively. The experimental results on the CodeContests
dataset demonstrate that while LLM GPT3.5’s and GPT-4’s abilities in describing
the solution are comparable, GPT-4 shows a better understanding of the key idea
behind the solution.

3.1.2 Method

In the process of problem-solving, a human typically constructs a solution
by progressing from a general idea to a detailed code implementation. Thus, we
propose General-to-Specific(G2S) prompting, guiding LLMs to come to a solution

from general aspects like the algorithm to specific implementation details. However,
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Instructed Solver Prompt: You are required to read and try
to understand a competitive programming problem
statement Problem: <Insert Problem>.

The following is a hint that can lead to the correct solution
of the problem.

Explain Prompt: You are required to read and try to
understand a competitive-level programming problem
statement and interpret its correct solution. Problem:
<Insert Problem>... Expert’s Solution:<Insert Solution>.
Analyze both problem and answer in the following format:
1). Brief Problem Summary.

Please read and analyze the problem; Analyze the hint and
how to use it to solve the problem; Think of a solution
accordingly. Please give:

). Step-by-step Solution Description:
). Explanation of the Solution
). Solution in One Sentence:

Figure 3.1: The explanation generation and evaluation framework and corresponding
prompts (Top). An example of the full explain prompt (Bottom Left). The blue
points are descriptions, while the grey points are analysis. We give the explanation
based on the oracle solution to the instructed solver as a hint (Bottom Right) to
evaluate the quality of the generated explanation.

explaining that solution involves a reverse approach. This entails examining the code
on a line-by-line basis, interpreting the role of each function, and then rationalizing
the algorithmic steps in relation to the original problem. Therefore, we design a

specific-to-general explanation generation method.

While useful explanations might be generated with simple prompts such as
“explain the solution”, they often lack crucial information and are difficult to evaluate
due to the diversity in output. To address this issue, we specifically control the aspects
of explanations to include a “problem summary” showing its understanding of the
problem; 3 levels of “natural language description of the problem” showing its ability
to comprehend the solution from a low-level perspective to a high-level one. Those
can be regarded as Description-level explanation. The points “used algorithm”, “time
complexity”, “proof of correctness” are Analysis-level explanations, showcasing the
LLM’s general analysis and understanding of the solution. The specific-to-general

explaining prompt is described in the left part of Figure



3.1.3 Main Experimental Results

In this section, we aim to evaluate the specific-to-general explanations from
two different angels: 1). How much does it satisfy the authors who wrote the solution?

2). How easily can LLMs implement the solution back to the correct python code?

Experimental Settings and Evaluation Metrics We use GPT-3.5 and GPT-
4 as our main models to evaluate. We use the CodeContests(Li et al., [2022b) test
set as our main dataset in this paper. It contains 165 real online contest problems
from Codeforces, the earliest of which dates back to Oct 2021, which is after the
knowledge cutoff of GPT-3.5 and GPT-4 (Sep. 2021). We employ pass@k (Chen
et al., [2021) as our evaluation metric for solve rate. For each problem p;, we sample k
programs generated, and evaluate them using Solve Rate@k metric: the percentage
of programs that pass all hidden test cases, when submitted to Codeforces’ online
judge. We first filter the programs by their output on the public test cases before
submitting them, and also measure Pass Public@k: the percentage of programs that
pass the public test cases given in the examples. The above metrics are abbreviated
as ‘solve@k’ and ‘public@k’. Baseline is the original 0-shot CoT prompting; G2S
prompt is General-to-Specific prompting where it demonstrates the model to think in
a reverse order of the aspects in “w/” is with a single aspect from the explanation

as the hint.

Human Evaluation: Author Likert Scores We measured the quality of LLM-
generated explanations using human evaluation. We collect 50 <problem, solution>
pairs from Codeforces, ensuring that their format remained consistent with those in
CodeContests. Recognizing that understanding and explaining others’ solutions can
be a challenging task for programmers, we employed an annotator-centered evaluation
approach. We extracted solutions and corresponding problems from Codeforces for an

expert annotator. The Explainer then generates an explanation for the annotator’s



Comparison of Human Likert Scores between GPT-3.5 and GPT-4

GPT3.5
GPT4.

Figure 3.2: Human Likert scores (—2: very poor to 2: excellent) evaluating various
aspects of the explanations.

solution, which was subsequently scored by the author of the explained solution. Note

that each explanation is scored by the author of the solution being explained.

We generated explanations for 50 problems with ratings ranging from 800 to
2000, along with their corresponding solutions, and provided these explanations to
human experts. They were asked to assign a Likert score from —2 (very poor) to 2

(excellent).

The evaluation consists of ten questions, each one corresponding to a specific
aspect of the explanation. We separately assess the quality of the response to each
point of our S2G prompt. Furthermore, we developed three criteria to evaluate various

aspects of the overall explanation:

1. Usefulness: How useful is the explanation as guidance to solve the problem?

2. Clearness: How good is the explanation in terms of describing everything clearly
and avoiding ambiguity?

3. Understanding: How much does the LLM understand the key idea behind the

solution?

The average Likert scores over 50 problems are shown in Figure [3.2] Regarding the
scores for the solution descriptions (Step-by-Step Solution Description, Ezplanation
of the Solution, Solution in One Sentence) and usefulness, both GPT-3.5 and GPT-4

Explainer are positively rated by expert annotators, with an average of 1.16 and 1.36



respectively. However, GPT-3.5 receives near-zero or negative scores on questions in-
cluding why it’s correct, clearness, and understanding, showing its inadequate ability
to grasp the key idea behind the solution, while GPT-4 performs better (0.68 ~ 0.88
score higher) on these aspects. This reveals a clear difference in the abilities of GPT-
3.5 and GPT-4 to reason and analyze competitive-level programming solutions. For
GPT-3.5, we measure pass@k for k& = {1,5,10}, but only pass@l for GPT-4 due
to access limits. To sample k programs, we sample k different human solutions for

Explainer and then generate a program for each explanation.

GPT-3.5 Solver

solve@1 solve@5 | solve@10 | public@10
Baseline 1.8 3.6 6.1 13.9
G2S prompt 2.4 5.4 9.1 18.8
GPT-3.5 Solver With Silver Explanation
w/ Used Algorithm 18(1.2) | 42 6.1 133
w/ Step-by-Step Solution Description | 13.3 (15.8) | 32.2 42.4 47.9
w/ Explanation of Solution 6.1 (4.8) 17.6 23.6 32.7
w/ One Sentence Solution Description | 4.2 (4.2) 9.1 13.9 26.1
w/ Time Complexity 1.8 (2.4) 3.6 6.7 13.3

Table 3.1: Different aspects of the explanation’s effect on improving program gen-
eration. Values are percentage % and ‘solve’ and ‘public’ are short for ‘Solve Rate’
and ‘Pass Public Tests’. Solve@1 results in parentheses are from GPT-4’s generated
explanations. The bottom 5 rows correspond to Figure [3.1]s points 2,3,4,5, and 6 in
the left prompt.

Automatic Evaluation Results are shown in Table Different Description-
level aspects of explanations improve both the solve rate and pass public rate. The
most detailed aspect, Step-by-Step Solution Description, which provides a detailed
natural language description of the implementation, offers the most significant benefit
to problem-solving, resulting in a solve rate @1 that is 7.4 times higher than the
baseline. The impact of Fxplanation of the Solution and Solution in One Sentence is
comparatively lower due to their concise nature, which offers a less clear path towards
the solution. However, providing information on the algorithms used or the expected

time complexity does not improve GPT-3.5’s problem-solving capabilities.



One observation from Table is that solve@10 is significantly less than pub-
lic@10. For a program that passes the public tests but fails the hidden tests, there are
two possibilities: 1) It is incorrect and only applies to a subset of test data, including
the public tests; 2) It is inefficient. As discussed before, in competitive-level program-
ming, a “correct” but slow implementation does not count as a solution, as there are
constraints on time and space complexity. Therefore, we further study programs that
pass the public tests but may fail hidden tests. As shown in Table the baseline has
48.9% of its programs rejected by the online judge due to inefficiency, indicating that

GPT-3.5 tends to generate inefficient implementations (e.g., brute force solutions).

Solve | Wrong Answer | TLE | Other
Baseline 35.1% 15.6% 48.9% | 0%
G2S prompt | 38.3% 14.1% 47.6% | 0%
w/ UsedAlg | 39.1% 18.9% 21% | 0%
w/ S-by-S 75.6% 11.4% 11.4% | 1.6%
w/ Exp-Sol | 73.6% 11.9% 11.1% | 1.4%
w/ OneSent | 56.6% 27.9% 14.0% | 1.5%

Table 3.2: Final judgement of generated programs that pass the public tests. TLE
means time limit exceeded, and other includes memory limit exceeded and runtime

eI'I'OI'D

When provided hints from the solution description, the portion of Time Limit
Exceeded(TLE) programs drops significantly. Although GPT-3.5 may still make mis-
takes in some details or fail to consider corner cases even with hints from the expla-

nation, it is better at avoiding inefficient solutions.

Another interesting observation is that the wrong answer rate for one-sentence
explanation-instructed solving is higher than the baseline. One possible explanation
is that it is challenging to incorporate corner case handling in a one-sentence solu-
tion description, which makes GPT-3.5 more likely to implement an almost-correct

program.

I This is for all submissions, i.e., one problem might have up to k submissions, which is different
from the problem-wise solve rate.



3.1.4 Conclusion

We conclude the following findings from the experimental results above.

e Despite the poor abilities to solve CP, LLMs exhibit reasonable capabilities in

generating faithful and clear descriptions and explanations of the solutions.

e GPT-4 outperforms GPT-3.5 significantly in analyzing the problem and solu-

tion, as well as capturing the key ideas behind the solution.

e Given the step-by-step description of how to solve the problem, even the weaker
LLM GPT-3.5 can generate the correct solution. This highlights the answer to
RQ1, that LLMs are strong implementers.

When a hint is based on an oracle human solution, it effectively guides the LLM to
generate improved programs for solving problems. However, a system should be able
to learn from human programming solutions to improve its own problem-solving on
novel problems without guidance from a human solution. This raises the question:
Can the LLM-generated explanations be utilized to improve subsequent problem-

solving? This leads to the next completed work.

3.2 Distilling Algorithmic Reasoning from LLMs via Explain-
ing Solution Programs

In this section, we(Li and Mooney, 2024) utilize the findings from our last
work, and answer RQ2: Can we use LLMs’ strength in explaining and NL

reasoning to improve their problem-solving ability?

3.2.1 Overview

Distilling explicit chain-of-thought reasoning paths has emerged as an effective
method for improving the reasoning abilities of large language models (LLMs) across

various tasks (Wang et al.,|2022a; Chen et al., 2022;|Zhou et al., 2023). However, when
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Figure 3.3: Comparison between Solve-based and Explain-based chain-of-thoughts
distilling. Top: Solve-based CoT distilling is likely to generate incorrect or inefficient
solutions. Bottom: Explain-based CoT distilling can generate high-quality reasoning
processes by explaining the oracle solution.

tackling complex tasks that pose significant challenges for state-of-the-art models, this
technique often struggles to produce effective chains of thought that lead to correct
answers. In this work, we propose a novel approach to distilling reasoning abilities
from LLMs by leveraging their capacity to explain solutions. We apply our method
to solving competitive-level programming challenges. More specifically, we employ an
LLM to generate explanations for a set of <problem, solution-program> pairs, then
use <problem, explanation> pairs to fine-tune a smaller language model, which we
refer to as the Reasoner, to learn algorithmic reasoning that can generate ”how-to-
solve” hints for unseen problems. Our experiments demonstrate that learning from
explanations enables the Reasoner to more effectively guide the program implementa-
tion by a Coder, resulting in higher solve rates than strong chain-of-thought baselines
on competitive-level programming problems. It also outperforms models that learn
directly from <problem, solution-program> pairs. We curated an additional test set
in the CodeContests format, which includes 246 more recent problems posted after

the models” knowledge cutoff.

3.2.2 Method

Human-written rationales for solving algorithmic reasoning problems, known

as editorials, are hard to collect as they are often posted on personal blogs or as



tutorial videos. An alternative is to distill such natural-language-described problem-
solving strategies from larger models. Distilling explicit chain-of-thoughts (CoT)
reasoning processes has been shown as an effective method to learn multi-step rea-
soning from larger models (Hsieh et al., [2023; [Yue et al., 2023). Usually, a teacher
model is required to solve a set of problems while giving CoT reasoning paths at the
same time, as illustrated in Figure [3.3] However, when facing challenging tasks where
state-of-the-art models struggle to generate effective solution, it becomes infeasible

to gather reasoning processes at scale.

To tackle this problem, we propose to utilize large language models’ capacities
in understanding and explaining solutions rather than solving problems. Specifically,
we leverage a state-of-the-art LLM to read both the problem statement and an oracle
human-written solution program, and generate an editorial-style chain-of-thought on
how to solve the problem by explaining the solution. Then, a student LLM learns
the algorithmic reasoning processes from the explicit chain-of-thought paths. We
compare our explain-based CoT distilling method with solve-based CoT distilling in
Figure [3.3] While solve-based CoT distilling requires the teacher model to reach
the correct and efficient solution to hard problems, our explain-based distilling only
requires the teacher model to faithfully explain the correct solution. Since explaining
competitive-level code is a feasible task for strong LLMs explain-based distilling

can yield CoT reasoning processes with high quality and less noise.

We further proposed a reason-then-implement framework to solve algorithmic
reasoning problems, utilizing the proposed explain-based CoT distilling. The frame-
work consists of 3 major components: 1) an Explainer to annotate explanations for a
set of <problem, solution-program>; 2) a Reasoner to learn to generate intermediate
reasoning processes for a given problem; and 3) a Coder to implement the solution

for an unseen problem given the output from the Reasoner. The framework and its

2Experiments show that only 12% of GPT-4’s generated solutions are correct given 200 problems
randomly sampled from the CodeContests training set.
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Figure 3.4: The framework of our approach. We use Explainer LLM to gener-
ate explanations then train Reasoner LLM to generate explanations given problem
statements. During inference time, given the problem, the Reasoner can generate a
reasoning process in the same format as solution explanations, which could be pro-
vided to the Coder as a hint to solve the problem better.

fine-tuning and inference stages are presented in Figure |3.4

Explainer: Extracting reasoning processes through explaining solution
programs The Explainer is tasked with explaining a solution program. It serves
the role of Teacher in Solve-based CoT distilling, as described in Figure 3.3 Given a
pair, < p;, s; >, it generates an explicit reasoning process ¢; in natural language. This
is inspired by how human competitors learn problem-solving skills from past prob-
lems: they learn by reading editorials, step-by-step guidelines on approaching and
solving the problems. While human-written editorials are hard to collect or annotate
at scale, we ask an LLM to automatically generate them. We design an editorial-style
chain-of-thought reasoning template and ask the Explainer to follow it to explain
solutions. Specifically, an editorial for an algorithmic reasoning problem refers to a
comprehensive explanation or walk-through on how to solve a problem, which includes
problem analysis, strategy development, solution explanation, time/space complexity

analysis, etc. We leverage the capabilities of LLMs to explain solution code to gen-



erate automated explanations for problem-solution pairs < p;, s; >. The Explainer
is prompted to create a detailed explanation, d;, for each pair. Our focus is predomi-
nantly on the reasoning process, encompassing the following critical aspects that are

often included in human-expert-written editorials:

1. Problem Restatement: Summary and analysis of the problem.

2. Conceptual Evolution: How one approaches the problem and the development

of a problem-solving strategy.
3. Key to Solution: The key idea behind the solution.

4. Solution Description: Brief, verbal description of the solution, focusing on the

high-level algorithm.

5. Step-by-Step Solution Explanation: A more detailed description, focusing on

the steps in the implementation.

6. Common Pitfalls: Some common mistakes one could make when approaching

the problem, or edge/corner cases to be considered.

Based on the length of p; and s;, as well as the difficulty ratings (ranging from
800 to 3600), we filter the training set from [Li et al. (2022a) to curate a dataset
{< p1,81 >, ,< pn,Sn, >} Utilizing GPT-4-0613 as the Explainer, we generate
“silver” explanations for these pairs, resulting in a comprehensive problem-solution-
explanation dataset < pq,s1,d; >, ..., < Pn, Sn, d, >. After further cleaning, we have

8248 triplets in total.

Reasoner: Fine-tuned to generate reasoning processes for problems Given
the inherent diversity and potential lack of readability of the code available for al-
gorithmic reasoning problems, our approach focuses on fine-tuning the Reasoner
on problem statements p; and reasoning processes d;, which are jpg, doj, ip1, dii,
<o+, < pp,d, >. These problems and reasoning processes, rich in semantics, encap-

sulate the essential steps for problem resolution, including the algorithms used and



specific problem-solving approaches employed. The Reasoner serves the role of Stu-
dent in Solve-based CoT distilling, as illustrated in Figure We adopt a weighted
fine-tuning strategy, with simpler, more recent problems weighted more heavily during
training. Overly challenging problems might lead to low-quality noisy explanations
that hurt the training of the Reasoner. Recent solutions usually feature more in-
date implementations (e.g., Python 3 rather than Python 2), enhancing the code’s
interpretability. We fine-tune an LLM on 8,248 {p;, d;} pairs, and then use the fine-
tuned model as the final Reasoner. At the inference time, it generates d}- for the
jth problem statement p;. The generated reasoning process d can be considered as a

natural-language “hint” given to the Coder to help solve the problem.

Coder: Reasoner-Hinted Code Implementer Finally, we have a zero-shot
Coder to generate code utilizing hints from the Reasoner. Since the focus of this
work is enhancing algorithmic reasoning rather than code implementation abilities,
we do not further fine-tune the Coder. As described earlier, the reasoning process cij
for problem p; contains a problem restatement, conceptual evolution, key to the so-
lution, solution description, step-by-step solution explanation, and common pitfalls,
making it a detailed hint to assist the implementation of the solution. We concate-
nate < pj, dAj > as the input to produce the input for the Coder, which it then uses
to analyze the problem together with the reasoning hint, to generate programs that

solve the problem.

3.2.3 Experimental Results

In this section, we would like to know, how much performance gain can dis-

tilling from explanations bring to the CP solving task.

Experimental Settings and Evaluation Metrics We use GPT-4-0613 (Ope-
nAl, 2023a/b) as the Explainer since it’s the strongest model that we have access to.

We also choose the strongest models with fine-tuning access as the Reasoner and



Coder. For a closed model, we choose GPT-3.5-turbo-1106 (henceforth GPT-3.5);
for an open model, we choose Deepseek Coder 7B (henceforth Deepseek 7b) (Guo
et al., 2024). The temperature ¢ is set to 0.5 when sampling multiple(;1) is needed
in our main experiments. The context window is set to 4096 and we truncate single
examples with more than 4096 tokens. We use solve@k from the previous section as

our main evaluation metric.

Dataset CF-Prob CodeContests
Coder /Reasoner Model GPT-3.5 Deepseek 7b GPT-3.5 Deepseek 7h
Zero-shot, Methods

solve@l solve@5 solve@10 solve@1 solve@5 solve@10 solve@1 solve@5 solve@10 solve@1 solve@5 solve@10

Direct Prompt 1.1 2.7 3.3 0.4 0.9 1.6 1.9 3.5 4.2 0.8 1.2 1.8

Naive CoT 1.2 2.7 3.3 0.7 14 2.0 1.8 3.7 4.8 0.8 14 1.8

Editorial CoT 1.1 2.7 3.6 0.9 2.0 2.4 1.5 3.7 4.8 1.0 1.8 2.4

0-Reasoner Coder 1.2 25 3.3 0.7 1.9 2.4 1.4 35 4.2 1.1 2.0 2.4
Fine-tuning Methods

Fine-tune Coder 0.5 0.8 1.6 0.6 1.7 1.8 0.8 1.2 1.8 1.1 14 1.9

Fted Reasoner W/Full 1.1 3.2 4.9 0.6 2.1 3.7 1.5 4.2 6.1 1.4 2.8 3.6
Fted Reasoner w/Best 1.1 3.7 6.1 1.0 29 4.1 24 56 7.2 1.4 29 4.2
Relative Increment +37% +69% +53% +71% +51% +50% +45% +75%

Table 3.3: Performance of baselines and our methods. Fine-tuned Reasoner (Full)
refers to using all aspects from the reasoning process, while Fine-tuned Reasoner
(Best) only uses the best aspect. Relative Increment(by percentage) is what’s over
the best baseline. Solve@k: Solve rates(Percentage) when sampling k.

Main Results The results are presented in Table With our fine-tuned Rea-
soner, the Coder achieves the best solve@10 and solve@5 rates across open/closed
models and two datasets, supporting the effectiveness of our method. Compared to
using the original model as the Reasoner (0-shot Reasoner), the best aspect (Step-by-
Step) from the reasoning process alone can boost solve@10 from 3.3% to 6.1%, sug-
gesting that our fine-tuning method does distill some algorithmic reasoning ability into
the student model. Note that solely fine-tuning <problem, solution-program>pairs
actually hurts performance. One reason might be that solutions to Codeforces prob-
lems are often written under a time constraint with poor readability, making it diffi-

cult for the model to generalize given the limited amount of fine-tuning data. Since

3https://huggingface.co/deepseek-ai/deepseek-coder-7b-instruct-vi.5


https://huggingface.co/deepseek-ai/deepseek-coder-7b-instruct-v1.5

instruction-tuned models would generate intermediate thought processes by default,
we experimented to explicitly forbid the model from any reasoning/analysis preced-
ing implementation. Compared to the direct prompt, the solve@10 rate on CF Prob
w/GPT-3.5 drops from 3.3% to 2.0%. Even with this setting, the generated code
often contains comments and meaningful variable/function naming that are less in
human competitors’ code. This observation further supports our claim that meaning-

ful, semantic-rich natural language can help the model generalize to unseen problems.

3.2.4 Conclusion

In this study, we propose to distill large language models’ ability to explain
solutions into reasoning abilities used to help solve problems. Using a two-phase
framework of reason-then-implement where the student model plays the role of a
Reasoner to instruct a zero-shot Coder to generate the implementation. Experi-
ments on real problems from Codeforces demonstrate that our explain-based distilling
outperforms several strong 0-shot baselines as well as fine-tuning with code solutions
alone. This answers RQ2: Yes, we can use LLMs’ strength in explaining and NL

reasoning to improve their problem-solving ability.

3.3 Codetree: Agent-guided tree search for code generation
with large language models

In the previous sections [3.1], we find that LLMs are better at natural
language reasoning and verbal solution generation than symbolic reasoning and di-
rect program generation. We aim at utilizing NL reasoning in a zero-shot setting by
answering the following two questions. RQ3: Can we always separate natural
language reasoning and verbal solution generation from program imple-
mentation in each step of the pipeline? and RQ4: How can we build an

agent that systematically explores this decomposed reasoning space?



3.3.1 Overview

Pre-trained on massive amounts of code and text data, large language models
(LLMs) have demonstrated remarkable achievements in performing code generation
tasks. With additional execution-based feedback, these models can act as agents
with capabilities to self-refine and improve generated code autonomously. However,
on challenging coding tasks with extremely large search space, current agentic ap-
proaches still struggle with multi-stage planning, generating, and debugging. To
address this problem, we propose CodeTree, a framework for LLM agents to effi-
ciently explore the search space in different stages of the code generation process.
Specifically, we adopted a unified tree structure to explicitly explore different coding
strategies, generate corresponding coding solutions, and subsequently refine the so-
lutions. In each stage, critical decision-making (ranking, termination, expanding) of
the exploration process is guided by both the environmental execution-based feedback
and LLM-agent-generated feedback. We comprehensively evaluated CodeTree on 7
code generation benchmarks and demonstrated the significant performance gains of
CodeTree against strong baselines. Using GPT-40 as the base model, we consistently
achieved top results of 95.1% on HumanEval, 98.7% on MBPP, and 43.0% on Code-
Contests. On the challenging SWEBench benchmark, our approach led to significant

performance gains.

3.3.2 Method

Yao et al. (2024) proposed to improve LLMs by adopting a tree-based structure
to explicitly simulate the exploration of thoughts in a tree. We are motivated by this
line of research and proposed CodeTree, a new generation framework to effectively
explore the search space of code generation tasks through a tree-based structure(Li

et al., [2025). An overview of CodeTree is given in Figure

We define 3 standard agents, Thinker, Solver, and Debugger, to equip the

strategy-planning, solution implementation, and solution improvement correspond-



ingly, posing comprehensive roles needed for code generation. A CodeTree starts
from the input problem as the tree root and subsequent nodes represent code solu-
tions. At any node of the tree, one can either explore sibling nodes (other strategies
from the same parent node) or its children (refinements of this node). Within Code-
Tree, agents can interact with each other through a tree expansion guided by a Critic

Agent, searching for the optimal code solution.

Please refer to Figure [3.5] for an overview of our method and Figure [3.6] for a

simplified version of instruction prompts to our LLM agents.
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Figure 3.5: CodeTree creates a unified search space for exploration throughout the
multi-stage code generation process: strategy generation by a “Thinker” agent, initial
code generation by a “Solver” agent, and code improvement by a “Debugger” agent.
To effectively perform exploration within the tree structure, we incorporate both
environmental execution-based feedback as well as Al-generated feedback (generated
by a “Critic” LLM agent).

We first introduce three unit LLM agents, specifically targeting different parts
of the code generation process, including strategy thinking, code implementation, and

code debugging.

Strategy Generation with Thinker Agent Following the setting in [Yao et al.
(2024), requesting LLMs to generate a list of different natural language thoughts can

enhance the diversity of solutions. We propose to adapt this technique to allow an



Thinker: ﬂritic Agent Scoring & Evaluation:

Your goal is to think of multiple strategies in English on how to [approach and solve this Your task is to evaluate a strategy and corresponding implementation for
problem)]/[improve this solution]. You should decide how many and what strategies are solving a programming problem. The solution failed on test cases.
feasible and list and number them line by line. ... You should score from 1 to 5 on how good the execution outputs are
[Problem]: <problem description> matching the expected ones. ...

[Solution]: <previous solution>

You should score from 1 to 5 on how well do the solution implement the

Your goal is to implement the solution for a programming problem based on the strategy and solve the task?

instruction from user. Evaluate if one should keep refining this solution or try other strategies.

[Problem]: <problem description> [problem] [solution] [feedback]

[Instruction]: <strategy> \ j
~

Debugger: (
Your goal is to improve the following solution for a programming problem based on its Critic Agent Solution Verification:

execution feedback on test cases, including evaluation/reflection for the solution and an You are given a programming task along with a user's solution that
instruction from user. ... passed all visible tests. Your job is to verify whether this solution will pass
[Problem]: <problem description> the hidden test cases. Answer True if it's an acceptable solution, Answer
[Solution]: <previous solution> False if it's not. Your answer should be a single word True/False. ...
[Feedback]: <execution feedback>, <Critic Agent feedback> [problem][solution][feedback]

[Instruction]: <reflection> )

Figure 3.6: Simplified versions of instruction prompts used for Thinker, Solver, De-
bugger, and Critic agents. Some details are omitted for illustration purposes.

LLM “Thinker” agent to sequentially generate a set of high-level strategies given an
input coding problem. Each strategy is generated autoregressively conditioned on
previously generated strategies. By allowing models to first generate coding strate-
gies, we enable LLMs to tackle coding problems using their reasoning capabilities
learned from the text domain, which is answering RQ3: We can always separate
natural language reasoning and verbal solution generation from program
implementation in each step of the pipeline. The expressiveness of generated
strategies in a natural language can potentially guide the code-generation process
toward more diverse exploration paths. Notably, we let Thinker Agent dynamically
decide the number of generated coding strategies, given the fact that different coding

problems can have more or fewer feasible strategies.

Solution Generation with Solver Agent Given a complete generated strategy
from Thinker Agent, we let a “Solver” agent LLM implement a set of initial code
solutions. By including the strategy as part of the input instruction, we can condi-
tion Solver Agent to produce strategy-specific code candidates. From our previous
research(Li et al.| 2023; [Li and Mooney, 2024), LLMs exhibit abilities to implement

solutions based on verbal descriptions of solutions.



Solution Refining with Thinker & Debugger Agents Prior approaches such
as (Chen et al.,|2023a,b; |Shinn et al., [2023; Madaan et al., 2023) found that syntactic
mistakes or even logical flaws in generated code can be fixed by allowing LLMs to
iteratively refine and regenerate the code. This self-refinement capability is typically
strengthened by some forms of feedback about the code qualities (e.g. execution
results, compiler signals): We name two types of feedback Fj, 1. execution results of
the visible test set with the compiler’s output and expected output. 2. Self-critique

given by the critic agent.

Node Evaluation with Critic Agent CodeTree builds a heterogeneous tree for
each problem, where the tree root represents a problem specification (D, {(i;,0;)})
and every subsequent tree node represents a generated candidate code solution Each
node has relevant attributes including its collective code feedback F; and its cor-
responding strategy and reflections: S; and R;. Typically, adding a tree node is a
two-step process: 1) generate a code solution from the corresponding strategy, 2) eval-
uate the generated solution and obtain execution feedback. For a given solution and
corresponding F.., Critic Agent performs an evaluation, measuring how promising it
is, which results in F,,.;. We separately evaluate how well: 1) the execution outputs of
test cases match expected outputs on visible test cases; and 2) the solution robustly
implements its corresponding strategy towards problem-solving. For one program
and its corresponding feedback Fj, the Critic Agent will evaluate whether the cur-
rent solution is worth refining, or it should not be explored, making decision between
refinement and abort. For one solution that passes all visible test cases, it might
potentially over-fit the visible test cases and could fail hidden test cases. Hence, the

critic agent will verify if this solution is robust and generalizable to unseen test cases.

Tree Expanding with Critic Agent Unlike previous tree-structure search meth-
ods (Yao et al., 2024; |Islam et al., 2024), we do not predefine the entire tree with
fixed width and depth. Instead, we introduce a Critic Agent to dynamically expand



the tree based on potential strategies. It will guide the expansion and spanning of
the tree, taking actions based on its evaluation of the current node. To guide the
search for a correct solution, at each node, Critic Agent has an action space of three
actions: Refine: Continue exploring from the current node by generating multiple
reflections for this node; Abort: Prune this node due to its low evaluation score, and
retrace the exploration to its sibling nodes; and Accept: Accept the current node as

the final solution and terminate the search early.

Agent Collaboration Throughout the expansion of the tree, the task-specific
agents collaborate with Critic Agent, utilizing its feedback, and follow its guidance to
perform exploration. The flexibility of the tree expansion and search is determined
by LLM agents’ decision-making, e.g. determining the number of strategies and de-
ciding the search path. During inference time, practically, we limit the number of
exploration steps to avoid large computation overhead. Whenever a termination sig-
nal (i.e. to accept a code solution) is found or the maximum number of exploration

steps is reached, a code candidate is selected based on its evaluation score.

3.3.3 Experimental Results

In this section, we aim to evaluate if CodeTree can efficiently search for the

correct solution and which agent is playing the most crucial role.

Experimental Settings and Evaluation Metrics We applied pass@1(Chen et al.,
2021) as our evaluation metric: only one code candidate can be selected and submit-
ted for the final evaluation with hidden test cases. We set the generation budget to
be 20 samples per coding task. To fairly compare our approach with other baselines,
we adopted the same generation budget in all methods. For ablation experiments
without using Critic Agent, we followed similar strategies from (Shinn et al., 2023;
Chen et al., |2023b): we select a solution that passes all visible test cases as the final

solution to be evaluated with hidden test cases. We conducted experiments on 2



categories of code generation tasks: 1) Function implementation where a coding task
is to complete a single function following a specific function signature: HumanEval
(Chen et al., [2021), MBPP (Austin et al| 2021), and their EvalPlus variants from
(Liu et al., 2023), denoted as HumanEval+ and MBPP+; and 2) Program imple-
mentation where a coding task is to solve an algorithmic problem: CodeContests (Li
et al., 2022b) and APPS (Hendrycks et al., 2021b). The sizes of test set are 164, 378
and 165 for HumanEval(+), MBPP(+) and CodeContests respectively. For APPS,
we randomly sampled 150 samples (50 for each level of difficulty) from the test split.

We introduce the following baselines: Direct instructs the model to generate
code directly from the input problem; CoT (Wei et al., 2022b) instructs the model
to provide chain-of-thought reasoning before giving the solution program; Reflexion
(Shinn et al., 2023) utilizes solution’s execution feedback to generate self-reflections.
The reflections are used to iteratively refine the solution; MapCoder (Islam et al.,
2024) proposes an agent collaboration system to plan, solve, test, and refine the
solution. We set #plans=4, #debug-round=>5 and generation budget=20; and Re-
sample follows a similar principle as|Li et al.| (2022b)): resample solutions repeatedly

and filter them with visible test cases]

We studied our method on three models with different model sizes and capaci-
ties. We experimented on large language models from the GPT and Llama 3.1 family.

Specifically we use GPT-40-mini, GPT-4d’} and Llama-3.1-8B [f]

Main Results We compared CodeTree with other baselines in Table We no-
ticed that Reflexion and Resampling serve as strong baselines for HumanEval and
MBPP datasets given the same solution generation budget, comparable to CodeTree-

BFS/DFS. CodeTree with Critic Agent outperforms all other baselines in 4 out

4We set sampling temperature=1 for Resample, and report the best results over 2 runs. For other
methods, we report the single run’s results with deterministic inference.

Shttps://openai.com/index/hello-gpt-40/

Shttps://huggingface.co/meta-1lama/Llama-3.1-8B-Instruct. Note that we reported our
replicated results which might be different from the original reported ones.
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Model Method HumanEval HumanE+ MBPP MBPP+ Codecontests A.Vg.

Direct 86.6%  78.7%  87.8% 73.3%  103%  67.3%
CoT 84.8%  78.0%  89.2% T43%  127%  67.8%
Reflexion 92.1%  835%  96.6% 78.6%  21.8%  74.5%
GPT.4 . . MapCoder 91.5% 78.0%  90.0% - - -
"RO-INL R esample 89.0%  80.5%  94.3% 76.8%  18.2%  71.8%

CodeTree-BFS 93.3% 82.1%  91.5% 72.3% 20.6% 72.0%
CodeTree-DFS 92.7% 81.1% 87.6%  71.4% 20.6% 70.7%
Strategy List 90.2% 80.5% 90.5% 69.6% 22.4% 70.6%

CodeTree 94.5% 84.8% 96.8% 77.0% 26.4% 75.9%
Direct 88.4% 81.7% 92.3%  75.9% 20.6% 71.8%
CoT 92.1% 84.1% 93.7%  77.2% 24.8% 74.4%
Reflexion 94.5% 84.8%  97.9%  79.6% 41.8% 79.7%
GPT.4 MapCoder 92.7% 81.7%  90.9% - - -
-20 Resample 93.9% 84.8% 96.2%  77.0% 32.7% 76.9%
CodeTree-BFS 94.5% 84.1% 93.9%  70.7% 35.8% 75.8%
CodeTree-DFS  95.1% 83.5% 91.5%  76.2% 36.4% 76.5%
Strategy List 95.1% 82.3% 92.6%  73.3% 36.4% 75.9%
CodeTree 94.5% 86.0% 98.7% 80.7% 43.0% 80.6%
Direct 63.4% 54.3% 73.4%  63.8% 6.1% 52.2%
CoT 65.9% 56.1% 74.6%  65.3% 4.2% 53.2%
Reflexion 79.9% 69.5% 90.2%  72.0% 13.5% 65.0%
Resample 82.3% 71.3% 91.0% 73.8% 15.2%  66.7%
Llama-3.1-8B

CodeTree-BFS 80.5% 68.3% 91.0%  69.3% 15.8% 65.0%
CodeTree-DFS 80.5% 68.9% 89.7%  70.4% 15.2% 64.9%
Strategy List 82.3% 70.1%  91.0% 72.5% 13.9% 66.0%
CodeTree 82.3% 72.0% 90.5%  73.3% 12.1% 66.0%

Table 3.4: Experimental results by pass@l on HumanEval, MBPP, EvalPlus, and
CodeContests: methods are baseline methods that generate program solution only
once, - are methods with solution generation budget of 20 samples like our methods.
are CodeTree variants with or without Critic Agent to guide the tree search. Note
that MapCoder does not work with Llama-3.1-8B as noted by |Islam et al. (2024).



Model GPT-40-mini

Benchmark HumanEval HumanEval+
CodeTree 94.5% 84.8%
w/o verification 91.5% 81.7%
w/o0 node abort 91.5% 81.1%
w/o scoring 92.7% 82.1%

Table 3.5: Ablation study for different tasks of Critic Agent. We used GPT-40-mini
to evaluate corresponding settings and reported the pass@1 on the HumanEval and
HumanEval+ benchmarks.

of 5 benchmarks for GPT-40-mini and GPT-40. For instance, CodeTree achieves
pass@1=43.0% on competition-level coding tasks in the Codecontests benchmark (i.e.
22.4% performance gain over the Resampling baseline), showing its advantage in solv-

ing hard problems.

We found that CodeTree-BFS almost always performs better than CodeTree-
DFS, suggesting that exploring diverse strategies is more effective than iteratively
refining from one solution. Interestingly, on Llama-3.1-8B model, Resampling achieves
the best results on 4 benchmarks. This observation indicates that small language
models may not be suitable for multi-agent frameworks like CodeTree, where models
are required to follow task-specific roles and instructions and perform distinct tasks

with reasonable accuracy.

Ablation Study Results in Table indicate, Critic Agent plays a crucial role in
CodeTree over naive search methods like BFS/DFS. We further analyzed which task
is the most crucial for Critic Agent. Specifically, we conducted the following ablation
experiments: (1) w/o Solution Verification, where we excluded the verification task
for any solution passing visible tests; (2) w/o Node Abort Evaluation, where we let the
agents keep exploring till we reach the max depth or whenever a solution is accepted;
(3) w/o Node Scoring, where the environmental feedback is solely execution outputs,

without Critic Agent’s evaluation.



The results in Table show that all proposed tasks are crucial for Critic
Agent to guide the tree expanding and solution search. Among these tasks, node abort
and solution verification tasks are the most effective and have significant impacts on

final performances.

3.3.4 Conclusion

We introduce CodeTree, a new framework of agent-guided tree search for code
generation tasks. Introducing a tree-based structure as a unified search space, Code-
Tree includes a Critic agent to guide the tree search and make critical decisions such
as termination, expanding and scoring of tree nodes. CodeTree facilitates multi-agent
collaboration (among Thinker, Solver, and Debugger agents) to find the correct so-
lution within a limited solution generation budget. In this paper, we leverage LLMs’
natural language reasoning capabilities in a zero-shot manner. This is largely re-
flected in Thinker Agent who gives distinct problem-solving or code fixing strategies,

and Critic agent, who scores, verifies and acts on a node of a candidate solution.

3.4 AlgoSimBench: Identifying Algorithmically Similar Prob-
lems for Competitive Programming

3.4.1 Overview

Recent progress in LLMs, such as reasoning models, has demonstrated strong
abilities to solve complex competitive programming problems, often rivaling top hu-
man competitors. However, it remains underexplored whether these abilities gen-
eralize to relevant domains that are less seen during training. To address this, we
introduce AlgoSimBench(Li and Mooney, 2025), a new benchmark designed to assess
LLMs’ ability to identify algorithmically similar problems (ASPs)—problems that
can be solved using similar algorithmic approaches. AlgoSimBench consists of 1317
problems, labeled with 231 distinct fine-grained algorithm tags, from which we curate

402 multiple-choice questions (MCQs), where each question presents one algorithmi-



cally similar problem alongside three textually similar but algorithmically dissimilar
distractors. Our evaluation reveals that LLMs struggle to identify ASPs, with the
best-performing model (03-mini) achieving only 65.9% accuracy on the MCQ task.
To address this challenge, we propose attempted solution matching (ASM), a novel
method for improving problem similarity detection. On our MCQ task, ASM yields
an average of 8.6% absolute accuracy improvement across different models. AlgoSim-
Bench can also serve as a probing task for code retrieval methods. We also evalu-
ate code embedding models and retrieval methods on similar problem identification.
Combining ASM with a keyword-prioritized method, BM25, can yield up to 52.2%

accuracy.

3.4.2 Dataset Curation

Many competitive programming platforms (e.g., Codeforces, CodeChef) pro-
vide algorithm tags, but these are usually too general (e.g., dynamic programming)
to capture the solution strategy. To identify ASPs, we need more specific tags such as
Longest Increasing Subsequence or 0/1 Knapsack, characterizing a specific technique
needed to solve the problem. A comparison between the distributions of AlgoSim-
Bench’s and Codeforces’ tags are given in Figure To obtain problems annotated
by expert programmers with fine-grained labels, we found four communities that have
collected problems with detailed algorithm and topic tags. We retain labeled prob-
lems originally from Codeforces, CodeChef, and AtCoder, where formatted problem
statements and corresponding human solutions are available. We manually unified
labels from these different sources and removed duplicates and overly broad or am-
biguous tags to assemble 319 distinct fine-grained labels. We collected 1522 tagged
problems, filtered to 1,317 clean ones, 903 of which appear as the given problem or

multiple-choice options in AlgoSimBench.

As [Jain et al. (2021); |Wei et al. (2025) found, language and code models
are sensitive to functionality-preserving attacks and struggle to disentangle program

semantics from natural language semantics. Suresh et al. (2025) also describes hard
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distribution.



negatives as those semantically similar to positive cases but which do not directly

address a retrieval query.

Competitive programming problems usually contain a background story, con-
necting the algorithms to a real-life situation. We intentionally invert the correlation
between algorithmic similarity and textual similarity. That is, algorithmically similar
problems should differ as much as possible in wording and surface descriptions, while
dissimilar problems should appear similar in text but differ in algorithmic structure.
Specifically: The similar option shares the closest match in problem topics and algo-
rithmic approach but differs significantly in text and overall linguistic meaning. The
distractors belong to different algorithmic categories but are chosen to be textually
close to the original problem. The idea underlying this setting is that models should
be able to 1gnore features irrelevant to problem solving, and base its judgment of algo-
rithmic similarity solely on the problem structure. We obtain a set of problems, each
with a problem statement, a corresponding solution program, and a set of algorithmic
labels. We create multiple-choice questions as follows: Given a reference problem, we
find an algorithmically similar problem with the exact same set of labels, and three
algorithmically dissimilar problems. With the Contriever model(lzacard et al., 2022)
as the scorer for similarity, we ensure textually-similar distractors and textually-
dissimilar ASP following the steps: a). Select the ASP with the lowest similarity
score, b). Select the distractors with the highest similarity scores that are higher
than the score in the previous step. ¢) Human-verify the validity of options. d) If not
valid, go back to a) or b) to pick substitute(s). For problems where we cannot form

a valid 4-option, we exclude it from AlgoSimBench MCQ.

3.4.3 Method

Episodic Retrieval (Shi et al., 2024) uses similarity among solution programs to
identify similar problems, but it compares LLM-generated code for the query problem
with oracle-solution code for the potential retrieval targets. This assumes that the ini-

tial solution contains the correct algorithmic signal. However, this breaks down when



Problem Statement
..n friends live in a city which can be represented as a number
line. The i-th friend lives ........ to move no more than once.
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Figure 3.8: Illustration of Attempted Solution Matching. Attempted solutions are
generated by LLMs, forming a matching corpus for better ASPs identification.

the LLM selects the wrong approach, e.g., misclassifying a dynamic programming
problem as greedy-search. Such errors can accumulate, decreasing LLMs’ capacity to

identify algorithmically similar problems.

This motivates our approach: rather than comparing problem statements di-
rectly, we propose Attempted Solution Matching (ASM)—a method that prompts
an LLM to generate a solution attempt for each problem, and then compares these

attempted solutions to identify ASPs. We illustrate this method in Figure [3.8]

In ASM, each problem statement (i.e., problem description) is first mapped
to a first-attempt solution using an LLM, and ASPs are identified by evaluating the

similarities between attempted solutions.

The attempted solution can take two forms: A natural language explanation
of the solution strategy (NL-solution), denoted as ASM-NL; or a program written
in code (PL-solution) ASM-PL. While both should contain algorithmic information,
ASM-NL can include content on problem analysis, strategy exploration, algorithm
selection, and problem solving; on the other hand, ASM-PL focuses on the complete

implementation, whose content is rich in details but insufficient in analysis.



3.4.4 Experiments

Experimental Settings For End-to-End Selection(i.e., model generates the op-
tion with the full MCQ in the instruction), we evaluate 7 open and closed SoTA
LLMs: GPT-40-mini, GPT-4d} 03-mini-mediun® Deepseek-R1 (DeepSeek-Al et al.,
2025a), Deepseek-V3 (DeepSeek-Al et al., 2025b), Claude—3.5—Sonnetﬂ and Gemini
2.0 Flash For Retrieval-Based Selection(i.e., with the given problem as query and
four options as corpus, a model retrieve the most similar one from the corpus), we
tested various metrics for measuring the similarity between the query and candidate
answers. We used cosine similarity of dense embeddings from a text embedding model
BART (Lewis et al.,[2020a) and a code embedding model GraphCodeBert (Guo et al.,
2021), and a sparse retriever, BM25 (Robertson et al., [1995). We compare ASM to
using the following baseline problem representations. Statement: Original natural-
language descriptions are used to represent problems, Summary: To mitigate aspects
unrelated to problem-solving, an LLM is first prompted to summarize and abstract
the problem, minimizing narrative elements and formatting details irrelevant to the
structure of the problem. Solution: Each problem is replaced with a correct solution

written by an expert programmer, which serves as an ”oracle” upper baseline.

End-to-End Selection MCQ accuracies of all seven models using End-to-End se-
lection are given in Table [3.60 We found that none of the models perform par-
ticularly well when only given the original problem Statements. Reasoning LLMs
like Deepseek-R1 and 03-mini perform better than other models, achieving accura-
cies around 60%. Given oracle solutions (Solution) instead of problem statements,
LLMs can identify algorithmic similarity much better, yielding improvements as high

as 26.3%.

"https://openai.com/index/hello-gpt-4o/

8https://openai.com/index/openai-o03-mini/

9nttps://www.anthropic.com/news/claude-3-5-sonnet
Ohttps://deepmind.google/technologies/gemini/flash/
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Model Statement Summary ASM-NL ASM-PL ‘Solution*

GPT-40-mini 35.5 35.8 43.8 (1 8.3) 42.5 (1 7.0) 54.4
GPT-40 41.5 38.1 53.2 (1 11.7) 53.0 (1 11.5) 63.4
03-mini-medium 65.9 63.4 74.4 (1 8.5) 75.1 (1 9.2) 72.6
Deepseek-R1 63.7 57.7 69.2 (1 5.5) 70.4 (16.7) 70.6
Deepseek-V3 55.2 53.2 64.9 (1 9.7) 627 (17.5) 66.7
Claude-3.5-Sonnet 44.2 45.0 54.7 (1 10.5) 53.0 (1 8.8) 70.5
Gemini 2.0 Flash 51.2 48.5 57.9 (+ 6.7) 555 (1 4.3) 69.7
Avg 50.4 48.8 59.5 (1 9.1) 58.5 (1 8.1) ‘ 66.5

Table 3.6: End-to-End Selection Performances(Accuracy%) on AlgoSimBench-MCQ
over different models and methods. Results in bold indicate the best performing
non-oracle method for each model. Absolute performance gain over the Statement
baseline is marked with 1. Solution is an oracle-input setting where oracle solutions
were directly provided to the model.

Summarizing problems actually hurts the performance of most models ex-
cept for GPT-mini-40 and Claude-3.5-Sonnet. We hypothesize that SoTA LLMs
can already ignore superficial similarities when comparing programming problems.
Our methods, ASM-NL and ASM-PLimprove absolute performances from 4.3% to
11.7% across all models. ASM-NL outperforms ASM-PL on 5 out of 7 models,
indicating that most models can generate and compare solutions described in natural
language better than actual code solutions. For o3-mini-medium, both ASMs even
outperform the oracle-solution baseline and give the best performance overall. The
performance gaps between Statement and ASM also suggest that LLMs cannot
generalize their code reasoning ability to similar tasks when they are not formatted

as the training tasks.

Retrieval-Based Selection In this setting, we treat AlgoSimBench as a similar-
ity ranking problem: given a reference problem, rank options by their algorithmic
similarity, which is scored by a retrieval method. LLMs map statements in to Sum-
mary, ASM-NL and ASM-PL. We evaluate how well different retrieval strate-
gies—including ASM—perform at identifying the correct ASP. Table|3.7shows results



for three similarity metrics, BM25, BART, and GraphCodeBert (GCB). For dense

embedding models, we calculate the cosine similarity of the embeddings of two text

sequences to rank options.

Summary ASM-NL ASM-PL

BM25 BART GCB | BM25 BART GCB | BM25 BART GCB
GPT-40-mini 25.6 23.4 20.6 | 35.3 29.1 224 | 34.8 26.1 32.8
GPT-40 25.8 24.6 26.1 | 42.5 30.1 32.1 35.6 28.8 29.1
03-mini-medium 39.3 32.6 31.3 | 49.0 35.6 38.3 | 48.8 28.4 39.3
Deepseek-V3 29.9 26.1 22.4 | 46.0 33.1 32.1 | 45.5 32.3 35.1
Deepseek-R1 30.1 24.1 259 | 52.2 32.8 31.1 | 45.0 32.8 35.9
Gemini-2.0-Flash 27.1 24.4 18.6 | 41.0 34.3 26.6 | 38.0 36.8 35.6
Claude-Sonnet-3.5 | 29.4 25.1 254 | 39.6 28.1 28.6 | 35.0 29.1 29.9
Avg 29.6 25.8 24.3 | 43.7 31.9 30.2 | 404 30.6 34.0

Table 3.7: Accuracy(%) comparison across different LLMs and retrieval methods in
the Retrieval-Based Selection setting.

ASM-NL again outperforms other methods. Using LLM problem summaries
at least performs better than random guessing. However, retrieval based directly on
problem statements performs worse than random since AlgoSimBench is constructed
to make textual problem-statement similarity a misleading indicator of ASPs. An
interesting finding is that simple term-matching (BM25) actually performs better
than dense embedding models. A possible reason for this is that features indicating
algorithmic similarity are often keywords like algorithmic terms or key descriptions

of the core idea, rather than a complete solution with implementation details.

ICL Exemplar Selection w/ASM As ASM can help find problems that are algo-
rithmically more similar, we apply ASM to enhance code generation. [Shi et al.| (2024)
showed that including in-context exemplars of solved problems can enhance LLMs’
abilities to solve competitive programming problems. They proposed Episodic Re-
trieval, using an LLM’s solution along with the problem statement to retrieve the most

similar human solutions from a corpus using BM25. Then, the retrieved problem is



Exemplar Selection Method GPT-40-mini GPT-40

w/o Exemplar 9.4% 17.3%
Retrieve w/Random 10.4% 17.9%
Retrieve w/Statement 11.4% 16.9%
Episodic Retrieve 12.4% 18.6%
Retrieve w/ASM-NL 13.7% 19.2%
Retrieve w/ASM-PL 13.0% 19.9%

Table 3.8: ICL enhanced by different exemplar selection methods. Results are Pass@1
on the USACO Benchmark with one exemplar in the context.

inserted as an ICL examplar, hopefully improving the ability to solve the given prob-
lem. ASM, on the other hand, directly matches LLM attempted solutions for both the
given problem and problems in the corpus. Utilizing their methodology, we explored
how ASM could be used for better selection of ICL exemplars. We also applied two
baselines that select either a Random exemplar or retrieve the most similar exemplar
using problem statements. Table shows that with the same Retriever (BM25,
which outperformed various dense-embedding methods), ASM methods achieve the
best pass@l performance. While the absolute improvement is modest, this might
be limited by how much performance gain ICL with a single example can bring to

competitive programming (Tang et al.| 2023a; Patel et al., [2024).

3.4.5 Conclusion

This section introduces AlgoSimBench, a new benchmark designed to evaluate
models’” ability to reason about algorithmic similarity between competitive program-
ming problems. This dataset serves two key purposes. First, it provides a focused
evaluation of the algorithmic reasoning abilities of LLMs, decoupled from the full
generation of solutions. Second, it enables the study of retrieval methods that go be-
yond surface-level textual similarity, instead capturing deeper structural and problem-
solving-related semantics. We also investigate RQ5: Does a model’s ability to

solve specific problems reflect a deeper, generalizable understanding of the



underlying algorithms? While problem-solving is often viewed as a joint capability
involving problem understanding, algorithm identification, reasoning, strategy devel-
opment, and code implementation, our results suggest that these components do not

always generalize or decompose cleanly in new contexts.



Chapter 4: Proposed Works

4.1 Instruction-aware Code Embedding

Following the findings from AlgoSimBench, we aim to improve the language
models” performance as dense retrievers for specified tasks like identifying algorith-

mically similar pairs.

4.1.1 Motivation

The Attempt Solution Matching (ASM) component of AlgoSimBench cur-
rently relies on a large language model (LLM) to rewrite user queries in order to im-
prove retrieval quality. However, this approach is computationally expensive and does
not scale well to large corpora. Interestingly, we observe that simple term-matching
methods such as BM25 often outperform dense embedding models in retrieving al-
gorithmically similar problems or code snippets. This counterintuitive result raises
the question of why dense retrieval methods underperform in this setting compared

to traditional sparse retrieval.

One explanation lies in the fundamental differences between sparse and dense
methods. BM25 is keyword-focused: it ranks documents by term frequency—inverse
document frequency (TF-IDF) weighting (Robertson and Zaragoza, 2009), giving
high importance to rare but discriminative tokens such as algorithm names (“Dijk-
stra,” “FFT”), mathematical operators, or domain-specific jargon. In contrast, dense
retrieval methods map entire sentences into continuous vector representations using
neural encoders, typically by mean pooling over token embeddings or using the fi-
nal hidden state of a special token (e.g., [CLS]) (Wang et al. 2024; lzacard et al.,
2022). These embeddings are designed to capture holistic semantic meaning rather
than emphasize localized, task-specific signals. Furthermore, current embedding mod-

els are trained on mixed-domain data without explicit task conditioning; robustness



across tasks depends largely on how positive and negative pairs are constructed during
training (Jain et al., 2021; |Gao et al., 2022; |Suresh et al., [2025), not on architectural

mechanisms for disambiguating retrieval intents.

A plausible hypothesis is that features critical for identifying algorithmic sim-
ilarity are concentrated in a small set of discriminative tokens—such as algorithm
names, mathematical terms, or concise descriptions of the core idea—rather than in
the broader contextual or implementation details of a solution. In contrast, dense
retrieval methods based on LLM-derived embeddings assume that a sentence (or doc-
ument) can be represented by a single global embedding vector, typically obtained
via mean pooling or last-token representations. These embeddings are designed to
capture holistic semantic meaning, not task-specific signals. As a result, current dense
models may dilute or obscure the fine-grained, keyword-level distinctions that are cru-
cial for algorithmic retrieval tasks. Moreover, in domains such as code retrieval, the
target notion of similarity is inherently multi-faceted: queries may seek functionality
similarity, algorithmic similarity, useful references (e.g., function documentation), or
stylistic similarity (e.g., comments). Without task-specific conditioning, embedding

models cannot easily disambiguate these different intents.

4.1.2 Related Works

Recent progress in LM-based text embeddings has focused on several comple-
mentary dimensions. First, pooling strategies such as mean pooling and last-token
pooling remain the most widely used methods for aggregating token-level represen-
tations into fixed-length embeddings, though more recent work explores hybrid or
trainable pooling layers(Lee et al.l |2025). Second, contrastive learning(Gao et al.,
2022) has become the standard training objective, where models are optimized to
bring positive pairs closer while pushing apart negatives, with effectiveness highly
sensitive to the choice of negatives. This connects to a third line of research on
dataset design, where methods for hard negative mining—such as sampling seman-

tically close but non-relevant examples or filtering with teacher models—have been



shown to significantly improve retrieval performance. SoTA code embedding models
are still developed on the assumption that "high textual similarity indicates more

relevant code” (Guo et al., 2021; Suresh et al., 2025).

Many recent text embedding methods took advantage of LLMs and their abil-
ity to follow instructions to extract text embeddings from causal LLMs by turning off
causal mode and fine-tuning (Lee et al., [2025), a secondary task(Feng et al., [2025),
appending instruction prompts (Su et al. 2023a; Zhang et al. 2025; [Kryvosheieva
et al., [2025), including few-shot examples (Li et al. [2024) and jointly training rep-
resentation tasks with generation tasks (Muennighoff et al., |2025). These works are
a big leap by distinguishing different tasks. However, 1). they still bind any text
piece to a specific task, which might not be the real-world scenario. 2). the methods
raise limitations to generalize to unseen tasks like AlgoSimBench without in-domain

training.

Instead, we want to propose an efficient embedding method that utilizes 1)
the fact that instructions are natural language and 2) an explicit model structure to

learn the mutual information between the instruction and the text to represent.

4.1.3 Method

While exploring different methods to train an LLM, the choice of training
data and LLMs is also important. Qwen3-Embedding(Zhang et al., 2025) is the
open, SoTA, instruction-tuned embedding model, which could be our first option.

We use SimCSE(Gao et al., [2022) as the training objects.

4.1.3.1 Cross-Attention Pooling between text and instruction

Chen et al.| (2018) proposed attention pooling for transformer-based models.
Conceptually, attention weights assign relevance or importance to tokens. Such a
design could be useful to highlight “keywords” for different tasks. Thus, we focus

on cross-attention pooling, a mechanism that allows the embedding to be calculated



representation

pooling | cross-attn pool | mean pool |
hidden
states
embedding LM Encoder
model
text instruction

Figure 4.1: Overview of Cross-Attention Pooling for Instruction-aware Code Embed-
ding with a joint LM Encoder to embed text and instruction hidden states.

based on how much attention the instruction assigns to different text tokens. The
final representation of text should be a weighted sum of hidden states of all tokens in

the text. The overview of the method is given in

Let the input text be a sequence of tokens T = {t1,ts,...,t,} and the in-
struction be a sequence of tokens I = {iy,i2,...,%n}. Our goal is to compute an

instruction-aware embedding for the text, ep;.

First, we feed both the text and the instruction through a shared pre-trained
transformer-based encoder (e.g., BERT or GPT) to obtain their token-level hidden
state representations. Hyp = {hy, ho, ..., h,}, where h; € R? is the hidden vector for
token ¢;. The hidden states for the instruction are denoted as H; = {Rhf,hf, ... hl,},
where h), € R? is the hidden vector for token i;. Here, d is the dimensionality of the
hidden states. To guide the pooling of text representations, we first create a single
vector representation for the instruction. This is achieved by mean-pooling its token
hidden states. This vector will serve as the Query @) = % S hy, Q@ € R* in our
attention mechanism. We use the standard scaled dot-product attention mechanism,
where the instruction’s query vector attends to the text’s hidden states. The text’s

hidden states, Hr, serve as both the Keys (K)and Values(V').

The final text embedding, err, is computed as the weighted sum of the text’s

hidden states (the values), using the attention weights:



T

err = Z Softmax( )h;
J=1 \/a

This resulting vector er|; € R? is a representation of the text that is dynam-
ically conditioned on the instruction. By weighting tokens based on their relevance
to the instructional query, the model can effectively highlight ”keywords” or crucial
features for the specific task at hand, thus explicitly modeling the mutual information

between the instruction and the text.

4.1.3.2 Learn Transformations from General to Intruction-Aware

Another alternative is to learn general embeddings and instruction-specified
embeddings simultaneously. We propose to learn transformations of the general text
embedding conditioned on the prompt. The embedding model is learning a generic,
universal embedding e, and a list of tasks {t1,ts, -+ ,¢,}(i.e., task instruction) with
corresponding embeddings{e;, s, - , €}, so that the task-specific embedding can
be calculated by €, = e, + A(e,, e;;) where e € R<. The actual method or instruction-

transformation is still to be decided with many other options:

e Additive Shift: the general embedding of a text piece is applied a small, instruction-

conditioned update by: €, = e, + A(ey, e;;) where e € R%.

e Bilinear Interaction: We learn not only the parameters of LLMs, but also of this
transformation itself, A(ey, e;) = W ((Be,) ® (Cey;)), through a second-order

bilinear interaction.

e Latent Attention Shift: We can also use the Latent attention layer from (Lee
et al. 2025), instead of a universal latent array to produce the values of hidden

states V', we might make it conditioned on an instruction.



4.1.4 Evaluation

For code embedding, we can use the public training data and benchmarks to
evaluate models as used in Kryvosheieva et al. (2025). Our methods can be potentially
applied to text embedding tasks. We can train it on public retrieval datasets utilized
by [Zhang et al. (2025); [Lee et al. (2025) and to evaluate it on the massive text
embedding benchmark (MTEB) (Muennighoff et al., [2023) leaderboard |'I We will
also evaluate it on our AlgoSimBench for identifying algorithmically similar pairs of

problem descriptions or programs.

4.2 Training Embeddings from Downstream Code Genera-
tion Feedback

In this proposed work, we approach enhanced code embedding with a spe-
cific purpose: to improve the performance of Retrieval-Augmented Code Generation
(RAG-CodeGen). Instead of code-NL or code-code parallel training data, we utilize

the performance of code generation as the signal to train an embedding model.

4.2.1 Motivation

Wang et al.| (2025) has found that retrievers struggle to fetch relevant and
helpful context for code generation. A central challenge in retrieval-augmented code
generation lies in defining what constitutes “helpful” retrieved content. Helpfulness
is inherently multifaceted: depending on the query and downstream task, different
forms of evidence may be useful, ranging from direct code snippets to conceptual
explanations or related APIs. Manually annotating such judgments is both expensive

and ambiguous, since the same piece of content may vary in utility across contexts.

Traditional approaches to training embeddings rely on supervised pairs—either

code-to-code or code-to-NL—which assume a fixed notion of relevance. However,

'https://huggingface.co/spaces/mteb/leaderboard
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these signals fail to capture the dynamic, task-specific notion of usefulness in code
generation. A snippet that is semantically similar to the query may still be unhelpful
for generation if it does not align with the model’s decoding process, while a seemingly
distant piece of content could enable the model to complete a solution more effec-
tively. Thus, conventional supervised training leaves a mismatch between embedding

similarity and generation success.

By contrast, downstream generation feedback provides a natural, task-grounded
measure of helpfulness. The ultimate test of a retriever is whether the retrieved ev-
idence improves code generation quality, not whether it satisfies a static similarity
metric. Using generation outcomes as feedback transforms embedding training into
a process that is both adaptive and context-sensitive: the model learns to prioritize
content that actually advances problem-solving, even if that deviates from superficial

similarity.

This perspective motivates our work: to move beyond proxy similarity objec-
tives and instead let the code generator itself define the training signal for retrieval.
Doing so not only addresses the limitations of manual annotation but also aligns em-
bedding learning directly with the downstream task of effective retrieval-augmented

generation.

4.2.2 Related Works

Recent progress in applying Reinforcement Learning (RL) has transformed
RAG from static pipelines into dynamic, self-optimizing frameworks. Milestones in-
clude training agents to decide when to retrieve for cost-efficiency (Kulkarni et al.,
2024), optimizing what to retrieve by rewriting queries(Gao et al.,2025), and training
generators to handle noisy contexts(Huang et al., 2025). The current state-of-the-art
has moved towards holistic optimization, either by jointly training the entire pipeline
or by incorporating it as a team of collaborative agents(Chen et al., 2025b). These

advancements, however, have been predominantly validated on natural language tasks



like open-domain question answering, where reward signals are based on textual sim-

ilarity and factual correctness.

Despite these advances, the direct application of existing RAG+RL method-
ologies to the code domain is challenging. Beyond general RL hurdles like sample
inefficiency and complex reward engineering, the core limitation is a mismatch in the
definition of ”helpfulness.” Current reward functions are tailored for natural language,
using metrics like F1 scores or semantic similarity. In contrast, the utility of a re-
trieved code snippet is determined by its functional correctness, syntactic validity, and
logical compatibility, for which textual similarity is a poor proxy. Code generation
offers a powerful and objective reward signal through execution feedback—whether

the code compiles and passes unit tests.

4.2.3 Method

To address this, we plan to explore leveraging the downstream performance
of a code generation model as a reward signal for retrieval training. The method
itself is similar to (Lu and Liu, 2024; [Yan and Ling, 2025). We adapt a different
setting, instead of relying solely on static annotations, 1. Instead of hand-crafted
preference, our reward signal is given by executing the code against test cases, which
is the gold evaluation for correctness, 2. The retriever is encouraged to explore can-
didate contexts (e.g., by occasionally selecting from beyond the top-ranked results),
appending them to the generator’s prompt, and observing whether the augmented
input improves code generation quality—such as increased test pass rate or reduced
generation loss. Instances that yield measurable improvements can then be treated
as implicit positive supervision, while less effective alternatives provide contrastive

signals.

This approach naturally transforms retrieval training into a feedback-driven
process where “helpfulness” is defined operationally by its impact on the generator’s

success. In effect, the embedding model learns to capture similarity not merely in



surface-level semantics, but in terms of downstream utility for code generation tasks.

An even more ambitious direction is to move beyond retriever optimization
alone and consider a co-training framework in which both the retriever and the gen-
erator are updated in tandem(Lu and Liu, 2024; |Le et al., [2025). While the retriever
can be shaped to prefer content that empirically improves task outcomes, the gen-
erator itself may also learn to better interpret and leverage the retrieved evidence.
By allowing both components to adapt iteratively, the system has the potential to
converge toward a cooperative equilibrium: the retriever surfaces content tailored to
the generator’s evolving strengths, and the generator becomes increasingly skilled at
grounding its outputs in the retrieved material. Such a joint optimization paradigm
remains largely underexplored, but it opens a promising avenue for making retrieval-
augmented generation more robust and context-sensitive across diverse problem set-

tings.

4.2.3.1 Evaluation

The proposed method is designed for situations where the content of gold
“helpfulness” is infeasible. Existing benchmarks that are built for RAG-CodeGen
can be a great source to train and evaluate our method (Wang et al., 2025; |Chen
et al.l 2025a). In addition, Gupta et al. (2025) curated code generation tasks in a
retrieval-augmented setting. Alternatively, benchmarks like |Jimenez et al. (2024) rely
their performance heavily on the quality of repo-level retrieval, thus we might test
if our method can improve the performance by retrieving more related information,
combined with existing agentic(Antoniades et al., 2025) or agentless(Xia et al., [2024)
frameworks. Potentially, if trained on ICL-enhanced CP programming problems(|Li
et al., 2022b; Shi et al., 2024), embeddings models are expected to perform better on
AlgoSimBench.



Chapter 5: Conclusion

5.1 Summary of Works

The core focus of this proposal is to enhance competitive-level code generation
by utilizing natural language reasoning. The first three works aim at identifying the
reasoning gap between natural language and programming language, utilizing natural
language reasoning as a bridge towards better CP code generation. The last completed
work and future works will focus more on generalizing capacities across different forms

of reasoning.

Initially, we evaluated the abilities of Large Language Models (LLMs) in com-
petitive programming. We found that while LLMs struggle to solve problems directly,
they are proficient at explaining human-written solutions and translating those verbal
explanations back into correct code. Our experiments further revealed that the more
detailed the explanation, the more accurately LLMs can implement the corresponding

solution.

Based on this observation, we proposed synthesizing problem-solving Chain-
of-Thought (CoT) by having LLMs explain human-written code. This method distills
a model’s explanatory capabilities into the generation of editorial-style CoT's, which
outperforms training directly on code and improves problem solve rates. Our experi-
ments also show that training only on the most crucial steps of the CoT yields better
performance than training on the entire chain. These findings highlight that natural
language can serve as an effective bridge to code generation when used as a preceding

reasoning step.

Following the core idea of decomposing symbolic reasoning into natural lan-
guage reasoning and code implementation, we investigated whether this could be
achieved in a training-free framework. We proposed CodeTree, an agentic workflow

for code generation. This system separates high-level strategy from implementation,



assigning problem reasoning to a " Thinker Agent” that uses natural language to de-
vise distinct strategies. ”Coder” and ”"Debugger” agents then implement the program
and fix bugs based on the Thinker’s guidance. A ”Critic Agent” oversees the pro-
cess by scoring, expanding, and terminating a tree search for the final solution. Our
method, using GPT-4o, yielded better performance than the then-state-of-the-art

models while using fewer tokens.

With the emergence of more advanced LLMs and post-training methods, ma-
jor improvements have occurred in code generation for competitive programming.
However, it is less explored whether reasoning learned from problem-solving can gen-
eralize to highly relevant tasks. Therefore, we introduced AlgoSimBench, a curated
and verified dataset to test a model’s ability to identify algorithmically similar prob-
lems from a set of semantically similar distractors. The adversarial nature of the
benchmark makes this task extremely challenging. To address this, we proposed At-
tempted Solution Matching (ASM) and found that its application brings performance
gains to both end-to-end selection via LLM prompting and to retrieval-based selection

methods.

Two future works and potential methods are proposed in the previous chapter.
The first work proposes to learn general embeddings and embedding transformations
to shift general embeddings towards any specified task. The second works aim at
exploring co-training for the retriever and generator for retrieval-augmented code

generation(RAGCode).

5.2 Proposed Timeline

e Sep 2025, Thesis Proposal
e June 2025, Finish Proposed Works

e Aug 2025, Thesis Defense
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