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Abstract

Statistical relational learning (SRL) algorithms combine ideas from rich knowledge representations,

such as first-order logic, with those from probabilistic graphical models, such as Markov networks, to

address the problem of learning from multi-relational data. One challenge posed by such data is that

individual instances are frequently very large and include complex relationships among the entities.

Moreover, because separate instances do not follow the same structure and contain varying numbers of

entities, they cannot be effectively represented as a feature-vector. SRL models and algorithms have

been successfully applied to a wide variety of domains such as social network analysis, biological data

analysis, and planning, among others. Markov logic networks (MLNs) are a recently-developed SRL

model that consists of weighted first-order clauses. MLNs can be viewed as templates that define Markov

networks when provided with the set of constants present in a domain. MLNs are therefore very powerful

because they inherit the expressivity of first-order logic. At the same time, MLNs can flexibly deal with

noisy or uncertain data to produce probabilistic predictions for a set of propositions. MLNs have also

been shown to subsume several other popular SRL models.

The expressive power of MLNs comes at a cost: structure learning, or learning the first-order clauses

of the model, is a very computationally intensive process that needs to sift through a large hypothesis

space with many local maxima and plateaus. It is therefore an important research problem to develop

learning algorithms that improve the speed and accuracy of this process. The main contribution of

this proposal are two algorithms for learning the structure of MLNs that proceed in a more data-driven

fashion, in contrast to most existing SRL algorithms. The first algorithm we present, RTAMAR, improves

learning by transferring the structure of an MLN learned in a domain related to the current one. It first

diagnoses the transferred structure and then focuses its efforts only on the regions it determines to be

incorrect. Our second algorithm, BUSL improves structure learning from scratch by approaching the

problem in a more bottom-up fashion and first constructing a variablized Markov network template that

significantly constrains the space of viable clause candidates. We demonstrate the effectiveness of our

methods in three social domains.

Our proposed future work directions include testing BUSL in additional domains and extending it

so that it can be used not only to learn from scratch, but also to revise a provided MLN structure. Our

most ambitious long-term goal is to develop a system that transfers knowledge from multiple potential

sources. An important prerequisite to such a system is a method for measuring the similarity between

domains. We would also like to extend BUSL to learn other SRL models and to handle functions.
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1 Introduction

Statistical relational learning (SRL) algorithms combine ideas from rich knowledge representations, such

as first-order logic, with those from probabilistic graphical models, such as Bayesian networks, to address

the problem of learning from multi-relational data. Such data involves multiple entities that participate in

complex relationships. Frequently, individual training instances in the data do not follow the same structure.

Consider, for example, a dataset that describes an academic department and includes information about all

people, courses, and publications, as well as their relationships—who published a particular paper, who

advises a particular student, and who is the instructor of a given course. Because different departments

have varying numbers of students and professors, who publish different numbers of papers, and offer vary-

ing numbers of courses, a traditional feature vector representation would be unnatural and difficult to learn

from. An additional challenge is that individual training instances can be very large because the complex in-

terconnections among the entities they contain make it impossible to break them into smaller pieces. These

arguments demonstrate that traditional machine learning classification techniques developed for feature vec-

tor representations are inadequate for multi-relational data, and new models and algorithms for learning and

inference are needed when dealing with such data.

Apart from posing an interesting intellectual challenge, SRL is also very important in practice. SRL al-

gorithms have been applied to a variety of problems including information extraction from natural language

(e.g., Bunescu & Mooney, 2007), document mining (e.g., Popescul et al., 2003), social network analysis

(e.g., Richardson & Domingos, 2006), entity resolution (e.g., Singla & Domingos, 2006), planning (e.g.,

Guestrin et al., 2003), biological data analysis (e.g., Perlich & Merugu, 2005), medical diagnosis (e.g.,

Davis et al., 2007), and others (Getoor & Diehl, 2005).

Markov logic networks (MLNs) (Richardson & Domingos, 2006) are a powerful and conceptually clean

SRL model that can be roughly described as consisting of a set of weighted first-order clauses. Given the

constants in a particular domain, MLNs can be grounded into Markov networks that can then be used to infer

probabilities for a set of query literals given the truth values of a set of evidence literals. MLNs are capable of

representing all possible probability distributions over a finite number of objects (Richardson & Domingos,

2006). Moreover, as demonstrated by Richardson (2004), MLNs subsume all SRL representations that can

be formed as special cases of first-order logic or probabilistic graphical models. These include several

widely used models, such as probabilistic relational models (Getoor et al., 2001) and relational Markov

networks (Taskar, Abbeel, & Koller, 2002). There is also a publicly available codebase for MLN learning

and inference (Kok et al., 2005). For the reasons discussed above, we have chosen MLNs as the model on

which the research presented in this proposal is based.

The representational power of MLNs comes at a cost: structure learning, or learning the first-order

clauses of the model, is a very computationally intensive process that needs to sift through a large hypothesis

space with many local maxima and plateaus. It is therefore an important research problem to develop

learning algorithms that improve the speed and accuracy of this process. The main contribution of this

proposal are two algorithms for learning the structure of MLNs. A distinguishing characteristic of our

methods is that, unlike most SRL algorithms, they use the data to narrow down the search space for possible

structures, thus proceeding in a more bottom-up way. We demonstrate that, when carefully designed, more

data-driven algorithms can learn more accurate structures significantly faster. Our proposed techniques are

therefore an important step towards the ability to take advantage of the full expressive power of MLNs.

The first algorithm we present uses knowledge transfer to improve structure learning in a target domain.

Rather than starting learning from scratch, transfer learning algorithms aim to improve their accuracy on

a target task by utilizing knowledge acquired while learning in previous source domains (Thrun & Pratt,
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1998). The specific approach to transfer we take is through mapping and revision. In the first stage, the

MLN structure learned in the source domain is mapped to the predicates of the target domain. For example,

if transferring from a movie domain to an academic domain, during this stage the algorithm might find that

directors in the movie business are like professors in academia, that actors are like students, and that movies

are like publications. In the second stage of the process, the mapped source structure is revised so that it

better fits the training data in the target domain. If the source and target tasks are related, we expect that this

process will save training time and will improve the accuracy of the learned model, particularly when data in

the target domain is scarce. In this proposal, we focus on the second, revision, stage of the transfer process

and present an algorithm that revises a mapped source structure. Our algorithm starts by autonomously

diagnosing the mapped source structure in order to determine which of its portions can be reused unchanged

in the target domain and which need to be updated. This is done by performing inference over the transfered

model in the target domain and observing the accuracy of the individual clauses. The search for revisions is

then limited to the incorrect portions of the source structure. Our experiments in several relational domains

demonstrate that the diagnostic information allows our algorithm to significantly speed up learning over the

current state-of-the-art MLN structure learner (Kok & Domingos, 2005), while maintaining an accuracy that

is at least as high. These improvements are observed both when the existing algorithm starts from scratch

and when it is provided with the source MLN.

The second algorithm we present is a novel approach to learning MLN structure from scratch called

BUSL for Bottom-Up Structure Learning. Our approach breaks away from the top-down paradigm common

in probabilistic graphical model learning where a greedy search through the hypothesis space is conducted

by systematically generating a large number of candidates at each iteration, scoring them according to a

probabilistic measure, and keeping the most promising ones from which new candidates are generated at

the next iteration (e.g., Heckerman, 1995). Instead, BUSL proceeds in a more bottom-up fashion by first

constructing a Markov network template, a variablized Markov network, whose nodes consist of chains of

one or more literals and serve as clause building blocks. The Markov network template is used to restrict

the search space for clauses by requiring that all literals in a clause be part of a clique in the template. This

restriction is motivated by the observation that the clauses in an MLN define functions over the cliques of

the Markov network obtained by grounding the MLN for a particular domain. Our experiments in three

real relational domains demonstrate that this approach dramatically reduces the search space for clauses

and attains a significantly higher accuracy than the current best MLN structure learning algorithm (Kok &

Domingos, 2005), which follows a top-down approach.

Our short-term future work plans include testing BUSL in additional domains and extending it so that it

can be used to revise a provided MLN. One possible way of performing revision with BUSL is by following

the strategy used in our existing transfer learner and first diagnosing the source MLN. For example, by

comparing the Markov network templates from the source and target domains, the algorithm can determine

where there are newly-emerging or newly-disappearing dependencies and focus learning on those parts of

the space.

Our longer-term research directions include:

• Structure learning with functions

The capability to learn models that include functions is absent in both BUSL and previous work on

structure learning for MLNs (Kok & Domingos, 2005). This ability would allow BUSL to learn models

that take full advantage of the expressiveness of first-order logic and could be achieved by using ideas

from least general generalizations, which includes a principled way of handling functions (Lavrac̆ &

Dz̆eroski, 1994).
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• Transfer learning from multiple potential sources

Our present work on transfer learning has focused on the scenario where the learner is presented with

the target task after learning in a single source domain. It assumes that the source and target tasks

are related enough so that transfer is beneficial. A more challenging and interesting scenario is one

in which the learner has compiled a library of previous training experiences. When faced with a new

problem, it first needs to determine which of its previous domains are most closely related to the

current one and transfer the knowledge only from them. This is related to the TC algorithm of Thrun

and O’Sullivan (1996).

• Extensions to BUSL for learning with other models

Our encouraging results with BUSL suggest that a similar learning technique can be applied to other

SRL models, most notably Bayesian logic programs, which are first-order analogs to Bayesian net-

works (Kersting & De Raedt, 2001).

2 Background and Related Work

The research described in this document draws on several diverse bodies of work within artificial intelli-

gence. In this section we give a brief overview of each of these areas.

2.1 First-Order Logic

First-order logic provides an expressive language for describing the features and relations that hold in an

environment. It distinguishes among four types of symbols—constants, variables, predicates, and functions

(Russell & Norvig, 2003). Constants describe the objects in a domain and can have types. For example, a

domain may contain the constants jack and jill of type person and male and female of type gender. Variables

act as placeholders to allow for quantification. Predicates represent relations in the domain, such as Worked-

For. Function symbols represent functions over tuples of objects. The arity of a predicate or a function is

defined as the number of arguments it takes. These arguments can also be typed, thus restricting the type

of constant that can be used. We will denote constants by strings starting with lower-case letters (i.e. jill),

variables by single upper-case letters (i.e A, B), and predicates by strings starting with upper-case letters

(i.e. WorkedFor). Sets of variables will be denoted with bold upper-case letters (i.e. A,B).

Example: As a running example, we will use the following simplified version of one of our test domains.

The domain contains facts about individuals in the movie business, describing their profession (Actor(A)

or Director(A)), their relationships, and the movies on which they have worked. The WorkedFor(A, B)

predicate specifies that person A worked on a movie under the supervision of person B, whereas the Movie(T,

A) predicate specifies that individual A appeared in the credits of movie T . Here A, B, and T are variables.

Actor and Director each have one argument of type person; WorkedFor has two arguments of type person;

and Movie has two arguments where the first one is of type movieTitle and the second one is of type

person. Our example domain has the constants brando and coppola of type person, and godFather of type

movieTitle.

A term is a constant, a variable, or a function that is applied to terms. Ground terms contain no variables.

An atom is a predicate applied to terms. A positive literal is an atom, and a negative literal is a negated atom.

We will use the term gliteral to refer to a ground literal, i.e. one containing only constants, and vliteral to

refer to a literal that contains only variables. A clause is a disjunction of positive and negative literals.
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Ground clauses contain only gliterals. The length of a clause is the number of literals in the disjunction.

A definite clause is a clause with exactly one positive literal, called the head, whereas the negative literals

compose the body. A Horn clause is a clause with at most one positive literal. A world is an assignment

of truth values to all possible gliterals in a domain. If the closed-world assumption is made, only the true

gliterals need to be listed; under this assumption all unlisted gliterals are assumed to be false. For the

remainder of this document, we will make the closed-world assumption.

Example: For example, WorkedFor(A, B) is a vliteral, while WorkedFor(brando,coppola) is a gliteral. The

following clause is definite because it contains exactly one positive literal:

Movie(T,B) ∨¬ Movie(T,A) ∨¬ WorkedFor(A, B).

Using the fact that q∨¬p is logically equivalent to p ⇒ q, we can rewrite this clause in a more human-

readable way, without modifying its meaning, as follows:

Movie(T, A) ∧ WorkedFor(A, B) ⇒ Movie(T,B).

Note that every definite clause of length at least 2 can be rewritten as a conjunction of positive literals that

serve as the premises (the body) and a conclusion consisting of a single positive literal (the head).

One possible grounding of the above clause is:

Movie(godFather, brando) ∧ WorkedFor(brando, coppola) ⇒ Movie(godFather,coppola).

In fact, we can rewrite any clause as an implication. Consider, for example, the following clause, which is

neither Horn, nor definite because it contains more than one positive literal:

Actor(A) ∨¬ Movie(T, A) ∨ Director(A)

This clause can be rewritten as an implication in several ways, depending on what literal we would like to

serve as the conclusion:

¬Actor(A) ∧ Movie(T, A) ⇒ Director(A)

Movie(T, A) ∧¬ Director(A) ⇒ Actor(A)

¬ Actor(A) ∧¬ Director(A) ⇒¬ Movie(T, A)

We will call the literals to the left of the implication premises or antecedents. The literal on the right of the

implication will be called the conclusion. These implication rewrites will be helpful in Section 3.

2.2 Inductive Logic Programming

Inductive logic programming (ILP) is an area within machine learning that studies algorithms for learning

sets of first-order clauses (Lavrac̆ & Dz̆eroski, 1994). Usually, the task is to learn rules for a particular target

predicate, such as WorkedFor, given background knowledge. This background knowledge may consist either

of general clauses, or, more commonly, of a list of the true gliterals of all predicates in the domain except

the target predicate. The negative and positive examples are provided by the true and false gliterals of the

target predicate (i.e. in our case WorkedFor). The form learned rules can take is frequently restricted by

demanding that they be definite clauses (e.g., Richards & Mooney, 1995) or by allowing the user to impose

some other declarative bias (e.g., De Raedt & Dehaspe, 1997). By performing techniques such as resolution

on the learned clauses, new examples can be classified as positive or negative.
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2.2.1 Top-Down ILP

Top-down ILP algorithms (e.g., Quinlan, 1990; De Raedt & Dehaspe, 1997) search the hypothesis space

by considering, at each iteration, all valid refinements to a current set of candidate hypotheses. These

candidates are then evaluated based on how well they cover positive examples and exclude negatives, a set

of well-performing ones is greedily selected, and the process continues with the next iteration. In addition

to classification accuracy, several other heuristics for scoring, or evaluating, candidates have been used. For

example, FOIL uses an information theoretic measure of the information gained by adding a literal to a

candidate clause (Quinlan, 1990); whereas CLAUDIEN uses a measure that takes into account the length of

the clause (De Raedt & Dehaspe, 1997). In summary, top-down ILP techniques use the data only to evaluate

candidate hypotheses but not to suggest ways for forming new candidates.

2.2.2 Bottom-Up ILP

Bottom-up ILP algorithms start with the most specific hypothesis and proceed to generalize it until no

further generalizations are possible without covering some negative examples (Lavrac̆ & Dz̆eroski, 1994).

For example, the initial hypothesis may be a set of rules where each rule’s premises are simply a conjunction

of the true gliterals in the background knowledge, and the conclusion is one of the positive examples. One

way of generalizing this initial set of clauses is via the technique of least general generalization (LGG)

(Plotkin, 1970), which can be intuitively understood as the most cautious, or conservative, generalization.

The LGG of two clauses c1 and c2, LGG(c1,c2) is a clause formed by matching every possible pair of

literals, one from c1 and one from c2, and applying an LGG to them if they are compatible. Two literals

are compatible if they are of the same predicate and are both either negative or positive. The LGG of two

compatible literals is a literal in which each argument is formed as an LGG of the corresponding arguments

from the original literals. For example, LGG(a,a) = a, and LGG(a,b) = A where a and b are constants and

A is a variable.

The technique of LGG is appealing because it also provides a principled way of dealing with functions.

The LGG of two functions f1 and f2 is defined as follows:

LGG( f1(x1, . . . ,xn), f2(y1, . . . ,ym)) =

{

V if f1 6= f2

f (LGG(x1,y1), . . . ,LGG(xn,yn)) if f = f1 = f2

In words, the LGG of two different functions is a variable, whereas the LGG of two functions that are the

same is the function of the LGG of each pair of corresponding arguments.

Example: As an example, consider the LGG of the following two clauses, where directorOf(m) is a

function that returns the director of movie m:

Actor(brando) ∧ Movie(godFather, brando) ⇒ WorkedFor(brando, directorOf(godFather))

Actor(brando) ∧ Movie(streetcar, brando) ⇒ WorkedFor(brando, directorOf(streetcar))

The LGG of these two clauses is

Actor(brando) ∧ Movie(A, brando) ⇒ WorkedFor(brando, directorOf(A))

Note that LGG is cautious in the sense that it generalizes constants to variables only if it observes at least

two different constants in corresponding gliterals. This is why the constant brando was kept in the resulting

clause.
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One popular ILP system that uses LGG is GOLEM (Muggleton & Feng, 1992). LGG has also been used

by Thomas (2003) to develop an algorithm that extracts information from hypertext documents.

An alternative method for bottom-up ILP is inverse resolution (Lavrac̆ & Dz̆eroski, 1994), in which

the basic idea is to start from a positive example in the data and attempt to construct rules from which the

example can be derived using resolution.

In summary, bottom-up ILP algorithms take stronger guidance from the data, which is also used to

propose clause candidates. This is in contrast with top-down algorithms, which use the data only to evaluate

candidate clauses.

2.2.3 Hybrid Approaches

Hybrid approaches (e.g., Zelle, Mooney, & Konvisser, 1994; Muggleton, 1995) aim to exploit the strengths

of top-down and bottom-up techniques while avoiding their weaknesses. Because bottom-up techniques

generalize from single examples, they are very sensitive to outliers and noise in the training data; however,

because many bottom-up techniques employ LGGs, they are better-suited for handling functions. Similarly,

top-down techniques can better make use of general background knowledge to evaluate their hypotheses,

but the greedy search through the hypothesis space can lead to long training times.

For example, Zelle et al. (1994) present an approach, CHILLIN, that successfully improves accuracy

over both a purely top-down and a purely bottom-up learner by combining ideas from these two paradigms.

CHILLIN uses LGGs to form initial clauses and refines them further by searching for additional antecedents

in a top-down way, as well as inventing new predicates that are necessary in order to express the target

concept concisely.

Relational pathfinding (RPF), developed by Richards and Mooney (1992), is another hybrid approach

to clausal discovery. RPF views the relational domain as a graph G in which the constants are the vertices

and two constants are connected by an edge if they appear together in a true gliteral. Intuitively, RPF forms

definite clauses in which the head is a particular true gliteral, and the body consists of gliterals that define a

path in the relational graph G. These clauses are then variablized. More specifically, RPF searches G for an

alternate path of length at least 2 between any two constants, c1 and c2, connected by an edge. If such a path

is found, it is transformed into a clause as follows. First, a negative literal is created for each predicate that

labels an edge in the path and is grounded with the constants connected by this edge. In addition, a positive

literal is constructed in this way for the edge connecting c1 and c2. The resulting clause is a disjunction of

these literals with constants replaced by variables. This is the bottom-up part of the process. Hill-climbing

search, which proceeds in a top-down fashion, is used to further improve the clauses by possibly adding

unary predicates.

Example: Suppose Figure 1 lists all true facts in the domain. Figure 2 shows the relational graph for

this domain. The highlighted edges form an alternative path between brando and coppola, from which we

construct the clause:

WorkedFor(brando,coppola) ∨¬Movie(godFather,brando) ∨¬Movie(godFather,coppola).

After variablizing, this clause becomes:

WorkedFor(A,B) ∨¬Movie(T,A) ∨¬Movie(T,B).

This can be rewritten as

Movie(T,A) ∧ Movie(T,B) ⇒ WorkedFor(A,B).

Hill-climbing search might lead to the addition of ¬Actor(A) and ¬Director(B) to the disjunction.
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Director(coppola) Actor(brando)

Movie(godFather, brando) Movie(godFather, coppola)

Movie(rainMaker, coppola) WorkedFor(brando, coppola)

Figure 1: Example relational database

Figure 2: Example of a relational graph

2.2.4 Revision of Logic Programs

The ILP algorithms discussed so far all learn from scratch. Sometimes, however, an initial, somewhat

incorrect, first-order logic theory is provided, along with training data, and the task is to revise the theory so

that it fits the training data by modifying it as little as possible. This is the problem addressed by Richards

and Mooney (1995). The resulting system, FORTE, can be viewed as a hybrid revision algorithm. FORTE

is a top-down learner in that it uses hill-climbing search to improve the provided theory. However, rather

than attempting all possible refinements to the provided clauses, FORTE starts in a bottom-up fashion and

focuses its search by first diagnosing the possible sources of errors in the provided theory. It does this by

attempting to prove positive examples and observing where the clauses fail. These points of failure are

marked as revision points and are the only places in the original theory where attempts for improvements

are made.

In a more recent vein of work, Goldsmith and Sloan (2005) present revision algorithms for restricted

classes of Horn clauses. They give an algorithm for the case of depth-one acyclic Horn clauses in which

variables that occur as a head in a clause do not appear in the body of any other clause. A second algorithm

deals with the restricted case of Horn clauses with unique heads. The introduction of these subclasses of

Horn clauses, allows the authors to give theoretical guarantees of the efficiency of their algorithms.

As we will discuss later, revision algorithms can be used in transfer learning settings when the initial

first-order logic theory was learned in a previous domain, rather than being provided by a human.

All the approaches discussed in Section 2.1 result in the construction of first-order theories. Even though

this representation is highly expressive, it is not well-suited to modeling uncertain domains and cannot

provide estimates of the probability that a certain fact is true. We next turn to an overview of probabilistic

graphical models, which provide an important step towards modeling uncertainty.

2.3 Probabilistic Graphical Models

Probabilistic graphical models provide a compact way of representing a joint probability distribution over

sets of variables. Assuming that each variable can take on at most v values, any joint probability distribution
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can be expressed by listing the probability for every possible combination of assignments of values to the

variables. If the total number of variables is n, this would require one to specify vn parameters. Probabilistic

graphical models take advantage of the observation that frequently a given variable is directly dependent on

only a small subset of the variables, and this subset renders it conditionally independent of the rest. Thus,

in a complete listing of probabilities for all possible value combinations, many of the parameters will have

the same value. Probabilistic graphical models avoid this redundancy by explicitly modeling the conditional

independencies in the domain. The variables are represented as nodes in a graph and the edges indicate

dependencies among the variables. Probabilities are computed via a set of functions defined over the graph.

For example, Bayesian networks (Pearl, 1988) are a popular model represented as a directed acyclic graph,

in which the joint probability is computed using a set of conditional probability functions, one for each node

in the graph, that specify the probability of that node taking a particular value given the values of its parents

in the graph. Another popular probabilistic graphical model are Markov networks (Pearl, 1988), which, in

contrast to Bayesian networks, are represented by undirected graphs and are therefore easier to learn because

one does not need to ensure that the resulting graph is acyclic. We next describe in detail Markov networks

because they will be important for understanding the work presented later in this document.

2.3.1 Markov Networks

A Markov network (Pearl, 1988), also known as a Markov random field (Della Pietra, Della Pietra, &

Lafferty, 1997), is represented as an undirected graph G in which there is a vertex for each variable in the

domain. The semantics of G is that each variable X is conditionally independent of all other variables, given

its immediate neighbors. Because of its importance, the set of immediate neighbors of X is called a Markov

Blanket of X and we will denote it with MBX .

The probability distribution defined by a Markov network is described by a set of nonnegative functions

gi(Ci) where Ci consists of the variables in the i-th maximal clique of G. The probability of assigning

particular values x to the set of variables X in G (with the cliques having values ci) is:

P(X = x) =
∏i gi(ci)

∑y ∏i gi(ci)
(1)

The function in the denominator, known as the partition function, simply sums over the values of the nu-

merator for all possible value assignments to the variables and serves as a normalizing term. Intuitively, it

is possible to represent a probability distribution that preserves the conditional independencies captured by

G as a product of functions over only the cliques of G because a variable influences directly only its neigh-

boring variables. This intuition has been formalized as the Hammersley Clifford Theorem (Hammersley &

Clifford, 1971), which states that if P is a strictly positive probability distribution (i.e. every event has some

chance of happening), then it can be expressed as a product of functions over the cliques of a graph GP if

and only if every conditional independence implied by the structure of GP exists in P.

Markov networks are most commonly represented as log-linear models where the functions gi(Ci) take

the form exp(λi fi(Ci)). The λi-s are called weights, and the fi-s are called features. With this formulation,

equation 1 can be rewritten as follows:

P(X = x) =
exp(∑i λi fi(Ci))

∑y exp(∑i λi fi(Ci))
(2)

Apart from their convenience, log-linear models are desirable also because it can be shown that if such a

model is used, optimizing the weights in order to maximize the data likelihood, leads to the model with the

highest entropy (Berger, 1996; Della Pietra et al., 1997).
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2.3.2 Learning of Markov Networks

If the features are given, one effective way of learning the weights is by using gradient descent because,

for fixed features, optimization of the weights is over a convex space (Della Pietra et al., 1997). One

common approach to learning the features of Markov networks, also known as structure learning, is by

proceeding in iterations where in each iteration the feature that gives the best improvement in data fit is

greedily added. For example, Della Pietra et al. (1997) choose the feature that gives the largest decrease in

Kullback-Leibler divergence between the empirical distribution of the data and the distribution represented

by the current model. It is also common to add a term that penalizes complex models (Lee, Ganapathi,

& Koller, 2006). These types of approaches are feature-centric in that they focus on selecting the features

that give the best immediate advantage, without considering the underlying graph structure and the implied

conditional independencies among the variables.

An alternative approach to learning Markov networks is to proceed in a graph-centric way by first

focusing on establishing a graph structure that asserts the existing conditional independencies among the

variables. One such algorithm, which we will use in one of our methods in Section 4, is the Grow-Shrink

Markov Network (GSMN) algorithm by Bromberg, Margaritis, and Honavar (2006). For each variable

X , GSMN goes through two stages—grow and shrink. In the grow phase, the algorithm incrementally

constructs the Markov blanket, MBX , of each variable X . Initially MBX is empty. The algorithm goes

through all other nodes and at each iteration, uses the χ2 test to determine whether X and Y are conditionally

independent given MBX , where Y is the current potential addition to MBX . If the two variables are not

conditionally independent, Y is added to MBX . In the shrink phase, GSMN goes through each node Y ∈MBX

and attempts to remove it by testing whether X and Y are conditionally independent given MBX \Y . After

going through the grow and shrink stages for each node, GSMN enters a collaboration phase in which the

algorithm ensures that for all pairs of nodes X and Y , if Y ∈ MBX , then X ∈ MBY .

Graph-centric algorithms for learning of other probabilistic graphical models include SGS and PC

(Spirtes, Glymour, & Scheines, 2001) and Margaritis and Thrun’s (2000) work that learn Bayesian net-

works based on independence tests among the variables, as well as the work of Abbeel, Koller, and Ng

(2006) that constructs Markov blankets using conditional entropy.

Probabilistic graphical models can effectively represent probability distributions over a set of variables.

However, they can capture dependencies only over a fixed set of (propositional) variables and cannot con-

cisely model generally valid relationships that hold over large groups of objects. We will next turn to a short

description of statistical relational learning which aims at overcoming this problem by incorporating ideas

from first-order logic, while still maintaining the advantages of probabilistic graphical models.

2.4 Statistical Relational Learning

Statistical relational learning (SRL) (Getoor & Taskar, 2007) combines ideas from first-order logic and

probabilistic graphical models to develop learning models and algorithms capable of representing complex

relationships among entities in uncertain domains. As opposed to traditional classification where it is as-

sumed that each testing instance is independent of the rest, SRL is best suited to situations in which the

entities to be classified are interrelated and the label of one affects the classification of the remaining ones in

some non-trivial way. Moreover, SRL addresses the case where learning occurs from multi-relational data,

and thus training instances have varying numbers of entities and relations.

Some popular SRL models include probabilistic relational models (PRMs) (Getoor et al., 2001) and

Bayesian logic programs (BLPs) (Kersting & De Raedt, 2001), which are both relational analogs to Bayesian
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networks; and relational Markov networks (RMNs) (Taskar et al., 2002) and Markov logic networks

(Richardson & Domingos, 2006), which are relational analogs to Markov networks.

In the remainder of this subsection, we will describe in detail Markov logic networks, which are the SRL

model on which the work in this proposal is focused. As discussed in the Introduction, the choice of this

model is motivated by the fact that it is highly expressive and subsumes all SRL models that can be formed

as special cases of first-order logic and probabilistic graphical models.

2.4.1 Markov Logic Networks

Markov logic networks (MLNs), introduced by Richardson and Domingos (2006), consist of a set of first-

order clauses, each of which has an associated weight. MLNs can be viewed as relational analogs to Markov

networks whose features are expressed in first-order logic. In this way MLNs combine the advantages

of first-order logic with those of probabilistic graphical models while avoiding the drawbacks of the two

representations. In particular, the expressive power of first-order logic enables MLNs to represent complex

general relationships and to reason about variable numbers of entities using the same model. On the other

hand, because the first-order logic features are embedded in the framework of probabilistic graphical models,

MLNs avoid the brittleness of pure first-order logic by making worlds that violate some of the clauses less

likely but not altogether impossible.

We next provide a formal description of MLNs. Let X be the set of all propositions describing a world

(i.e. these are all possible gliterals that can be formed by grounding the predicates with the constants in the

domain), F be the set of all first-order clauses in the MLN, and wi be the weight associated with clause

fi ∈ F . Let G fi
be the set of all possible groundings of clause fi with the constants in the domain. Then, the

probability of a particular truth assignment x to X is given by the formula (Richardson & Domingos, 2006):

P(X = x) =
exp

(

∑ fi∈F wi ∑g∈G fi
g(x)

)

∑y exp
(

∑ fi∈F wi ∑g∈G fi
g(y)

) (3)

The value of g(x) is either 1 or 0, depending on whether g is satisfied. Thus the quantity ∑g∈G fi
g(x)

simply counts the number of groundings of fi that are true given the current truth assignment to X. The

denominator is the normalizing partition function. Intuitively wi determines how much less likely is a

world in which a grounding of fi is not satisfied than one in which it is satisfied. The first-order clauses

are commonly referred to as structure. Figure 3 shows a simple MLN that provides an example for our

simplified movie domain. Note that the first-order formulas do not have to have any particular form, i.e.

they are not restricted to being definite.

0.7 Actor(A) ⇒¬Director(A)
1.2 Director(A) ⇒¬WorkedFor(A,B)
1.4 Movie(T,A)∧WorkedFor(A,B) ⇒ Movie(T,B)

Figure 3: Simple MLN for the sample domain

To perform inference over a given MLN, one needs to ground it into its corresponding Markov network.

As described by Richardson and Domingos (2006), this is done as follows. First, all possible gliterals in

the domain are formed, and they serve as the nodes in the Markov network. The edges are determined by

the groundings of the first-order clauses: gliterals that participate together in a grounding of a clause, are
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connected by an edge. Thus, nodes that appear together in a ground clause form cliques. For example,

Figure 4 shows the ground Markov network corresponding to the MLN in Figure 3 using the constants

coppola and brando of type person and godFather of type movieTitle. It is also useful to note the similarity

between equation 3 and equation 2. MLNs can be considered as a concise and general way of specifying

Markov networks in which there is a feature for each grounding of each clause, and features that correspond

to the same unground clause have the same weight.

One technique that can be used to perform inference over the ground Markov network is Gibbs sampling

(Richardson & Domingos, 2006). The goal of sampling is to compute the probability that each of a set of

query gliterals is true, given the values of the remaining gliterals as evidence. Gibbs sampling starts by

assigning a truth value to each query gliteral. This can be done either randomly or by using a weighted

satisfiability solver such as MaxWalksat (Kautz, Selman, & Jiang, 1997) that initializes the truth values to

maximize the sum of the weights. It then proceeds in rounds to re-sample a value for gliteral X , given the

truth values of its Markov blanket MBX (i.e. the variables with which it participates in ground clauses),

using the following formula to calculate the probability that X takes on a particular value x.

P(X = x|MBX = m) =
eSX (x,m)

eSX (0,m) + eSX (1,m)
. (4)

Here, SX(x,m) = ∑gi∈GX
wigi(X = x,MBX = m), where GX is the set of ground clauses in which X appears

and m is the current truth assignment to MBX . Efficiency can be improved by including only the query

gliterals and those in the Markov blanket of a gliteral with an unknown value, rather than fully grounding

the MLN (Richardson & Domingos, 2006).

An alternative inference approach is MC-SAT that has been shown to outperform Gibbs sampling in

both speed and the accuracy of the returned probability estimates (Poon & Domingos, 2006).

Figure 4: Result of grounding the sample MLN
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2.4.2 Learning of Markov Logic Networks

As with Markov networks, there are two parts to learning an MLN: the weights and the structure. Richardson

and Domingos (2006) propose performing weight learning for a fixed set of clauses using L-BFGS (Liu &

Nocedal, 1989), a second-order optimization procedure. This process is highly efficient.

Structure learning, on the other hand, is very computationally intensive. The current state-of-the-art

MLN structure learning algorithm, due to Kok and Domingos (2005), proceeds in a top-down fashion,

employing either beam search or shortest-first search. We will discuss and compare to the beam search

version, which we will call KD after its authors. The shortest-first search constructs candidates in the same

way but conducts a more complete search, which, however, requires longer training times. KD performs

several iterations of beam search, and after each iteration adds to the MLN the best clause found. Clauses

are evaluated using a weighted pseudo log-likelihood measure (WPLL), introduced in (Kok & Domingos,

2005), that sums over the log-likelihood of each node given its Markov blanket, weighting it appropriately

to ensure that predicates with many gliterals do not dominate the result. The beam search in each iteration

starts from all single-vliteral clauses. It generates candidates by adding a vliteral in each possible way to the

initial clauses, keeps the best beamSize clauses, from which it generates new candidates by performing all

possible vliteral additions, keeps the best beamSize and continues in this way until candidates stop improving

the WPLL. At this point, the best candidate found is added to the MLN, and a new beam search iteration

begins. Weights need to be learned for a given structure before its WPLL can be computed. KD has been

empirically shown to outperform an impressive number of competitive baselines (Kok & Domingos, 2005).

In particular, it performed better than several popular inductive logic programming algorithms and also

outperformed purely probabilistic methods.

2.5 Learning through Revision

Rather than learning from scratch, revision algorithms refine a partially incorrect model that is provided to

them at the start of learning. Revision algorithms have been developed for a variety of learning models.

One such algorithm, FORTE, was described in section 2.2.4. Paes, Revoredo, Zaverucha, and Costa (2005)

extended FORTE to allow it to handle Bayesian logic programs (Kersting & De Raedt, 2001). Both of these

algorithms first diagnose the provided model and then focus the search for revisions on the potentially faulty

regions. An analogous approach is used by Ramachandran and Mooney (1998) for revision of Bayesian

networks where the source networks are instrumented with leak nodes that are then used as indicators for

errors.

If the provided model was learned in a related domain, revision algorithms can be used for transfer

learning, the area of machine learning on which we focus next.

2.6 Transfer Learning

Transfer learning, also known as learning to learn (Thrun & Pratt, 1998), addresses the problem of how to

leverage knowledge from related domains in order to improve the efficiency and accuracy of learning in a

new domain. Transfer learning algorithms have been demonstrated to improve the performance of a variety

of learning algorithms, as we describe next. In this section, we provide a glimpse of the numerous transfer

algorithms that have been developed.
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2.6.1 Multi-task Transfer Learning

Transfer learning has been studied in two main settings. In the multi-task setting, the algorithm is presented

with all domains simultaneously during training and thus can build common structure of the learned models.

For example, in (Caruana, 1997) neural networks with a shared hidden layer are trained on two or more tasks

simultaneously. A related approach is used in (Niculescu-Mizil & Caruana, 2005, 2007) for simultaneous

training of Bayesian networks. Exploiting a similar idea, Ando and Zhang (2005) perform optimization over

a set of tasks simultaneously to find an optimal parameterization of the hypothesis space, and then optimize

a linear predictor from this hypothesis space for the target task.

2.6.2 Single-task Transfer Learning

In an alternative transfer setting, tasks are presented to the learner one by one and the goal is to improve

learning on the current, target, task by utilizing some knowledge acquired in previous learning domains.

For example, Taylor, Stone, and Liu (2005) use the value function learned in a source task to initialize

reinforcement learning in the target task. Guestrin et al. (2003) transfer value functions learned separately

for different objects in a planning domain. Value function transfer is also used by Banerjee and Stone (2007)

to transfer knowledge across game-playing domains by using state features extracted from look-ahead game

trees. Torrey et al. (2005) propose extracting advice from the value function learned in the source task,

which is then provided to a reinforcement learner in the target task. Taylor, Whiteson, and Stone (2007)

propose using policies learned in the source task to direct reinforcement learning in the target task in a more

promising direction.

Transfer learning in the single-task setting has been studied also for other types of machine learning.

One of the earliest approaches, the TC Algorithm by Thrun and O’Sullivan (1996), improves target task per-

formance of a nearest-neighbor algorithm by transferring the distance metrics learned on related problems

over the same feature space. An interesting aspect of the TC algorithm is that rather than assuming that the

previously-encountered tasks are similar, it autonomously determines task relatedness by using a validation

set to estimate how likely it is that a distance metric optimized for a previous task improves performance

on the target task. Bonilla et al. (2006) propose a method for transfer learning for estimation of distribution

algorithms (EDA) in which a solution to an optimization problem is found by progressively developing a

distribution over solutions that estimates the likelihood that a particular solution is optimal. In this work,

transfer is achieved by initializing the EDA algorithm with the solution distribution of previously-solved

problems. This is done by either combining the predictive distributions from all previous problems or from

the k most similar ones, which are found using a k-nearest-neighbor algorithm. Raina, Ng, and Koller (2006)

use several related source tasks to construct the covariance matrix for a Gaussian prior in a text classification

task.

We next present the first contribution of this proposal: an algorithm for transfer learning of MLNs in the

single-task setting.

3 Revising Markov Logic Network Structure for Transfer Learning

The problem of transferring the structure of an MLN from a source to a target domain can be viewed as

consisting of two parts. First, in order to translate the source structure to the target domain, a correspondence

between the predicates of the source domain and those of the target domain needs to be established. Second,

once the source structure has been translated, it needs to be revised in order to adapt it to the target domain.
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Source clause:

Publication(T, A) ∧ Publication(T, B) ∧ Professor(A)

∧ Student(B) ∧¬SamePerson(A, B) ⇒ AdvisedBy(B, A)

Best mapping:

Publication(title,person) → Movie(movie,person)

Professor(person) → Director(person)

Student(person) → Actor(person)

SamePerson(person,person)→ SamePerson(person,person)

AdvisedBy(person,person) → WorkedFor(person,person)

Figure 5: An output of the predicate mapping algorithm

This section focuses on solving the second problem and describes our algorithm for revising the structure

of the source MLN. The algorithm assumes that the predicates in the source structure have been mapped

to the target domain. This is a safe assumption because this mapping capability was developed by Tuyen

Huynh as part of TAMAR, a complete transfer system (Mihalkova, Huynh, & Mooney, 2007). We will call

the mapping portion of TAMAR, MTAMAR. MTAMAR maps individually every source clause to the target

domain. This is done by considering all possible ways of translating the source predicates appearing in the

clause to the predicates in the target domain, while ensuring that the resulting mapping does not cause an

argument type from the source domain to be mapped to more than one type in the target domain. Each

possible valid clause mapping is evaluated using the WPLL score computed on the target data, and the

mapping that achieves the highest score is output. For example, Figure 5 shows a sample output of the

mapping algorithm (Mihalkova et al., 2007).

3.1 Revision of MLN Structure for Transfer

We will call the revision portion of TAMAR, RTAMAR. The skeleton of RTAMAR has three steps and is

similar to that of FORTE (Richards & Mooney, 1995), which revises first-order theories.

1. Self-Diagnosis: The purpose of this step is to focus the search for revisions only on the inaccurate

parts of the MLN. The algorithm inspects the source MLN and determines for each clause whether

it should be shortened, lengthened, or left as is. For each clause C, this is done by considering every

possible implication rewrite of C in which one of the literals is placed on the right-hand side of the

implication and is treated as the conclusion and the remaining literals serve as the antecedents. The

conclusion of a clause is drawn only if the antecedents are satisfied and the clause “fires.” Thus, if

a clause makes the wrong conclusion, it is considered for lengthening because the addition of more

literals, or conditions, to the antecedents will make them harder to satisfy, thus preventing the clause

from firing. On the other hand, there may be clauses that fail to draw the correct conclusion because

there are too many conditions in the antecedents that prevent them from firing. In this case, we

consider shortening the clause.

2. Structure Update: Clauses marked as too long are shortened, while those marked as too short are

lengthened.

3. New Clause Discovery: Using relational pathfinding (RPF) (Richards & Mooney, 1992), new clauses

are found in the target domain.

We next describe each step in more detail.
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3.1.1 Self-Diagnosis

A natural approach to self-diagnosis is to use the transferred MLN to make inferences in the target domain

and observe where its clauses fail. This suggests that the structure can be diagnosed by performing Gibbs

sampling over it. Specifically, this is done as follows. Each predicate in the target domain is examined in

turn. The current predicate under examination is denoted as P∗. Self-diagnosis performs Gibbs sampling

with P∗ serving as a query predicate with the values of its gliterals set to unknown, while the gliterals of all

other predicates provide evidence. In each round of sampling, in addition to re-sampling a value for gliteral

X , the algorithm considers the set of all ground clauses GX in which X participates.

Each ground clause C ∈ GX can be placed in one of four bins with respect to X and the current truth

assignments to the rest of the gliterals. These bins consider all possible cases of the premises being satisfied

and the conclusion being correct. We label a clause as Relevant if the premises are satisfied and Irrelevant

otherwise. Similarly, we mark a clause as Good if its conclusion is correct and Bad if the conclusion is

incorrect. The four bins are defined by all possible ways of marking a clause as Relevant/Irrelevant and

Good/Bad.

Let v be the actual value of X . This value is known from the data, even though for the purposes of

sampling we have set it to unknown. As an illustration, we will use some groundings of the clauses in

Figure 6 with respect to the data in Figure 1 (page 10) listing the current truth assignments to the gliterals

(the ones present are true; the rest are false). Figure 6 also lists rewrites of the clauses in implication form

where the implication is with respect to the target predicate. This will be helpful in the exposition of the

algorithm. Let X = Actor(brando) with v = true.

Weight Clausal form Implication form wrt target predicate Actor

1.5 Director(A)∨Actor(A) ¬Director(A) ⇒ Actor(A)

0.1 Movie(M, A)∨¬Actor(A) ¬Movie(M, A) ⇒¬Actor(A)

1.3 ¬WorkedFor(B, A)∨¬Actor(A) WorkedFor(B, A) ⇒¬Actor(A)

0.5 Actor(A)∨¬Movie(M,A)∨¬WorkedFor(A, B) Movie(M, A) ∧ WorkedFor(A, B) ⇒ Actor(A)

Figure 6: Example MLN for diagnosis

• [Relevant; Good] This bin contains clauses in which the premises are satisfied and the conclusion

drawn is correct. For example, let C be ¬Director(brando)⇒Actor(brando). Considering the clausal

form of this formula, Director(brando) ∨ Actor(brando), we can alternatively describe clauses in this

bin as ones which hold true only if X has value v, the value it has in the data.

• [Relevant; Bad] The clauses in this bin are those whose premises are satisfied but the conclusion

drawn is incorrect. For example, let C be ¬Movie(rainMaker, brando) ⇒¬ Actor(brando). Consid-

ering the clausal form, Movie(rainMaker, brando) ∨¬ Actor(brando), we see that this bin contains

clauses that are only satisfied if X has value ¬v, the negation of its correct value in the data.

• [Irrelevant; Good] This bin contains clauses whose premises are not satisfied, and therefore the

clauses do not “fire,” but if they were to fire, the conclusion drawn would be incorrect. For ex-

ample, let C be WorkedFor(coppola, brando) ⇒ ¬Actor(brando). In clausal form this formula is

¬WorkedFor(coppola, brando) ∨¬Actor(brando). Thus a more mechanical way of describing the

clauses in this bin is that they are satisfied regardless of the value of X in the data; however, the literal

corresponding to X in C is true only if X has value ¬v.
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• [Irrelevant; Bad] The clauses in this bin are those whose premises are not satisfied, but if the

clauses were to fire, the conclusion would be correct. For example, let C be Movie(rainMaker,

brando) ∧ WorkedFor(brando, coppola) ⇒ Actor(brando). If we consider the clausal form,

Actor(brando)∨¬Movie(rainMaker,brando)∨¬WorkedFor(brando, coppola), we can alternatively de-

scribe the clauses in this bin as ones that are satisfied regardless of the value of X and in which the

literal corresponding to X in C is true only if X has value v.

This taxonomy is motivated by equation 4. The probability of X = x is increased only by clauses in the

[Relevant; Good] bin and is decreased by clauses in the [Relevant; Bad] bin. Clauses in the other two bins

do not have an effect on this equation because their contribution to the numerator and denominator cancels

out. To see how this happens, consider a clause girr ∈ GX from the set of clauses in which X participates,

such that girr is satisfied regardless of the truth value of X . The quantity SX(x,m) from equation 4 (page 14)

can be rewritten as follows:

SX(x,m) = ∑
gi∈GX

wigi(X = x,MBX = m) (5)

= ∑
gi∈GX ,i6=irr

wigi(X = x,MBX = m)+wirrgirr(X = x,MBX = m) (6)

= ∑
gi∈GX ,i6=irr

wigi(X = x,MBX = m)+wirr (7)

= S∗X(x,m)+wirr (8)

The next-to-last line follows because girr was picked such that the value of girr(X = x,MBX = m) is 1

regardless of x. Using this derivation, we can rewrite equation 4 as follows:

P(X = x|MBX = m) =
eSX (x,m)

eSX (0,m) + eSX (1,m)
(9)

=
eS∗X (x,m)+wirr

eS∗X (0,m)+wirr + eS∗X (1,m)+wirr
(10)

=
ewirr eS∗X (x,m)

ewirr

(

eS∗X (0,m) + eS∗X (1,m)
) (11)

As can be seen in line 11, the contribution of girr, ewirr , can be canceled from the numerator and denominator.

If some of the literals other than X in an [Irrelevant; Bad] clause, are deleted so that X’s value becomes

crucial, it will be moved to the [Relevant; Good] bin. Similarly, if we add some literals to a [Relevant;

Bad] clause so that it starts to hold regardless of the value of X , it will enter the [Irrelevant; Good] bin and

will no longer decrease the probability of X having its correct value.

As the value of a gliteral is re-sampled in each iteration of Gibbs sampling, for each clause in which the

gliteral participates, we count the number of times it falls into each of the four bins. Finally, if a clause was

placed in the [Relevant; Bad] bin more than p percent of the time, it is marked for lengthening and if it fell

in the [Irrelevant; Bad] bin more than p percent of the time, it is marked for shortening. We anticipated

that in the highly sparse relational domains in which we tested, clauses would fall mostly in the [Irrelevant;

Good] bin. To prevent this bin from swamping the other ones, we set p to the low value of 10%. This value

was set during earlier experiments on artificial data (Mihalkova & Mooney, 2006) and was not tuned to the

data used for the experiments presented here.

The process described above is repeated for each predicate, P∗, in the target domain.

19



3.1.2 Structure Updates

Once the set of clauses to revise is determined, the actual updates are performed using beam search. Unlike

Kok and Domingos (2005), however, we do not consider all possible additions and deletions of a literal to

each clause. Rather, we only try removing literals from the clauses marked for shortening and we try literal

additions only to the clauses marked for lengthening. The candidates are scored using WPLL. Thus, the

search space is constrained first by limiting the number of clauses considered for updates, and second, by

restricting the kind of update performed on each clause.

3.1.3 New Clause Discovery

The revision procedure can update clauses transferred from the source domain but cannot discover new

clauses that capture relationships specific only to the target domain. To address this problem, we used RPF

(Section 2.2.3) to search for new clauses in the target domain. The clauses found by RPF were evaluated

using WPLL, and the ones that improved the overall score were added to the MLN. RPF and the previous

structure updates step operate independently of each other; in particular, the clauses discovered by RPF are

not diagnosed nor revised. However, we found that better results are obtained if the clauses discovered by

RPF are added to the MLN before carrying out the revisions. This can be explained as follows. The revision

step fills the resulting structure with clauses that together achieve a very good WPLL on the training data.

If we perform RPF after this, even though it finds clauses that are very reasonable and would perform quite

well, the MLN already has other clauses that interfere. In this way, the good clauses discovered by RPF

sometimes end up not being added. On the other hand, if we first add the RPF clauses to the MLN, they give

an initial boost in WPLL and also constrain the beam search, causing it to finish faster because it has less to

improve.

3.2 Experiments

In this section we present an experimental evaluation of TAMAR. First, we describe our methodology, which

will also be used for the experiments in Section 4. We then discuss the results specifict to TAMAR.

3.2.1 Experimental Methodology

We used three real-world relational domains—IMDB, UW-CSE, and WebKB. Each dataset is broken into

mega-examples, where each mega-example contains a connected group of facts. Individual mega-examples

are independent of each other.

The IMDB database is organized as five mega-examples, each of which contains information about four

movies, their directors, and the first-billed actors who appear in them. Each director is ascribed genres based

on the genres of the movies he or she directed. The Gender predicate is only used to state the genders of

actors. The complete list of predicates in this domain is given in Figure 7 a). This data set is dramatically

smaller than the data available from the International Movie Database (www.imdb.com). The reason for this

is that originally the dataset was intended to be used as a target domain in which data is limited.

The UW-CSE database was first used by Richardson and Domingos (2006).1 It lists facts about people

in an academic department (i.e. Student, Professor) and their relationships (i.e. AdvisedBy). The complete

list of predicates is given in Figure 7 b). The database is divided into mega-examples based on five areas of

computer science.

1Available at http://www.cs.washington.edu/ai/mln/database.html.
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Director(person)

Actor(person)

Movie(title, person)

Gender(person, gend)

WorkedUnder(person, person)

Genre(person, genr)

SamePerson(person, person)

SameMovie(title, title)

SameGenre(genr, genr)

SameGender(gend, gend)

TaughtBy(course, person, semester)

CourseLevel(course, level)

Position(person, pos)

AdvisedBy(person, person)

ProjectMember(project, person)

Phase(person, phas)

TempAdvisedBy(person, person)

YearsInProgram(person, year)

TA(course, person, semester)

Student(person)

Professor(person)

SamePerson(person, person)

SameCourse(course, course)

SameProject(project, project)

Publication(title, person)

Student(person)

SamePerson(person, person)

Faculty(person)

Project(projname, person)

CourseTA(coursename, person)

CourseProf(coursename, person)

a) b) c)

Figure 7: Predicates in each of our domains. The argument types for each predicate are listed in the paren-

theses

The WebKB database contains information about human relationships from the “University Computer

Science Department” data set, compiled by Craven et al. (1998). The original dataset contains web pages

from four universities labeled according to the entity they describe (e.g. student, course), as well as the words

that occur in these pages. Our version of WebKB contains the predicates listed in Figure 7 c). The textual

information is ignored. This data contains four mega-examples, each of which describes one university. To

extract the truth values for these predicates, we used the files from the original data set that list the student,

faculty, instructors-of, and members-of-project relationships. We treated each web address in these files as

an entity in the domain and used the label of the corresponding page to determine the gliteral truth values.

Table 1 provides additional statistics about the domains.

Data Set Number of Number of Number of Number of True Total Number of

Consts Types Preds Gliterals Gliterals

IMDB 316 4 10 1,540 32,615

UW-CSE 1,323 9 15 2,673 678,899

WebKB 1,700 3 6 2,065 688,193

Table 1: Statistics about the domains.

To evaluate a given MLN, one needs to perform inference over it, providing some of the gliterals in the

test mega-example as evidence and testing the predictions of the remaining ones. We followed the testing

scheme employed by Kok and Domingos (2005) and tested for the gliterals of each of the predicates of the

domain in turn, providing the rest as evidence, and averaging over the results. However, for inference we

used the MC-SAT algorithm that has been demonstrated to give more accurate results (Poon & Domingos,

2006). The inference procedure outputs the probability that each of the query gliterals is true. To summarize
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these results, we used the two evaluation metrics employed by Kok and Domingos (2005), the area under

the precision-recall curve (AUC) and the conditional log-likelihood (CLL). To compute the AUC, first a

precision-recall curve is generated. This is done by varying a probability threshold whose value determines

which propositions are labeled positive and which negative; i.e. the ones whose probability of being true is

greater than the threshold are positive and the rest are negative. The precision and recall are computed as

follows:

Precision =
Number of propositions correctly labeled as positive

Number of all propositions labeled as positive

Recall =
Number of propositions correctly labeled as positive

Total number of positive propositions in the data

A curve is produced by plotting a point for the precision and recall obtained at a set of threshold values.

The AUC is the area under this curve. The AUC is useful because it demonstrates how well the algorithm

predicts the few positives in the data and is not affected by the large number of true negatives typically

present in relational data sets (compare the number of true gliterals to the total number of gliterals in Table 1).

The CLL is computed by taking the log of the probability predicted by the model that a gliteral has

its correct truth value in the data, and averaging over the query gliterals. The CLL complements the AUC

because it determines the quality of the probability predictions output by the algorithm.

Learning curves for each performance measure were generated using a leave-1-mega-example-out ap-

proach, averaging over k different runs, where k is the number of mega-examples in the domain. In each run,

we reserved a different mega-example for testing and trained on the remaining k−1, which were provided

one by one. All systems observed the same sequence of mega-examples. The error bars on the curves are

formed by averaging the standard error over the predictions for the groundings of each predicate and over

the learning runs. Error bars are drawn on all curves but in some cases they are tiny.

We also present results on the training times needed by the learners, and the number of clauses they

considered in their search. Timing runs within the same transfer experiment were conducted on the same

dedicated machine.

3.2.2 Systems Compared

We compared the performance of the following systems. KD run from scratch (ScrKD) in the target domain;

KD used to revise a source structure translated into the target domain using MTAMAR (TrKD); and the

complete transfer system using MTAMAR and RTAMAR (TAMAR).

We used the implementation of KD provided as part of the Alchemy software package (Kok et al., 2005)

and implemented our new algorithms as part of the same package. We kept the default parameter settings of

Alchemy except that we set the parameter penalizing long clauses to 0.01, the one specifying the maximum

number of variables per clause to 5, and the minWeight parameter to 0.1 in IMDB and WebKB and to 1 in

UW-CSE, the value used in (Kok & Domingos, 2005). All three learners used the same parameter settings.

We considered the following transfer scenarios: WebKB → IMDB, UW-CSE → IMDB, WebKB → UW-

CSE, IMDB → UW-CSE. We did not consider transfer to WebKB because the small number of predicates

and large number of constants in this domain made it too easy to learn from scratch and therefore a good

source domain but uninteresting as a target domain. Source MLNs were learned by ScrKD . We also consider

the scenario where the hand-built knowledge base provided with the UW-CSE data is used as a source MLN

(UW-KB → IMDB). In this interesting twist on traditional theory refinement, the provided theory needs to

be mapped to the target domain, as well as revised.
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TR PI

Experiment TrKD TAMAR TrKD TAMAR

WebKB → IMDB 1.51 1.55 50.54 53.90

UW-CSE → IMDB 1.42 1.66 32.78 52.87

UW-KB → IMDB 1.61 1.52 40.06 45.74

WebKB → UW-CSE 1.84 1.78 47.04 37.43

IMDB → UW-CSE 0.96 1.01 -1.70 -2.40

Table 2: Transfer ratio (TR) and percent improvement from 1 mega-example (PI) on AUC over ScrKD .

TR PI

Experiment TrKD TAMAR TrKD TAMAR

WebKB → IMDB 1.41 1.46 51.97 67.19

UW-CSE → IMDB 1.33 1.56 49.55 69.28

UW-KB → IMDB 1.21 1.44 30.66 58.62

WebKB → UW-CSE 1.17 1.36 19.48 32.69

IMDB → UW-CSE 1.62 1.67 34.69 54.02

Table 3: Transfer ratio (TR) and percent improvement from 1 mega-example (PI) on CLL over ScrKD.

3.2.3 Results

Rather than presenting the full learning curves, we summarize them using two statistics: the transfer ratio

(TR) (Cohen, Chang, & Morrison, 2007), and the percent improvement from 1 mega-example (PI). TR is the

ratio between the area under the learning curve of the transfer learner (TAMAR or TrKD) and the area under

the learning curve of the learner from scratch (ScrKD). Thus, TR gives an overall idea of the improvement

achieved by transfer over learning from scratch. TR > 1 signifies improvement over learning from scratch in

the target domain. PI gives the percent by which transfer improves accuracy over learning from scratch after

observing a single mega-example in the target domain. It is useful because, in transfer learning settings,

data for the target domain is frequently limited.

In terms of AUC (Table 2), both transfer systems improve over ScrKD in all but one experiment. Neither

transfer learner consistently outperforms the other on this metric. Table 3 shows that transfer learning

always improves over learning from scratch in terms of CLL, and TAMAR’s performance is better than

TrKD’s in all cases. In the last experiment where we transferred from IMDB → UW-CSE we observe

that transfer improves over learning from scratch in terms of CLL but is slightly worse in terms of AUC.

This demonstrates that the two performance metrics complement each other. We believe this slightly worse

performance of the transfer systems is probably due to random noise.

Moreover, as can be seen from Table 4, TAMAR trains faster than TrKD, and both transfer systems are

faster than ScrKD. TAMAR also considers fewer candidate clauses during its beam search, as can be seen in

Table 5. According to a t-test performed for each point on each of the learning curves, at the 95% level with

sample size 5 per point, these differences were significant in 15 out of 20 cases for speed and 18 out of 20

for number of candidates. In some cases TrKD considers more candidates than ScrKD but takes less time to

train. This can happen if TrKD considers more candidates earlier in the learning curves when each candidate

is evaluated faster on less data.
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Experiment ScrKD TrKD TAMAR Speed-Up factor of TAMAR over TrKD

WebKB→IMDB 62.23 32.20 11.98 2.69

UW-CSE→IMDB 62.23 38.09 15.21 2.50

UW-KB→IMDB 62.23 40.67 6.57 6.19

WebKB→UW-CSE 1127.48 720.02 13.70 52.56

IMDB→UW-CSE 1127.48 440.21 34.57 12.73

Table 4: Average (over all learning curve points) total training time in minutes.

Experiment ScrKD TrKD TAMAR

WebKB→IMDB 7558 10673 1946

UW-CSE→IMDB 7558 14163 1976

UW-KB→IMDB 7558 15118 1613

WebKB→UW-CSE 32096 32815 827

IMDB→UW-CSE 32096 7924 978

Table 5: Average (over all learning curve points) number of candidate clauses considered.

The complete learning curves are given in Appendix 1. Here we present the most interesting among

them. Figure 8 shows the learning curve in the UW-CSE → IMDB experiment. Here we additionally tested

the performance of systems that do not use MTAMAR but are provided with an intuitive hand-constructed

mapping that maps Student → Actor, Professor → Director, AdvisedBy/TempAdvisedBy → WorkedFor,

Publication → MovieMember, Phase → Gender, and Position → Genre. The last two mappings are moti-

vated by the observation that Phase in UW-CSE applies only to Student and Gender in IMDB applies only

to Actor, and similarly Position and Genre apply only to Professor and Director respectively.

3.3 Summary

In this section we presented our algorithm, RTAMAR, for revising the structure of an MLN learned in a

source domain and mapped to the predicates of a target domain. Our experimental results demonstrate that

our proposed algorithm is competitive with the current state-of-the-art revision algorithm but requires sig-

nificantly less time and considers a much smaller number of candidate structures during training. Moreover,

because TAMAR outperforms learning from scratch in almost all cases, our results demonstrate that our spe-

cific approach to transfer through mapping and revision is effective. In the following section, we present an

alternative approach to improving MLN structure learning.

4 Bottom-up Learning of Markov Logic Network Structure

In Section 3 we described how to improve learning in the target domain by revising the structure of an

MLN learned in a source domain. In this section we present a novel algorithm that aims at improving MLN

structure learning from scratch by approaching the problem in a more bottom-up way. We call our algorithm

BUSL for Bottom-Up Structure Learning (Mihalkova & Mooney, 2007).
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Figure 8: Learning curves in UW-CSE → IMDB for a) AUC and b) CLL. The zeroth points are obtained by

testing the MLN provided to the learner at the start.

4.1 BUSL Overview

As pointed out by Richardson and Domingos (2006), MLNs serve as templates for constructing Markov

networks when different sets of constants are provided. Because the cliques of the ground Markov network

are defined by the groundings of the same set of first-order clauses, the graph exhibits a high degree of

redundancy where the same pattern is repeated several times, corresponding to each grounding of a particular

clause.

Example: Considering Figure 4 (page 14) again, we observe that the pattern of nodes and edges appearing

above the two Movie gliterals is repeated below them with different constants. In fact, this Markov network

can be viewed as an instantiation of the template shown in Figure 9.

Figure 9: Example Markov Network Template

The basic idea behind BUSL is to learn MLN structure by first creating a Markov network template sim-

ilar to the one shown in Figure 9 from the provided data. The nodes in this template are used as components

25



Algorithm 1 Skeleton of BUSL

for each P ∈ P do

Construct TNodes for predicate P (Section 4.2.1)

Connect the TNodes to form a Markov network template (Section 4.2.2)

Create candidate clauses, using this template to constrain the search (Section 4.2.3)

end for

Remove duplicate candidates

Evaluate candidates using WPLL and add best ones to final MLN

from which clauses are constructed, and can contain one or more vliterals that are connected by a shared

variable. We will call these nodes TNodes for template nodes. As in ordinary Markov networks, a TNode

is independent of all other TNodes given its immediate neighbors. Recall from Section 2.3.1, that the Ham-

mersley Clifford Theorem guarantees that we can specify any probability distribution compliant with the

conditional independencies implied by a particular graph by using functions defined only over the cliques of

the graph. In the case of MLNs where the functions are expressed as first-order logic rules, this implies that

to learn the structure, the algorithm only needs to consider clause candidates that comply with the Markov

network template. In other words, BUSL uses the Markov network template to restrict the search space for

clauses only to those candidates whose literals correspond to TNodes that form a clique in the template.

The approach taken by BUSL follows the same philosophy as the graph-centric learners discussed in

Section 2.3.2 where the algorithm first focuses on learning the conditional independencies among the vari-

ables before specifying the features that define the probability distribution. This is in stark contrast to KD,

which takes a feature-centric approach and proceeds by directly learning the clauses of the MLN.

Algorithm 1 gives the complete skeleton of BUSL. Letting P be the set of all predicates in the do-

main, the algorithm considers each predicate P ∈ P in turn. A Markov network template is automatically

constructed from the perspective of the current target predicate P. Template construction involves creating

variablized TNodes, or components for clause construction, and determining the edges between them. Even

though the template aids the search for clauses, it does not carry all the information about the MLN. Namely,

it does not specify whether the vliterals participating in a clause are positive or negative, or precisely what

clauses correspond to a given clique. For example, a three-node clique could correspond to one three-literal

clause or to three two-literal clauses, etc. Information about the weights is also excluded. To search for

actual clauses, we generate clause candidates by focusing on each maximal clique in turn and producing all

possible clauses consistent with it. More specifically, these are all possible clauses of length 1 to cliqueSize

containing only members of the clique. We can then evaluate each candidate using the WPLL score.

In the following section we give the details of each step.

4.2 BUSL details

A Markov network template is created for each predicate in the domain in order to ensure that the relation-

ships of all predicates are properly modeled. Below, we describe the process for the current target predicate

P.

4.2.1 TNode construction

TNodes contain conjunctions of one or more vliterals and serve as building blocks for creating clauses. In-

tuitively, TNodes are constructed by looking for groups of constant-sharing gliterals that are true in the data
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Algorithm 2 Construct TNode Set

Input:

1: P: Predicate currently under consideration

2: m: Maximum number of vliterals in a TNode

Output:

3: TNodeVector: Vector of constructed TNodes

4: MP: Matrix of Boolean values

Procedure:

5: Make head TNode, headTN, and place it in position 0 of TNodeVector

6: for each (true or false) gliteral, GP, of P do

7: Add a row of 0-s to MP

8: currRowIndex = numRows(MP)−1

9: if GP is true then

10: Set MP[currRowIndex][0] = 1

11: end if

12: Let CGP
be the set of true gliterals connected to GP

13: for each c ∈ CGP
do

14: for each possible TNode of length 1 to m based on c do

15: newTNode = CreateTNode(c,GP,headTN,m) (Algorithm 3)

16: position = TNodeVector.find(newTNode)
17: if position is not valid then

18: append newTNode to end of TNodeVector

19: append a column of 0-s to MP

20: position = numColumns(MP)−1

21: end if

22: Set MP[currRowIndex][position] = 1

23: end for

24: end for

25: end for

and variablizing them. Thus, TNodes could also be viewed as portions of clauses that have true groundings

in the data. The process of TNode construction is inspired by relational pathfinding (Richards & Mooney,

1992), which we described in Section 2.2.3. The result of running TNode construction for P is the set of

TNodes and a matrix MP containing a column for each of the created TNodes and a row for each gliteral of

P. Each entry MP[r][c] is a Boolean value that indicates whether the data contains a true grounding of the

TNode corresponding to column c with at least one of the constants of the gliteral corresponding to row r.

This matrix is used later to find the edges between the TNodes.

Algorithm 2 describes how the set of TNodes and the matrix MP are constructed. The algorithm uses

the following definitions:

Definition 1 Two gliterals are connected if there exists a constant that is an argument of both of them.

Similarly, two vliterals are connected if there exists a variable that is an argument of both of them.

Definition 2 A chain of literals of length l is a list of l literals such that for 1 < k ≤ l the kth literal is

connected to the (k−1)th via a previously unshared variable.
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Algorithm 3 CreateTNode

Input:

1: GP: Current gliteral of P under consideration

2: c: Gliteral connected to GP on which this TNode is based

3: headTN: Head TNode

4: m: Maximum number of of vliterals allowed in a TNode

Output:

5: newTNode: The constructed TNode

Procedure:

6: size = pick the number of vliterals in this TNode (between 1 and m)

7: v = variablize c such that the constants shared with GP are replaced with their corresponding variables

from headTN and all others are replaced with unique variables

8: Create newTNode containing v

9: previousGliteral = c

10: lastVliteralInChain = v

11: while length(newTNode) < size do

12: c1 = pick true gliteral connected to previousGliteral via a previously unshared constant

13: v1 = variablize c1 such that constants shared with GP or previousGliteral are replaced with their

corresponding variables from headTN or lastVliteralInChain and all others are replaced with

unique variables

14: Add v1 to newTNode

15: previousGliteral = c1

16: lastVliteralInChain = v1

17: end while

First, in line 5 the algorithm creates a head TNode that consists of a vliteral of P in which each argument

is assigned a unique variable. This TNode is analogous to the head in a definite clause; however, note that our

algorithm is not limited to constructing only definite clauses. Next, in lines 6 to 25 the algorithm considers

each gliteral GP of P in turn. This includes both the true and the false gliterals of P, where the true gliterals

are those stated to hold in the data, while the rest are assumed to be false. A row of zeros is added to MP

for GP, and the value corresponding to the head TNode is set to 1 if GP is true and to 0 otherwise (lines

9-11). The algorithm then proceeds to consider the set CGP
of all true gliterals in the data that are connected

to GP. For each c ∈ CGP
, it constructs each possible TNode based on c containing 1 to m vliterals. If a

particular TNode was previously created, its value in the row corresponding to GP is set to 1. Otherwise, a

new column of zeros is added to MP and the entry in the GP row is set to 1 (lines 16-22). Thus, each entry in

MP indicates whether the TNode corresponding to its column could be formed when considering the gliteral

corresponding to its row.

Algorithm 3 lists the CreateTNode procedure. The algorithm determines the number of vliterals in the

new TNode in line 6. It then variablizes the current gliteral c connected to GP by replacing the constants c

shares with GP with their corresponding variables from the head TNode. If the chosen TNode size is greater

than 1, the algorithm enters the while loop in lines 11-17. In each iteration of this loop we extend the TNode

with an additional vliteral that is constructed by variablizing a gliteral connected to the gliteral considered

in the previous iteration so that any constants shared with the head TNode or with the previous gliteral are

replaced with their corresponding variables.

Example: Suppose we are given the following database for our example domain where the listed gliterals
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Actor(brando)

       (true)

WorkedFor(brando, coppola)

Movie(godFather, brando)

Actor(coppola)

      (false)

Director(coppola)

WorkedFor(brando, coppola)

Movie(godFather, coppola)

3

1

2

5

6

7

Movie(godFather, coppola)

Movie(godFather, brando)

9

8

4

Figure 10: Illustration of TNode construction (See example below). The thin lines show the connections

defining single-vliteral TNodes, and the thick lines the connections defining two-vliteral TNodes. The lines

link the constants shared between the gliterals.

are true and the omitted ones are f alse:

Actor(brando) Director(coppola)
WorkedFor(brando,coppola)

Movie(godFather,coppola) Movie(godFather,brando)

Let P = Actor and m = 2 (i.e. at most 2 vliterals per TNode). The head TNode is Actor(A). Figure 10 shows

the gliteral chains considered in the main loop (lines 6-25) of Algorithm 2 for each gliteral of P. Let us first

focus on the case when GP is Actor(brando) (top part). Connections 1 and 2 lead to the TNodes Worked-

For(A, B) and Movie(C, A) respectively. Connection 3 gives rise to the 2-vliteral TNode [WorkedFor(A, D),

Movie(E, D)], and connection 4, to the TNode [Movie(F, A), Movie(F, G)]. The following table lists the

values in MP at this point.

Actor(A) WorkedFor(A, B) Movie(C, A) WorkedFor(A, D) Movie(F, A)

Movie(E, D) Movie(F, G)

1 1 1 1 1

Note that when constructing the TNodes, we replaced shared constants with the same variables, and con-

stants shared with GP with the corresponding variable from the head TNode.

We did not consider the chain [Movie(godFather, brando), WorkedFor(brando, coppola)]. This chain is

invalid because the shared constant, brando, has been shared previously. We can use this example of an

invalid chain to provide some intuition for the requirement that a chain can be extended only by sharing a

previously unshared constant. Suppose that this restriction did not exist. Then we would form the TNode

[Movie(X1,A), WorkedFor(A, X2)]

However, we notice that the vliterals composing this new TNode are present, modulo variable renaming, in

two separate TNodes found earlier (the second and third TNodes in the table above). Therefore, constructing

this TNode has the effect of re-discovering previous single-vliteral TNodes and forcing their vliterals to

appear together in clauses.
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We next consider the bottom part of Figure 10 that deals with the second iteration in which GP is Ac-

tor(coppola). From connection 5, we construct the TNode Director(A) and from connection 6 the TNode

WorkedFor(H, A), which differs from the WorkedFor TNode found earlier by the position of the variable A

shared with the head TNode. An appropriate TNode for connection 7 (Movie(C,A)) already exists. Con-

nection 8 gives rise to the two-vliteral TNode [WorkedFor(I, A), Movie(J, I)]. A TNode for connection 9,

[Movie(F, A), Movie(F, G)] was constructed in the previous iteration. Table 6 lists the final set of TNodes.

Actor(A) WkdFor(A, B) Movie(C, A) Director(A) WkdFor(D, A) WkdFor(A, E), Movie(G, A), WkdFor(I, A),

Movie(F, E) Movie(G, H) Movie(J, I)

1 1 1 0 0 1 1 0

0 0 1 1 1 0 1 1

Table 6: Final set of TNodes and their corresponding MP matrix

Larger values of m mean longer TNodes that could help build more informative clauses. However, a

larger m also leads to the construction of more TNodes, thus increasing the search space for clauses. We

used a conservative setting of m = 2. Note that this does not limit the final clause length to 2. To further

reduce the search space, we require that TNodes with more than one vliteral contain at most one free variable

(i.e. a variable that does not appear in more than one of the vliterals in the TNode or in the head TNode).

We did not experiment with more liberal settings of these parameters but, as our experiments demonstrate,

these values worked well in our domains.

TNode construction is very much in the spirit of bottom-up learning. Rather than producing all possible

vliterals that share variables with one another in all possible ways, the algorithm focuses only on vliterals

for which there is a true gliteral in the data. Thus, the data already guides and constrains the algorithm. This

is related to bottom-up ILP techniques such as least-general generalizations (LGG) and inverse resolution

(Lavrac̆ & Dz̆eroski, 1994). However, as opposed to LGG, our TNode construction algorithm always uses

the generalization that leads to completely variablized TNodes and unlike inverse resolution, the process

does not lead to the creation of complete clauses and does not use any logical inference algorithms like

resolution.

4.2.2 Adding the Edges

Once TNodes are constructed, we can search through the space of all possible clauses composed from

them. This search space is already smaller than the one considered by KD because the algorithm uses only

combinations of vliterals that contain at least one true grounding in the data. Nevertheless, the number of

possible clauses may still be prohibitively large. Moreover, as discussed in Section 4.1, an exhaustive search

is not necessary. Thus we proceed to complete the template construction, by finding which TNodes are

connected by edges. For this purpose, it is useful to recall that the templates represent variablized analogs of

Markov networks. Finding the edges can therefore be cast as a Markov network structure learning problem

where the TNodes are the nodes in the Markov network and the matrix MP provides training data. At this

point, any Markov network learning algorithm can be employed. We chose the recent Grow-Shrink Markov

Network (GSMN) algorithm by Bromberg et al. (2006), which we described in Section 2.3.2, because its

graph-centric approach to the problem follows the general philosophy of BUSL.
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4.2.3 Search for clauses

Because the clauses in an MLN define functions over the cliques in the ground MLN, we should only

construct clauses from TNodes that form cliques in the Markov network template. In other words, any two

TNodes participating together in a clause must be connected by an edge in the template. The head TNode is

required to participate in every candidate. Each clause can contain at most one multiple-literal TNode and at

most one TNode that contains a single non-unary literal. These further restrictions on the clause candidates

are designed to decrease the number of free variables in a clause, thus decreasing the size of the ground

MLN during inference, and further reducing the search space. Complying with the above restrictions, we

consider each clique in which the head TNode participates and construct all possible clauses of length 1 to

the size of the clique by forming disjunctions from the literals of the participating TNodes with all possible

negation/non-negation combinations.

After template creation and clause candidate generation are carried out for each predicate in the domain,

duplicates are removed and the candidates are evaluated using the WPLL score described in Section 2.4.2.

Recall that in order to compute this score, one needs to assign a weight to each clause. Weight learning

is performed using L-BFGS, the approach used by Richardson and Domingos (2006) and also used in

KD. After all candidates are scored, they are considered for addition to the MLN in order of decreasing

score. To reduce overfitting and speed up inference, only candidates with weight greater than minWeight are

considered. Candidates that do not increase the overall WPLL of the currently learned MLN are discarded.

4.3 Experimental Setup

We compared the performance of BUSL to that of KD in the same three relational domains—IMDB, UW-

CSE, and WebKB—that we described in Section 3.2.1. It is important to note that our results on the UW-

CSE dataset are not comparable to those presented by Kok and Domingos (2005) because due to privacy

issues we only had access to the published version of this data, which differs from the original (Personal

communication by Stanley Kok).

As in Section 3.2.1, we measured the performance in terms of the AUC and CLL and generated learning

curves using a leave-1-mega-example-out approach. The parameter settings for running KD from scratch

were identical. As before, all timing runs within the same experiment were carried out on the same dedi-

cated machine. We implemented BUSL as part of the Alchemy package (Kok et al., 2005). We set BUSL’s

minWeight = 0.5 for all experiments and observed that the operation of the algorithm is not very sensitive

to other settings of this parameter. Even though both BUSL and KD have a parameter called minWeight, they

use it in different ways and the same value is therefore not necessarily optimal for both systems.

4.4 Experimental Results

Figures 11-13 show learning curves in the three domains. BUSL improves over the performance of KD in all

cases except for one in terms of AUC and in all cases in terms of CLL.

Figure 12 additionally plots the AUC and CLL for a system that performs weight learning over the

knowledge base provided as part of the UW-CSE dataset (Hand-KB). In terms of AUC, this system’s per-

formance is significantly worse than that of BUSL, and in terms of CLL, it performs as well as BUSL.

In Figure 13, we observe that even though KD is improving its performance in terms of AUC, its CLL

score decreases. This is most probably due to the extremely small relative number of true gliterals in the

domain in which the CLL can be increased by simply predicting f alse for each query.
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Figure 11: Accuracy in IMDB domain. a) AUC b) CLL
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Another observation that requires explanation is that the learners improve by only tiny amounts, if at

all, after the first point on the learning curve. This occurs because in our experience, for both learners,

additional data improves only the WPLL estimate (and thus the evaluation of new clause candidates) but

does not have a great effect on the clauses that are proposed. In particular, in BUSL candidates are based on

the dependencies among the TNodes, and new data introduces few such dependencies. This, however, may

not be the case in other domains.

Figures 11-13 give an idea of how the learners perform over all the predicates of the domain. It is also

interesting, however, to see the performance of the systems for each predicate in the domains individually.

Tables 7-9 show these results for AUC and CLL for the last point on the learning curves. Note that the

performance for some of the predicates, such as TaughtBy in UW-CSE is extremely low. This is due to the

fact that, given the information provided during testing, it is impossible to reliably predict the value of these

predicates.

Table 10 shows the average training time over all learning runs for each system, and the average number

of candidate clauses each learner constructed and evaluated over all runs. As can be seen, BUSL constructed

fewer candidates and trained faster than KD. BUSL spends the main portion of its training time on computing

the WPLL score of the generated candidates. This process takes longer in domains like WebKB that contain

a great number of constants. On the other hand, we expect BUSL’s savings in terms of number of generated

candidates to be greater in domains, such as UW-CSE, that contain many predicates because the large

number of predicates increases the number of candidate clauses generated by KD. These considerations

explain why the smallest improvement in speed is achieved in WebKB that contains the least number of

predicates and the greatest number of constants. The greatest speed-up is in IMDB where BUSL created the

smallest number of candidates, and each candidate could be evaluated quickly because of the small number

of constants in this domain.

Based on the much smaller number of candidate clauses considered by BUSL, one might expect a larger

speed-up. Such a speed-up is not observed because of optimizations within Alchemy that allow fast scoring

of clauses for a fixed structure of the MLN. Because KD evaluates a large number of candidates with a

fixed structure, it can take advantage of these optimizations. On the other hand, after initially scoring all

candidates, BUSL attempts to add them in decreasing order of score to the MLN, thus changing the MLN at

almost each step, which slows down the scoring of the structure.

Finally, we checked the importance of adding the edges in Section 4.2.2. This step can, in principle, be

avoided by simply producing a fully connected Markov network template. Recall that the goal of this step is

to decrease the number of vliterals that could participate together in a clause. In Table 11 we show statistics

on the number of TNodes constructed by the algorithm in each of the domains, as well as the proportion of

TNodes that end up in the Markov blanket of the head TNode. As can be seen, the number of neighbors of

the head TNode in the Markov network template is dramatically smaller than the total number of TNodes

discovered. This naturally leads to a smaller number of candidate clauses that need to be considered.

5 Proposed Research

5.1 BUSL as a Transfer Learner

One limitation of BUSL is that it can learn only from scratch and cannot be used to revise the structure of

MLNs transferred from a source domain. Therefore an important avenue for future work is to extend BUSL

so that it is able to revise an existing MLN structure.

While experimenting with BUSL, we have noticed that most of the training time is spent on evaluating
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Predicates CLL BUSL CLL KD AUC BUSL AUC KD

director -0.24±0.12 -1.44±0.12 0.91±0.03 0.51±0.01

actor -0.01±0.00 -0.59±0.08 1.00±0.00 0.88±0.01

movie -1.66±0.17 -2.42±0.25 0.27±0.00 0.19±0.00

gender -0.69±0.05 -3.33±0.33 0.48±0.01 0.36±0.00

workedUnder -0.07±0.00 -0.24±0.02 0.26±0.00 0.10±0.00

genre -0.18±0.05 -1.10±0.04 0.60±0.05 0.34±0.02

samePerson -0.03±0.00 -0.03±0.01 1.00±0.00 0.89±0.01

sameMovie -0.04±0.00 -0.11±0.03 1.00±0.00 0.99±0.00

sameGenre -0.05±0.00 -0.44±0.23 0.80±0.00 0.63±0.04

sameGender -0.04±0.00 -0.14±0.07 1.00±0.00 0.99±0.01

Table 7: Per-predicate results from last point on learning curve in IMDB

Predicates CLL BUSL CLL KD AUC BUSL AUC KD

taughtBy -0.02±0.00 -0.03±0.00 0.01±0.00 0.00±0.00

courseLevel -0.82±0.08 -2.95±0.37 0.48±0.03 0.28±0.01

position -0.16±0.03 -1.33±0.08 0.33±0.03 0.09±0.02

advisedBy -0.04±0.01 -0.12±0.01 0.02±0.00 0.00±0.00

projectMember -0.02±0.00 -0.01±0.01 0.00±0.00 0.00±0.00

phase -0.35±0.03 -0.75±0.13 0.32±0.01 0.26±0.01

tempAdvisedBy -0.02±0.00 -0.09±0.01 0.01±0.00 0.00±0.00

yearsInProgram -0.22±0.04 -0.37±0.04 0.16±0.02 0.10±0.01

tA -0.03±0.00 -0.02±0.00 0.00±0.00 0.00±0.00

student -0.06±0.02 -1.58±0.10 1.00±0.00 0.59±0.03

professor -0.07±0.05 -1.51±0.08 0.98±0.01 0.16±0.03

samePerson -0.03±0.00 -0.06±0.01 1.00±0.00 0.79±0.00

sameCourse -0.04±0.00 -0.29±0.06 1.00±0.00 0.41±0.00

sameProject -0.04±0.00 -0.38±0.11 1.00±0.00 0.60±0.00

publication -0.18±0.02 -0.20±0.02 0.10±0.01 0.05±0.00

Table 8: Per-predicate results from last point on learning curve in UW-CSE

Predicate CLL BUSL CLL KD AUC BUSL AUC KD

student -0.01±0.00 -0.81±0.09 1.00±0.00 0.93±0.00

samePerson -0.02±0.00 -0.01±0.00 0.99±0.00 0.88±0.01

faculty -0.02±0.00 -2.78±0.13 1.00±0.00 0.56±0.00

project -0.13±0.01 -0.17±0.02 0.03±0.00 0.02±0.00

courseTA -0.03±0.00 -0.03±0.00 0.01±0.00 0.01±0.00

courseProf -0.03±0.00 -0.04±0.01 0.02±0.00 0.01±0.00

Table 9: Per-predicate results from last point on learning curve in WebKB
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Training time # candidates

Dataset BUSL KD Speed-up BUSL KD

IMDB 4.59 62.23 13.56 162 7558

UW-CSE 280.31 1127.48 4.02 340 32096

WebKB 272.16 772.09 2.84 341 4643

Table 10: Average training time in minutes, average speed-up factor, and average number of candidates

considered by each learner.

Data set IMDB UW-CSE WebKB

Average number of TNodes constructed 31.44 70.70 18.83

Average proportion of TNodes in MB of head TNode 0.12 0.14 0.22

Maximum number of TNodes constructed 56 144 28

Maximum size of MB of head TNode 17 41 15

Table 11: Statistics on the average number of TNodes constructed, the average proportion of TNodes that

appear in the Markov blanket of the head TNode, the maximum number of TNodes constructed, and the

maximum Markov blanket size, over the predicates in all learning runs in each domain.

candidate structures. The TNode and Markov network template construction steps take significantly less

time. Thus, one promising way of speeding up BUSL via transfer is by following the same philosophy as

with TAMAR discussed in Section 3 where the algorithm starts by diagnosing the transferred structure. After

determining the portions of this structure that are still valid in the target domain, and the ones that need to

be modified, the number of candidate clauses to evaluate can be decreased by focusing only on the newly-

emerging dependencies or independencies among the variables. We can additionally expect to improve the

performance in the target domain, especially when data is limited, by biasing learning with the structure

learned in the source domain. Below we describe our proposed algorithm in more detail. We will first focus

on the case when training in the source domain is carried out using BUSL and will then discuss a way of

removing this assumption.

If we use BUSL to learn the structure of an MLN in a source domain, we can output not only the final

MLN but also any intermediate structures developed by the algorithm. In particular, we can also record

the Markov network templates constructed for each predicate (as described in Section 4.2.2). Let SP be the

Markov network template constructed for predicate P in the source domain. As before, we assume that there

is an oracle or a procedure that maps the predicates from the source domain to those of the target domain.

Thus, we can translate every SP to SP̂ where P̂ is the predicate in the target domain that corresponds to P

in the source domain and all other predicates in the template are likewise translated. The proposed revision

version of BUSL proceeds as listed in Algorithm 4 where P̂ is the set of predicates in the target domain.

As before, the algorithm considers each predicate P̂ in the domain in turn (line 1). For each P̂, it inputs

SP̂, the translated Markov network template constructed for the predicate that corresponds to P̂ in the source

domain and creates a Markov network template TP̂ from the data in the target domain. The differences

between these two templates are used to diagnose the clauses transfered from the source domain. In line

3, the algorithm considers each clause c that was constructed in the source domain from a clique in SP̂.

Recall from Section 4.2.3 that BUSL considers only clauses whose vliterals correspond to TNodes that form

a clique in the Markov network template. Therefore, to determine if c could still be valid in the target
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Algorithm 4 BUSL for revision

Output: A Set of All constructed candidate clauses

1: for each P̂ ∈ P̂ do

Input: S
P̂
,C

P̂
: Markov network template constructed for the predicate corresponding to P̂ in the source

domain and the set of clauses created from this template, mapped to the predicates in the target

domain.

2: Construct T
P̂
, the Markov network template for predicate P̂ in the target domain.

3: for each c ∈ C
P̂

do

4: N = empty set of New candidates constructed from c

5: if The clique of TNodes in S
P̂

from which c was constructed is present in T
P̂

then

6: Add c to N

7: else if The clique of TNodes in S
P̂

from which c was constructed is missing some edges in T
P̂

then

8: Consider all possible ways of removing literals from c such that the remaining literals have

corresponding TNodes that participate together in a clique in T
P̂

9: Add the resulting clauses to N

10: end if

11: for each Clause n ∈ N do

12: Collect a list of TNodes in T
P̂

that are connected with an edge to all of the TNodes that corre-

spond to the literals in n

13: Form new clauses from n by adding in all possible ways the literals from the TNodes collected

above.

14: Add these new clauses to A

15: end for

16: Add all clauses in N to A .

17: end for

18: for each Previously unexamined clique in which the head TNode participates do

19: Construct clauses as in Section 4.2.3 and add to A .

20: end for

21: end for

22: Remove duplicate candidates from A .

23: Evaluate candidates in A and add best ones to final MLN

domain, in lines 5-10 the algorithm checks whether the TNodes corresponding to the vliterals of c also

form a clique in TP̂. If this is the case, c is copied unchanged. Otherwise, the algorithm considers all

possible ways of deleting literals from c such that the TNodes corresponding to the remaining literals form

a clique in TP̂. In lines 11-15 the algorithm checks whether any of the clauses created so far for P̂ can be

extended by including additional literals. The potential additions are again constrained by the requirement

that all literals in a clause correspond to TNodes that form a clique in the template. Finally, in lines 18-20

the algorithm resorts to the complete search for clauses from Section 4.2.3 over any cliques that do not

correspond to any previously created clauses. In particular, if the current predicate being considered does

not have a corresponding predicate in the source domain, the algorithm skips through the loop in lines 3-17

and proceeds identically to BUSL.

Example: As an example, suppose the task is to transfer the MLN learned in our movie domain to an

academic domain similar to UW-CSE. Table 12 gives a concise list of the predicates in each domain and
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how they map to each other.

Example Movie Domain Example Academic Domain

Actor ⇒ Student

Director ⇒ Professor

Movie ⇒ Publication

WorkedFor ⇒ AdvisedBy

no match ⇒ Admin

no match ⇒ TaughtBy

Table 12: Predicates and their mapping in the two toy example domains

Let the current predicate P̂ be Student, which is mapped to Actor. We will use the TNodes from Table 6

(page 30) but for simplicity will ignore all TNodes containing more than one vliteral. Suppose Figure 14

gives SP̂ and Table 15 gives CP̂, the source clauses mapped to the target domain. Also suppose that Figure 16

gives TP̂.

Figure 14: Markov network template for Actor predicate in source domain. The head TNode is outlined in

bold.

The TNodes corresponding to the first clause still form a clique in TP̂ and thus this clause is copied un-

changed to the set of candidates. Considering the second clause, we notice that there is no longer an edge

between AdvisedBy(A, B) and Publication(C, A). Therefore, from this clause, we construct the candidates

AdvisedBy(A, B) ⇒ Student(A) and Publication(C, A) ⇒ Student(A). The TNodes corresponding to the

literals in the third clause are connected in the target Markov network template, and thus this clause is also

copied unchanged. At this point, the algorithm has reached line 11 in the pseudocode and finds that the third

clause can be extended by adding the literal Admin(A). In this way, the candidates Student(A) ∨ Profes-

sor(A) ∨ Admin(A) and Student(A) ∨ Professor(A) ∨¬ Admin(A) are constructed. Finally, reaching line

18, the algorithm constructs all possible candidates from the new clique formed by TaughtBy(E, A) and

Student(A).

The assumption on which Algorithm 4 is based is that if the dependencies among a set of TNodes are
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Source Clauses in Example Movie Domain Mapped Clauses to Example Academic Domain

Movie(C, A) ⇒ Actor(A) ∨ Director(A) Publication(C, A) ⇒ Student(A) ∨ Professor(A)

WorkedFor(A, B) ∧ Movie(C, A) ⇒ Actor(A) AdvisedBy(A, B) ∧ Publication(C, A) ⇒ Student(A)

Actor(A) ∨ Director(A) Student(A) ∨ Professor(A)

Figure 15: Clauses built from the Markov network template in Figure 14 and their corresponding mappings

in the target domain.

Figure 16: Markov network template for target domain. Head TNode is outlined in bold.

preserved when transferring to the target domain, then the vliterals corresponding to these TNodes will

participate in the same specific relationships and therefore the same clauses as in the source domain will

give the best performance. Thus, the algorithm copies over clauses that are still backed by a clique in the

Markov network template constructed from the target domain and performs only a limited search for new

clauses that involve newly-appearing TNodes or cliques.

5.1.1 Markov Network Template Construction

In line 2 we did not specify how the Markov network template in the target domain, TP̂, is constructed. One

possibility is to follow the same approach as BUSL and ignore any information from the source domain. We

expect that this approach will perform well in our current three test domains because, as discussed in Sec-

tion 4.4, additional data does not introduce a significant number of dependencies that cannot be discovered

from a single mega-example. This, however, may not be the case in other tasks, particularly in a game-

playing domain, in which a single game may not allow the player to observe all interactions among the

relevant entities. In such cases it may be beneficial to use SP̂ to bias the construction of TP̂. This can be done

as follows. Suppose that A and B are two TNodes in the source domain and Â and B̂ are their corresponding

TNodes in the target domain. If A and B are not connected by an edge, then we demand stronger evidence of

dependence in order to connect Â and B̂. Similarly, if A and B are connected, we require stronger evidence

of independence to leave Â and B̂ unconnected.
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5.1.2 Constructing a Markov Network Template from an Existing MLN

Next we describe one possible way of removing the assumption that the source MLN was learned using

BUSL by developing an algorithm that constructs an approximation of SP̂ from the source MLN. This can be

done as follows. First the algorithm creates a head TNode as in Section 4.2.1. It then considers all clauses in

the source domain that contain literals of P̂. Each such clause is grounded with arbitrary constants, ensuring

that shared variables are replaced with the same constant. The resulting gliterals are treated as the only true

gliterals in a relational database. The same approach as in Section 4.2.1 can now be used to create a set of

TNodes. Template construction is completed by connecting with edges TNodes that were constructed from

the literals in the same clause.

5.2 Experiments on Additional Domains

We plan to test BUSL’s performance in additional domains. Some possibilities include traditional ILP bench-

mark datasets such as Alzheimer and Mutagenesis used by Landwehr, Kersting, and De Raedt (2005, and

others), where the goal is to classify various chemical compounds as mutagens or according to how effec-

tive they are against the Alzheimer’s disease. These datasets are challenging because they usually contain

information about a large number of entities (i.e. molecules), which are described in terms of the relations

among their atoms. Another interesting domain is the yeast genome dataset whose properties and challenges

are described in detail by Perlich and Merugu (2005). One interesting challenge posed by this dataset is that

some relations are weighted. In other words, rather than specifying that two entities are or are not in a

relationship, the dataset lists the degree to which they are related.

An alternative possibility is to test BUSL on learning for game control in games such as the ones from

the General Game Playing framework (Genesereth & Love, 2005), particularly two-person games that have

an opponent and therefore involve uncertain state. This can be cast as a relational problem by introducing

predicates for each of the available actions, for all features describing the state, and for all features that

could be used to describe the hidden state of the opponent. The task is then to learn an MLN that would

effectively predict the probability of success of each action, given the current state. Since the beliefs of the

opponent are unobserved, they also need to be inferred. To avoid the intricacies of training MLNs from

partially unobservable data, during training, we can simulate different opponents that reveal their hidden

state to the player.

5.3 Transfer from Multiple Potential Sources

In all of our transfer experiments, we have assumed that there are only two tasks, a source and a target,

and that the two are related a priori. A much more interesting and challenging case is one where the

learner has compiled a library of previous domains. When faced with a new target task, it first determines

which previous tasks are most related to the current one in order to transfer only the knowledge learned

from them. This is related to the TC algorithm by (Thrun & O’Sullivan, 1996) in which distance metrics

utilized by a nearest neighbor algorithm are transfered only from domains that are deemed similar to the

target domain. However, the TC algorithm applies only to the nearest neighbor algorithm and requires

that the tasks share the same feature space. Several other researchers have studied related problems. For

example, Raina et al. (2006) and Marx et al. (2005) use a set of previous tasks to construct a prior for a

logistic regression classifier. Even though this work incorporates knowledge from several source tasks, it

merely combines all the previous knowledge without attempting to select the more related source domains

and assumes that the tasks share a feature space. Crammer, Kearns, and Wortman (2006) examine the case
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where a learner has available several source tasks of varying similarity, and give bounds that formalize the

tradeoff between acquiring more data from source tasks and misleading the learning algorithm through the

inclusion of data from increasingly unrelated sources. However, the authors assume that a disparity matrix

that specifies to what extent any two tasks are related is provided to the learner.

In contrast to this previous work, we would like to address the case where various relational domains,

described in terms of different predicates, are presented to the learner one by one. In this setting, the learner

has to be able to autonomously map source domains to the target domain, determine the relatedness of tasks,

and combine knowledge from several sources.

In the simplest multiple-source scenario, the algorithm has learned MLNs in a small set of source do-

mains and wants to transfer the entire learned structures from the sources that are most similar to the target

domain. This problem can be addressed using existing techniques as follows. First, we use MTAMAR briefly

described in Section 3 to find the best way of mapping each of the source structures independently to the

target domain. In addition to outputting the mapped structure, this algorithm also provides the WPLL score

(described in Section 2.4.2) of this mapped structure in the target domain. We then transfer the mapped

structures that achieve the highest WPLL score in the target domain and use RTAMAR or BUSL for revision

to further improve the performance of the learned MLN in the target domain.

This simple scenario, however, is not entirely realistic because it is not common to find domains that

have significant overlap over all, or most, of their predicates. However, we can reasonably expect to find

pairs of domains in which small subsets of the predicates are similar. For example, suppose we would like

to use UW-CSE as a source domain and transfer to WebKB. As we mentioned in Section 3.2.2, transferring

a complete structure learned in UW-CSE is not beneficial because UW-CSE contains a large number of

predicates, many of which have no appropriate counterparts in WebKB. There are, however, several predi-

cates in the two domains that are a fairly good match for each other, as also signified by their names. These

include Student, Professor/Faculty, TA/CourseTA, TaughtBy/CourseProf. This example suggests that, for

each predicate in the target domain, a more effective transfer learner looks for similar previously encoun-

tered predicates and transfers knowledge on a predicate-by-predicate basis. In this way, the learner can

seamlessly combine appropriate knowledge from a large number of domains. An important part of a system

that transfers predicate-specific knowledge is the ability to judge the similarity between predicates. We next

propose one approach for doing this.

5.3.1 Measuring the Similarity Between Predicates

We propose to use the Markov network templates constructed by BUSL in order to measure the similarity be-

tween predicates. Recall from Section 4 that BUSL constructs a Markov network template for each predicate

P in the domain, and that the goal of this template is to capture the dependencies among vliterals that could

potentially be used to build clauses. We plan to use these templates to determine which predicates have a

direct influence on the current predicate P: if a vliteral of a predicate appears in the TNodes constituting the

Markov blanket of the head TNode, we conclude that this predicate has a direct influence on P.

The main idea of our algorithm for measuring the similarity between predicates is that two predicates are

similar if the predicates that have a direct influence on each of them are similar. We envision implementing

this idea using an iterative algorithm reminiscent of Gibbs sampling as follows. At each step we recalculate

the similarity between a pair of predicates P1 and P2 based on the currently-estimated similarity between

the sets of predicates that have a direct influence over P1 and P2. One tractable way of estimating the

similarity between two sets of predicates X and Y is by finding the most similar element of Y for each

element in X and vice versa and averaging over these |X|+ |Y| similarities. This approach has complexity

2 · |X| · |Y|. However, we would like to find a formulation that guarantees convergence of the algorithm. The
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algorithm can be initialized with previously computed similarities among the source predicates. To initialize

similarities between source and target predicates, we can use MTAMAR to map a few of the source domains

to the target domain and use the choices of this algorithm as initial evidence of similarity.

5.3.2 Selective Knowledge Transfer

Once the similarities between the predicates are computed, for each of the target predicates, the algorithm

can transfer the clauses learned for the source predicate(s) estimated to be most similar. These clauses can

be mapped to the target domain by replacing each source predicate with its most similar target counterpart.

If source domain learning was carried out with BUSL or BUSL for revision, the Markov network templates

can be similarly transferred to the target domain.

This approach allows the learner to transfer only those parts of previously learned MLNs that are relevant

to the new domain. Moreover, at all times the algorithm maintains an estimate of the similarity between all

encountered predicates, thus coming closer to the goal of life-long learning.

5.3.3 Further Extensions

The similarity estimates among the predicates can be used to organize the predicates into clusters. Some

work in the direction of predicate clustering has already been done (e.g. Kemp et al., 2006), but this work

does not explicitly compute the similarity between predicates which is crucial in the transfer learning set-

ting we are considering. Predicate clustering is particularly useful when there are a very large number of

previously-studied predicates. In this case, instead of using MTAMAR to map the target domain to all previ-

ous tasks, or to a randomly chosen set of previous tasks, we can select the source tasks so that at least one

predicate from each cluster will be initialized in this way. The remaining cluster members can be initialized

using the transitivity of the similarity relationship.

5.4 Using BUSL to learn models with functions

One deficiency of BUSL is that, like KD, it cannot currently handle functions. Although functions do not

increase the power of first-order logic (Russell & Norvig, 2003), they can be helpful in expressing logical

sentences in a more concise way. For example, suppose that we would like to encode the statement that if

an agent takes the “Up” action, its y coordinate increases by one. Using the increment function, this can be

easily stated as follows:

Action(up) ∧ CurrentCoords(x, y) ⇒ CurrentCoords(x, increment(y))

Alternatively, we can avoid using functions, thus obtaining a much more awkward statement:

Action(up) ∧ CurrentCoords(x, y) ∧ ConsecutiveNumbers(y, z) ⇒ CurrentCoords(x, z)

We consider constants to be functions of 0 arity and assume that clauses may contain constants, variables,

and functions. Thus this extension to BUSL would be useful even in domains in which there are no functions

because it would allow the algorithm to learn clauses that contain constants. For instance, one such helpful

clause, encoded in the UW-CSE knowledge base is that visiting professors do not advise any students:

Position(P, faculty visiting) ⇒¬ AdvisedBy(S, P)
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To allow BUSL to learn models with functions, we propose to modify the TNode construction procedure

described in Section 4.2.1 so that the resulting TNodes can contain functions. One way of achieving this is

by using the technique of least general generalization (LGG), which we discussed in Section 2.2.2.

Suppose that the dataset lists gliterals whose terms may be functions of arity greater than 0. Unlike

Algorithm 2 (page 27), which constructs the TNodes and the MP matrix simultaneously, the approach we

propose here first constructs the set of potential TNodes and then fills in the matrix for each P. Let D be the

set of true gliterals in the data. Then, the TNodes are constructed by considering the LGG(D ,D). In other

words, for every two gliterals X ,Y ∈ D , if LGG(X ,Y ) is defined, we add it to the set of TNodes, T . If D

is too large, we can randomly sample a subset of pairs from it, as is done in GOLEM (Muggleton & Feng,

1992). Because LGG performs the most conservative generalization, not all constants will be replaced by

variables, and in this way a more diverse set of TNodes will be created. We expect that an effective Markov

network learning algorithm will be even more important in this extension of BUSL because a larger number

of TNodes will be created.

Next we describe how the MP matrix is created for predicate P. For each P, we find a vliteral in T that

could serve as a head TNode (i.e. it is completely variablized with unique variables). If there is no such

vliteral, we simply create it and add it to T . For each grounding GP of P, we go through T and check

whether there is at least one gliteral connected to GP that could be transformed into the current member t of

T so that any variablizations are consistent (i.e. if two constants are the same, they are replaced with the

same variables). If such a gliteral exists, we set MP[GP][t] to 1. Otherwise, it remains set to 0.

5.5 Using BUSL to learn other SRL models

Our promising results with BUSL suggest that similar bottom-up techniques can be used to learn other SRL

models. For example, BUSL can be adapted to learn Bayesian logic programs (BLPs), which are first-

order analogs of Bayesian networks. In a BLP, the structure consists of Horn clauses which describe the

dependencies among the literals. The premises of each clause become the parents of the head in the Bayesian

network defined by the BLP. The present BLP learning algorithm by Kersting and De Raedt (2001) follows

the top-down paradigm of generating and scoring candidate structures. Instead, we can proceed as in BUSL

and first create a Markov network template that specifies which literals are conditionally independent of each

other and therefore could not possibly be parents of each other. This can be done in exactly the same way

as in BUSL. Note that even though BLPs are first-order analogs to Bayesian networks, which are directed

graphical models, as opposed to Markov networks, which are undirected, it is still useful to first construct

a Markov network template because the lack of arrows makes this model easier to learn. Directionality is

added by the constraint that candidates can only be Horn clauses, i.e. there will be directed edges from

each of the premises in a Horn clause to the conclusion. Alternatively, a Bayesian network template can be

directly constructed over the set of TNodes by replacing GSMN with an algorithm such as that of Margaritis

and Thrun (2000) that learns Bayesian network structure.

6 Conclusions

Markov logic networks are a recently developed formalism that combines the expressivity of first-order logic

with the flexibility of probabilistic reasoning and subsumes many popular SRL models. In order to take

advantage of the power of MLNs, however, we need methods for learning their structure, or the clauses that

compose them. In this proposal we have presented two approaches for improving MLN structure learning.

The first one, RTAMAR autonomously diagnoses and revises an MLN learned in a source domain in order to
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improve performance in a target domain. Our second algorithm, BUSL approaches the problem of structure

learning in a novel, bottom-up way and significantly improves learning from scratch over the current state-

of-the-art learner. In our short-term future work we propose to extend BUSL to perform revision so that

it can be used like RTAMAR for transfer learning and to test it in additional domains. Our longer-term

research goals include developing a much more general transfer learning framework in which the learner

must independently decide which from a set of previous learning experiences are most similar to the target

task and transfer knowledge only from them. We would also like to extend BUSL to handle functions and to

learn the structure of other SRL models.
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8 Appendix 1

Figures 17 to 21 present complete learning curves for the results presented in Section 3.2.3. The zeroth

points are obtained by testing the performance of the MLN provided to the learner at the start.
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Figure 17: Learning curves in WebKB → IMDB for a) AUC and b) CLL.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 4 3 2 1 0

A
U

C

Number of Mega Examples

Learning Curves in IMDB Domain (Transfer from UW-CSE)

ScrKD
TrKD, Hand Mapping

TAMAR, Hand Mapping 
TrKD, Automatic Mapping

TAMAR, Automatic Mapping

-10

-8

-6

-4

-2

 0

 2

 4

 4 3 2 1 0

C
L
L

Number of Mega Examples

Learning Curves in IMDB Domain (Transfer from UW-CSE)

ScrKD
TrKD, Hand Mapping

TAMAR, Hand Mapping 
TrKD, Automatic Mapping

TAMAR, Automatic Mapping

a) b)

Figure 18: Learning curves in UW-CSE → IMDB for a) AUC and b) CLL. Here we additionally tested

the performance of systems that do not use the automatic mapping but are provided with an intuitive hand-

constructed mapping that maps Student → Actor, Professor → Director, AdvisedBy/TempAdvisedBy →
WorkedFor, Publication → MovieMember, Phase → Gender, and Position → Genre.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 4 3 2 1 0

A
U

C

Number of Mega Examples

Learning Curves in IMDB Domain (Transfer from UW-KB)

ScrKD
TrKD, Automatic Mapping

TAMAR, Automatic Mapping

-10

-8

-6

-4

-2

 0

 2

 4

 4 3 2 1 0

C
L
L

Number of Mega Examples

Learning Curves in IMDB Domain (Transfer from UW-KB)

ScrKD
TrKD, Automatic Mapping

TAMAR, Automatic Mapping

a) b)

Figure 19: Learning curves in UW-KB → IMDB for a) AUC and b) CLL.
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Figure 20: Learning curves in WebKB → UW-CSE for a) AUC and b) CLL.
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Figure 21: Learning curves in IMDB → UW-CSE for a) AUC and b) CLL.
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