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ABSTRACT
While the vast majority of clustering algorithms are partitional,
many real world datasets have inherently overlapping clusters. The
recent explosion of analysis on biological datasets, whichare fre-
quently overlapping, has led to new clustering models that allow
hard assignment of data points to multiple clusters. One particu-
larly appealing model was proposed by Segal et al. [33] in thecon-
text of probabilistic relational models (PRMs) applied to the analy-
sis of gene microarray data. In this paper, we start with the basic ap-
proach of Segal et al. and provide an alternative interpretation of the
model as a generalization of mixture models, which makes it easily
interpretable. While the original model maximized likelihood over
constant variance Gaussians, we generalize it to work with any reg-
ular exponential family distribution, and corresponding Bregman
divergences, thereby making the model applicable for a widevari-
ety of clustering distance functions, e.g., KL-divergence, Itakura-
Saito distance, I-divergence. The general model is applicable to
several domains, including high-dimensional sparse domains, such
as text and recommender systems. We additionally offer several
algorithmic modifications that improve both the performance and
applicability of the model. We demonstrate the effectiveness of our
algorithm through experiments on synthetic data as well as subsets
of 20-Newsgroups and EachMovie datasets.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications - Data Min-
ing; I.2.6 [Artificial Intelligence ]: Learning

Keywords
Overlapping clustering, exponential model, Bregman divergences,
high-dimensional clustering, graphical model.

1. INTRODUCTION
Almost all clustering methods assume that each item must be as-

signed to exactly one cluster and are hence partitional. However, in
a variety of important applications,overlapping clustering, wherein
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some items are allowed to be members of two or more discov-
ered clusters, is more appropriate. For example, in biology, genes
have more than one function by coding for proteins that participate
in multiple metabolic pathways; therefore, when clustering micro-
array gene expression data, it is appropriate to assign genes to mul-
tiple, overlapping clusters [33, 4]. In the popular20-Newsgroups
benchmark dataset used in text classification and clustering [24],
a fair number of the original articles were actually cross-posted
to multiple newsgroups; the data was subsequently manipulated
to produce disjoint categories. Ideally, a clustering algorithm ap-
plied to this data would allow articles to be assigned to multiple
newsgroups and would rediscover the original cross-postedarti-
cles. In the popularEachMoviedataset used to test recommender
systems [30], many movies belong to more than one genre, such
as “Aliens”, which is listed in the action, horror and science fiction
genres. An overlapping clustering algorithm applied to this data
should automatically discover such multi-genre movies.

In this paper, we generalize and improve an approach to overlap-
ping clustering introduced by Segal et al. [33], hereafter referred
to as the SBK model. The original method was presented as a
specialization of a Probabilistic Relational Model (PRM) [18] and
was specifically designed for clustering gene expression data. We
present an alternative (and we believe simpler) view of their basic
approach as a straightforward generalization of standard mixture
models. While the original model maximized likelihood overcon-
stant variance Gaussians, we generalize it to work with any regular
exponential family distribution, and corresponding Bregman diver-
gences, thereby making the model applicable for a wide variety of
clustering distance functions [2]. This generalization iscritical to
the effective application of the approach to high-dimensional sparse
data, such as typically those encountered in text mining andrecom-
mender systems, where Gaussian models and Euclidean distance
are known to perform poorly.

In order to demonstrate the generality and effectiveness ofour
approach, we present experiments in which we produced and eval-
uated overlapping clusterings for subsets of the20-Newsgroupsand
EachMoviedata sets referenced above. An alternative “straw man”
algorithm for overlapping clustering is to produce a standard proba-
bilistic “soft” clustering by mixture modeling and then make a hard
assignment of each item to one or more clusters using a thresh-
old on the cluster membership probability. The ability of thresh-
olded soft clustering to produce good overlapping clusterings is an
open question. Consequently, we experimentally compare our ap-
proach to an appropriate thresholded soft clustering and show that
the proposed overlapping clustering model produces groupings that
are more similar to the original overlapping categories in the 20-
NewsgroupsandEachMoviedata.

The main contributions of the paper can be summarized as:
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Figure 1: Basic graphical model for overlapping clustering

1. We show that the basic SBK model [33] for overlapping clus-
tering can be (more simply) understood as an extension of
the mixture modeling with Gaussian density functions, rather
than a simplification of PRMs.

2. We extend the basic SBK model to work with any regular
exponential family. Using a connection between exponen-
tial families and Bregman divergences [2], we show that the
basic computational problem is that of matrix factorization
using Bregman divergences to measure loss.

3. We outline an alternating minimization algorithm for thegen-
eral model that monotonically improves the objective func-
tion for overlapping models for any regular exponential fam-
ily distribution.

4. We present empirical evidence that the proposed overlap-
ping clustering model works better than some alternative ap-
proaches to overlapping clustering.

A brief word on notation:Rd denotes thed-dimensional real vector
space;p denotes a probability density function while other lower-
case letters likek denote scalars; uppercase letters likeX signify a
matrix, whoseith row vector is represented asXi , j th column vec-
tor is represented asX j , and whose entry in rowi and columnj is
represented asXi j or X j

i .

2. BACKGROUND
In this section, we give a brief introduction to the PRM-based

SBK model.Probabilistic Relational Models(PRMs) [18, 23] ex-
tend the basic concepts of Bayesian networks into a framework for
representing and reasoning with probabilistic relationships between
entities in a relational structure. PRMs provide a very general
framework, allowing for the learning of graphical models ofproba-
bilistic dependencies from arbitrarily complex relational databases.

The SBK model is an instantiation of a PRM for capturing the
relationships between genes, processes, and measured expression
values on DNA microarrays. The structure of the instantiated model
succinctly captures the underlying biological understanding of the
mechanism generating the observed microarray values — namely,
that genes participate in processes, experimental conditions cause
the invocation of processes at varying levels, and the observed ex-
pression value in any particular microarray spot is due to the com-
bined contributions of several different processes. The SBK model
places no constraints on the number of processes in which anygene
might participate, and thus gene membership in multiple processes,
i.e., overlapping clustering, naturally follows.

The SBK model works with three matrices: the observed real
expression matrixX (genes� experiments), a hidden binary mem-
bership matrixM (genes� processes), containing the membership
of each gene in each process, and a hidden real activity matrix A
(processes� conditions)containing the activity of each process
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Figure 2: Instantiation of the PRM model to 2 data points
(genes), 2 dimensions (experiments) and 3 clusters (processes).

for each experimental condition. The key modeling assumption is
as follows: the expression valueX j

i corresponding to genei in ex-
periment j has a Gaussian distribution with constant variance. The
mean of the distribution is equal to the sum of the activity levels
A j

h of the processesh in which genei participates. From the model
assumption, we have

p(X j
i jMi ;A) = 1p

2πσ
exp

 � (X j
i �MiA j)2

2σ2

! ; (1)

The SBK model assumes thatM and A are independent apriori
so thatP(M;A) = P(M)p(A) and thatX j

i ’s are conditionally in-
dependent givenMi andA j . Further,M andA are assumed to be
component-wise independent as well so thatP(M);P(A) can be de-
composed into products over each component. All the above as-
sumptions for the SBK model can be represented as a graphical
model as shown in Figures 1 and 2. The joint distribution ofX, M
andA, that the SBK model tries to optimize is given by

p(X;M;A) = p(M;A)p(XjM;A) = p(M)p(A)p(XjM;A)=  
∏
i;h p(Mh

i )! ∏
h; j

p(A j
h)! ∏

i; j
p(X j

i jMi ;A j)! :
Assuming thatAh

j are uniformly distributed over a sufficiently large

compact set, and noting that the conditional distribution of X j
i is

Gaussian, considering the log-likelihood of the joint distribution,
we have

max
M;A log p(X;M;A) � max

M;A "∑i;h log p(Mh
i )� 1

2σ2 ∑
i; j
(X j

i �MiA
j)2#� min

M;A � 1
2σ2 kX�MAk2� log p(M)�

To find the value of the hidden variablesM;A, the SBK model uses
an EM approach [15]. The E step involves finding the best esti-
mates of the binary genes-process membershipsM. The M step
involves computing the prior probability of gene membership in
each processp(M) and the process-condition activationsA.

The core parameter estimation problem is much easier to under-
stand if we recast it as a matrix decomposition problem, ignoring
the priors for the time-being. With the knowledge that therearek
relevant processes in the observations, we want to find a decompo-
sition of the observed expression matrixX 2 Rn�d into a binary
membership matrixM 2 f0;1gn�k and a real valued activation ma-



trix A2Rk�d such thatjjX�MAjj2 is minimized. In [33], estimat-
ing M andA for a givenX proceeds as follows:

1. M is seeded with a first estimate of the clustering in the data,
usually the output of a partitional clustering such as hierar-
chical or k-means run on the rows ofX.

2. Next, the least-squares approximation ofA for the givenX
andM is found asA= M†X, whereM† is the pseudo-inverse
of M.

3. Using theA from step 2, the next approximation ofM is
found by relaxing the requirement thatM be binary and solv-
ing a bounded least squares optimization for each gene inM.
This effectively seeks a solution̂Mi = [0;1℄k for each row
such thatjjXi� M̂iAjj2 is minimized.

4. A binary solutionM is then recovered from the real-valued
solution M̂ found in step 3 by thresholding. Since thresh-
olding potentially moves the solution away from optimal, a
local search is performed over every possible 0-flip of the
post-threshold 1’s to find theMi = f0;1gk that minimizesjjXi�MiAjj2.

5. Using the newM calculated in step 4, steps 2-4 are repeated
until jjX�MAjj2 is less than the desired convergence criteria.

The next section describes how the overlapping clustering model
we propose generalizes the PRM-based SBK model. We also pro-
vide a simple interpretation of our model as a modification tothe
standard mixture modeling using exponential family distributions,
that has been widely used for generative modeling of data.

3. THE MODEL
In this section, we present a quick review of basic mixture mod-

eling, and outline a simplistic way of getting overlaps fromthe re-
sulting soft-clustering. Then, we propose our model for overlap-
ping clustering, hereafter referred to as MOC, as a generalization
of the SBK model, and study the fixed point equations of the pro-
posed model.

3.1 Basic Mixture Model
Given set ofn data points, each point being a vector inRd, let

them be represented by an� d observation matrixX, such that
row Xi denotes theith data point andXi j represents itsj th feature.
Fitting a mixture model toX is equivalent to assuming that each
data pointXi is drawn independently from a probability density

p(Xi jΘ) = k

∑
h=1

αhph(Xi jθh)
whereΘ = fθhgkh=1, k is the number of mixture components,ph

is the probability density function of thehth mixture component
with parametersθh, andαh are the component mixing coefficients
such thatαh� 0 and∑k

h=1αh = 1. To sample a point following the
density of this mixture model, first a component density function
ph is chosen with a probabilityαh and then a point is sampled fromRd following ph.

Let Z be an�k boolean matrix such thatZi j is 1 if the j th com-
ponent density was selected to generateXi , and 0 otherwise. In
mixture model estimation, since each pointXi is assumed to be gen-
erated from only one underlying mixture component, every row Zi
is ak-dimensional boolean vector constrained to have 1 in only one
column and 0 everywhere else. Letzi be a random variable corre-
sponding to the index of the 1 in each rowZi : everyzi is therefore

a multinomial random variable, since it can take one ofk discrete
values. If the matrixZ is known, one can directly estimate the
parametersΘ of the most likely model explaining the data by max-
imizing thecompletelog-likelihood of the observed data, given by

ln p(X;ZjΘ) = n

∑
i=1

ln(αzi pzi (Xi jθzi ))
However, theZ matrix is typically unknown: the optimum param-
etersΘ of the log-likelihood function with unknownZ, called the
incompletelog-likelihood function, can be obtained using the well-
known iterativeExpectation Maximization (EM)algorithm [15].

3.2 Overlapping Clustering with Mixture Model
Mixture models are often used to generate a partitional cluster-

ing of the data, where the points estimated to be most probably
generated from thehth mixture model component are considered to
constitute thehth partition. The probability valuep(zi = hjXi ;Θ)
after convergence of the EM algorithm gives the probabilityof the
point Xi being generated from thehth mixture component.

In order to use the mixture model to get overlapping clustering,
where a point can deterministically belong to multiple clusters, one
can choose a threshold valueλ such thatXi belongs to the parti-
tion Xh if p(zi = hjXi ;Θ) > λ. Such a thresholding technique can
enableXi to belong to multiple clusters. However, there are two
problems with this method. One is the choice of the parameterλ,
which is difficult to learn given onlyX. Secondly, this is not a
natural generative model for overlapping clustering. In the mixture
model, the underlying model assumption is that a point is generated
from only one mixture component, andp(zi = hjXi ;Θ) simply gives
the probability ofXi being generated from thehth mixture compo-
nent. However, an overlapping clustering model should generate
Xi by simultaneously activating multiple mixture components. We
describe one such model in the next section.

3.3 Proposed Overlapping Clustering Model
The overlapping clustering model that we present here is a gener-

alization of the SBK model described in Section 2. The SBK model
minimizes the squared loss betweenX andMA, and their proposed
algorithms is not applicable for estimating the optimalM and A
corresponding to other loss functions. In MOC, we generalize the
SBK model to work with a broad class of probability distributions,
instead of just Gaussians, and propose an alternate minimization
algorithm for the general model.

The most important difference between MOC and the mixture
model is that we remove the multinomial constraint on the matrix
Z, so that it can now be an arbitrary boolean matrix. To distin-
guish from the constrained matrixZ, we denote this unconstrained
boolean matrix as the membership matrixM. Every pointXi now
has a correspondingk-dimensional boolean membership vectorMi :
thehth componentMh

i of this membership vector is a Bernoulli ran-
dom variable indicating whetherXi belongs to thehth cluster. The
membership vectorMi for the pointXi effectively encodes 2k con-
figurations, starting from[00: : :0℄, indicating thatXi does not be-
long to any cluster, to[11: : :1℄, indicating thatXi belongs to allk
clusters. So, a vectorMi with multiple 1’s directly encodes the fact
that the pointXi belongs to multiple clusters.

Let us now consider the probability of generating the observed
data points in MOC.A is the activity matrix of this model, such
thatA j

h represents the activity of clusterh while generating thej th

feature of the data. The probability of generating all the data points
is

p(XjΘ) = p(XjM;A) = ∏
i; j

p(X j
i jMi ;A j) (2)



whereΘ = fM;Ag are the parameters ofp, andX j
i ’s are condition-

ally independent givenMi andA j . In MOC, we assumep to be the
density function of any regular exponential family distribution, and
also assume that the expectation parameter corresponding to Xi is
of the formMiA, so thatE[Xi ℄ = MiA. In other words, using vector
notation, we assume that eachXi is generated from an exponential
family density whose meanMiA is determined by taking the sum
of the activity levels of the components that contribute to the gen-
eration ofXi , i.e.,Mh

i is 1 for the active components. For example,
if p represents a Gaussian density, then its mean would be the sum
of the activity levels of the components for which the membership
variableMh

i of the pointXi has a value 1.
Using the above assumptions and the bijection between regular

exponential distributions and regular Bregman divergences [2], the
conditional density can be represented as:

p(X j
i jMi ;A j ) ∝ expf�dφ(X j

i ;MiA
j)g (3)

wheredφ is the Bregman divergence corresponding to the chosen
exponential densityp. For example, ifp is the Poisson density,dφ
is the I-divergence; ifp is the Gaussian density,dφ is the squared
Euclidean distance [2].

Similar to the SBK model, the overlapping clustering model tries
to optimize the following joint distribution ofX, M andA:

p(X;M;A) = p(M;A)p(XjM;A) = p(M)p(A)p(XjM;A)=  
∏
i;h p(Mh

i )! ∏
h; j

p(A j
h)! ∏

i; j
p(X j

i jMi ;A j)! :
Making similar model assumptions as in Section 2, we assume
that M andA are independent of each other apriori andA is dis-
tributed uniformly over a sufficiently large compact set, implying
that p(M;A) = p(M)p(A) ∝ p(M). Then, maximizing the log-
likelihood of the joint distribution gives

max
M;A log p(X;M;A) � max

M;A "∑i;h log p(Mh
i )�∑

i; j
dφ(X j

i ;MiA
j)#� min

M;A "∑i; j
dφ(Xi j ;(MA)i j )�∑

i;h logαih

# :
whereαih = p(Mh

i ) is the (Bernoulli) prior probability of thei-th
point having a membershipMih to theh-th cluster.

3.4 Fixed Point Equations
We now present the fixed point equations of the overlapping clus-

tering model that are satisfied for any Bregman divergence. The
equations specify the connection betweenX;M;A at a fixed point
of the model. It further suggests a general gradient descentupdate
technique that we revisit later in Section 4. For notationalconve-
nience, letφ(X) on its own denote∑i; j φ(Xi j ) andX ÆY denote the
matrix dot product tr(XTY) = ∑i; j Xi jYi j .

LEMMA 1. For any Bregman divergence dφ and any matrix X,
the optimal values of M and A that minimize dφ(X;MA)must satisfy
the fixed point equations

MT �(X�MA) Æ φ00(MA)� = 0 (4)�(X�MA)Æφ00(MA)�AT = 0 : (5)

Further, X = MA is a sufficient condition for the corresponding
M;A to be optimal.

PROOF. The objective function to be optimized is

dφ(X;MA) = φ(X)�φ(MA)� (X�MA)Tφ0(MA) :

Taking gradient with respect toA and setting it to the zero matrix
of sizep�m, we have�MTφ0(MA)� (�MT )φ0(MA)�MT �(X�MA)Æφ00(MA)� = 0) MT �(X�MA)Æφ00(MA)� = 0 :
An exactly similar calculation with respect toM, with a zero matrix
of sizen� p, gives�(X�MA)Æφ00(MA)�AT = 0 :
Now, note that anyM;A with X = MA satisfies both the fixed point
equation. The corresponding loss function

dφ(X;MA) = dφ(X;X) = 0 ;
which is the global minimum for the objective function. Hence an
exact factorization ofX asMA is sufficient forM;A to be globally
optimal.

4. ALGORITHMS AND ANALYSIS
In this section, we propose and analyze algorithms for estimating

the overlapping clustering model given an observation matrix X. In
particular, from a given observation matrixX, we want to estimate
the prior matrixα, the membership matrixM and the activity matrix
A so as to maximizep(M;A;X), the joint probability distribution
of (X;M;A). The key idea behind the estimation is an alternating
minimization technique that alternates between updatingα, M and
A.

4.1 Updating α
The prior matrixα can be directly calculated from the current

estimate ofM. If πh denotes the prior probability of any point be-
longing to clusterh, then, for a particular pointi, we have

αih = πMh
i

h (1�πh)1�Mh
i : (6)

Sinceπh is the probability of a Bernoulli random variable, and the
Bernoulli distribution is a member of the exponential family, the
maximum likelihood estimate is just the sample mean of the suffi-
cient statistic [2]. Since the sufficient statistic for Bernoulli is just
the indicator of the event, the maximum likelihood estimateof the
prior πh of clusterh is just

πh = 1
n ∑

i
1fMh

i =1g : (7)

Thus, one can compute the prior matrixα from (6) and (7).

4.2 UpdatingM

In the main alternating minimization technique, for a givenX;A,
the update for M has to minimize

∑
i; j

dφ(Xi j ;(MA)i j ) :
SinceM is a binary matrix, this is integer optimization problem and
there is no known polynomial time algorithm to exactly solvethe
problem. The explicit enumeration method involves evaluating all
2k possibilities for every data point, which can be prohibitive for
even moderate values ofk. So, we investigate simple techniques of
updatingM so that the loss function is minimized.

There can be two ways of coming up with an algorithm for up-
dating M. The first one is to consider a real relaxation of the
problem and allowM to take real values in[0;1℄. For particular
choices of the Bregman divergence, specific algorithms can be de-
vised to solve the real relaxed version of the problem. For example,



when the Bregman divergence is the squared loss, the correspond-
ing problem is just the bounded least squares (BLS) problem given
by

min
M

0�Mih�1

kX�MAk2 ;
for which there are well studied algorithms [6]. Now, from the real
bounded matrixM, one can get the cluster membership by round-
ing Mih values either by proper thresholding [33] or randomized
rounding [31]. Ifk0 clusters get turned “on” for a particular data
point, the SBK model performs an explicit 2k0 search over the “on”
clusters in order get improved results. Another alternative could
be to keepM in its real relaxed version till the overall alternating
minimization method has converged, and round it at the very end.
The update equation of the priorsπh andαih has to be appropriately
changed in this case.

Although the real relaxation approach seems simple enough for
the squared loss case, it is not necessarily so for all Bregman diver-
gences. In the general case, one may have to solve an optimization
problem (not necessarily convex) with inequality constraints, be-
fore applying the heuristics outlined above. In order to avoid that,
we outline a second approach that directly tries to solve theinteger
optimization problem without doing real relaxation.

We begin by making two observations regarding the problem of
estimatingM:

1. In a realistic setting, a data point is more likely to be in very
few clusters rather than most of them; and

2. For each data pointi, estimatingMi is a variant of thesub-
set sum problemthat uses a Bregman divergence to measure
loss.

Taking the first observation a step further, for a domain if itis well
understood (or desirable) that each data point can belong toat most
k0 clusters, for somek0 possibly significantly smaller thank, then it
may be computationally feasible to perform an explicit search over
all the possibilities:�

k
1

�+�k
2

�+ � � �+� k
k0

���ek
k0

�k0 ;
where the last inequality holds ifk0 � k=2. Note that fork0 = 1,
the overlapping clustering model essentially reduces to the regular
mixture model. However, in general, such a brute-force search may
only be feasible for very small value ofk0. Further, it is perhaps
not easy to decide on such ak0 apriori for a given problem. So,
we focus on designing an efficient way of searching through the
relevant possibilities using the second observation.

The subset sum problem is one of the hard knapsack problems [11]
that tries to solve the following:

Given a set ofk natural numbersa1; : : : ;ak and a tar-
get numberx, find a subsetSof the numbers such that
∑ah2Sah = x.

In a more realistic setting, one works with a set of real numbers, and
tries to find a subset such that the sum over the subset is theclosest
possible tox. In our case, we measure closeness using a Bregman
divergence and we have multiple targets to which we want the sum
to be close1. In particular, then the problem is to findM�

i such that

M�
i = argmin

Mi2f0;1gk
dφ(Xi ;MiA) = argmin

Mi2f0;1gk

m

∑
j=1

dφ(Xi j ; k

∑
h=1

Mh
i A j

h) :
1The problem is different from the so-called multiple subsetsum
problem [8].

Thus, there arem targetsXi1; : : : ;Xim, and for each targetXi j the
subset is to be chosen fromA1

j ; : : : ;Ak
j . The total loss is the sum

of the individual losses, and the problem is to find a singleMi that
minimizes the total loss.

Using the inherent bias of natural overlapping problems to put
each point in low number of clusters, and the similarities ofour
formulation to the subset sum problem, we propose the algorithm
dynamicM (Algorithm 1). The algorithm is motivated by the Apri-
ori class of algorithms in data mining [34] and Shapley valuecom-
putation in co-operative game theory [22, 14]. It is important to
note that no theoretical claim is being made regarding the optimal-
ity of dynamicM. The belief is that such an efficient algorithm will
work well in practice, as the empirical evidence in Section 5sug-
gests.

Algorithm 1 dynamicM
Input: Row vector[x℄1�d, distance functiond, activity matrix[A℄k�d, initial

guess[m0℄1�k
Output: Boolean membership vector[m℄1�k that gives a low value for

d(x;mA)
Method:

Forh= 1; : : : ;k, set[mh℄1�k; [wh℄1�k as all zeros
Set[t℄1�k as all ones
for h= 1 to k do

wh[h℄ 1
mh[h℄ 1`h d(x;mhA)

for r = 2 to k do
for h= 1 to k do

if t h = 1 then`old
h  `h

for p= 0 to (k�1) do
if (mh_wp 6= mh)\ (d(x;(mh +wp)A)< `h) then

mh mh+wp`h d(x;mhA)
if `old

h = `h then
th = 0

m = m0, `= d(x;m0A)
for h= 1 to k do

if `h < ` then
m mh` `h

Output[m℄1�k

The algorithmdynamicM starts with 1 cluster turned “on” and
greedily looks for the next best cluster to turn “on” so as to min-
imize the loss function. If such a cluster is found, then it has 2
clusters turned “on”. Then, it repeats the process with the 2clus-
ters turned “on”. In general, ifh clusters are turned “on”,dynamicM
considers turning each one of the remaining(k�h) clusters “on”,
one at a time, and computes loss corresponding to the membership
vector with(h+ 1) clusters turned “on”. If, at any stage, turning
“on” each one of the remaining(k�h) clusters increases the loss
function, the search process is terminated. Otherwise, it picks the
best(h+ 1)th cluster to turn “on”, and repeats the search for the
next best on the remaining(k�h�1) clusters.

Such a procedure will of course depend on the order in which
clusters are considered to be turned “on”. In particular, the choice
of the first cluster to be turned “on” will partly determine which
other clusters will get turned “on”. The permutation dependency of
the problem is somewhat similar in flavor to that of pay-off com-
putation in a co-operative game. Ifh players are already in co-
operation, the value-add of the(h+1)th partner will depend on the
permutation following which the firsth were chosen. In order to
design a fair pay-off strategy, one computes the average value-add
of a player, better known as Shapley value, over all permutations of



forming co-operations [22, 14].
Then, in theory,dynamicM should consider each one of thek!

permutations2, keep turning clusters “on” following each permuta-
tion to figure out the lowest loss achieved along that particular per-
mutation, and finally compute the best membership vector among
all permutations. Clearly, such an approach would be infeasible
in practice. Instead,dynamicM starts withk threads, one corre-
sponding to each one of thek clusters turned “on”. Then, in each
thread, it performs the search outlined above for adding thenext
“on” cluster, till no such clusters are found, or all of them have
been turned “on”. The search is similar in flavor to the Apriori algo-
rithms, or, dynamic programming algorithms in general, where an
optimal substructure property is assumed to hold so that thesearch
for the best membership vector with(h+ 1) clusters turned “on”
starts from that withh clusters turned “on”. Effectively,dynamicM
searches overk permutations, each starting with a different clus-
ter turned “on”. The other entries of the permutation are obtained
greedily on the fly. SincedynamicM runsk threads to achieve par-
tial permutation independence, the best membership vectorover all
the threads is selected at the end. The algorithm has a worst case
running time ofO(k3) and is capable of running with any distance
function.

4.3 UpdatingA

We now focus on updating the activity matrixA. Since there are
no restrictions onA as such, the update step is significantly simpler
than that forM. Note that the only constraint that such an update
needs to satisfy is thatMA stays in the domain ofφ. First, we
give exact updates for particular choices of Bregman divergences:
the squared loss and the I-divergence, since we use only these in
section 5. Then, we outline how the update can be done in case of
a general Bregman divergence.

In case of the square loss, since the domain ofφ isR, the prob-
lem

min
A
kX�MAk2 (8)

is just the standard least squares problem that can be exactly solved
by

A= M†X (9)

whereM† is the pseudo-inverse ofM, and is equal to(MTM)�1MT

in caseMTM is invertible.
In case of I-divergence or un-normalized relative entropy,the

problem

min
A

dI (X;MA) = min
A

∑
i; j

�
Xi j log

Xi j(MA)i j �Xi j +(MA)i j� ;
(10)

has been studied as a non-negative matrix factorization technique [7,
26]. The optimal update forA for givenX;M is multiplicative and
is given by

A j
h = A j

h
∑i M

h
i X j

i =(MA) j
i

∑i M
h
i

(11)

In order to prevent a divide by 0, it makes sense to use max((MA) j
i ;ε)

and max(∑i M
h
i ;ε) as the denominators for some small constant

ε > 0.
With the above updates, the respective loss functions are prov-

ably non-increasing. In our experiments, we focus on only these
2Since the permutations decide clusters to turn “on”, certain con-
figurations repeat. A simple check for repeating configurations can
bring computations down to 2k, as one would expect.

two loss functions. In case of a general Bregman divergence,the
update steps need not necessarily be as simple. In general, agradi-
ent descent update can be derived using the fixed point equation (4)
in Lemma 1. For a learning rate ofη, the gradient descent update
for A is given by

Anew A�η MT �(X�MA) Æ φ00(MA)� : (12)

As in many gradient descent techniques, an appropriate choice ofη
involves a line search along the gradient direction at everyiteration.
Note that the simple I-divergence updates in (11) are derived from
auxiliary function based methods. Existence of efficient updates
based on auxiliary functions for the general case will be investi-
gated as a future work.

5. EXPERIMENTS
This section describes the details of our experiments that demon-

strate the superior performance of MOC on real-world data sets,
compared to the thresholded mixture model.

5.1 Datasets
We run experiments on three types of datasets: synthetic data,

movie recommendation data, and text documents. For the high-
dimensional movie and text data, we create subsets from the origi-
nal datasets, which have the characteristics of having a small num-
ber of points compared to the dimensionality of the space. Cluster-
ing a small number of points in a high-dimensional space is a com-
paratively difficult task, as observed by clustering researchers [16].
The purpose of performing experiments on these subsets is toscale
down the sizes of the datasets for computational reasons butat the
same time not scale down the difficulty of the tasks.

5.1.1 Synthetic data
In [33], Segal et al. demonstrated their approach on gene mi-

croarray data and evaluated on standard biology databases.Since
these biology databases are generally believed to be lacking in cov-
erage, we elected to create microarray-like synthetic datawith a
clear ground truth. The synthetic data is generated by sampling
points from the MOC model and subsequently adding noise.

To generaten points from MOC, where each point has a dimen-
sionalityd and the maximum number of processes it can belong to
is k, we first generate an�k binary membership matrixM from a
Rayleigh distribution using rejection sampling. For each point, we
first sample a value from a Rayleigh distribution [32] with a mean
of 2. The actual number of processesp for the point is obtained by
adding 1 to the sample value, so that the mean number of processes
to which a point is assigned is effectively 3. Note that this addi-
tive shift assigns each point to at least 1 process since the original
Rayleigh distribution has a range[0;∞), and we also truncate pro-
cess values ofp> k to k. This makes the synthetic data closer to a
biological model of gene microarray data, where the averagenum-
ber of processes a gene belongs to has been empirically observed to
be close to 3 [33]. The final membership vector for the point isob-
tained by selectingp processes uniformly at random from the total
possible set ofk processes and turning on the membership values
for those processes, the rest being set to 0. The membership vectors
for all n points defines the overall membership matrixM.

We next generate ak�d activation matrixA, where every point
is sampled from a Gaussian N (0,1) distribution. We form the
observationX asMA and corrupt it with additive Gaussian noise
N (0,0.5): the noise makes the task of recovery ofM and A by
performing the decomposition onX non-trivial. Three different
synthetic datasets of different sizes were generated:



� small-synthetic: a small dataset withn= 75,d = 30 andk=
10;� medium-synthetic: a medium-sized dataset withn= 200,d=
50 andk= 30;� large-synthetic: a large dataset withn= 1000,d = 150 and
k= 30.

For the synthetic datasets we used squared Euclidean distance
as the cluster distortion measure in the overlapping clustering algo-
rithm, since Gaussian densities were used to generate the noise-free
datasets.

5.1.2 Movie Recommendation data
The EachMovie dataset has user ratings for every movie in the

collection: users give ratings on a scale of 1-5, with 1 indicating
extreme dislike and 5 indicating strong approval. There are74,424
users in this dataset, but the mean and median number of users
voting on any movie are 1732 and 379 respectively. As a result,
if each movie in this dataset is represented as a vector of ratings
over all the users, the vector is high-dimensional but typically very
sparse.

For every movie in the EachMovie dataset, the corresponding
genre information is extracted from the Internet Movie Database
(IMDB) collection. If each genre is considered as a separatecat-
egory or cluster, then this dataset also has naturally overlapping
clusters since many movies are annotated in IMDB as belonging to
multiple genres, e.g., Aliens belongs to 3 genre categories: action,
horror and science fiction.

We created 2 subsets from the EachMovie dataset:� movie-taa: 300 movies from the 3 genres – thriller, action
and adventure;� movie-afc: 300 movies from the 3 genres – animation, fam-
ily, and comedy.

We clustered the movies based on the user recommendations to
rediscover genres, based on the belief that similarity in recommen-
dation profiles of movies gives an indication about whether they are
in related genres. For this domain we use I-divergence with Laplace
smoothing as the cluster distortion measure, which has beenshown
to work well on the movie recommendation domain [1].

5.1.3 Text data
Experiments were also run on 3 text datasets derived from the

20-Newsgroupscollection3, which have the characteristics of be-
ing high-dimensional and sparse in the vector-space model.This
collection has messages harvested from 20 different Usenetnews-
groups, 1000 messages from each newsgroup. This dataset is pop-
ular among practitioners for evaluating text clustering orclassifi-
cation algorithms — it has each message annotated by one news-
group, creating a non-overlapping categorization of messages by
newsgroup membership. However, the original dataset had overlap-
ping newsgroup categories — many messages were cross-posted to
multiple newsgroups, e.g., multiple messages discussing the David
Koresh/FBI standoff were cross-posted totalk.politics.guns,
talk.politics.misc andalt.atheism newsgroups. The multi-
ple newsgroup labels on the messages were artificially removed and
replaced by one label; so, interestingly, the20-Newsgroupsdataset
had natural category overlaps, but was artificially converted into
a dataset with non-overlapping categories. We parsed the origi-
nal newsgroup articles to recover the multiple newsgroup labels on

3http://www.ai.mit.edu/people/jrennie/20Newsgroups

each message posting. From the full dataset, a subset was created
having 100 postings in each of the 20 newsgroups, from which the
following datasets were created:� news-similar-3: consists of 300 messages posted to 3 re-

duced newsgroups on similar topics (comp.graphics, comp-
.os.ms-windows, andcomp.windows.x), which had signif-
icant overlap between clusters due to cross-posting;� news-related-3: consists of 300 messages posted to 3 re-
duced newsgroups on related topics (talk.politics.misc,
talk.politics.guns, andtalk.politics.mideast);� news-different-3: consists of 300 messages posted to 3 re-
duced newsgroups that cover different topics (alt.atheism,
rec.sport.baseball, sci.space).

The vector-space model ofnews-similar-3has 300 points in 1864
dimensions,news-related-3has 300 points in 3225 dimensions,
while news-different-3had 300 points in 3251 dimensions. All
the datasets were pre-processed by stop-word removal and removal
of very high-frequency and low-frequency words, followingthe
methodology of Dhillon et al. [17]. The raw counts of the remain-
ing words were used in the vector-space model, and in this case too
I-divergence was used as the Bregman divergence for overlapping
clustering, with suitable Laplace smoothing.

5.2 Methodology
We used an experimental methodology similar to the one used

to demonstrate the effectiveness of the SBK model [33]. For each
dataset, we initialized the overlapping clustering by running k-means
clustering, where the additive inverse of the corresponding Breg-
man divergence was used as the similarity measure and the number
of clusters was set by the number of underlying categories inthe
dataset. The resulting clustering was used to initialize our overlap-
ping clustering algorithm.

To evaluate the clustering results, precision, recall, andF-measure
were calculated over pairs of points. For each pair of pointsthat
share at least one cluster in the overlapping clustering results, these
measures try to estimate whether the prediction of this pairas be-
ing in the same cluster was correct with respect to the underlying
true categories in the data. Precision is calculated as the fraction of
pairs correctly put in the same cluster, recall is the fraction of actual
pairs that were identified, and F-measure is the harmonic mean of
precision and recall:

Precision= Number of Correctly Identified Linked Pairs
Number of Identified Linked Pairs

Recall= Number of Correctly Identified Linked Pairs
Number of True Linked Pairs

F-measure= 2�Precision�Recall
Precision + Recall

5.3 Results
Table 1 presents the results of MOC versus the standard mixture

model for the datasets described in Section 5.1. Each reported re-
sult is an average over ten trials. For the synthetic data sets, we
compared our approach to thresholded Gaussian mixture models;
for the text and movie data sets, the baselines were thresholded
multinomial mixture models. Table 1 shows that for all domains,
even though the thresholded mixture model has slightly better pre-
cision in most cases, it has significantly worse recall: therefore



F-measure Precision Recall
Data MOC Mixture MOC Mixture MOC Mixture

small-synthetic 0.64� 0.12 0.36� 0.08 0.83� 0.07 0.80� 0.07 0.53� 0.14 0.24� 0.07
medium-synthetic 0.71� 0.06 0.24� 0.01 0.73� 0.05 0.60� 0.03 0.70� 0.09 0.15� 0.01
large-synthetic 0.87� 0.04 0.33� 0.01 0.85� 0.06 0.87� 0.04 0.89� 0.05 0.20� 0.01

movie-taa 0.62� 0.03 0.50� 0.04 0.55� 0.01 0.56� 0.01 0.71� 0.07 0.46� 0.08
movie-afc 0.76� 0.03 0.61� 0.07 0.80� 0.01 0.81� 0.02 0.72� 0.06 0.50� 0.09

news-different-3 0.45� 0.01 0.41� 0.05 0.34� 0.01 0.40� 0.05 0.68� 0.05 0.41� 0.06
news-related-3 0.54� 0.02 0.39� 0.02 0.42� 0.01 0.44� 0.02 0.76� 0.08 0.35� 0.01
news-similar-3 0.35� 0.02 0.28� 0.01 0.23� 0.01 0.24� 0.01 0.69� 0.06 0.34� 0.01

Table 1: Comparison of results of MOC and thresholded mixture models on all datasets

F-measure Precision Recall
Data dynamicM bls/search dynamicM bls/search dynamicM bls/search

small-synthetic 0.64� 0.12 0.55� 0.20 0.83� 0.07 0.98� 0.03 0.52� 0.14 0.41� 0.19
medium-synthetic 0.71� 0.06 0.65� 0.05 0.73� 0.05 0.91� 0.06 0.70� 0.09 0.51� 0.06
large-synthetic 0.87� 0.04 0.87� 0.02 0.85� 0.06 0.92� 0.02 0.89� 0.05 0.83� 0.04

Table 2: Results:dynamicM vs Bounded Least Squares (with search) for synthetic data

MOC consistently outperforms the thresholded mixture model in
terms of overall F-measure, by a large margin in most cases.

Figure 3 plots the improvements of MOC compared to the thresh-
olded mixture model on the synthetic data, which shows that the
performance of MOC improves empirically as the ratio of the data
set size to the number of processes increases.

Table 2 compares the performance of using thedynamicM algo-
rithm versus the bounded least squares (BLS) algorithm followed
by local search, in theM estimation step in MOC. BLS/search gets
better results on precision, which is expected since BLS is the opti-
mal solution for the real relaxation of theM estimation problem for
the Gaussian model. HoweverdynamicM outperforms BLS/search
on the overall F-measure, as shown in Figure 4. Moreover, BLS
is only applicable for Gaussian models, whereasdynamicM can be
applied forM estimation with any regular exponential model, by
using the corresponding Bregman divergence to estimate theloss
of approximatingX by MA.

Figure 5 shows normalized reconstruction error, F-measure, pre-
cision, and recall for a run on the large synthetic data set, where the
normalized reconstruction error is defined to bejjX�MAjj2=nd.
This graph demonstrates evidence validating the central assump-
tion of the model: finding theMA decomposition that minimizes
reconstruction error corresponds to finding a good estimateof the
true cluster memberships.

Detailed inspection at the results revealed that MOC gets over-
lapping clustering that is closer to the ground truths for the text and
the movie data. For example, formovie-afc, the average number
of clusters a movie is assigned to is 1.19, whereas MOC clustering
has an average of 1.13 clusters per movie. In the text domain,news-
related-3has each article posted to 1.21 clusters on an average, and
MOC assigns every posting to an mean number of 1.16 clusters.
In both these cases, the thresholded mixture model got posterior
probability values very close to 0 or 1, as is very common in mix-
ture model estimation for high-dimensional data: as a result there
was almost no cluster overlap for various choices of the threshold
value, and points were assigned to 1.00 clusters on an average in
the thresholded mixture models.

MOC was also able to recover the correct underlying multiple
genres in many cases. For example, the movie “Toy Story” in the
movie-afcdataset belongs to all the three genres of animation, fam-
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Figure 3: Average F-measure of the proposed model of overlap-
ping clustering (MOC) and the thresholded Gaussian mixture
model (GMM) on the synthetic datasets.
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Figure 4: Comparison of the performances of dynamicM
(dynM) and bounded least squares followed by search (lsq) on
the synthetic data sets.
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Figure 5: Plots of F-measure and Normalized Reconstruction
Error vs. Iteration for a run on the large synthetic data. Note
that decreasing error corresponds to increasing F-measure.

ily and comedy in this dataset, and MOC correctly put it in all3
clusters. Similarly in the newsgroup dataset, message ID “76129”
(which has a discussion on the topics of Israel, Judaism and Is-
lam) is cross-posted to 2 newsgroups (talk.politics.mideast
andtalk.politics.misc), and MOC correctly put it in 2 clusters
out of the possible 3.

6. RELATED WORK
Possibility theory, developed in the fuzzy logic community, al-

lows an object to “belong” to multiple sets in the sense of having
high membership values to more than one set [5]. In particular,
unlike probabilities, the sum of membership values may be more
than one. The prototypical clustering algorithm in this commu-
nity is fuzzy c-means [5], which is qualitatively very similar to a
soft k-means algorithm obtained by applying EM to a mixture of
isotropic Gaussians model. Moreover, assigning an object to multi-
ple clusters using fuzzyc-means is again very similar to applying a
threshold to the posterior probabilityp(hjx) obtained through soft
k-means.

In classification, there are several applications where an object
may belong to multiple classes or categories. Typically this is
achieved by assigning that object to all classes for which the corre-
sponding (estimate of)aposterioriclass probability is greater than a
threshold, rather that choosing only the class with the highestapos-
teriori probability. For example, when classifying documents from
the Reuters data set version 3 using k-nearest neighbor, a relatively
high value of k=45 was chosen in [35]. A document was assignedto
every class for which the weighted sum of the neighbors belonging
to that class exceeded an empirically determined threshold. Note
that the weighted sum is proportional to a local estimate of the cor-
respondingaposteriori probability, with the weights determining
the effective nature of the Parzen window that is used.

One of the earlier works on overlapping clustering techniques
with the possibility of not clustering all points was presented in [28].
The more recent interest is due to the fact that overlapping clus-
ters occur naturally in microarray data. Researchers soon real-
ized that bi-clustering or co-clustering, i.e., simultaneous cluster-
ing of rows and columns, was suitable for such data sets sinceonly
certain groups of genes are co-expressed given a corresponding
subset of conditions[27]. Several methods for obtaining overlap-
ping gene clusters, including gene shaving [20] and mean square
residue bi-clustering [10] have been proposed. Before the PRM
based SBK model was proposed, one of the most notable effort

in adapting bi-clustering to overlapped clustering was through the
plaid model [25], wherein the gene-expression matrix was modeled
as a superposition of several layers of plaids (subsets of genes and
conditions). An element of the matrix can belong to multipleplaids
while another may not belong to any plaid. The algorithm proceeds
recursively by finding the most prominent plaid, removing itfrom
the matrix, and then applying the plaid finding method to the resid-
ual.

Bregman divergences were conceived and have been extensively
studied in the convex optimization community [9]. Over the past
few years, they have been successfully applied to a variety of ma-
chine learning issues, for example to unify seemingly disparate
concepts of boosting and logistic regression [13]. More recently,
they have been studied in the context of clustering [2].

Our formulation has some similarities to but a few very impor-
tant differences with a large class of models studied in the con-
text of generalized linear models (GLMs) [29, 12, 19, 21]. In
GLMs [29], a multidimensional regression problem of the form
dφ(Y; f (BZ)) is solved whereZ is the (known) input variable,Y
is the (known) response andf is the so-called canonical link func-
tion derived fromφ. The problem can be solved using iteratively
re-weighted least squares (IRLS) in the general case. Extension
to the case where bothB andZ are unknown and one alternates be-
tween updatingBandZ has been studied by Collins et al. [12] while
extending PCA to the exponential families. Although several ex-
tensions [19] of the basic GLM model to matrix factorizationhave
been studied, expect for the well known instance of non-negative
matrix factorization (NMF) using I-divergence [26, 7], allformu-
lations use the canonical link function and hence cannot provide
solutions to our problem. Moreover, our model constraintsM to be
a binary matrix, which is never a standard constraint in GLMs.

7. CONCLUSIONS
In contrast to traditional partitional clustering, overlapping clus-

tering allows items to belong to multiple clusters. In several im-
portant applications in bioinformatics, text management,and other
areas, overlapping clustering provides a more natural way to dis-
cover interesting and useful classes in data. This paper hasintro-
duced a broad generative model for overlapping clustering,MOC,
based on generalizing the SBK model presented in [33]. It has
also provided a generic alternating minimization algorithm for effi-
ciently and effectively fitting this model to empirical data. Finally,
we have presented experimental results on both artificial data and
real newsgroup and movie data, which demonstrate the generality
and effectiveness of our approach. In particular, we have shown
that the approach produces more accurate overlapping clusters than
an alternative “naive” method based on thresholding the results of
a traditional mixture model.

A few issues regarding practical applicability of MOC needsfur-
ther investigation. It maybe often desirable to use different expo-
nential family models for different subsets of features. MOC allows
such modeling in theory, as long as the total divergence is a convex
combination of the individual ones. Further, MOC can potentially
benefit from semi-supervision [3] as well as be extended to a co-
clustering framework [1].
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