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Abstract

Markov logic networks (MLNs) are a statistical

relational model that consists of weighted first-

order clauses and generalizes first-order logic

and Markov networks. The current state-of-the-

art algorithm for learning MLN structure fol-

lows a top-down paradigm where many poten-

tial candidate structures are systematically gener-

ated without considering the data and then eval-

uated using a statistical measure of their fit to

the data. Even though this existing algorithm

outperforms an impressive array of benchmarks,

its greedy search is susceptible to local max-

ima or plateaus. We present a novel algorithm

for learning MLN structure that follows a more

bottom-up approach to address this problem. Our

algorithm uses a “propositional” Markov net-

work learning method to construct “template”

networks that guide the construction of candidate

clauses. Our algorithm significantly improves

accuracy and learning time over the existing top-

down approach in three real-world domains.

1. Introduction

Methods for unifying the strengths of first-order logic and

probabilistic graphical models have become an important

aspect of recent research in machine learning (Getoor &

Taskar, to appear 2007). Markov logic networks (MLNs)

are a recently developed statistical relational model that

generalizes both full first-order logic and Markov networks

(Richardson & Domingos, 2006). An MLN consists of

a set of weighted clauses in first-order logic, and learn-

ing an MLN decomposes into structure learning, or learn-

ing the logical clauses, and weight learning, or setting the

weight of each clause. Kok and Domingos (2005) have pro-

posed a probabilistic method for learning MLN structure

and shown that it produces more accurate sets of clauses

than several previous inductive logic programming (ILP)

methods. Like many existing methods for learning logic
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programs (Quinlan, 1990) and graphical models (Hecker-

man, 1995), they take a top-down approach, heuristically

searching the space of increasingly complex models, guid-

ing the search by scoring models using a statistical measure

of their fit to the training data.

Such top-down approaches follow a “blind” generate-and-

test strategy in which many potential changes to an ex-

isting model are systematically generated independent of

the training data, and then tested for empirical adequacy.

For complex models such as MLNs, the space of poten-

tial revisions is combinatorially explosive and such a search

can become difficult to control, resulting in convergence to

suboptimal local maxima. Bottom-up learning methods at-

tempt to use the training data to directly construct promis-

ing structural changes or additions to the model (Mug-

gleton & Feng, 1992). Many effective ILP algorithms

use some combination of top-down and bottom-up search

(Zelle et al., 1994; Muggleton, 1995).

We argue that, if properly designed, a more bottom-up sta-

tistical relational learner can outperform a purely top-down

approach because of the large search space with many lo-

cal maxima and plateaus that can be avoided by utiliz-

ing stronger guidance from the data. We present a more

bottom-up approach to learning MLN structure that first

uses a “propositional” Markov network structure learner to

construct “template” networks that then guide the construc-

tion of candidate clauses. Our approach therefore follows

the ILP tradition of “upgrading” a propositional learner to

handle relational data (Van Laer & De Raedt, 2001). How-

ever, our approach can employ any existing Markov net-

work structure learning algorithm as a subroutine. Experi-

ments on three real-world relational data sets demonstrate

that our approach significantly out-performs the current

state-of-the-art MLN structure learner on two commonly-

used metrics while greatly decreasing the training time and

the number of candidate models considered during training.

2. Terminology and Notation

First-order logic distinguishes among four types of

symbols—constants, variables, predicates, and functions

(Russell & Norvig, 2003). Constants describe the objects in
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a domain and can have types. Variables act as placeholders

to allow for quantification. Predicates represent relations in

the domain, such as WorkedFor. Function symbols repre-

sent functions of tuples of objects. The arity of a predicate

or a function is the number of arguments it takes. We as-

sume that the domains contain no functions, an assumption

also made in previous research (Kok & Domingos, 2005).

We denote constants by strings starting with lower-case let-

ters, variables by single upper-case letters, and predicates

by strings starting with upper-case letters.

Example: As a running example, we will use a sim-

plified version of one of our domains. The domain con-

tains facts about individuals in the movie business, describ-

ing their profession (Actor(A) or Director(A)), their re-

lationships, and the movies on which they have worked.

The WorkedFor(A,B) predicate specifies that person A
worked on a movie under the supervision of person B, and

the Movie(T,A) predicate specifies that individual A ap-

peared in the credits of movie T . A, B, and T are variables.

The domain has the constants brando and coppola of type

person, and godFather of type movieTitle.

A term is a constant, a variable, or a function that is applied

to terms. Ground terms contain no variables. An atom is a

predicate applied to terms. A positive literal is an atom, and

a negative literal is a negated atom. We will use the word

gliteral to refer to a ground literal, i.e. one containing only

constants, and vliteral to refer to a literal that contains only

variables. A clause is a disjunction of positive and negative

literals. The length of a clause is the number of literals

in the disjunction. A definite clause is a clause with only

one positive literal, called the head, whereas the negative

literals compose the body. A world is an assignment of

truth values to all possible gliterals in a domain.

3. Markov Logic Networks

An MLN consists of a set of first-order clauses, each of

which has an associated weight (Richardson & Domingos,

2006). MLNs can be viewed as a way to soften first-order

logic, making worlds that violate some of the clauses less

likely but not altogether impossible. Let X be the set of all

propositions describing a world (i.e. all gliterals formed by

grounding the predicates with the constants in the domain),

F be the set of all clauses in the MLN, wi be the weight

associated with clause fi ∈ F, Gfi
be the set of all possible

groundings of clause fi with the constants in the domain

Then the probability of a particular truth assignment x to X

is given by the formula (Richardson & Domingos, 2006):

P (X = x) = (1/Z) exp





∑

fi∈F

wi

∑

g∈Gfi

g(x)





Here Z is the normalizing partition function. The value

of g(x) is either 1 or 0, depending on whether g is satis-

fied. Thus the quantity
∑

g∈Gfi
g(x) counts the number of

groundings of fi that are true given the current truth assign-

ment to X. The first-order clauses are commonly referred

to as structure. Figure 1 shows a sample MLN. To perform

0.7 Actor(A) ⇒ ¬Director(A)
1.2 Director(A) ⇒ ¬WorkedFor(A, B)
1.4 Movie(T, A) ∧ WorkedFor(A, B) ⇒ Movie(T, B)

Figure 1. Simple MLN for example domain

inference over a given MLN, one needs to ground it into

its corresponding Markov network (Pearl, 1988). As de-

scribed by Richardson and Domingos (2006), this is done

as follows. First, all possible gliterals in the domain are

formed, and they serve as the nodes in the Markov net-

work. The edges are determined by the groundings of the

first-order clauses: gliterals that participate together in a

grounding of a clause are connected by an edge. Thus,

nodes that appear together in a ground clause form cliques.

For example, Figure 2 shows the ground Markov network

corresponding to the MLN in Figure 1. Several techniques,

such as Gibbs sampling (Richardson & Domingos, 2006)

or MC-SAT (Poon & Domingos, 2006), can be used to per-

form inference over the ground Markov network.

Figure 2. Result of grounding the example MLN

The current state-of-the-art MLN structure learning algo-

rithm, due to Kok and Domingos (2005), proceeds in a top-

down fashion, employing either beam search or shortest-

first search. We will compare to the beam-search ver-

sion, which we call TDSL (for Top-Down Structure Learn-

ing).1 TDSL performs several iterations of beam search,

and after each iteration adds to the MLN the best clause

found. Clauses are evaluated using a weighted pseudo log-

likelihood measure (WPLL), introduced in (Kok & Domin-

gos, 2005), that sums over the log-likelihood of each node

given its Markov blanket, weighting it appropriately to en-

sure that predicates with many gliterals do not dominate

1The shortest-first search constructs candidates in the same
way but conducts a more complete search, which, however, re-
quires longer training times.
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the result. The beam search in each iteration starts from all

single-vliteral clauses. It generates candidates by adding a

vliteral in each possible way to the initial clauses, keeps the

best beamSize clauses, from which it generates new can-

didates by performing all possible vliteral additions, keeps

the best beamSize and continues in this way until can-

didates stop improving the WPLL. At this point, the best

candidate found is added to the MLN, and a new beam

search iteration begins. Weights need to be learned for a

given structure before its WPLL can be computed. Weight-

training can be efficiently implemented as an optimiza-

tion procedure (Richardson & Domingos, 2006). While

TDSL has been empirically shown to outperform an impres-

sive number of competitive baselines (Kok & Domingos,

2005), it has two potential drawbacks. First, the iterative

process of generating and testing candidates may result in

long training times; and second, the greedy beam search

is susceptible to overlooking potentially useful clauses. We

present an algorithm that attempts to avoid these drawbacks

by learning MLN structure in a bottom-up fashion. We call

our algorithm BUSL (for Bottom-Up Structure Learning).

4. Bottom-Up Structure Learning

As pointed out by Richardson and Domingos (2006),

MLNs serve as templates for constructing Markov net-

works when different sets of constants are provided. Be-

cause the edges of the ground Markov network are defined

by the groundings of the same set of first-order clauses, the

same pattern is repeated several times in the graph, corre-

sponding to each grounding of a particular clause.

Example: We observe that in Figure 2 the pattern of nodes

and edges appearing above the two Movie gliterals is re-

peated below them with different constants. In fact, this

Markov network can be viewed as an instantiation of the

template shown in Figure 3.

Figure 3. Example Markov Network Template

The basic idea behind BUSL is to learn MLN structure

by first automatically creating a Markov network template

similar to the one in Figure 3 from the provided data. The

nodes in this template are used as components from which

clauses are constructed and can contain one or more vliter-

als that are connected by a shared variable. We will call

these nodes TNodes for template nodes. As in ordinary

Markov networks, a TNode is independent of all other TN-

odes given its immediate neighbors (i.e. its Markov blan-

ket). Every probability distribution respecting the indepen-

dencies captured by the graph of a Markov network can be

represented as the product of functions defined only over

the cliques of the graph (Pearl, 1988). Analogously, to

specify the probability distribution over a Markov network

template, the algorithm only needs to consider clauses de-

fined over the cliques of the template. Thus, BUSL uses the

Markov network template to restrict the search space for

clauses only to those candidates whose literals correspond

to TNodes that form a clique in the template. Algorithm 1

Algorithm 1 Skeleton of BUSL

for each P ∈ P do
Construct TNodes for predicate P (Section 4.1)
Connect the TNodes to form a Markov network template
(Section 4.2)
Create candidate clauses, using this template to constrain the
search (Section 4.3)

end for
Remove duplicate candidates

Evaluate candidates and add best ones to final MLN

gives the skeleton of BUSL. Letting P be the set of all pred-

icates in the domain, the algorithm considers each predi-

cate P ∈ P in turn. A Markov network template is con-

structed for each P . Template construction involves cre-

ating variablized TNodes and determining the edges be-

tween them. The template does not specify the actual MLN

clauses or their weights. To search for actual clauses, we

generate clause candidates by focusing on each maximal

clique in turn and producing all possible clauses consis-

tent with it. We can then evaluate each candidate using

the WPLL score. We next describe how a Markov network

template is created for the current predicate P .

4.1. TNode construction

TNodes contain conjunctions of one or more vliterals and

serve as building blocks for creating clauses. Intuitively,

TNodes are constructed by looking for groups of constant-

sharing gliterals that are true in the data and variablizing

them. Thus, TNodes could also be viewed as portions of

clauses that have true groundings in the data. TNode con-

struction is inspired by relational pathfinding (Richards &

Mooney, 1992). The result of running TNode construction

for P is the set of TNodes and a matrix MP containing a

column for each of the created TNodes and a row for each

gliteral of P . Each entry MP [r][c] is a Boolean value that

indicates whether the data contains a true grounding of the

TNode corresponding to column c with at least one of the

constants of the gliteral corresponding to row r. This ma-

trix is used later to find the edges between the TNodes. Al-

gorithm 2 describes how the set of TNodes and the matrix

MP are constructed. It uses the following definitions:

Definition 1 Two gliterals (vliterals) are connected if there

exists a constant (variable) that is an argument of both.
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Algorithm 2 Construct TNode Set

Input:
1: P: Predicate currently under consideration
2: m: Maximum number of vliterals in a TNode

Output:
3: TNodeVector: Vector of constructed TNodes
4: MP: Matrix of Boolean values

Procedure:
5: Make head TNode, headTN, and place it in position 0 of

TNodeVector

6: for each (true or false) gliteral, GP, of P do
7: Add a row of 0-s to MP
8: if GP is true then
9: Set MP[lastRow(MP)][0] = 1

10: end if
11: Let CGP

be the set of true gliterals connected to GP
12: for each c ∈ CGP

do
13: for each possible TNode based on c do
14: newTNode = CreateTNode(c, GP, headTN, m)
15: position = TNodeVector.find(newTNode)
16: if position is not valid then
17: append newTNode to end of TNodeVector
18: append a column of 0-s to MP
19: position = numColumns(MP) − 1

20: end if
21: Set MP[lastRow(MP)][position] = 1

22: end for
23: end for

24: end for

Algorithm 3 CreateTNode

Input:
1: GP: Current gliteral of P under consideration
2: c: Gliteral connected to GP on which TNode is based
3: headTN: Head TNode
4: m: Max number of of vliterals allowed in a TNode

Output:
5: newTNode: The constructed TNode

Procedure:
6: size = pick a size for this TNode (between 1 and m)
7: v = variablize(c)
8: Create newTNode containing v

9: prevGliteral, lastVliteralInChain = c, v
10: while length(newTNode) < size do
11: c1 = pick true gliteral connected to prevGliteral

12: v1 = variablize(c1) and add v1 to newTNode

13: prevGliteral, lastVliteralInChain = c1, v1

14: end while

Definition 2 A chain of literals of length l is a list of l lit-

erals such that for 1 < k 6 l the kth literal is connected to

the (k − 1)th via a previously unshared variable.

First, in line 5, the algorithm creates a head TNode that

consists of a vliteral of P in which each argument is as-

signed a unique variable. This TNode is analogous to the

head in a definite clause; however, note that our algorithm

is not limited to constructing only definite clauses. Next,

in lines 6 to 24, the algorithm considers each (true or false)

gliteral GP of P in turn (the true gliterals are those stated

to hold in the data, and the rest are false). A row of ze-

Actor(brando)

       (true)

WorkedFor(brando, coppola)

Movie(godFather, brando)

Actor(coppola)

      (false)

Director(coppola)

WorkedFor(brando, coppola)

Movie(godFather, coppola)

3

1

2

5

6

7

Movie(godFather, coppola)

Movie(godFather, brando)

9

8

4

Figure 4. Illustration of TNode construction (See example below).

The thin lines show the connections defining single-vliteral TN-

odes, and the thick lines the connections defining two-vliteral TN-

odes. The lines link the constants shared between the gliterals.

ros is added to MP for GP , and the value corresponding to

the head TNode is set to 1 if GP is true and to 0 otherwise

(lines 8-10). The algorithm then considers the set CGP
of

all true gliterals in the data that are connected to GP . For

each c ∈ CGP
, it constructs each possible TNode based on

c containing at most m vliterals (Algorithm 3). If a par-

ticular TNode was previously created, its value in the row

corresponding to GP is set to 1 (line 21). Otherwise, a new

column of zeros is added to MP and the entry in the GP

row is set to 1 (lines 16-20).

Algorithm 3 lists the CreateTNode procedure. The algo-

rithm determines the number of vliterals in the new TNode

in line 6. It then variablizes the current gliteral c connected

to GP by replacing the constants c shares with GP with

their corresponding variables from the head TNode. If the

chosen TNode size is greater than 1, the algorithm enters

the while loop in lines 10-14. In each iteration of this loop

we extend the TNode with an additional vliteral that is con-

structed by variablizing a gliteral connected to the gliteral

considered in the previous iteration so that any constants

shared with the head TNode or with the previous gliteral

are replaced with their corresponding variables.

Example: Suppose we are given the following database
for our example domain where the listed gliterals are true
and the omitted ones are false:

Actor(brando) Director(coppola)
WorkedFor(brando, coppola)

Movie(godFather, coppola) Movie(godFather, brando)

Let P = Actor and m = 2 (i.e. at most 2 vliterals per

TNode). The head TNode is Actor(A). Figure 4 shows the

gliteral chains considered in the main loop (lines 6-24) of

Algorithm 2 for each gliteral of P . Let us first focus on the

case when GP is Actor(brando) (top part). Connections 1

and 2 lead to the TNodes WorkedFor(A, B) and Movie(C,

A) respectively. Connection 3 gives rise to the 2-vliteral

TNode [WorkedFor(A, D), Movie(E, D)], and connection
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4, to the TNode [Movie(F, A), Movie(F, G)]. The following

table lists the values in MP at this point.
Actor(A) Worked Movie(C, A)WorkedFor(A, D)Movie(F, A)

For(A, B) Movie(E, D) Movie(F, G)

1 1 1 1 1

Note that when constructing the TNodes, we replaced

shared constants with the same variables, and constants

shared with GP with the corresponding variable from the

head TNode.

We next consider the bottom part of Figure 4 that deals

with the second iteration in which GP is Actor(coppola).

From connection 5, we construct the TNode Director(A)

and from connection 6 the TNode WorkedFor(H, A), which

differs from the WorkedFor TNode found earlier by the po-

sition of the variable A shared with the head TNode. An

appropriate TNode for connection 7 (Movie(C,A)) already

exists. Connection 8 gives rise to the two-vliteral TNode

[WorkedFor(I, A), Movie(J, I)]. A TNode for connection 9,

[ Movie(F, A), Movie(F, G)] was constructed in the previous

iteration. Table 1 lists the final set of TNodes.

Larger values of m mean longer TNodes that could help

build more informative clauses. However, a larger m also

leads to the construction of more TNodes, thus increasing

the search space for clauses. We used a conservative setting

of m = 2. Note that this does not limit the final clause

length to 2. To further reduce the search space, we require

that TNodes with more than one vliteral contain at most

one free variable (i.e. a variable that does not appear in

more than one of the vliterals in the TNode or in the head

TNode). We did not experiment with more liberal settings

of these parameters but, as our experiments demonstrate,

these values worked well in our domains.

TNode construction is very much in the spirit of bottom-

up learning. Rather than producing all possible vliterals

that share variables with one another in all possible ways,

the algorithm focuses only on vliterals for which there is a

true gliteral in the data. Thus, the data already guides and

constrains the algorithm. This is related to bottom-up ILP

techniques such as least-general generalizations (LGG) and

inverse resolution (Lavrac̆ & Dz̆eroski, 1994). However, as

opposed to LGG, our TNode construction algorithm always

uses the generalization that leads to completely variablized

TNodes and unlike inverse resolution, the process does not

lead to the creation of complete clauses and does not use

any logical inference algorithms like resolution.

4.2. Adding the Edges

To complete the template construction, we need to find

which TNodes are connected by edges. Recall that the tem-

plates represent variablized analogs of Markov networks.

Thus, finding the edges can be cast as a Markov network

structure learning problem where the TNodes are the nodes

in the Markov network and the matrix MP provides train-

ing data. Any Markov network learning algorithm can

be employed. We chose the recent Grow-Shrink Markov

Network (GSMN) algorithm by Bromberg et al. (2006).

GSMN uses χ2 statistical tests to determine whether two

nodes are conditionally independent of each other.

4.3. Search for clauses

As discussed earlier we only construct clauses from TN-

odes that form cliques in the Markov network template; i.e.,

any two TNodes participating together in a clause must be

connected by an edge in the template. The head TNode

must participate in every candidate. A clause can contain

at most one multiple-literal TNode and at most one TN-

ode containing a single non-unary literal. These restrictions

are designed to decrease the number of free variables in a

clause, thus decreasing the size of the ground MLN during

inference, and further reducing the search space. Comply-

ing with the above restrictions, we consider each clique in

which the head TNode participates and construct all possi-

ble clauses of length 1 to the size of the clique by forming

disjunctions from the literals of the participating TNodes

with all possible negation/non-negation combinations.

After template creation and clause candidate generation are

carried out for each predicate in the domain, duplicates are

removed and the candidates are evaluated using the WPLL.

To compute this score, one needs to assign a weight to each

clause. For weight-learning, we use L-BFGS like Richard-

son and Domingos (2006). After all candidates are scored,

they are considered for addition to the MLN in order of

decreasing score. To reduce overfitting and speed up infer-

ence, only candidates with weight greater than minWeight

are considered. Candidates that do not increase the overall

WPLL of the learned structure are discarded.

5. Experimental Setup

We compared BUSL and TDSL in three relational

domains—IMDB, UW-CSE, and WebKB. Each dataset

is broken down into mega-examples, where each mega-

example contains a connected group of facts. Individual

mega-examples are independent of each other. Learning

curves were generated using a leave-1-mega-example-out

approach, averaging over k different runs, where k is the

number of mega-examples in the domain. In each run, we

reserved a different mega-example for testing and trained

on the remaining k−1, provided one by one. Both learners

observed the same sequence of mega-examples.

The IMDB database contains five mega-examples, each

of which describes four movies, their directors, and the

first-billed actors who appear in them. Each director is

ascribed genres based on the genres of the movies he or

she directed. The Gender predicate is only used to state

the genders of actors. The UW-CSE database was first
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Actor(A) WorkedFor(A, B) Movie(C, A) WorkedFor(A, D) Movie(F, A) Director(A) WorkedFor(H, A) WorkedFor(I, A)
Movie(E, D) Movie(F, G) Movie(J, I)

1 1 1 1 1 0 0 0
0 0 1 0 1 1 1 1

Table 1. Final set of TNodes and their corresponding MP matrix. The head TNode is in bold.
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Figure 5. Accuracy in IMDB domain. a) AUC b) CLL

used by Richardson and Domingos (2006).2 It lists facts

about people in an academic department (i.e. Student,
Professor) and their relationships (i.e. AdvisedBy,

Publication) and is divided into mega-examples based on

five areas of computer science.3 The WebKB database

contains information about entities from the “University

Computer Science Department” data set, compiled by

Craven et al. (1998). The original dataset contains web

pages from four universities labeled according to the en-

tity they describe (e.g. student, course), as well as the

words that occur in these pages. Our version of We-

bKB contains the predicates Student(A), Faculty(A),
CourseTA(C,A), CourseProf(C,A), Project(P,A)
and SamePerson(A,B). The textual information is ig-

nored. This data contains four mega-examples, each of

which describes one university. The following table pro-

vides additional statistics about the domains:

Data Set Num Num Num Num True Total Num

Consts Types Preds Gliterals Gliterals

IMDB 316 4 10 1,540 32,615

UW-CSE 1,323 9 15 2,673 678,899

WebKB 1,700 3 6 2,065 688,193

We measured the performance of BUSL and TDSL using the

two metrics employed by Kok and Domingos (2005), the

area under the precision-recall curve (AUC) and the condi-

tional log-likelihood (CLL). The AUC is useful because it

demonstrates how well the algorithm predicts the few pos-

2http://www.cs.washington.edu/ai/mln/database.html.
3Our results on this dataset are not comparable to those pre-

sented by Kok and Domingos (2005) because due to privacy is-
sues we only had access to the published version of this data,
which differs from the original (Personal communic. by S. Kok).

itives in the data. The CLL determines the quality of the

probability predictions output by the algorithm. To cal-

culate the AUC and the CLL of a given MLN, one needs

to perform inference over it, providing some of the gliter-

als in the test mega-example as evidence and testing the

predictions for the remaining ones. We used the MC-SAT

inference algorithm (Poon & Domingos, 2006) and tested

for the gliterals of each of the predicates of the domain in

turn, providing the rest as evidence. Thus each point on

the curves is the average CLL or AUC calculated after do-

ing inference for each of the predicates in the domain over

the MLN learned in each of the k runs. The error bars are

formed by averaging the standard error over the predictions

for the groundings of each predicate and over the learning

runs. We performed all timing runs within the same do-

main on the same dedicated machine. We used the imple-

mentation of TDSL provided in the Alchemy package (Kok

et al., 2005) and implemented BUSL as part of the same

package. We set TDSL’s parameters as in (Kok & Domin-

gos, 2005) for the UW-CSE experiment. The same settings

were kept in the two new domains, except that we found

that minWeight = 1 was too restrictive and instead used

minWeight = 0.1. We set BUSL’s minWeight = 0.5
for all experiments. Those parameter settings were inde-

pendently informally optimized for both systems. Even

though the two algorithms both have a parameter called

minWeight, they use it in different ways and the same

value is therefore not necessarily optimal for both systems.

6. Experimental Results

Figures 5-7 show learning curves in the three domains. Er-

ror bars are drawn on all curves but in some cases they are
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Figure 6. Accuracy in UW-CSE domain. a) AUC b) CLL
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Figure 7. Accuracy in WebKB domain. a) AUC b) CLL

tiny. BUSL improves over the performance of TDSL in all

cases except for one in terms of AUC and in all cases in

terms of CLL. Figure 6 also plots the AUC and CLL for a

system that performs weight learning over the manually de-

veloped knowledge base provided as part of the UW-CSE

dataset (Hand-KB). BUSL outperforms Hand-KB in terms

of AUC, and does equally well in terms of CLL. In Fig-

ure 7, even though TDSL is improving its performance in

terms of AUC, its CLL score decreases. This is most prob-

ably due to the extremely small relative number of true glit-

erals in WebKB in which the CLL can be increased by pre-

dicting false for each query. Note that the learners im-

prove very little beyond the first mega-example. This oc-

curs because in our experience, additional data improves

the WPLL estimate but has little effect on the clauses that

are proposed. In particular, in BUSL candidates are based

on the dependencies among the TNodes, and in our do-

mains new data introduces few such dependencies.

Table 2 shows the average training time over all learning

runs for each system, and the average number of candi-

date clauses each learner constructed and evaluated over

all runs. BUSL constructed fewer candidates and trained

faster than TDSL. BUSL spends most of its training time on

calculating the WPLL for the generated candidates. This

takes longer in domains like WebKB that contain many

constants. On the other hand, we expect BUSL’s savings

in terms of number of generated candidates to be greater in

domains, such as UW-CSE, that contain many predicates

because the large number of predicates would increase the

number of candidate clauses generated by TDSL. These

considerations explain why the smallest improvement in

speed is achieved in WebKB that contains the least number

of predicates and the greatest number of constants. Based

on the much smaller number of candidate clauses consid-

ered by BUSL, one might expect a larger speed-up. This

is not observed because of optimizations within Alchemy

that allow fast scoring of clauses for a fixed structure of the

MLN. Because TDSL evaluates a large number of candi-

dates with a fixed structure, it can take advantage of these

optimizations. On the other hand, after initially scoring all

candidates, BUSL attempts to add them one by one to the

MLN, thus changing the MLN at almost each step, which

slows down the WPLL computation.

Finally, we checked the importance of adding the edges in

Section 4.2. This step can in principle be avoided by pro-

ducing a fully connected Markov network template. We

found that this step helped decrease the search space be-

cause in the experiments we presented, out of 31.44, 70.70,
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and 18.83 TNodes that were constructed on average over

the predicates in each domain (IMDB, UW-CSE, and We-

bKB), only 12%, 14% and 22% respectively ended up in

the Markov blanket of the head TNode on average.

7. Related Work

BUSL is related to the growing amount of research on learn-

ing statistical relational models (Getoor & Taskar, to ap-

pear 2007). However, in contrast to the dominant top-

down strategy followed by most existing learners (e.g.

(Heckerman, 1995)), it approaches the problem of learning

MLN structure in a more bottom-up way. In this respect,

it is more closely related to algorithms such as GSMN

(Bromberg et al., 2006) that base the structure construction

on independence tests among the variables. Because BUSL

starts by limiting the search space in a bottom-up fashion

and then resorts to searching within that constrained space,

it is also related to hybrid top-down/bottom-up ILP algo-

rithms (Zelle et al., 1994; Muggleton, 1995).

8. Conclusions and Future work

We have presented a novel algorithm for learning the struc-

ture of Markov logic networks by approaching the problem

in a more bottom-up fashion and using the data to guide

both the construction and evaluation of candidates. We

demonstrate the effectiveness of our algorithm in three real-

world domains. One limitation of BUSL is that, like TDSL,

it cannot learn clauses that include functions. Thus, one

future work direction is to extend BUSL to provide sup-

port for this capability by constructing the TNodes using

least general generalization, which includes a principled

way of handling functions (Lavrac̆ & Dz̆eroski, 1994). A

second avenue for future work is to adapt BUSL so that it

can be used for revision of a provided MLN. Finally, our

encouraging results with BUSL suggest applying a similar

bottom-up framework to learning of other models, such as

Bayesian logic programs (Kersting & De Raedt, 2001).
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