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Abstract

A central goal of transfer learning is to enable
learning when training data from the domain of in-
terest is limited. Yet, work on transfer across rela-
tional domains has so far focused on the case where
there is a significant amount of target data. This pa-
per bridges this gap by studying transfer when the
amount of target data is minimal and consists of in-
formation about just a handful of entities. In the
extreme case, only a single entity is known. We
present the 2 algorithm that finds an effective
mapping of predicates from a source model to the
target domain in this setting and thus renders pre-
existing knowledge useful to the target task. We
demonstrate 2’s effectiveness in three bench-
mark relational domains on social interactions and
study its behavior as information about an increas-
ing number of entities becomes available.

1 Introduction

Machine learning algorithms have traditionally been designed
assuming that an adequate amount of training data for the
task of interest is available. Although numerous successful
approaches for this case have been developed, their accu-
racy will suffer when training data is very limited. One of
the most effective techniques for enabling learning in such
situations is transfer learning, i.e. transferring a source
model learned in a domain that is related to the target do-
main at hand [Silver et al., 2005; Banerjee et al., 2006;
Taylor et al., 2008]. Transfer learning has been successful
in a variety of learning problems, e.g., [Raina et al., 2006;
Niculescu-Mizil and Caruana, 2007; Torrey et al., 2007].

One area in which transfer learning has proven particu-
larly effective is statistical relational learning (SRL). In SRL,
general probabilistic models are learned from multi-relational
data, in which a set of entities are engaged in a variety of com-
plex relations [Getoor and Taskar, 2007]. For example, in
a domain describing an academic institution, e.g., [Richard-
son and Domingos, 2006], the entities are people, publica-
tions, and courses, whereas the relations are advised-by,
taught-by, and written-by. In addition, each entity has at-
tributes (i.e, relations of arity 1), such as is-student and
is-professor. As a result of the rich connections among

the entities, individual training examples are typically very
large, containing hundreds of entities, have varying lengths,
and cannot be broken down into smaller disconnected compo-
nents. To emphasize this, we call relational training instances
mega-examples. In an academic domain, a mega-example
may describe an entire area of study, such as AI. Because of
these characteristics of multi-relational data, SRL algorithms
have long training times and are often susceptible to local
maxima and plateaus. Effective transfer learning approaches
have been developed to combat these problems, leading to
improvements both in the speed and the accuracy of learning
[Mihalkova et al., 2007; Davis and Domingos, 2008].

However, to the best of our knowledge, all existing algo-
rithms for transfer in SRL assume that an adequate amount
of target domain data, i.e., at least one full mega-example, is
available. There currently are no techniques for the case of
limited target data, in which transfer learning could have the
greatest impact. This paper bridges this gap by addressing
the setting of minimal target domain data that consists of just
a handful of entities. In the extreme case, a single entity is
known. Fig. 1 contrasts the amount of data assumed by pre-
vious work to that assumed here.

This setting may arise in a variety of situations. For in-
stance, when a new social networking site is launched, data
is available on only a few initial registrants. The popularity
of the site depends on its ability to make meaningful predic-
tions that would allow it to suggest promising friendships to
users. However, the sparcity of available data and the fact that
data from other social networking sites is usually proprietary
make learning of an effective model from scratch infeasible.

Frequently, two domains differ in their representations, but
the underlying regularities that govern the dynamics in each
domain are similar. So, when transferring a model learned
from an academic data set to a movie business domain, one
may discover that students and professors are similar to actors
and directors respectively, which makes writing an academic
paper analogous to directing or participating in a movie.
Likewise, because human interactions bear a certain degree
of similarity across settings, the social networking site can
learn strong models from data on the professional relations
among its employees and map them for the task of interest
based on its very limited supply of data from the new site.

When target data is so limited, effective transfer depends
on the ability to map the representation of a source model
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Figure 1: Target data available in previous versus current work. The nodes in this

graph represent the entities in the domain and the edges represent the relations in which

these entities participate. Previous work assumes that the information from the entire

graph is provided. The present paper assumes that just the bold relations are known.

learned in a closely related domain to that of the target task.
The main challenge addressed in this work is, therefore, to
harness the small amount of data in the target domain in order
to find useful mappings between the source and target repre-
sentations. We present an efficient algorithm for this task,
2 (which stands for Short-Range To Long-Range), that
is based on the observation that a good model for the source
domain contains two types of clauses—short-range ones that
concern the properties of a single entity and long-range ones
that relate the properties of several entities. Because possible
mappings of the short-range clauses to the target domain can
be directly evaluated on the available target data, the key is
to use the short-range clauses in order to find mappings be-
tween the relations in the two domains, which are then used
to translate the long-range clauses.

As in previous work on transfer in SRL [Mihalkova et al.,
2007; Davis and Domingos, 2008], we transfer a Markov
logic network (MLN) [Richardson and Domingos, 2006]. We
provide a detailed description of MLNs in Section 2. 2
is not limited to MLNs, and after describing the algorithm in
Section 3, we discuss what other representations can be used.
Then, in Section 4, we demonstrate the effectiveness of 2
in three benchmark relational domains.

2 Background

In first-order logic, a predicate represents a relation in the
domain, such as advised-by. Predicates are like functions
that return true or false in which arguments have types. For
example written-by takes one argument of type paper and
one of type person. An atom is a predicate applied to terms,
where the terms can be variables or constants.1 Constants
represent the entities. A (negative/positive) literal is an atom
that (is/is not) negated. A literal whose terms are constants
is ground. A clause is ground if all of its literals are ground.
The word grounding refers to a ground literal or clause.

An MLN consists of a set of weighted formulae and pro-
vides a way of softening first-order logic by making situations
in which not all clauses are satisfied less likely but not impos-
sible [Richardson and Domingos, 2006]. Let X be the set of
all propositions describing a world (i.e., all ground literals in
the domain), F be the set of all clauses in the MLN, wi be the
weight of clause fi, G fi be the set of all possible groundings of
clause fi, and Z be the normalizing partition function. Then
the probability of a particular truth assignment x to X is given

by the formula P(X = x) = 1
Z

exp
(

∑

fi∈F
wi

∑

g∈G fi
g(x)
)

. The

1We assume the domains contain no logical functions.

value of g(x) is 1 if ground clause g is satisfied and 0 other-
wise.

The  algorithm [Mihalkova et al., 2007], which trans-
fers MLNs by mapping and revising them, is the most closely
related to this work. We will review the mapping portion
of , which we call T and to which we compare
2. T uses the concept of a type-consistent map-
ping. A mapping of a source clause to the target domain
implies a correspondence from the source predicates in the
clause to a subset of the target predicates. Such a corre-
spondence between a source predicate and a target predicate
implicitly defines a mapping between the types of the argu-
ments of the two predicates. A mapping is type-consistent
if, within a clause, a type in the source domain is mapped to
at most one type in the target domain. T maps each
source clause independently of the others by evaluating all
possible type-consistent mappings with the weighted pseudo
log-likelihood score from [Kok and Domingos, 2005]. This
measure assumes that at least one full target mega-example is
provided and uses the closed-world assumption to conclude
that ground facts not listed as true in the data are false. Re-
vising an MLN given the limited target data assumed in our
setting is infeasible. Thus, we will not use the revision por-
tion of , and 2 does not perform revision.

3 The 2 Algorithm

We first describe the algorithm for the extreme single-entity-
centered setting, in which information about only one entity
is available. Then we generalize to more than one entity.
More precisely, for now we assume that the data lists all true
atoms concerning a central entity E, and only those atoms.
Atoms that involve E but are not listed are assumed to be
false. Atoms that do not involve E have unknown values.
2 starts by producing all type-consistent mappings (de-

fined in Section 2) of the source clauses. The key idea of
2 is to find valid source-to-target predicate correspon-
dences by directly evaluating only the mapped clauses whose
performance can be measured on the available target data and
then to use these correspondences to map clauses whose ac-
curacy cannot be directly evaluated. Mapped clauses that can
be directly evaluated are short-range; the rest are long-range.

Definition 1 A clause C is short-range with respect to an
entity of type t iff there exists a variable v that appears in
every literal of C and v represents arguments of type t. A
clause is long-range with respect to E iff it is not short-range.

As an example, suppose we would like to transfer the MLN
in Fig. 2 using the data in Fig. 3, i.e., transfer from a movie
domain to an academic domain. Let us consider one possible
type-consistent mapping of the first clause in Fig. 2, which is
given in line 1.1 of Fig. 4. Note that variable a appears in both
literals of this clause. Therefore, the clause is short-range.
The truth value of any grounding such that a = Bob can be
directly evaluated from the data. However, if we use the sub-
stitution a = Ann, b = Bob, the resulting grounding cannot
be evaluated because the truth-value of is-professor(Ann)
is unknown. We say that the first grounding is verifiable,
whereas the second is not. Now consider one possible map-
ping of the second clause in Fig. 2, given in line 2.1 of Fig. 4.



1 0.7 : worked-for(a, b)⇒ ¬is-director(a)

2 0.8 : in-movie(m, a) ∧ in-movie(m, b) ∧is-director(b)⇒ worked-for(a, b)

Figure 2: Source MLN
is-student(Bob), written-by(Paper1, Bob),

written-by(Paper2, Bob) , advised-by(Bob, Ann)

Figure 3: Target domain data centered around Bob. All listed atoms

are true; atoms about Bob that are not listed are false; the remaining

atoms have unknown values.

This clause concerns relations that go beyond just a single en-
tity, e.g., about papers written by other people and is therefore
long-range.

Algorithm 1 formally describes 2. In line 1, the
weight of a mapped clause is set to the weight of the source
clause from which it was mapped. Because of limited target
data, we do not attempt to re-learn weights or to revise the
mapped clauses.2 In line 3, the short-range mapped clauses
are evaluated, as described in Algorithm 2, which checks
whether the verifiable groundings of short-range clauses are
satisfied in the target data. Clauses that are satisfied at
least Θ proportion of the time are accepted; the rest are
rejected. This procedure automatically rejects clauses that
are not informative. A short-range clause is informative
with respect to a single-entity-centered example if it has
a verifiable grounding in which at least one ground literal
is false. Intuitively, a clause is uninformative if, in ev-
ery possible re-writing of the clause as an implication, the
premises are never satisfied, and so the clause is always triv-
ially true. For example, consider the clause is-student(a)∨
¬advised-by(b, a), which has two verifiable groundings cor-
responding to the substitutions a=Bob, b=Ann, and a=Bob,
b=Bob. It is not informative because all the literals in
its verifiable groundings are true. To develop intuition for
the significance of this, consider one of the groundings:
is-student( Bob) ∨ ¬advised-by(Ann, Bob). We can re-
write it as ¬is-student(Bob) ⇒ ¬advised-by(Ann, Bob) or
equivalently as advised-by (Ann, Bob) ⇒ is-student(Bob).
In both cases, the premises, or antecedents, of these clauses
do not hold, and thus the clauses cannot be used to draw in-
ferences that can be tested. So, judgements about mappings
based on such clauses are likely to be misleading.

Once the short-range clauses are evaluated, in line 5 of Al-
gorithm 1, 2 evaluates the long-range ones, based on the
mappings found to be useful for short-range clauses. A long-
range clause is accepted if all source-to-target predicate map-
pings implied by it either led to accepted short-range clauses
(support by evaluation) or were never considered by Al-
gorithm 2 (support by exclusion). More precisely, let CS

and CL be short-range and long-range mapped clauses respec-
tively. If the set of source-to-target predicate correspondences
implied by CS is a subset of those implied by CL, we say that
the literals of CL that appear in CS are supported by eval-
uation. A correspondence between source predicate PS and
target predicate PT is supported by exclusion with respect to
a set of mapped short-range clauses S if PS and PT do not ap-
pear in any of the source-to-target predicate correspondences
implied by the clauses in S. The goal of support by exclusion
is to allow for predicates that do not appear in the short-range

2
T also directly copies the weights.

1.1 advised-by(a, b)⇒ ¬is-professor(a)

worked-for→ advised-by, is-director→ is-professor

1.2 advised-by(a, b)⇒ ¬is-student(a)

worked-for→ advised-by, is-director→ is-student

2.1 written-by(m, a) ∧ written-by(m, b)∧

is-professor(b)⇒ advised-by(a, b)

worked-for→ advised-by, is-director→ is-professor,

in-movie→ written-by

2.2 written-by(m, a) ∧ written-by(m, b)∧

is-student(b)⇒ advised-by(a, b)

worked-for→ advised-by, is-director→ is-student,

in-movie→ written-by

Figure 4: Example mapped clauses. The predicate correspondences

used to map each clause are listed under it.

Algorithm 1 2 algorithm

Input: SrcMLN: Source Markov logic network

TE: Target data centered on the entity E

P: Set of predicates in the target domain

Θ: Truth threshold for accepting a short-range clause

Procedure:

1: Generate TarMap, the set of all possible type-consistent mappings of the clauses in

SrcMLN. Each mapped clause gets the weight of its corresponding source clause.

2: Split the clauses in TarMap into sets of short-range clauses, S, and long-range

clauses, L.

3: S′ = filter-short-range(S,Θ) (Algorithm 2)

4: Add all clauses from S′ to Result

5: L′ = filter-long-range(L,S′) (Algorithm 3)

6: Add all clauses from L′ to Result

7: Let AC be the set of all clauses in Result mapped from source clause C with

weight wC .

8: Set the weight of each a ∈ AC to wC/|AC |.

clauses to be mapped. Although support by exclusion may
seem too risky, i.e., if a pair of completely unrelated source
and target predicates are mapped to each other, in our experi-
ence the type consistency constraint and the requirement that
neither of the predicates was mapped to any other predicate
were strong enough to safeguard against this.

We now illustrate Algorithm 1 up to line 7. Fig. 4 lists some
mappings of the clauses in Fig. 2, along with the source-to-
target predicate correspondences implied by them. Clauses
1.1 and 1.2 are (informative) short-range, and 2.1 and 2.2 are
long-range. Let Θ = 1. All verifiable groundings of clause
1.1 are satisfied by the target data (given in Fig. 3). Thus, this
clause is accepted and the predicate correspondences found
by it are useful. Clause 1.2 is rejected because not all of its
verifiable groundings are satisfied by the target data. Thus
S′ contains only clause 1.1. Moving on to the long-range
clauses, we see that predicates advised-by and is-professor
in clause 2.1 are supported by clause 1.1; written-by is sup-
ported by exclusion, so clause 2.1 is accepted. Clause 2.2 is
not accepted because there is no support for is-student(b).

Finally, in lines 7-8 of Algorithm 1 the weight of each
mapped clause MC is divided by the number of mapped
clauses that originated from the same source clause as MC

in order to ensure that none of the source clauses dominates
the resulting model. In preliminary experiments this led to
slightly better performance. The experiments supporting this
conclusion are omitted because of space considerations.

The generalization to more than one entity is easy. The
only difference is that now we have a set of single-entity-
centered training examples, and Algorithm 2 checks the va-
lidity of each short-range clause on each of the examples, ac-
cepting a clause if it holds more than Θ proportion of the time
over all examples. As more entities become known, some of



Algorithm 2 filter-short-range(S,Θ)

1: S′ = ∅
2: for each C ∈ S do

3: if C is informative and the proportion of verifiable groundings of C that are true

is ≥ Θ then

4: Add C to S′

5: Return S′

Algorithm 3 filter-long-range(L,S′)

1: L′ = ∅
2: for each LR ∈ L do

3: if All literals in LR are supported either by evaluation based on the clauses in S′

or by exclusion then

4: Add LR to L′

5: Return L′

the long-range clauses become directly verifiable. However,
in preliminary experiments (not presented because of space),
we found that directly evaluating long-range clauses in this
way does not significantly help performance, i.e., additional
entities lead to improved accuracy mostly because they allow
for more reliable evaluation of the short-range clauses.

Choice of Representation The only characteristic of
MLNs crucial to 2 is that MLNs use first-order clauses
that are interpreted in the standard way for first-order logic,
i.e. by evaluating their truth values. 2 would therefore
be applicable to any relational model based on a traditional
interpretation of first-order logic, such as purely logical rep-
resentations, stochastic logic programs [Muggleton, 1996],
and  [Dehaspe, 1997]. MLNs have properties which,
while not crucial to 2, contribute to its effectiveness. In
particular, the ability of MLNs to handle uncertainty allows
2 to recover gracefully from an occasional incorrect pred-
icate mapping.

4 Experiments

We first describe methodology common to all experiments
and then discuss the empirical questions we asked.

4.1 Methodology

We compared 2 to T and other baselines in three
benchmark relational domains on social interactions: IMDB,
UW-CSE, and WebKb.3 IMDB is about relations in the
movie business and contains predicates such as director,
actor, movie, workedUnder. The goal is to predict the
workedUnder relation, which takes two arguments of type
person and indicates that the first one acted in a movie di-
rected by the second. UW-CSE is about interactions in
an academic environment and contains predicates such as
student, professor, advisedBy, publication. The goal
is to predict the advisedBy relation, which takes two argu-
ments of type person and indicates that the second one is the
research advisor of the first.

The IMDB and UW-CSE domains have closely related dy-
namics, which, however, are expressed in differing represen-
tations. For example, in IMDB an actor and a director are usu-
ally in a workedUnder relationship if they appear in the cred-
its of the same movie. Analogously, in UW-CSE a student
and a professor are typically in an advisedBy relationship if

3UW-CSE is available from http://alchemy.cs.

washington.edu/. IMDB and WebKb are available from
http://www.cs.utexas.edu/users/ml/mlns/.

they appear in the author list of the same publication. Thus,
an algorithm capable of discovering effective mappings from
the predicates of one domain to those of the other, would be
able to achieve good accuracy via transfer. This example also
demonstrates why data centered around a single entity, or a
handful of isolated entities, cannot support effective learning
from scratch: one of the most useful clauses for predicting
advisedBy involves knowledge about the publications of two
connected entities, i.e., the advisor and the advisee.

We also used the WebKb domain, which contains predi-
cates such as student, faculty, project. Although UW-
CSE may seem more closely related to this domain than to
IMDB, in fact, WebKb does not have a predicate analogous to
advisedBy, which renders it much less useful for transfer. We
note that although some of the predicates occur in more than
one domain under the same name, the systems do not use the
actual predicate names. As sources, we used MLNs learned
with the  algorithm, demonstrated to give good perfor-
mance in the domains we consider [Mihalkova and Mooney,
2007]. We slightly modified  to encourage it to learn
larger models by removing the minWeight threshold and by
treating the clauses learned for each predicate separately. We
call these models learned. For transfer from UW-CSE, we
also used the manually coded knowledge base provided with
that data set. We call it manual4.

The results are reported in terms of two metrics: AUC-
PR and CLL, commonly used for evaluation of MLNs and in
SRL, e.g., [Kok and Domingos, 2005]. AUC-PR is the area
under the precision-recall curve. A high AUC-PR score signi-
fies that the algorithm correctly assigns a higher probability to
the true positives than to the true negatives. AUC-PR is par-
ticularly appropriate for relational domains because it focuses
on how well the algorithm predicts the few true positives and
is not misled by the large number of true negatives. CLL is
the conditional log-likelihood. We report CLL for complete-
ness; however, because we are unable to tune the weights of
the MLN on the limited target data, the CLL may be mislead-
ing. This can happen when the predicted probabilities are cor-
rectly ordered, i.e., true ground atoms have higher probability
than false ones (thus giving a high AUC-PR), but are not close
to 0 or 1 (thus giving a low CLL). At the same time, because
of the large number of true negatives, the CLL can be boosted
by predicting near 0 for every ground atom; so a model that
predicts very low probabilities has a relatively high CLL even
when these probabilities are incorrectly ordered.

We implemented 2 and the baselines as part of the
Alchemy system [Kok et al., 2005], and used the implemen-
tation of T available from http://www.cs.utexas.
edu/users/ml/mlns/. Θ in Algorithm 1 was set to 1. In-
ference during testing was performed on the mega-examples
other than the one supplying training data, iterating over the
available test examples. Within the same experiment, all sys-
tems used the same sequence of training and testing exam-
ples. The performance of a given predicate was evaluated by
inferring probabilities for all of its groundings, given the truth
values of all other predicates in the test mega-example as ev-

4Source MLNs are available from http://www.cs.utexas.
edu/usrs/ml/mlns/ under SR2LR.



Target Source T Scratch 2
IMDB UW-CSE-learned 0.327 0.276 0.452 ↑ ր

IMDB UW-CSE-manual 0.414 0.276 0.577 ↑ ր

IMDB WebKb-learned 0.388 0.276 0.468 ↑ ր

UW-CSE IMDB-learned 0.115 0.108 0.188 ↑ ր

UW-CSE WebKb-learned 0.199 0.108 0.174 ↓ ր

WebKb IMDB-learned 0.164 0.287 0.168 ↑ ւ

WebKb UW-CSE-learned 0.297 0.287 0.295

WebKb UW-CSE-manual 0.276 0.287 0.178 ↓ ւ

Table 1: Average AUC-PR over all target domain predicates.

idence. While training occurs on limited data, we test on a
full mega-example. This is appropriate because the final goal
of transfer is to obtain a model that gives effective predictions
in the target domain as a whole and not just for an isolated
entity. For inference, we used the Alchemy implementation
of MC-SAT [Poon and Domingos, 2006] with the default pa-
rameter settings. Statistical significance was measured via a
paired t-test at the 95% level. As a final note, all systems
we compared ran extremely efficiently and found mappings
in seconds on a standard workstation.

4.2 Overall Performance

The first set of experiments evaluates the relative accuracy of
2 over all predicates in each domain in the most chal-
lenging case when information about a single entity from the
target domain is available. We formed single-entity-centered
examples by randomly selecting as the central entity 10% of
the entities of type person from each mega-example available
in the target domain. This resulted in 29 entities in IMDB, 58
in UW-CSE, and 147 in WebKb. We compared against T-
 and a Scratch baseline that learns with no transfer as fol-
lows. For every ordered pair of known atoms in the available
data, a clause is formed by having the first atom imply the sec-
ond and variablizing consistently. All clauses obtained in this
way are assigned a weight of 1. This baseline generates a set
of informative clauses (in the terminology of Section 3) that
are true in the given data.5 Thus, it can be viewed as a vari-
ation of 2 that transfers only the short-range clauses of a
source model that contains of all possible clauses of length 2.

Tables 1 and 2 list the accuracies for every possible tar-
get/source pair in terms of AUC-PR and CLL respectively.
Significant improvement (degradation) over T is indi-
cated by a ↑ (↓), and significant improvement (degradation)
over Scratch is indicated byր (ւ). In terms of AUC-PR, the
more informative measure, transfer between UW-CSE and
IMDB is always beneficial over learning from scratch, and
2 always has a significant advantage over T. As
expected, transfer to or from WebKb and the other two do-
mains leads to less consistent gains and, in some cases, degra-
dation. 2 is competitive also in terms of CLL, although
in some cases, as discussed earlier, a model that gives sig-
nificant advantages in AUC-PR is at a disadvantage in CLL.

4.3 Focus on Specific Predicates

We have shown that, over all predicates in a domain, 2
can lead to significant gains in accuracy. Next, we study in

5If a clause has groundings that are violated by the data, then our
construction procedure guarantees that there will be another clause
with the same weight of 1, which draws the opposite conclusion.
Thus, clauses that are not always true in the data cancel each other
in pairs during inference.

Target Source T Scratch 2
IMDB UW-CSE-learned -1.692 -4.575 -0.682 ↑ ր

IMDB UW-CSE-manual -0.433 -4.575 -0.502 ↓ ր

IMDB WebKb-learned -0.728 -4.575 -0.872 ↓ ր

UW-CSE IMDB-learned -2.057 -5.708 -0.606 ↑ ր

UW-CSE WebKb-learned -1.191 -5.708 -0.891 ↑ ր

WebKb IMDB-learned -1.731 -3.440 -0.694 ↑ ր

WebKb UW-CSE-learned -1.221 -3.440 -0.643 ↑ ր

WebKb UW-CSE-manual -0.561 -3.440 -0.873 ↓ ր

Table 2: Average CLL over all target domain predicates.

Source T SR-only Scratch 2
UW-CSE-manual 0.726 0.339 0.032 0.982 ↑ ⇑ ր

UW-CSE-learned 0.024 0.215 0.032 0.239 ↑ ⇑ ր

WebKb-learned 0.025 0.023 0.032 0.023 ↓ ւ

Source T SR-only Scratch 2
IMDB-learned 0.010 0.030 0.008 0.030 ↑ ր

WebKb-learned 0.007 0.007 0.008 0.007ւ

Table 3: AUC-PR for workedUnder in IMDB (top) and

advisedBy in UW-CSE (bottom).

greater detail the performance on the workedUnder predicate
in IMDB and advisedBy in UW-CSE, which, as argued ear-
lier, require more data to be learned from scratch, and are best
predicted by long-range clauses. We used the single-entity-
centered instances from Section 4.2 and introduced an addi-
tional SR-Only baseline that uses 2 to transfer only the
short-range clauses, ignoring the long-range ones. This base-
line is used to verify that transferring the long-range clauses
is beneficial. Significant improvement (degradation) of 2
over SR-Only is indicated by a ⇑ (⇓). As shown in Table 3,
when transferring to IMDB from UW-CSE, 2 outper-
forms significantly all other methods. 2 also leads to sig-
nificant gains in transfer from IMDB to UW-CSE, although
in this case 2 is significantly better than SR-Only just
on CLL, equalling its performance on AUC-PR. Transferring
from IMDB to UW-CSE is less beneficial than going in the
opposite direction, from UW-CSE to IMDB, because several
predicates in UW-CSE do not have analogs in IMDB while
most of IMDB’s predicates have a matching predicate in UW-
CSE. As before, transfer from the more distantly related We-
bKb domain produces mixed results.

4.4 Increasing Numbers of Entities

In our final set of experiments, we compared the accuracy of
2 versus that of T on workedUnder and advisedBy,
as information about more entities becomes available. To do
this, we considered 5 distinct orderings of the constants of
type person in each mega-example, and provided the first n to
the systems, with n ranging from 2 to 40 in IMDB, where the
smallest mega-example has 44 constants of type person and
from 2 to 50 in UW-CSE, where the smallest mega-example
has 56 such constants. Each point on the curves is the av-
erage over all training instances with that many known enti-
ties. The results in terms of AUC-PR are shown in Fig. 5.
These curves mirror the CLL results, which are omitted for
space. As can be seen, 2 maintains its effectiveness even
as more data becomes available. Surprisingly, T’s per-
formance actually decreases as more entities become known.
This is due to the fact that a larger number of known enti-
ties translates to a larger number of possible relations among
them. If the known entities are disconnected, T does
not observe any instances in which mappings of the long-
range clauses are helpful and therefore rejects them. Instead,



Source T SR-only Scratch 2
UW-CSE-manual -0.084 -0.066 -6.488 -0.037 ↑ ⇑ ր

UW-CSE-learned -0.385 -0.695 -6.488 -0.727 ↓ ⇓ ր

WebKb-learned -0.728 -0.700 -6.488 -0.700 ↑ ր

Source T SR-only Scratch 2
IMDB-learned -1.767 -0.295 -5.542 -0.280 ↑ ⇑ ր

WebKb-learned -0.757 -0.696 -5.542 -0.696 ↑ ր

Table 4: CLL for workedUnder in IMDB (top) and advisedBy in

UW-CSE (bottom).
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Figure 5: Accuracy on increasing amounts of data on

workedUnder (left) and advisedBy (right).

it accepts mappings of the short-range clauses for which there
is more evidence of usefulness. 2 is not susceptible to
this because it treats long-range and short-range clauses sep-
arately. This effect is not observed in the smaller IMDB do-
main where randomly chosen entities are much less likely to
be disconnected.

5 Related Work

This paper is most closely related to [Mihalkova et al., 2007]

and [Davis and Domingos, 2008], in that it also considers
transfer of MLNs. However, both of these earlier works as-
sume at least one full target domain mega-example is pro-
vided. Mapping source knowledge to a target domain is
also addressed by the structure-mapping engine (SME) [For-
bus and Oblinger, 1990]. SME evaluates predicate mappings
based on a syntactic, structural criterion called systematicity
and does not consider the accuracy of the resulting inferences
in the target data. By contrast,  and 2 evaluate map-
pings primarily based on whether they produce empirically
adequate clauses in the target domain.

6 Conclusion and Future Work

We presented 2, an effective algorithm for mapping
knowledge when target domain data is extremely limited and
consists of a handful of disconnected entities, in the extreme
case just one. This setting has not been studied before de-
spite the fact that successful transfer could have the greatest
impact in it. Our experiments demonstrate 2’s signifi-
cant improvements over T, which, unlike 2, does
not have a mechanism for coping with the large amount of
missing data, as well as over other baselines.

In the future, we plan to experiment with novel ways of
mapping source knowledge, such as mapping different arity
predicates to one another, as well as mapping the arguments
in different orders. Finally, we would like to explore ways
of mapping a conjunction of two source predicates to a sin-
gle target predicate and vice versa, thus performing a sort of
transfer-motivated predicate invention.
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