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Abstract

Transfer learning addresses the problem of how to leverage
knowledge acquired in a source domain to improve the ac-
curacy and speed of learning in a related target domain. This
paper considers transfer learning with Markov logic networks
(MLNs), a powerful formalism for learning in relational do-
mains. We present a complete MLN transfer system that first
autonomously maps the predicates in the source MLN to the
target domain and then revises the mapped structure to fur-
ther improve its accuracy. Our results in several real-world
domains demonstrate that our approach successfully reduces
the amount of time and training data needed to learn an accu-
rate model of a target domain over learning from scratch.

Introduction

Traditional machine learning algorithms operate under the
assumption that learning for each new task starts from
scratch, thus disregarding any knowledge gained previously.
In related domains, this tabula rasa approach would waste
data and computer time to develop hypotheses that could
have been recovered faster from previously acquired knowl-
edge. Transferring previous knowledge could not only speed
up learning but also increase its accuracy. Transfer learning
addresses the problem of how to leverage previous knowl-
edge in order to improve the efficiency and accuracy of
learning in a new domain, related to the original one.

We consider transfer learning with Markov logic networks
(MLNs), i.e. when an MLN learned for the source domain
is used to aid learning of an MLN for the target domain.
MLNs are a powerful formalism that combines the expres-
siveness of first-order logic with the flexibility of probabil-
ity (Richardson & Domingos 2006). There are two aspects
to learning an MLN: the structure, or first-order clauses, and
the weights. While weight learning is relatively quick, struc-
ture learning is very computationally intensive. Therefore,
we focus on MLN structure learning because it could partic-
ularly benefit from transfer.

We view transferring an MLN to a new domain as con-
sisting of two subtasks: predicate mapping and theory re-
finement. In general, the set of predicates used to describe
data in the source and target domains may be partially or
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completely distinct. Therefore, the first transfer task is to
establish a mapping from predicates in the source domain
to predicates in the target domain. For example, consider
transferring an MLN learned to model data about individuals
and their relationships in an academic department to mod-
eling data from the International Movie Database (IMDB).
A predicate mapping between the two domains might estab-
lish that directors are like professors, actors are like students,
and movies are like research papers. Similar predicate map-
pings are produced by analogy systems such as the Struc-
ture Mapping Engine (SME) (Falkenhainer, Forbus, & Gen-
tner 1989). Once a mapping is established, clauses from the
source domain can be translated to the target domain. How-
ever, these clauses may not be completely accurate and may
need to be revised, augmented, and re-weighted in order to
properly model the target data. This step is similar to pre-
vious work in theory refinement (Richards & Mooney 1995;
Wrobel 1996; Ramachandran & Mooney 1998), except the
theory to be revised is learned in a previous domain rather
than manually constructed by a human expert.

This paper presents novel techniques for mapping and re-
fining an MLN in order to transfer it to a new domain. A
complete MLN transfer system was developed by augment-
ing the Alchemy MLN software (Kok et al. 2005). Ex-
perimental results on several real-world relational datasets
demonstrate that our approach successfully reduces the
amount of time and training data needed to learn an accurate
model of a target domain by exploiting an existing MLN for
a related source domain.

Background

General Terminology and Notation

First-order logic distinguishes among four types of
symbols—constants, variables, predicates, and functions
(Russell & Norvig 2003). Constants describe the objects in
a domain and can have types. Variables act as placeholders
to allow for quantification. Predicates represent relations in
the domain, such as WorkedFor. Function symbols represent
functions of tuples of objects. The arity of a predicate or a
function is the number of arguments it takes. Each argument
can have a type that specifies the type of constant that can
be used to ground it. Here, we assume that the domains con-
tain no functions. We denote constants by strings starting



1.5 Director(A)∨Actor(A)
0.1 MovieMember(M, A)∨¬Director(A)
1.3 ¬WorkedFor(A, B)∨¬Director(A)
0.5 Director(A)∨¬MovieMember(M,A)∨¬WorkedFor(B, A)

Figure 1: Example of an MLN

with lower-case letters, variables by single upper-case let-
ters, and predicates by strings starting with upper-case let-
ters. A term is a constant, a variable, or a function applied
to terms. Ground terms contain no variables. An atom is a
predicate applied to terms. A positive literal is an atom, and
a negative literal is a negated atom. We will call a ground
literal, i.e. one that contains only ground terms, a gliteral. A
world is an assignment of truth values to all possible gliterals
in a domain. A formula consists of literals connected by log-
ical connectives (i.e. ∨ and ∧). A formula in clausal form,
also called a clause, is a disjunction of literals. A clause
with only one positive literal is called a definite clause. Us-
ing the fact that ¬p ∨ q is logically equivalent to p⇒ q, we
can rewrite any clause as an implication, without modifying
its meaning. For example, we can rewrite the clause Direc-
tor(A) ∨ Actor(A) in two different ways: 1) ¬Actor(A) ⇒
Director(A) or 2) ¬Director(A) ⇒ Actor(A). We will call
the literal(s) on the left side of the implication antecedents,
and the literal on the right side conclusion. Clauses whose
antecedents are not satisfied hold “trivially.”

Markov Logic Networks

An MLN consists of a set of weighted formulae and pro-
vides a way of softening first-order logic by making situa-
tions, in which not all formulae are satisfied, less likely but
not impossible (Richardson & Domingos 2006). Here we
assume that the formulae are in clausal form (the Alchemy
software makes this conversion automatically). Figure 1
gives an example of an MLN for one of our domains. More
formally, let X be the set of all propositions describing
a world (i.e. all gliterals formed by grounding the pred-
icates with the constants in the domain), F be the set of
all clauses in the MLN, wi be the weight associated with
clause fi ∈ F, Gfi

be the set of all possible groundings
of clause fi with the constants in the domain, and Z be
the normalizing partition function. Then the probability of
a particular truth assignment x to X is given by the for-

mula P (X = x) = (1/Z) exp
(

∑

fi∈F
wi

∑

g∈Gfi
g(x)

)

(Richardson & Domingos 2006). The value of g(x) is either
1 or 0, depending on whether g is satisfied. Thus the quan-
tity

∑

g∈Gfi
g(x) counts the number of groundings of fi that

are true given the current truth assignment to X.

In order to perform inference over a given MLN, L, one
needs to ground it into its corresponding a Markov network
(Pearl 1988). As described by Richardson and Domingos
(2006), this is done by including a node for every possible
gliteral of the predicates in L and a feature for each ground-
ing of a clause in L. The nodes appearing together in a
ground clause form cliques. To calculate the probability that
each of a set of query gliterals is true, one can perform Gibbs

sampling over the Markov network. Gibbs sampling starts
by assigning a truth value to each query gliteral. It then pro-
ceeds in rounds to resample a value for gliteral X , given the
truth values of its Markov blanket MBX (i.e. the nodes with
which it participates in ground clauses) using the formula:

P (X = x|MBX = m) =
eSX(x,m)

eSX(0,m) + eSX(1,m)
. (1)

Here, SX(x,m) =
∑

gi∈GX
wigi(X = x, MBX = m),

where GX is the set of ground clauses in which X appears
and m is the current truth assignment to MBX .

Kok and Domingos introduced the current state-of-the-
art MLN structure learning algorithm (2005), which we call
KD after its authors. KD can use either beam search or
shortest-first search but we will compare to the beam-search
version.1 KD performs several iterations of beam search,
and after each iteration adds to the MLN the best clause
found. Clauses are evaluated using a weighted pseudo log-
likelihood measure (WPLL), introduced in (Kok & Domin-
gos 2005), that sums over the log-likelihood of each node
given its Markov blanket, weighting it appropriately to en-
sure that predicates with many gliterals do not dominate
the result. The beam search in each iteration starts from
all single-vliteral clauses. It generates candidates by per-
forming all possible revisions to the initial clauses, keeps
the best beamSize clauses, from which it generates new
candidates by performing all possible revisions, keeps the
best beamSize and continues in this way until candidates
stop improving the WPLL. At this point, the best candidate
found is added to the MLN, and a new beam search itera-
tion begins. Weights need to be learned for a given structure
before its WPLL can be computed. Weight-training can be
efficiently implemented as an optimization procedure such
as L-BFGS used by Richardson and Domingos (2006) and
therefore we do not transfer the weights. Because KD can
start learning either from scratch or from a provided MLN,
it can be used for revision. However, KD does not include
any predicate mapping capability.

Relational Pathfinding

Relational pathfinding (RPF) is a data-driven approach to
rule discovery designed to overcome plateaus and local max-
ima (Richards & Mooney 1992). We will use it in the re-
vision step to discover relationships specific to the target
domain. RPF views the relational domain as a graph G in
which the constants are the vertices and two constants are
connected by an edge if they appear together in a true glit-
eral. The true gliterals are those stated to hold in the data,
while the rest are false. Intuitively, RPF forms clauses in
which the conclusion is a particular true gliteral, and the an-
tecedents consist of gliterals that define a path in the rela-
tional graph G. These clauses are then variablized. More
specifically, RPF searches G for an alternate path of length
at least 2 between any two constants, c1 and c2, connected
by an edge. If such path is found, it is transformed into a

1The shortest-first search constructs candidates in the same way
but conducts a more complete search, which, however, requires
longer training times.



Director(jack) Actor(jill)

MovieMember(movie1, jack) MovieMember(movie1, jill)

MovieMember(movie2, jill) WorkedFor(jill, jack)

Figure 2: Example relational database

Figure 3: Example of a relational graph

clause as follows. The antecedents are formed as a conjunc-
tion of the predicates that label each edge in the path. The
literal that labels the edge connecting c1 and c2 becomes
the conclusion. Hill-climbing search is used to further im-
prove the clause by possibly adding unary predicates to the
antecedents.

For example, suppose Figure 2 lists all true facts in
the domain. Figure 3 shows the relational graph for
this domain. The highlighted edges form an alternative
path between jack and jill, from which we construct
the clause MovieMember(T,A) ∧ MovieMember(T,B) ⇒
WorkedFor(A,B). Hill-climbing search might lead to the ad-
dition of Actor(A) and Director(B) to the antecedents.

MLN Structure Transfer

In MLN structure transfer, first the source MLN is mapped
to the target domain, and, second, its clauses are revised.

Predicate Mapping

The goal of this step is to find the best way to map a source
MLN into a target MLN. The quality of a mapping is mea-
sured by the performance of the mapped MLN on the target
data, as estimated by the WPLL score. There are two gen-
eral approaches to mapping. One is to establish a mapping
for each source predicate to a target predicate and then use
it to translate the entire source MLN. This is called global
mapping. The other approach, called local mapping, is to
find the best mapping of each source clause separately by
constructing a mapping only for the predicates that appear in
that clause, independent of how other clauses were mapped.
In most cases, finding the best global mapping is computa-
tionally prohibitive because the size of the search space is
exponential in the number of predicates in the source do-
main. In general, the local mapping approach is more scal-
able than the global one since the number of predicates in a
single source clause is usually smaller than the total number
of source predicates. In this work, we will focus on finding
the best local predicate mapping.

To find the best predicate mapping for a clause, we use
exhaustive search through the space of all legal mappings.
As we will demonstrate in the Experimental Results section,
this search is very manageable in our domains. A mapping is
legal if each source predicate in a given clause is mapped ei-
ther to a compatible target predicate or to the “empty” pred-

icate, which erases all literals of that source predicate from
the clause. Two predicates are compatible if they have the
same arity and the types of their arguments are compatible
with the current type constraints. For any legal mapping, a
type in the source domain is mapped to at most one corre-
sponding type in the target domain, and the type constraints
are formed by requiring that these type mappings are consis-
tent across all predicates in the clause. For example, if the
current type constraints are empty, then the source predicate
Publication(title,person) is considered to be compatible with
the target predicate Gender(person,gend), and the type con-
straints title→ person and person→ gend are added to the
current type constraints. All subsequent predicate mappings
within the current clause must conform to these constraints.
For example, with these constraints, the source predicate
SamePerson(person,person) is compatible with the target
predicate SameGender(gend,gend) but not compatible with
the target predicate SamePerson(person,person). After a le-
gal mapping is established, we evaluate the translated clause
by calculating the WPLL of an MLN consisting of only this
translated clause. The best predicate mapping for a clause is
the one whose translated clause has the highest WPLL score.
This process is repeated to find the best predicate mapping
for each source clause. Algorithm 1 finds a legal mapping
for a source clause. A recursive version of this procedure is
used to find all the legal mappings of a source clause. Fig 4
shows the best predicate mapping found by the algorithm for
a given source clause.

Note that because the predicate mapping algorithm may
sometimes choose to map a predicate to an “empty” predi-
cate, the entire structure is not necessarily always mapped to
the target domain.

Algorithm 1 Find a legal mapping for a source clause

1: procedure LEGAL MAPPING(srcClause, tarPreds)
2: predsMapping ← ∅
3: typeConstraints← ∅
4: repeat
5: Pick an unmapped source predicate srcPred
6: for each unmapped target predicate tarPred do
7: if isCompatible(srcPred, tarPred) then
8: Add this mapping to predsMapping
9: Update typeConstraints

10: Exit this for loop
11: end if
12: end for
13: until All predicates in srcClause are mapped
14: return predsMapping
15: end procedure

Revising the Mapped Structure

Next we describe how the mapped structure is revised to
improve its fit to the data. The skeleton of the revision
algorithm has three steps and is similar to that of FORTE

(Richards & Mooney 1995), which revises first-order theo-
ries.

1. Self-Diagnosis: The purpose of this step is to focus the



Source clause:
Publication(T, A) ∧ Publication(T, B) ∧ Professor(A)
∧ Student(B) ∧¬SamePerson(A, B) ⇒ AdvisedBy(B, A)

Best mapping:
Publication(title,person) → MovieMember(movie,person)
Professor(person) → Director(person)
Student(person) → Actor(person)
SamePerson(person,person)→ SamePerson(person,person)
AdvisedBy(person,person) → WorkedFor(person,person)

Figure 4: An output of the predicate mapping algorithm

search for revisions only on the inaccurate parts of the
MLN. The algorithm inspects the source MLN and de-
termines for each clause whether it should be shortened,
lengthened, or left as is. For each clause C, this is done
by considering every possible way of viewing C as an
implication in which one of the literals is placed on the
right-hand side of the implication and is treated as the
conclusion and the remaining literals serve as the an-
tecedents. The conclusion of a clause is drawn only if the
antecedents are satisfied and the clause “fires.” Thus, if
a clause makes the wrong conclusion, it is considered for
lengthening because the addition of more literals, or con-
ditions, to the antecedents will make them harder to sat-
isfy, thus preventing the clause from firing. On the other
hand, there may be clauses that fail to draw the correct
conclusion because there are too many conditions in the
antecedents that prevent them from firing. In this case, we
consider shortening the clause.

2. Structure Update: Clauses marked as too long are short-
ened, while those marked as too short are lengthened.

3. New Clause Discovery: Using RPF, new clauses are
found in the target domain.

Next, we describe each step in more detail.

Self-Diagnosis A natural approach to self-diagnosis is to
use the transferred MLN to make inferences in the target do-
main and observe where its clauses fail. This suggests that
the structure can be diagnosed by performing Gibbs sam-
pling over it. Specifically, this is done as follows. Each
predicate in the target domain is examined in turn. The cur-
rent predicate under examination is denoted as P ∗. Self-
diagnosis performs Gibbs sampling with P ∗ serving as a
query predicate with the values of its gliterals set to un-
known, while the gliterals of all other predicates provide ev-
idence. In each round of sampling the algorithm considers
the set of all clauses CX in which X participates.

The algorithm considers a view of each ground clause
C ∈ CX in which the literal corresponding to P ∗ is treated
as a conclusion. If a clause contains more than one literal of
P ∗, all possible rewrites are produced. C can be placed in
one of four bins with respect to X and the current truth as-
signments to the rest of the gliterals. These bins consider all
possible cases of the antecedents being satisfied and the con-
clusion being correct. We label a clause as Relevant if the
antecedents are satisfied and Irrelevant otherwise. Similarly,
we mark a clause as Good if its conclusion is correct and Bad
if the conclusion is incorrect. The four bins are defined by

all possible ways of marking a clause as Relevant/Irrelevant
and Good/Bad.

Let v be the actual value of X . This value is known from
the data, even though for the purposes of sampling we have
set it to unknown. As an illustration, we will use some
groundings of the clauses in Figure 1 with respect to the
data in Figure 2 listing the current truth assignments to the
gliterals (the ones present are true; the rest are false). Let
X =Director(jack) with v = true.

• [Relevant; Good] This bin contains clauses in which the
antecedents are satisfied and the conclusion drawn is cor-
rect. For example, let C be¬Actor(jack)⇒Director(jack).
Alternatively, the clauses in this bin hold true only if X
has value v, the value it has in the data.

• [Relevant; Bad] This bin contains clauses whose an-
tecedents are satisfied but the conclusion drawn is in-
correct. For example, let C be ¬MovieMember(movie2,
jack)⇒ ¬Director(jack). Alternatively, this bin contains
clauses that are only satisfied if X has value ¬v, the nega-
tion of its correct value in the data.

• [Irrelevant; Good] This bin contains clauses whose an-
tecedents are not satisfied, and therefore the clauses do not
“fire,” but if they were to fire, the conclusion drawn would
be incorrect. For example, let C be WorkedFor(jack,jill)
⇒ ¬Director(jack). Thus the clauses in this bin hold re-
gardless of the value of X in the data; however, the literal
corresponding to X in C is true only if X has value ¬v.

• [Irrelevant; Bad] The clauses in this bin are those whose
antecedents are not satisfied, but if the clauses were to fire,
the conclusion would be correct. For example, let C be
MovieMember(movie2, jack) ∧WorkedFor(jill, jack) ⇒
Director(jack). We can alternatively describe the clauses
in this bin as ones that hold regardless of the value of X
and in which the literal corresponding to X in C is true
only if X has value v.

This taxonomy is motivated by Equation (1). The prob-
ability of X = x is increased only by clauses in the [Rel-
evant;Good] bin and is decreased by clauses in the [Rele-
vant;Bad] bin. Clauses in the other two bins do not have
an effect on this equation because their contribution to the
numerator and denominator cancels out. However, if some
of the literals other than X in an [Irrelevant;Bad] clause,
are deleted so that X’s value becomes crucial, it will be
moved to the [Relevant;Good] bin. Similarly, if we add
some literals to a [Relevant;Bad] clause so that it starts to
hold regardless of the value of X , it will enter the [Irrele-
vant;Good] bin and will no longer decrease the probability
of X having its correct value.

As the probability of a gliteral is recalculated in each iter-
ation of Gibbs sampling, for each clause in which the gliteral
participates, we count the number of times it falls into each
of the bins. Finally, if a clause was placed in the [Rele-
vant;Bad] bin more than p percent of the time, it is marked
for lengthening and if it fell in the [Irrelevant; Bad] bin
more than p percent of the time, it is marked for shortening.
We anticipated that in the highly sparse relational domains
in which we tested, clauses would fall mostly in the [Irrel-
evant; Good] bin. To prevent this bin from swamping the



other ones, we set p to the low value of 10%. This process
is repeated for each predicate, P ∗, in the target domain.

Structure Updates The updates are performed using
beam search. Unlike Kok and Domingos (2005), however,
we do not consider all possible additions and deletions of a
literal to each clause. Rather, we only try removing liter-
als from the clauses marked for shortening and we try literal
additions only to the clauses marked for lengthening. The
candidates are scored using WPLL. Thus, the search space
is constrained first by limiting the number of clauses con-
sidered for updates, and second, by restricting the kind of
update performed on each clause.

New Clause Discovery The revision procedure can update
clauses transferred from the source domain but cannot dis-
cover new clauses that capture relationships specific only to
the target domain. To address this problem, we used RPF
to search for new clauses in the target domain. The clauses
found by RPF were evaluated using the WPLL, and the ones
that improved the overall score were added to the MLN. RPF
and the previous structure update step operate independently
of each other; in particular, the clauses discovered by RPF
are not diagnosed or revised. However, we found that bet-
ter results are obtained if the clauses discovered by RPF are
added to the MLN before carrying out the revisions.

Experimental Methodology

We compared the performance of the following systems. KD

run from scratch (ScrKD) in the target domain; KD used to
revise a source structure translated into the target domain
using our automatic predicate mapping procedure (TrKD);
and our complete transfer system using automatic predicate
mapping and the revision procedure (TAMAR, for Transfer
via Automatic Mapping And Revision). In early experi-
ments we tested systems that did not use RPF and found
that adding it never hurt performance, although it did not al-
ways help. Space considerations did not allow us to include
a complete treatment of the effect of RPF.

We used three real-world relational domains—IMDB,
UW-CSE, and WebKB. Each dataset is broken down into
mega-examples, where each mega-example contains a con-
nected group of facts. Individual mega-examples are inde-
pendent of each other. The IMDB database is organized
as five mega-examples, each of which contains information
about four movies, their directors, and the first-billed actors
who appear in them. Each director is ascribed genres based
on the genres of the movies he or she directed. The Gen-
der predicate is only used to state the genders of actors. The
UW-CSE database was first used by Richardson and Domin-

gos (2006).2 The database is divided into mega-examples
based on five areas of computer science. It lists facts about
people in an academic department (i.e. Student, Profes-

sor) and their relationships (i.e. AdvisedBy).3 The We-
bKB database contains information about entities from the

2Available at http://www.cs.washington.edu/ai/mln/database.html.
3Our results on this dataset are not comparable to those pre-

sented by Kok and Domingos (2005) because due to privacy issues
we only had access to the published version of this data, which
differs from the original (Personal communication by S. Kok).

“University Computer Science Department” data set, com-
piled by Craven et al. (1998). The original dataset contains
web pages from four universities labeled according to the
entity they describe (e.g. student, course), as well as the
words that occur in these pages. Our version of WebKB con-
tains the predicates Student(A), Faculty(A), CourseTA(C,
A), CourseProf(C, A), Project(P, A) and SamePerson(A, B).
The textual information is ignored. This data contains four
mega-examples, each of which describes one university. The
following table provides additional statistics about these do-
mains:

Data Set Num Num Num Num TrueTotal Num
Consts Types Preds Gliterals Gliterals

IMDB 316 4 10 1,540 32,615
UW-CSE 1,323 9 15 2,673 678,899
WebKB 1,700 3 6 2,065 688,193

We used the implementation of KD provided as part of the
Alchemy software package (Kok et al. 2005) and imple-
mented our new algorithms as part of the same package. We
kept the default parameter settings of Alchemy except that
we set the parameter penalizing long clauses to 0.01, the one
specifying the maximum number of variables per clause to
5, and the minWeight parameter to 0.1 in IMDB and WebKB
and to 1 in UW-CSE, the value used in (Kok & Domingos
2005). All three learners used the same parameter settings.

We considered the following transfer scenarios: WebKB
→ IMDB, UW-CSE→ IMDB, WebKB→UW-CSE, IMDB
→ UW-CSE. We did not consider transfer to WebKB be-
cause the small number of predicates and large number of
constants in this domain made it too easy to learn from
scratch and therefore a good source domain but uninter-
esting as a target domain. Source MLNs were learned by
ScrKD. We also consider the scenario where the hand-built
knowledge base provided with the UW-CSE data is used as
a source MLN (UW-KB→ IMDB). In this interesting twist
on traditional theory refinement, the provided theory needs
to be mapped to the target domain, as well as revised.

We used the two metrics employed by Kok and Domin-
gos (2005), the area under the precision-recall curve (AUC)
and the conditional log-likelihood (CLL). The AUC is useful
because it demonstrates how well the algorithm predicts the
few positives in the data. The CLL, on the other hand, deter-
mines the quality of the probability predictions output by the
algorithm. To calculate the AUC and CLL of a given MLN,
one needs to perform inference over it, providing some of
the gliterals in the test mega-example as evidence and test-
ing the predictions for the remaining ones. We used the MC-
SAT inference algorithm (Poon & Domingos 2006) and, like
Kok and Domingos (2005), tested for the gliterals of each of
the predicates of the domain in turn, providing the rest as
evidence, and averaging over the results.

Learning curves for each performance measure were gen-
erated using a leave-1-mega-example-out approach, averag-
ing over k different runs, where k is the number of mega-
examples in the domain. In each run, we reserved a different
mega-example for testing and trained on the remaining k−1,
which were provided one by one. All systems observed the
same sequence of mega-examples. Because of space con-
straints, rather than presenting the complete learning curves,
we summarize them using two statistics: the transfer ra-



TR PI

Experiment TrKD TAMAR TrKD TAMAR

WebKB → IMDB 1.51 1.55 50.54 53.90
UW-CSE → IMDB 1.42 1.66 32.78 52.87
UW-KB → IMDB 1.61 1.52 40.06 45.74

WebKB → UW-CSE 1.84 1.78 47.04 37.43
IMDB → UW-CSE 0.96 1.01 -1.70 -2.40

Table 1: Transfer ratio (TR) and percent improvement from 1
mega-example (PI) on AUC over ScrKD.

TR PI

Experiment TrKD TAMAR TrKD TAMAR

WebKB → IMDB 1.41 1.46 51.97 67.19
UW-CSE → IMDB 1.33 1.56 49.55 69.28
UW-KB → IMDB 1.21 1.44 30.66 58.62

WebKB → UW-CSE 1.17 1.36 19.48 32.69
IMDB → UW-CSE 1.62 1.67 34.69 54.02

Table 2: Transfer ratio (TR) and percent improvement from 1
mega-example (PI) on CLL over ScrKD.

tio (TR) (Cohen, Chang, & Morrison 2007), and the per-
cent improvement from 1 mega-example (PI). TR is the ra-
tio between the area under the learning curve of the transfer
learner (TAMAR or TrKD) and the area under the learning
curve of the learner from scratch (ScrKD). Thus, TR gives
an overall idea of the improvement achieved by transfer over
learning from scratch. TR > 1 signifies improvement over
learning from scratch in the target domain. PI gives the per-
cent by which transfer improves accuracy over learning from
scratch after observing a single mega-example in the target
domain. It is useful because, in transfer learning settings,
data for the target domain is frequently limited.

We also present results on the training times needed by
all systems, the number of clauses they considered in their
search, the time to construct the mapping, and the number
of legal mappings. Timing runs within the same transfer
experiment were conducted on the same dedicated machine.

Experimental Results

In terms of AUC (Table 1), both transfer systems improve
over ScrKD in all but one experiment. Neither transfer
learner consistently outperforms the other on this metric.
Table 2 shows that transfer learning always improves over
learning from scratch in terms of CLL, and TAMAR’s per-
formance is better than that of TrKD in all cases. Except for
the last line in Table 1, the learning curves of the transfer
systems (not shown) always dominate over those of ScrKD.
Moreover, as can be seen from Table 3, TAMAR trains faster
than TrKD, and both transfer systems are faster than ScrKD

(however, note that the training time of the transfer systems
does not include the time necessary to learn the source struc-
ture). TAMAR also considers fewer candidate clauses during
its beam search. According to a t-test performed for each
point on each of the learning curves, at the 95% level with
sample size 5 per point, these differences were significant in
15 out of 20 cases for speed and 18 out of 20 for number
of candidates. TrKD considers more candidates than ScrKD

Experiment ScrKD TrKD TAMAR

WebKB→IMDB 62.23 32.20(0.89) 11.98(0.89)
UW-CSE→IMDB 62.23 38.09(9.18) 15.21(9.10)
UW-KB→IMDB 62.23 40.67(9.98) 6.57(9.99)

WebKB→UW-CSE 1127.48 720.02(6.71) 13.70(6.75)
IMDB→UW-CSE 1127.48 440.21(42.48) 34.57(42.28)

Table 3: Average (over all learning curve points) total training
time in minutes. The numbers in parentheses give the average
number of seconds needed to construct the predicate mapping.

Experiment ScrKD TrKD TAMAR

WebKB→IMDB 7558 10673 1946
UW-CSE→IMDB 7558 14163 1976
UW-KB→IMDB 7558 15118 1613

WebKB→UW-CSE 32096 32815 827
IMDB→UW-CSE 32096 7924 978

Table 4: Average (over all learning curve points) number of can-
didate clauses considered.

but takes less time to train. This can happen if TrKD con-
siders more candidates earlier in the learning curves when
each candidate is evaluated faster on less data. Table 3 also
demonstrates that the time taken by the mapping algorithm is
only a tiny fraction of the total training time. The average to-
tal number of legal mappings over the five experiments was
49.4, and the average number of legal mappings per clause
was 5.31. Because there are few possible legal mappings,
the exhaustive search through the space of legal mappings
is tractable. Figure 5 shows a sample learning curve in the
UW-CSE→ IMDB experiment. Here we additionally tested
the performance of systems that do not use the automatic
mapping but are provided with an intuitive hand-constructed
global mapping that maps Student → Actor, Professor →
Director, AdvisedBy/TempAdvisedBy → WorkedFor, Pub-
lication → MovieMember, Phase → Gender, and Position
→ Genre. The last two mappings are motivated by the ob-
servation that Phase in UW-CSE applies only to Student and
Gender in IMDB applies only to Actor, and similarly Posi-
tion and Genre apply only to Professor and Director respec-
tively. The systems using the automatic mapping perform
much better because the flexibility of local mapping allows
the source knowledge to adapt better to the target domain.

Related Work

Transfer learning has been studied in two main settings.
In multi-task learning, the algorithm is given all do-
mains simultaneously during training and can build com-
mon structure shared by the learned models (Caruana 1997;
Niculescu-Mizil & Caruana 2005). Our setting differs in that
the learner encounters the domains one at a time. It has been
studied for a variety of problems, including text classifica-
tion (Raina, Ng, & Koller 2006) and reinforcement learning
(Torrey et al. 2005; Taylor, Whiteson, & Stone 2007). The
latter work also automatically maps the source and target
tasks.

The predicate mapping task is similar to the case of ab-
straction mapping in SME (Falkenhainer, Forbus, & Gen-
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Figure 5: Learning curves for AUC in UW-CSE → IMDB. The
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learner at the start.

tner 1989). However, abstraction mapping generates candi-
date mappings based on an analogy between some general-
ized objects in the two domains. Moreover, SME requires
a specific set of matching rules for each pair of domains.
In contrast, our predicate mapping is based on the compat-
ibility between the predicates of the two domains and no
matching rules are required. The mappings between both
types and predicates in the source domain to those in the
target domain are constructed completely automatically.

Our algorithm approaches transferring a mapped MLN to
the target domain as a revision problem. Thus it is related to
revision algorithms for other models, such as Bayesian Net-
works (Ramachandran & Mooney 1998), Bayesian Logic
Programs (Paes et al. 2005), and first-order knowledge bases
(Richards & Mooney 1995; Wrobel 1996).

Conclusions and Future Work

We have presented a complete transfer learning system,
TAMAR, that autonomously maps a source MLN to the target
domain and then revises its structure to further improve its
performance. Our empirical results demonstrate that TAMAR

successfully maps the transferred knowledge so that it can be
used to improve the accuracy of the learned model. Because
TAMAR diagnoses the mapped structure and only revises its
incorrect portions, it learns significantly faster and considers
many fewer candidates than the current best MLN learner.

Future directions include applying TAMAR to new transfer
scenarios; developing predicate mapping search techniques
for domains where the number of predicates makes exhaus-
tive search prohibitive; and creating measures for the sim-
ilarity between two domains to determine whether transfer
would be beneficial.
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