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Abstract 

This paper describes RAPTURE - a system for revising probabilis­
tic knowledge bases that combines neural and symbolic learning 
methods. RAPTURE uses a modified version of backpropagation 
to refine the certainty factors of a MYCIN-style rule base and uses 
ID3's information gain heuristic to add new rules. Results on re­
fining two actual expert knowledge bases demonstrate that this 
combined approach performs better than previous methods. 

1 Introduction 

In complex domains, learning needs to be biased with prior knowledge in order to 
produce satisfactory results from limited training data. Recently, both connectionist 
and symbolic methods have been developed for biasing learning with prior knowl­
edge lFu, 1989; Towell et a/., 1990; Ourston and Mooney, 1990]. Most ofthese meth­
ods revise an imperfect knowledge base (usually obtained from a domain expert) to 
fit a set of empirical data. Some of these methods have been successfully applied to 
real-world tasks, such as recognizing promoter sequences in DNA [Towell et ai., 1990; 
Ourston and Mooney, 1990]. The results demonstrate that revising an expert-given 
knowledge base produces more accurate results than learning from training data 
alone. 

In this paper, we describe the RAPTURE system (Revising Approximate 
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Probabilistic Theories Using Repositories of Examples), which combines connec­
tionist and symbolic methods to revise both the parameters and structure of a 
certainty-factor rule base. 

2 The Rapture Algorithm 

The RAPTURE algorithm breaks down into three main phases. First, an initial 
rule-base (created by a human expert) is converted into a RAPTURE network. The 
result is then trained using :ertainty-factor backpropagation (CFBP). The theory 
is further revised through network architecture modification. Once the network is 
fully trained, the solution is at hand-there is no need for retranslation. Each of 
these steps is outlined in full below. 

2.1 The Initial Rule-Base 

RAPTURE uses propositional certainty factor rules to represent its theories. These 

rules have the form A ~ D, which expresses the idea that belief in proposition A 
gives a 0.8 measure of belief in proposition D [Shafer and Pearl, 1990]. Certainty 
factors can range in value from -1 to + 1, and indicate a degree of confidence in a 
particular proposition. Certainty factor rules allow updating of these beliefs based 
upon new observed evidence. 

Rules combine evidence via probabilistic sum, which is defined as a EB b - a + b - abo 
In general, all positive evidence is combined to determine the measure of belief(MB) 
for a given proposition, and all negative evidence is combined to obtain a measure 
of disbelief (MD). The certainty factor is then calculated using C F = M B + MD. 

RAPTURE uses this formalism to represent its rule base for a variety of reasons. 
First, it is perhaps the simplest method that retains the desired evidence-summing 
aspect of uncertain reasoning. As each rule fires, additional evidence is contributed 
towards belief in the rule's consequent. The use of probabilistic sum enables many 
small pieces of evidence to add up to significant evidence. This is lacking in for­
malisms that use only MIN or MAX for combining evidence [Valtorta, 1988]. Sec­
ond, probabilistic sum is a simple, differentiable, non-linear function. This is cru­
cial for implementing gradient descent using backpropagation. Finally, and perhaps 
most significantly, is the widespread use of certainty factors. Numerous knowledge­
bases have been implemented using this formalism, which immediately gives our 
approach a large base of applicability. 

2.2 Converting the Rule Base into a Network 

Once the initial theory is obtained, it is converted into a RAPTURE -network. Build­
ing the network begins by mapping all identical propositions in the rule-base to the 
same node in the network. Input features (those only appearing as rule-antecedents) 
become input nodes, and output symbols (those only appearing as rule-consequents) 
become output nodes. The certainty factors of the rules become the weights on the 
links that connect nodes. Networks for classification problems contain one output 
for each category. When an example is presented, the certainty factor for each of 
the categories is computed and the example is assigned to the category with the 
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Figure 1: A RAPTURE NETWORK 

highest value. Figure 1 illustrates the following set of rules. 

ABC~D E~D C~G EF~G HI~C 

As shown in the network, conjuncts must first pass through a MIN node before 
any activation reaches the consequent node. Note that each of the conjuncts is 
connected to the corresponding MIN mode with a solid line. This represents the 
fact that the link is non-adjustable, and simply passes its full activation value onto 
the MIN node. The standard (certainty-factor) links are drawn as dotted lines 
indicating that their values are adjustable. 

This construction shows how easily a RAPTURE-network can model a MYCIN rule­
base. Each representation can be converted into the other, without loss or cor­
ruption of information. They are two equivalent representations of the same set of 
rules. 

2.3 Certainty Factor Backpropagation 

Using the constructed RAPTURE-network, we desire to maximize its predictive ac­
curacy over a set of training examples. Cycling through the examples one at a time, 
and slightly adjusting all relevant network weights in a direction that will minimize 
the output error, results in hill-climbing to a local minimum. This is the idea be­
hind gradient descent [Rumelhart et al., 1986), which RAPTURE accomplishes with 
Certainty Factor Backpropagation (CFBP), using the following equations. 

If Uj is an output unit 

ApWji = 7Jopj(1 ± LWjkOpk) 
k#-i 

(1) 
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(2) 

If Uj is not an output unit 

hpj = L: hpk wkj(1 ± EWjkOpk) (3) 
kmin i;tk 

The "Sigma with circle" notation is meant to represent probabilistic sum over the 
index, and the ± notation is shorthand for two separate cases. If WjiOpi ~ 0, then 
- is used, otherwise + is used. The kmin subscript refers to the fact that we do 
not perform this summation for every unit k (as in standard backpropagation), but 
only those units that received some contribution from unit j. Since a unit j may 
be required to pass through a min or max-node before reaching the next layer (k), 
it is possible that its value may not reach k. 

RAPTURE deems a classification correct when the output value for the correct cate­
gory is greater than that of any other category. No error propagation takes place in 
this case (hpj = 0). CFBP terminates when overall error reaches a minimal value. 

2.4 Changing the Network Architecture 

Whenever training accuracy fails to reach 100% through CFBP, it may be an indi­
cation that the network architecture is inappropriate for the current classification 
task. To date, RAPTURE has been given two ways of changing network architecture. 
First, whenever the weight of a link in the network approaches zero, it is removed 
from the network along with all of the nodes and links that become detached due 
to this removal. Further, whenever an intermediate node loses all of its input links 
due to link deletion, it too is removed from the network, along with its output link. 
This link/node deletion is performed immediately after CFBP, and before anything 
new is introduced into the network. 

RAPTURE also has a method for adding new nodes into the network. Specific nodes 
are added in an attempt to maximize the number of training examples that are clas­
sified correctly. The simple solution employed by RAPTURE is to create new input 
nodes that connect directly, either positively or negatively, to one or more output 
nodes. These new nodes are created in a way that will best help the network distin­
guish among training examples that are being misclassified. Specifically, RAPTURE 

attempts to distinguish for each output category, those examples of that category 
that are being misclassified (Le. being classified into a different output category), 
from those examples that do belong in these different output categories. Quinlan's 
ID3 information gain metric [Quinlan, 1986] has been adopted by RAPTURE to se­
lect this new node, which becomes positive evidence for the correct category, and 
negative evidence for mistaken categories. 

With these new nodes in place, we can now return to CFBP, where hopefully more 
training examples will be successfully classified. This entire process (CFBP followed 
by deleting links and adding new nodes) repeats until all training examples are 
correctly classified. Once this has occurred, the network is considered trained, and 
testing may begin. 
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Figure 2: RAPTURE Testing Accuracy 

3 Experimental Results 

To date, RAPTURE has been tested on two real-world domains. The first of these 
is a domain for recognizing promoter sequences in strings of DNA-nucleotides. The 
second uses a theory for diagnosing soybean diseases. These datasets are discussed 
in detail in the following sections. 

3.1 Promoter Recognition Results 

A prokaryotic promoter is a short DNA sequence that precedes the beginnings of 
genes, and are locations where the protein RNA polymerase binds to the DNA 
structure [Towell et al., 1990]. A set of propositional Horn-clause rules for recogniz­
ing promoters, along with 106 labelled examples (53 promoters, 53 non-promoters) 
was provided as the initial theory. 

In order for this theory to used by RAPTURE it had to be modified into a certainty 
factor format. This was done by breaking up rules with multiple antecedents, into 
several rules. In this fashion, each antecedent is able to contribute some evidence 
towards belief in the consequent. Initial certainty factors were assigned in such a 
way that if every antecedent (from the original rule) were true, a certainty factor of 
0.9 would result for the consequent. 

To test RAPTURE using this dataset, standard training and test runs were per­
formed, which resulted in the learning curve of Figure 2a. This graph is a plot of 
average performance in accuracy at classifying DNA strings over 25 independent 
trials. A single trial consists of providing each system with increasing numbers of 
examples to use for training, and then seeing how well it can classify unseen test 
examples. This graph clearly demonstrates the advantages of an evidence summing 
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system like RAPTURE over a pure Horn-clause system such as EITHER, a pure induc­
tive system such as ID3, or a pure connectionist system, like backprop. Also plotted 
in the graph, is KBANN [Towell et a/., 1990], a symbolic-connectionist system that 
uses standard backpropagation, and RAPTURE-O, which is simply RAPTURE given 
no initial theory, emphasizing the importance of the expert knowledge. For this 
dataset, CFBP alone was all that was required in order to train the network. The 
node addition module was never called. 

3.2 Soybean Disease Diagnosis Results 

The Soybean Data comes from [Michalski and Chilausky, 1980] and is a dataset 
of 562 examples of diseased soybean plants. Examples were described by a string 
of 35 features including the condition of the stem, the roots, the seeds, as well as 
information such as the time of year, temperature, and features of the soil. An 
expert classified each example into one of 15 soybean diseases. This dataset has 
been used as a benchmark for a number of learning systems. Figure 2b is a learning 
curve on this data comparing RAPTURE, RAPTURE-O, backpropagation, ID3, and 
EITHER. 

The headstart given to RAPTURE does not last throughout testing in this domain. 
RAPTURE maintains a statistically significant lead over the other systems (except 
RAPTURE-O) through 80 examples, but by 150 examples, all systems are performing 
at statistically equivalent levels. A likely explanation for this is that the expert 
provided theory is more helpful on the easier to diagnose diseases than on those that 
are more difficult. But these easy ones are also easy to learn via pure induction, 
and good rules can be created after seeing only a few examples. Trials have actually 
been run out to 300 examples, though all systems are performing at equivalent levels 
of accuracy. 

4 Related Work 

The SEEK system [Ginsberg et a/., 1988) revises rule bases containing M-of-N rules, 
though can not modify real-valued weights and contains no means for adding new 
rules. Valtorta [Valtorta, 1988) has examined the computational complexity of var­
ious refinement tasks for probabilistic knowledge bases, and shows that refining 
the weights to fit a set of training data is an NP-Hard problem. Ma and Wilkins 
[Ma and Wilkins, 1991) have developed methods for improving the accuracy of a 
certainty-factor knowledge base by deleting rules, and they report modest improve­
ments in the accuracy of a MYCIN rule base. Gallant [Gallant, 1988) designed and 
implemented a system that combines expert domain knowledge with connectionist 
learning, though is not suitable for multi-layer networks or for combination functions 
like probabilistic sum. KBANN [Towell et a/., 1990] uses standard backpropagation 
to refine a symbolic rule base, though the mapping between the symbolic rules and 
the network is only an approximation. Fu [Fu, 1989) and Lacher [Lacher, 1992) have 
also used backpropagation techniques to revise certainty factors on rules. However, 
the current publications on these two projects do not address the problem of alter­
ing the network architecture (i.e. adding new rules) and do not present results on 
revising actual expert knowledge bases. 
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5 Future Work 

The current method for changing network architecture in RAPTURE is restricted 
to adding new input units that directly feed the outputs. We hope to incorporate 
newer techniques for creating and linking to hidden nodes, in order to improve the 
range of architectural changes that it can make. 

Another area requiring further research concerns the differences between certainty­
factor networks and traditional connectionist networks. Further comparison of the 
RAPTURE and KBANN approaches to knowledge-base refinement are also indicated. 

Finally, in recent years, certainty-factors have been the subject of considerable crit­
icism from researchers in uncertain reasoning [Shafer and Pearl, 1990]. However, 
the basic revision framework in RAPTURE should be applicable to other uncertain 
reasoning formalisms such as Bayesian networks, Dempster-Shafer theory, or fuzzy 
logic [Shafer and Pearl, 1990]. As long as the activation functions in the correspond­
ing network implementations of these methods are differentiable, backpropagation 
techniques should be employable. 

6 Conclusions 

Automatic refinement of probabilistic rule bases is an under-studied problem with 
important applications to the development of intelligent systems. This paper has 
described and evaluated an approach to refining certainty-factor rule bases that 
integrates connectionist and symbolic learning. The approach is implemented in a 
system called RAPTURE, which uses a revised backpropagation algorithm to modify 
certainty factors and ID3's information gain criteria to determine new rules to add to 
the network. In other words, connectionist methods are used to adjust parameters 
and symbolic methods are used to make structural changes to the knowledge base. 

In domains with limited training data or domains requiring meaningful explanations 
for conclusions, refining existing expert knowledge has clear advantages. Results 
on revising three real-world knowledge bases indicates that RAPTURE generally 
performs better than purely inductive systems (ID3 and backpropagation), a purely 
symbolic revision system (EITHER), and and purely connectionist revision system 
(KBANN). 

The certainty-factor networks used in RAPTURE blur the distinction between con­
nectionist and symbolic representations. They can be viewed either as connectionist 
networks or symbolic rule bases. RAPTURE demonstrates the utility of applying con­
nectionist learning methods to "symbolic" knowledge bases and employing symbolic 
methods to modify "connectionist" networks. Hopefully these results will encour­
age others to explore similar opportunities for cross-fertilization of ideas between 
connectionist and symbolic learning. 
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