
Unpublished Technical Note, May 2002

Learning to Combine Trained Distance Metrics for
Duplicate Detection in Databases

Mikhail Bilenko and Raymond J. Mooney
Department of Computer Sciences

University of Texas at Austin
Austin, TX 78712

fmbilenko,mooneyg@cs.utexas.edu

ABSTRACT
The problem of identifying approximately duplicate records in da-
tabases has previously been studied as record linkage, the merge/pur-
ge problem, hardening soft databases, and field matching. Most ex-
isting approaches have focused on efficient algorithms for locating
potential duplicates rather than precise similarity metrics for com-
paring records. In this paper, we present a domain-independent
method for improving duplicate detection accuracy using machine
learning. First, trainable distance metrics are learned for each field,
adapting to the specific notion of similarity that is appropriate for
the field’s domain. Second, a classifier is employed that uses sev-
eral diverse metrics for each field as distance features and classifies
pairs of records as duplicates or non-duplicates. We also propose an
extended model of learnable string distance which improves over
an existing approach. Experimental results on real and synthetic
datasets show that our method outperforms traditional techniques.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; I.5.4 [Pattern Recognition]: Applications; I.2.6
[Artificial Intelligence]: Learning

Keywords
Data cleaning, distance metric learning, record linkage, trained sim-
ilarity measures, string edit distance

1. INTRODUCTION
Databases frequently contain approximately duplicate field-va-

lues and records that refer to the same entity but are not identical.
Variations in representation can arise from typographical errors,
misspellings, abbreviations, as well as other sources. Variations
are particularly pronounced in data that is automatically extracted
from unstructured or semi-structured documents or web pages [14,
7, 3]. Such variant duplicates can have many deleterious effects,
including preventing data-mining algorithms from discovering im-
portant regularities. Such problems are typically handled during a
tedious manual “data cleaning” or “de-duping” process.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Some previous work has addressed the problem of identifying
duplicate records, where it is referred to as record linkage [16, 22],
the merge/purge problem [9], duplicate detection [13], hardening
soft databases [3], and reference matching [11]. Typically, a fixed
textual similarity metric such as edit distance [8] or vector-space
cosine similarity [1] is used to determine whether two values or
records are alike enough to be duplicates.

However, the similarity of two strings can depend on the do-
main and field under consideration. For example, deleting the sub-
string “Street” may be acceptable when comparing addresses but
not when comparing names of people (e.g. “Nick Street”), web
sites (e.g. “TheStreet.com”), or newspapers (e.g. “Wall Street Jour-
nal”). Rather than hand-tuning a distance metric for each field in
each domain, we present a method for automatically learning an
appropriate string-similarity metric from small corpora of hand-
labeled examples. When computing edit distance, a different cost
can be assigned to each edit operation. These costs are typically
set manually; however, an algorithm was recently introduced for
learning appropriate costs by training on a set of labeled examples
[19]. We consider an extended model of edit distance and propose
a similar Expectation Maximization (EM) method to train metrics
appropriate for each field.

Different types of textual similarity, such as “bag of words” met-
rics versus string-based edit distances, have complementary strengths
and weaknesses. Consequently, it is also useful to consider multi-
ple similarity metrics when evaluating potential duplicates. The
utility of different metrics is task-dependent, and therefore it is also
preferable to adaptively learn an appropriate function for combin-
ing them [2]. In our approach, Support Vector Machines (SVM’s)
[20], are used to learn a function of multiple similarity metrics that
best discriminates duplicates from non-duplicates.

Our overall system, MARLIN (Multiply Adaptive Record Link-
age with INduction), employs a two-level learning approach. First,
a set of similarity metrics are trained to appropriately determine the
similarity of different field values. Next, a final predicate for detect-
ing duplicate records is learned from multiple (trained and static)
similarity metrics applied to each of the individual fields. Experi-
mental results on real and synthetic datasets show that MARLIN is
more accurate than traditional techniques.

2. LEARNABLE STRING DISTANCE

2.1 Background
A common measure of textual similarity isstring edit distance,

originally proposed by Levenshtein [10]. It is defined as the min-
imum number of insertions, deletions or substitutions necessary to
transform one string into another. Needleman and Wunsch [15]
extended the distance model to allow contiguous sequences of mis-

matched characters, or gaps, in the alignment of two strings and
described a general dynamic programming method for computing
edit distance. Most commonly the gap penalty is calculated using
the affine model: cost(g) = s + e � l, wheres is the cost of
opening a gap,e is the cost of extending a gap, andl is the length
of a gap in the alignment of two strings, assuming that all char-
acters have a unit cost. Usuallye is set to a value lower thans,
thus decreasing the penalty for contiguous mismatched substrings.
Since differences between duplicate records often arise because of
abbreviations or whole-word insertions and deletions, this model
produces a more sensitive similarity estimate than Levenshtein dis-
tance.

String distance with affine gaps,S(xT ; yV), between stringsxT

of lengthT andyV of lengthV , can be computed using a dynamic
programming algorithm that constructs three matrices based on the
following recurrences inO(TV) computational time:

Mi;j = min

8><
>:
Mi�1;j�1 + c(xi; yj)

Ii�1;j�1 + c(xi; yj)

Di�1;j�1 + c(xi; yj)

Di;j = min

(
Mi�1;j + s+ c(xi; �)

Di�1;j + e+ c(xi; �)
(1)

Ii;j = min

(
Mi;j�1 + s+ c(�; yj)

Ii;j�1 + e+ c(�; yj)

S(xT ; yV) = min(IT;V ;DT;V ;MT;V)

Each matrix elementMi;j contains the distance between substrings
x0:::i andy0:::j for an alignment where the last two characters of
the substrings,xi andyj , are aligned, while matrix elementsIi;j
andDi;j give the distances between substring alignments that end
in insertion and deletion gaps respectively. Cost of a single edit op-
eration (insertion, deletion or substitution) that aligns characterxi
to characteryj is given byc(xi; yj), where eitherxi or yj can be
the null string�, corresponding to a part of a gap. The final distance
between the strings is the minimum of three alignments:MT;V ,
matching the last two characters of the two strings;DT;V , match-
ing the last character of the first string with a gap in the second
string; andIT;V , matching the last character of the second string
with a gap in the first string.

2.2 Learnable Distance Metrics
Ristad and Yianilos [19] developed a generative model for Lev-

enshtein distance along with an Expectation-Maximization algo-
rithm that learns model parameters using a training corpus of matched
strings. We propose a similar stochastic model for the edit dis-
tance with affine gaps. Each of the three matrics of the original
affine gap model (1) corresponds to one of the states of the gen-
erative model in Fig.1. A pair of matched strings is generated by
this model as a sequence of traversals along the edges accompanied
by emissions of characters pairs, which are determined by the state
that is reached via each traversal.

The production starts in stateM and terminates when special
state# is reached. Transitions�D and�I from the matching state
M to either the deletion stateD or the insertion stateI correspond
to starting a gap in one of the strings. A gap is ended when edges

D and
I are traversed back to the matching state. Remaining in
stateM by taking edge� corresponds to a sequence of substitutions
or exact matches of characters, while remaining in statesI andD is
analogous to extending a gap in either the first or the second string.

σ

σ

µ M

D

#

I

µτ

τI

τD

D

γD

I

γI

δI

δD

Figure 1: Generative model for string distance with affine gaps

The sum of transition probabilities must be normalized in each state
for the model to be complete:

�+ �D + �I + �� = 1

ÆD +
D + �D = 1 (2)

ÆI +
I + �I = 1

Edit operations emitted in each state correspond to aligned pairs
of characters: substitutionsha; bi and exact matchesha; ai in state
M ; deletions from the first stringha; �i in stateD; and insertions of
characters from the second string into the first stringh�; ai in state
I. Each edit operatione 2 E is assigned a probabilityp(e) such
that
P

e2Es
p(e) = 1,

P
e2Ed

p(e) = 1, and
P

e2Ei
p(e) = 1.

Edit operations with higher probabilities produce character pairs
that are likely to be aligned in a given domain, such as substitution
(“/”, “-”) for phone numbers, or deletion (“.”,�) for addresses.

This generative model is similar to one given for amino-acid se-
quences in [6] with two differences: (1) transition probabilities are
distinct for statesD andI, and (2) every transition has a probabil-
ity parameter associated with it, instead of being expressed through
other transitions outgoing from the same state.

Given two strings,xT of lengthT andyV of lengthV , we can
calculate probabilities of generating the pair of prefixes(xT1:::t; y

V
1:::v)

and suffixes(xTt+1:::T ; y
V
v+1:::V) using dynamic programming in

forward and backward algorithms shown in Fig.2 and Fig.3 inO(TV)
time.

Given a corpus ofn matched strings corresponding to pairs of
duplicates,C = f(xT1 ; yV1); : : : ; (xTn ; yVn)g, this model can
be trained using the Baum-Welch algorithm, which is a variant of
the Expectation-Maximization procedure for learning parameters
of generative models [18], shown in Fig.4. The training proce-
dure iterates between two steps, shown in Fig.5 and Fig.6. In each
EXPECTATION-STEP, the expected number of occurrences for each
state transition and edit operation emission is accumulated for a
given pair of strings(xT ; yV) from the training corpus. This is
achieved by accumulating the posterior probabilities for every pos-
sible state transition and an accompanying emission in lines 7-20.
In the MAXIMIZATION procedure all model parameters are updated
using the collected expectations.

It can be proved that this training procedure is guaranteed to con-
verge to a local maximum of likelihood of observing the training
corpusC. The trained model can be used for estimating distance
between two strings by computing the probability of generating the
aligned pair of strings summed across all possible paths as calcu-
lated by the FORWARD and BACKWARD algorithms:d(xT ; yV) =
� log p(xT ; yV). A practical problem that may arise in this com-
putation is numerical underflow for long strings, which can be solv-
ed by mapping all computations into logarithmic space or by peri-
odic scaling of all values in matricesM , D andI [19].

FORWARD(xT ; yV)
1. M0;0 = 1; D0;0 = 0; I0;0 = 0
2. for i = 0 to T
3. for j = 0 to V
4. if (i > 0)
5. Di;j = p(hxi; �i)[�DMi�1;j + ÆDDi�1;j]
6. if (j > 0)
7. Ii;j = p(h�; yji)[�IMi;j�1 + ÆIIi;j�1]
8. if (i > 0 ^ j > 0)
9. Mi;j = p(hxi; yji)[�Mi�1;j�1+

+
IIi�1;j�1 +
DDi�1;j�1]
10. p(xT ; yV) = ��MT;V + �DDT;V + �IIT;V
11. returnM , I, D,p(xT ; yV)

Figure 2: Forward algorithm for generative string distance
with affine gaps

BACKWARD(xT ; yV)
1. MT;V = ��; DT;V = �D ; IT;V = �I
2. for i = T downto0
3. for j = V downto0
4. if (i < T)
5. Di;j = p(hxi+1; �i)ÆDDi+1;j

6. Mi;j = p(hxi+1; �i)
DDi+1;j

7. if (j < V)
8. Ii;j = p(h�; yj+1i)ÆIIi;j+1

9. Mi;j += p(h�; yj+1i)
IIi;j+1

10. if (i < T ^ j < V)
11. Di;j += p(hxi+1; yj+1i)�DMi+1;j+1

12. Ii;j += p(hxi+1; yj+1i)�IMi+1;j+1

13. Mi;j += p(hxi+1; yj+1i)�Mi+1;j+1

14. p(xT ; yV) = M0;0

15. returnM , I, D,p(xT ; yV)

Figure 3: Backward algorithm for generative string distance
with affine gaps

EXPECTATION-MAXIMIZATION (f(xT1; yV1); : : : ; (xTn ; yVn)g)
until convergence

for i = 0 to n
EXPECTATION-STEP((xTi; yVi))

MAXIMIZATION ()

Figure 4: Training algorithm for generative string distance
with affine gaps

2.3 Adapting Learned String Distance with
Affine Gaps for Duplicate Detection

Because the order of strings being aligned does not matter when
similarity of database records is being estimated, insertion and dele-
tion operations as well as transitions for statesI andD can be rep-
resented by a single set of parameters:p(ha; �i) = p(h�; ai) for all
symbolsa 2 A; �=�I=�D;
=
I=
D; Æ=ÆI=ÆD;�=�I=
�D. All algorithms described above then would use the unified set
of parameters instead of separate sets of values for statesI andD.

The generative model of Fig.1 suffers from two drawbacks that
impede its utility for computing similarity between strings in a
database. One problem lies in the fact that the model assigns a
probability less than one to strings that are exact duplicates. Be-
cause the probability of an alignment monotonically decreases as
more matching characters are appended to the strings, longer ex-
act duplicates are penalized even more severely than shorter exact
duplicates, which is counter-intuitive and exacerbates the problem
further.

The second difficulty lies in the fact that due to the large size
of the edit operation set, probabilities of individual operations are

EXPECTATION-STEP((xT ; yV))
1. (Mf , If , Df ,p(xT ; yV)) = FORWARD(xT ; yV))
2. (Mb, Ib, Db,p(xT ; yV)) = BACKWARD(xT ; yV))
3. E(h�Di)+= 1; E(h�I i)+= 1
4. E(h��i)+= 1
5. for i = 1 to T
6. for j = 1 to V

7. �� =
M

f
j�1;k�1

���p(hxi;yji)�M
b
j;k

p(xT ;yV)

8. E[�] += ��; E[hxi; yji) += ��

9. ��I =
M

f

j;k�1
��I�p(h�;yji)�I

b
j;k

p(xT ;yV)

10. E[�I] += ��I ; E[hxi; �i] += ��I

11. ��D =
M

f

j�1;k
��D�p(hxi;�i)�D

b
j;k

p(xT ;yV)

12. E[�D] += ��D ; E[h�; yji] += ��D

13. �ÆI =
I
f
j;k�1

�ÆI�p(h�;yji)�I
b
j;k

p(xT ;yV)

14. E[ÆI] += �ÆI ; E[h�; yji] += �ÆI

15 �ÆD =
D
f

j�1;k
�ÆD�p(hxj ;�i)�D

b
j;k

p(xT ;yV)

16. E[ÆD] += �ÆD ; E[hxi; �i] += �ÆD

17. �
I =
I
f

j�1;k�1
�
D�p(hxi;yji)�M

b
j;k

p(xT ;yV)

18. E[
I] += �
I ; E[hxi; yji] += �
I

19. �
D =
D
f
j�1;k�1

�
D�p(hxi;yji)�M
b
j;k

p(xT ;yV)

20. E[
D] += �
D ; E[hxi; yji] += �
D

Figure 5: Expectation step for generative string distance with
affine gaps

significantly smaller than transition probabilities. If only a rela-
tively small number of training examples is available, probabilities
of some edit operations may be underestimated, and distances as-
signed to strings will vary significantly with minor character vari-
ations. There are two steps that need to be taken to address these
issues. First, the probability distribution over the set of edit opera-
tions,E, is smoothed by bounding each edit operation probability
by some minimum value�. This is achieved by adding� to each
updated probability in lines 11-16 of the MAXIMIZATION proce-
dure and subsequent normalization. Second, learned parameters of
the generative distance model are mapped to operation costs of the
additive model (1) by taking the negative logarithm of each proba-
bility. Distance can then be calculated analogously to Eq.(1) with
the addition of supplemental costsg = � log
 for ending a gap
andm = � log � for continuing to substitute/match characters.
This is equivalent to calculating the cost of the most likely (Viterbi)
alignment of the two strings by the generative model in log-space.
To solve the “non-zero exact match” problem and decrease high
variance in distances due to edit operation costsc(a; b) compared
to transition costss, e, g andm, we dynamically scale edit oper-
ation costs to values between 0 and the cost of the state transition
that precedes emitting the operation. We also scale the overall dis-
tance by the length of the larger string to correct for the “increasing
distance for longer exact duplicates” problem. Thus, the resulting
metric can be viewed as a hybrid between the generative model and
the original fixed-cost model.

3. RECORD-LEVEL SIMILARITY
3.1 Combining similarity across multiple fields

When the distance between records composed of multiple fields
is being calculated, it is necessary to combine similarity estimates
for individual fields in a meaningful manner. Because correspon-
dence between overall record similarity and similarity across indi-
vidual fields can vary greatly, it is necessary to weight fields ac-

MAXIMIZATION ()
1. NM = E[�] +E[�I] + E[�D] +E[��]
2. � = E[�]=NM ;� = E[�]=NM ; �� = E[��]=NM

3. NI = E[ÆI] +E[
I] + E[�ÆI]
4. ÆI = E[ÆI]=NI ;
 = E[
I]=NI ; �ÆI = E[�ÆI]=NI

5. ND = E[ÆD] +E[
D] + E[�ÆD]
6. ÆD = E[ÆD]=ND;
 = E[
D]=ND; �ÆD = E[�ÆD]=ND

7. for eachha; bi
8. N 0

M += E[ha; bi]
9. for eachh�; ai
10. N 0

I += E[h�; ai]
11. for eachha; �i
12. N 0

D += E[ha; �i]
13. for eachha; bi
14. p(ha; bi) = E[ha; bi]=N 0

M
15. for eachh�; ai
16. p(h�; ai) = E[h�; ai]=N 0

I
17. for eachha; �i
18. p(ha; �i) = E[ha; �i]=N 0

D

Figure 6: Maximization step for generative string distance with
affine gaps

cording to their contribution to the true similarity between records.
While statistical aspects of combining similarity scores for in-

dividual fields have been addressed in previous work on record
linkage [22], availability of labeled duplicates allows a more di-
rect approach that uses a binary classifier [2]. Given a database
that contains records composed ofk different fields and a setD =
fd1; : : : ; dmg of distance metrics, we can represent any pair of
records by anmk-dimensional vector of “distance features”. Each
component of the vector represents similarity between two fields of
the records calculated using one of the distance metrics. Matched
pairs of duplicate recordsR = f(r10; r11); : : : ; (rn0; rn1)g can be
used to construct a training set of such vectors by assigning them a
positive class label. Pairs of records that are not labeled as dupli-
cates form the complementary set of negative examples.

A binary classifier can then be trained using these vectors to
discriminate between pairs of records corresponding to duplicates
and non-duplicates. MARLIN utilizes Support Vector Machines
(SVM’s) [20], which are appropriate for this task due to their resis-
tance to noise and ability to handle correlated features well. Con-
fidence estimates of belonging to each class are naturally given by
a datapoint’s distance from the hyperplane that separates classes
of duplicates and non-duplicates in high-dimensional space that is
constructed by the SVM during training.

3.2 Duplicate detection algorithm
A confidence estimate of belonging to the class of duplicates

for a given pair of records can be viewed as an overall measure
of similarity between the records comprising the pair. Given a
large database, producing all possible pairs of records and comput-
ing similarity between them is too expensive since it would require
n2�1
2

distance computations. There are two methods which can be
used to cut down the number of potential duplicate pairs: the sorted
neighborhood method [9] and the canopies clustering method [11].
The former utilizes sorting the databases using different fields as
keys in multiple passes to slide a window of fixed size over the
sorted database during each pass and add all pairs of records that
co-occur within the window as potential duplicates. As a result, the
number of candidate pairs is reduced toO(wN), wherew is the
window size andN is the total number of records in the database.
The canopies clustering method utilizes some computationally in-
expensive metricdc, such as Jaccard similarity based on an inverted
index, to separate records into overlapping clusters (“canopies”) of

potential duplicates, and subsequently adds all pairs of records that
fall in each cluster as candidates for a more extensive similarity
comparison. Jaccard similarity between two stringss1 ands2 com-
posed of tokensfs10; : : : ; s1vg andfs20; : : : ; s2wg is given by:

J(s1; s2) =
jfs10; : : : ; s1vg

T
fs20; : : : ; s2wgj

jfs10; : : : ; s1vg
S
fs20; : : : ; s2wgj

(3)

An overall view of our system, MARLIN, is presented in Fig.7.
The training phase consists of two steps. First, the learnable dis-
tance metrics are trained for each record field. The training corpus
of paired field-level duplicates is obtained by taking pairs of values
for each field from the set of paired duplicate records. Because du-
plicate records may contain individual fields that are not equivalent,
training data can be noisy. This does not pose a serious problem for
our approach, since particularly noisy fields that are unhelpful for
identifying record-level duplicates will be ignored by the binary
classifier as irrelevant distance features.

Labeled
duplicate pairs

Distance

Learner
Metric

Database
records

duplicates
Potential

Distance
Learned

Metrics

Binary classifier

Identified
duplicates

Distance
Metrics

Learned
Binary classifier

Duplicate Detection:

Candidate pair extractor

non−duplicate

Duplicate and

distance features

Distance features

Learned
parametersRecord training

data extractor

Training:

Field training data extractor

Field duplicates

Record duplicates

and non−duplicates

Figure 7: M ARLIN overview

After individual similarity metrics are learned, they are used to
compute distances for each field of duplicate and non-duplicate
record pairs to obtain training data for the binary classifier in the
form of vectors composed of distance features. For a given train-
ing set that containsn duplicate pairs,O(n2) non-duplicate pairs
can be generated. Because we are employing a classifier that does
not depend on the relative sizes of training data for the two classes,
it is sufficient to randomly addn non-duplicate record pairs to the
training set.

The duplicate detection phase starts with the generation of poten-
tial duplicate pairs using either the sorted neighborhood or canopies
method. This process requires selecting parameter values for either
the window sizew or for the canopy thresholdsTloose andTtight.
This can be done by applying the chosen method to the training
data and selecting parameter values that result in labeling all true

Table 1: Sample duplicate records from the CORA database
authors title venue address year pages

Yoav Freund, H. Sebastian Se-
ung, Eli Shamir, and Naftali
Tishby

Information, prediction,
and query by committee

Advances in Neural Infor-
mation Processing System

San Mateo, CA 1993 pages 483-490

Freund, Y., Seung, H. S.,
Shamir, E., & Tishby, N.

Information, prediction,
and query by committee

Advances in Neural In-
formation Processing Sys-
tems

San Mateo, CA. – (pp. 483-490).

Table 2: Sample duplicate records from the RESTAURANT database
name address city phone cuisine

fenix 8358 sunset blvd. west hollywood 213/848-6677 american
fenix at the argyle 8358 sunset blvd. w. hollywood 213-848-6677 french(new)

Table 3: Sample duplicate records from the MAILING database
first last street address city

Tsy C Dodgson 18 Lilammal Ave 3k1 Christina MT 59423
Tessy Dodgeson PO Box 3879 Christina MT 59428

duplicate pairs as candidates.
Next, learned distance metrics are used to calculate distances for

each field of each pair of potential duplicate records, thus creating
distance feature vectors for the classifier. Confidence estimates for
belonging to the class of duplicates are then produced by the binary
classifier for each candidate pair, and pairs are sorted by increasing
confidence.

The problem of finding a similarity threshold for separating du-
plicates from non-duplicates arises at this point. A trivial solu-
tion would be to use the binary classification results to label some
records as duplicates, and others as non-duplicates. A traditional
approach to this problem [22], however, requires assigning two
thresholds: one that separates pairs of records that are high-confidence
duplicates, and another for possible duplicates that should be re-
viewed by a human expert. Since relative costs of labeling a non-
duplicate as a duplicate (false positives) and overlooking true dupli-
cates (false negatives) can vary from database to database, there is
no “silver bullet” solution to this problem. Availability of labeled
data, however, allows us to provide precision-recall estimates for
any threshold value and thus offer a way to control the trade-off be-
tween false and unidentified duplicates by selecting threshold val-
ues that are appropriate for a particular database.

It is highly likely that several identified duplicate pairs will con-
tain the same record. Since the “duplicate of” relation is transitive,
it is necessary to compute the transitive closure of equivalent pairs
to complete the identification process. Following [13], we utilize
the union-find data structure to store all database records in this
step, which allows updating the transitive closure of identified du-
plicates incrementally in an efficient manner.

4. EXPERIMENTAL EVALUATION

4.1 Datasets
We have used three different datasets for our experiments. RES-

TAURANT is a database of 864 restaurant names and addresses con-
taining 112 duplicates assembled by Sheila Tejada from Fodor’s
and Zagat’s guidebooks. The second dataset, CORA, is a collec-
tion of 1295 distinct references to 122 Computer Science research
papers from the Cora Computer Science research paper search en-
gine1. Finally, we used the database generator of Hern´andez and
Stolfo [9] that randomly corrupts records to introduce duplicates
into a mailing list database to create the MAILING dataset of 1200

1http://cora.whizbang.com

records corresponding to 400 original entries. Tables 1–3 contain
sample duplicate records from each of the databases.

4.2 Experimental Methodology
All experiments were conducted using 10-fold cross validation.

To create the folds, duplicate records were grouped together, and
the resulting clusters were randomly assigned to the folds. Because
the sizes of our datasets allowed computing distances between all
pairs of records, we did not employ the sorted neighborhood or
canopies approaches to limit the number of potential duplicates i.
Either of the approaches, however, could be used for evaluating
accuracy of duplicate detection on larger datasets.

After computing distances between all pairs of potential dupli-
cates, the pair of records with the highest similarity was labeled
as a duplicate, and the transitive closure of groups of duplicates
was updated. Precision, recall and F-measure defined over pairs
of duplicates were computed after each iteration, where precision
is the fraction of identified duplicate pairs that are correct, recall
is the fraction of actual duplicate pairs that were identified, and F-
measure is the harmonic mean of precision and recall.

As more pairs with lower similarity are labeled as duplicates,
recall increases, while precision begins to decrease because the
number of non-duplicate pairs erroneously labeled as duplicates in-
creases. Precision was interpolated at 20 standard recall levels fol-
lowing the traditional procedure in information retrieval [1] (Fig.10
shows results for two additional recall levels of 0.925 and 0.975).
Some of the graphs show only those portions of the curves that
exhibit differences between approaches; precision results for re-
call values that are not shown on the graphs were identical for all
curves.

4.3 Results
4.3.1 Detecting duplicate field values

To evaluate the usefulness of adapting character-based distance
metrics to a specific domain, we compared learned similarity met-
rics with their fixed-cost equivalents for the task of identifying equiv-
alent field values. Because duplicate records may contain field val-
ues that are not equivalent, while non-duplicate records may con-
tain equivalent entries in some of the fields, it would be erroneous
to label all fields from equivalent records as duplicates. For ex-
ample, if two different restaurant records appear in a database, one
containing“New York City” in thecity field, and another contain-
ing “New York”, it would be erroneous to consider the pair(“New
York City”, “New York”) a non-duplicate. To avoid this problem,

Table 4: Maximum F-measure for detecting duplicate field values
Distance metric CORA title RESTAURANT name RESTAURANT address MAILING name MAILING address

Levenshtein 0.870 0.843 0.950 0.867 0.878
Learned Levenshtein 0.902 0.886 0.975 0.899 0.897
Affine 0.917 0.883 0.870 0.923 0.886
Learned Affine 0.971 0.967 0.929 0.959 0.892

0

0.2

0.4

0.6

0.8

1

0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

Levenshtein
Affine

Learned Levenshtein
Learned Affine

Figure 8: Title duplicate field-value detection results for the
CORA dataset

we have manually relabeled the duplicates for some of the fields to
evaluate the utility of different metrics in detecting duplicates for
individual fields. We chose the most meaningful fields from the
three datasets for these experiments: CORA paper title field,
RESTAURANTnameandaddress fields, and MAILING street
address andnamefields (the latter is a concatenation offirst
name andlast name fields).

We have compared four distance metrics:

� Levenshtein edit distance [8], calculated as the minimum num-
ber of character deletions, insertions and substitutions of unit
cost;

� Learned Levenshtein edit distance based on a generative model
and trained using the Expectation-Maximi-zation procedure
described in [19];

� String distance with affine gaps [8] using a substitution cost
of 3, gap opening cost of 3, and gap extension cost of 1,
which are commonly used parameters;

� Learned string distance with affine gaps described in Sec-
tion 2.2, trained using Expectation-Maximization procedure
in Fig.4 with edit operation probabilities smoothed at� =
10�12 and converted to the additive cost model as described
in Section 2.3.

Results for field-level duplicate detection experiments are summa-
rized in Table 4. Each entry in table contains the average of max-
imum F-measure values over 10 folds. Results for experiments
where the difference between the learned and corresponding un-
learned metric is significant at the 0.05 level using a 1-tailed t-test
are presented in bold font. Figures 8 and 9 contain recall-precision
curves for the performance of MARLIN on the CORA paper ti-
tle field and the MAILING name field (which is a concatenation
of first name andlast name fields).

Performance improvements achieved when learned distance met-
rics were used instead of fixed-cost distance metrics for detect-
ing field duplicates demonstrate that learnable distance metrics are
able to approximate the relative importance of differences between

0

0.2

0.4

0.6

0.8

1

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

P
re

ci
si

on

Recall

Levenshtein
Affine

Learned Levenshtein
Learned Affine

Figure 9: Nameduplicate field-value detection results for the
M AILING dataset

strings for a specific field. This can be seen from the fact that
precision-recall curves for learned distance metrics are above those
for corresponding fixed-cost metrics on Figures 8 and 9, as well
as from higher maximum F-measure values in Table 4. Results
of all experiments except for theaddress field of the MAILING

database demonstrate that taking gaps into account when construct-
ing string alignments results in better estimates of string similarity
for the task of detecting approximate duplicate field values. The
fact that the results of all metrics were not significantly different
on that field can be explained by the fact that a certain fraction of
entries was heavily corrupted by substituting PO Box addresses,
which are effectively impossible to match against the correspond-
ing street address without using other fields such asname and
city .

4.3.2 Record-level duplicate detection
Next, we evaluated the performance of MARLIN for multi-field

(record-level) duplicate detection. The SVM implementation from
the WEKA toolkit [23] that utilizes the sequential minimal opti-
mization (SMO) algorithm [17] was used as the binary classifier.
We have compared classifier-based similarity estimation to using
the sum of distances from different fields as a non-trained record-
level similarity measure. Either simple affine gap distance or le-
arned string distance with affine gaps described above were used
for computing similarity between values of each record field, cor-
responding to results on Figures 10 and 11 labeled as “Static” and
“Adaptive”. Classifier-based experiments are marked as “SVM”,
while experiments that used a sum of distances across fields are
labeled as “Sum” on the figures. We also conducted additional ex-
periments using the SVM for record-level classification based on
Jaccard similarity as the distance metric for individual fields, com-
puted as shown in Eq.(3).

Results for all experiments are summarized in Table 5. Again,
results in bold font correspond to those experiments in which dif-
ferences between using the learned and unlearned string metrics
are significant at the 0.05 level using a 1-tailed t-test. All differ-
ences between the SVM and Sum approaches are significant at the

Table 5: Maximum F-measure for duplicate detection based on
multiple fields

Classifier Metric CORA RESTAURANT MAILING

None Affine 0.561 0.847 0.9431
None Learned Affine 0.564 0.832 0.991
SVM Affine 0.959 0.861 0.992
SVM Learned Affine 0.958 0.971 0.996
SVM Jaccard 0.983 0.971 0.961

0

0.2

0.4

0.6

0.8

1

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

P
re

ci
si

on

Recall

SVM Adaptive
SVM Static

Sum Adaptive
Sum Static

SVM Jaccard

Figure 10: Duplicate detection results for MAILING dataset
based on first name, last name, street address
and city fields

0.05 level using a 1-tailed t-test, except for the experiments that
use unlearned string distance with affine gaps for the RESTAURANT

dataset, and those that use learned string distance with affine gaps
for the MAILING dataset.

From the results on the RESTAURANTand MAILING datasets we
can conclude that using adaptive string distance metrics to compute
similarity between field values makes a positive contribution when
similarities from multiple fields are combined either in a simplistic
manner by adding them, or by using them as record-pair attributes
for classification. This means that better estimates of individual
field similarities result in a more accurate calculation of the overall
record similarity.

The fact that using learned distance metrics for estimating simi-
larity between the fields did not aid the record-level matching pro-
cess for the CORA dataset can be explained by the fact that most
duplicates in this dataset have either very minor differences (such
as abbreviations of authors’ names), or drastic differences such as
misplaced slots (e.g. authors’ name in thetitle field), or miss-
ing features, such asyear or pages . The sporadic and highly
varying nature of these differences prevented trained string distance
from capturing them. These domain peculiarities also explain the
good performance of duplicate detection using Jaccard similarity
to compare field values.

Limitations of using Jaccard similarity are highlighted by the re-
sults on the MAILING dataset. Because many duplicates are cor-
rupted by typos, token-based distance metrics are not able to cap-
ture the degree of similarity between strings with minor variations
in several characters. This result demonstrates that character-based
metrics are particularly useful for detecting duplicates among shorter
strings with minor variations, such as those resulting from OCR er-
rors for scanned data or from typographic errors.

We also ran trials which combined character-based metrics (static
and adaptive string distance with affine gaps) and token-based met-

0

0.2

0.4

0.6

0.8

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

SVM Adaptive
SVM Static

Sum Adaptive
Sum Static

SVM Jaccard

Figure 11: Duplicate detection results for RESTAURANT

dataset based onname, address, city and cuisine
fields

rics (Jaccard similarity). These experiments resulted in near-100%
precision and recall, without significant differences between static
and adaptive field-level metrics. Similar results were obtained when
common prefix and common suffix lengths were used as field-level
distance metrics along with the character-based metrics used above.
This demonstrates that combining character- and token-based dis-
tance metrics, such as learned string distance with affine gaps and
Jaccard similarity, is clearly an advantage of the two-level approach
implemented in MARLIN. Current datasets did not allow us to
show the benefits of adaptive metrics over their static prototypes in
this scenario, but our initial results suggest that this can be demon-
strated on more challenging datasets.

5. RELATED WORK
The problem of identifying duplicate records in databases was

originally described by Newcombe [16] as record linkage in the
context of identifying medical records of the same individual from
different time periods. In more recent work in statistics, Winkler
proposed using EM-based methods for estimating error rates and
optimal matching rules [21]. This work studied the duplicate detec-
tion problem for the specialized domain of census records, there-
fore all similarity metrics were hand-tuned for optimal performance
in this domain.

Hernández and Stolfo [9] developed the sorted neighborhood
method for limiting the number of potential duplicate pairs that re-
quire distance computation, while McCallum et. al. proposed the
canopies clustering algorithm [11] for the task of matching scien-
tific citations. Monge and Elkan developed the iterative merging
algorithm based on the union-find data structure [13] and showed
the advantages of using a string distance metric that allows gaps
[12]. Cohen et. al. [3] proved NP-hardness of solving the dupli-
cate detection problem optimally and proposed a nearly linear time
algorithm for finding a local optimum using the union-find data
structure.

In all of these approaches fixed-cost similarity metrics were used
to compare database records. The only previous work on adap-
tive duplicate detection that we know of is the approach described
by Cohen in [2], which learns how to combine multiple similar-
ity metrics to identify duplicates, but does not adaptively tune the
underlying field-similarity metrics themselves.

6. FUTURE WORK
Extending the metric learning approach to token-based distance

metrics is a promising avenue for research. Because in some data-
bases differences between duplicate records may take the form of

commonly added and deleted tokens, it would be desirable to de-
velop learning methods for token-based metrics, such as Jaccard
similarity or vector-space cosine distance. Previous work on semi-
supervised clustering [4] has shown the usefulness of a similar ap-
proach: learning weights of individual words when calculating dis-
tance between documents using Kullback-Leibler divergence.

Another area for future work lies in generalizing edit distance
to include macro-operators for inserting and deleting common sub-
strings, e.g. deleting “Street” in address fields. The string distance
model with gaps would be particularly useful for this task, since it
would allow discovering useful deletion sequences by counting the
frequencies of common gaps. Substructure discovery methods [5]
could also be used to identify useful edit operation sequences that
include different edit operations.

7. CONCLUSIONS
Duplicate detection is an important problem in data cleaning,

and an adaptive approach that learns to identify duplicate records
for a specific domain has clear advantages over a static, domain-
independent method. Our approach uses learning at two levels.
First, similarity metrics are trained to identify duplicate values for
each field. Second, multiple similarity metrics for each field are
combined to learn a final function for identifying duplicate records.
Experimental results demonstrate that this approach detects dupli-
cates more accurately than competing static approaches. In addi-
tion, results demonstrate that both levels of adaptation indepen-
dently contribute to improving the overall accuracy of the system.

8. ACKNOWLEDGMENTS
We would like to thank William Cohen for providing us the

CORA dataset, Nick Kushmerick for useful discussion and Sheila
Tejada’s RESTAURANT dataset, and Mauricio Hern´andez for pro-
viding us the mailing address database generator used to create the
MAILING dataset. This research was supported by the National
Science Foundation under grant IIS-0117308.

9. REFERENCES
[1] R. Baeza-Yates and B. Ribeiro-Neto.Modern Information

Retrieval. ACM Press, New York, 1999.
[2] W. Cohen and J. Richman. Learning to match and cluster

entity names. InACM SIGIR-2001 Workshop on
Mathematical/Formal Methods in Information Retrieval,
New Orleans, LA, Sept. 2001.

[3] W. W. Cohen, H. Kautz, and D. McAllester. Hardening soft
information sources. InProceedings of the Sixth
International Conference on Knowledge Discovery and Data
Mining (KDD-2000), pages 255–259, Boston, MA, Aug.
2000.

[4] D. Cohn, R. Caruana, and A. McCallum. Semi-supervised
clustering with user feedback. Unpublished manuscript.
Available at
http://www-2.cs.cmu.edu/˜mccallum/ .

[5] D. J. Cook and L. B. Holder. Substructure discovery using
minimum description length and background knowledge.
Journal of Artificial Intelligence Research, 1:231–255, 1994.

[6] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison.Biological
Sequence Analysis: Probabilistic Models of Proteins and
Nucleic Acids. Cambridge University Press, 1998.

[7] R. Ghani, R. Jones, D. Mladeni´c, K. Nigam, and S. Slattery.
Data mining on symbolic knowledge extracted from the web.
In D. Mladenić, editor,Proceedings of the Sixth
International Conference on Knowledge Discovery and Data

Mining (KDD-2000) Workshop on Text Mining, pages 29–36,
Boston, MA, Aug. 2000.

[8] D. Gusfield.Algorithms on Strings, Trees and Sequences.
Cambridge University Press, New York, 1997.

[9] M. A. Hernández and S. J. Stolfo. The merge/purge problem
for large databases. InProceedings of the 1995 ACM
SIGMOD International Conference on Management of Data
(SIGMOD-95), pages 127–138, San Jose, CA, May 1995.

[10] V. I. Levenshtein. Binary codes capable of correcting
insertions and reversals.Soviet Physics Doklady,
10(8):707–710, Feb. 1966.

[11] A. K. McCallum, K. Nigam, and L. Ungar. Efficient
clustering of high-dimensional data sets with application to
reference matching. InProceedings of the Sixth International
Conference on Knowledge Discovery and Data Mining
(KDD-2000), pages 169–178, Boston, MA, Aug. 2000.

[12] A. E. Monge and C. Elkan. The field matching problem:
Algorithms and applications. InProceedings of the Second
International Conference on Knowledge Discovery and Data
Mining (KDD-96), pages 267–270, Portland, OR, Aug. 1996.

[13] A. E. Monge and C. P. Elkan. An efficient
domain-independent algorithm for detecting approximately
duplicate database records. InProceedings of the SIGMOD
1997 Workshop on Research Issues on Data Mining and
Knowledge Discovery, pages 23–29, Tuscon, AZ, May 1997.

[14] U. Y. Nahm and R. J. Mooney. Using information extraction
to aid the discovery of prediction rules from texts. In
Proceedings of the Sixth International Conference on
Knowledge Discovery and Data Mining (KDD-2000)
Workshop on Text Mining, pages 51–58, Boston, MA, Aug.
2000.

[15] S. B. Needleman and C. D. Wunsch. A general method
applicable to the search for similarities in the amino acid
sequences of two proteins.Journal of Molecular Biology,
48:443–453, 1970.

[16] H. B. Newcombe, J. M. Kennedy, S. J. Axford, and A. P.
James. Automatic linkage of vital records.Science,
130:954–959, 1959.

[17] J. Platt. Fast training of support vector machines using
sequential minimal optimization. In B. Scholkopf, C. J. C.
Burges, and A. J. Smola, editors,Advances in Kernel
Methods - Support Vector Learning, pages 185–208. MIT
Press, Cambridge, MA, 1999.

[18] L. R. Rabiner. A tutorial on hidden Markov models and
selected applications in speech recognition.Proceedings of
the IEEE, 77(2):257–286, 1989.

[19] E. S. Ristad and P. N. Yianilos. Learning string edit distance.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(5), 1998.

[20] V. N. Vapnik.The Nature of Statistical Learning Theory.
Springer-Verlag, Berlin, 1995.

[21] W. E. Winkler. Advanced methods for record linkage.
Technical report, Statistical Research Division, U.S. Bureau
of the Census, Wachington, DC, 1994.

[22] W. E. Winkler. The state of record linkage and current
research problems. Technical report, Statistical Research
Division, U.S. Bureau of the Census, Wachington, DC, 1999.

[23] I. H. Witten and E. Frank.Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementations.
Morgan Kaufmann, San Francisco, 1999.

