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GENERALIZING EXPLANATIONS
OF NARRATIVES INTO SCHEMATA
Raymond Joseph Mooney, M.S.
Department of Computer Science

University of Illinois at Urbana-Champaign, 1985
Thesis advisor: Gerald F. DeJong

This thesis describes a natural language system called GENESIS which improves its own perfor-
mance through learning. The system processes short English fnarratives and is able to acquire, from a
single narrative, a new schema for a stereotypical set of actions. During the understanding process, the
system attempts to construct explanations for characters’ actions in terms of the goals their actions were
meant to achieve. When the system observes that a character in a narrative has achieved an interesting
goal in a novel way, it generalizes the set of actions they used to achieve this goal into a new action
schema. The generalization process is a knowledge-based anglysis of the causal structure of the narra-
tive which removes unnecessary details while maintaining the validity of the causal explanation. The
resulting generalized combination of actions is then stored as a new schema in the system’s knowledge
base. This new schema can then be used by the system to correctly process narratives which were Ppre-

viously beyond its capabilities.
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CHAPTER 1

INTRODUCTION

Learning without thought is labor lost;
thought without learning is perilous.

Confucius

Artificial Intelligence, and Cognitive Science in general, has made extensive use of a form of

knowledge representation known variously as schemata [Chafe75, Rumelhart80], frames [Bobrow,
| Charniak77, Minsky75), scripts [Cullingford78, DeJong82, Schank77}, and MOPs [Dyer83, Schank82].
These structures can be broadly defined as packets of general knowledge about stereotypical objects,
situations, events, or actions. In this paper, the term scherma (a term traceable to [Kant]) will be used to

refer to such packets of knowledge about a particular concept.

In particular, Al systems for understanding natural language narratives' [Charniak77, Culling-
ford78, DeJong82, Dyer83, Norvig83, Wilensky78] have relied heavily on schemata, especially sche-
mata for representing stereotypical sequences of actions, However, all of these systems use schemata
which were built by the programmer and added to the system by hand. There has been relatively lit-
tle discussion of how such schemata might be automatically acquired by a system during i_ts normal
course of operation. Neverthelqss, hand coding all the schemata a natural language processor would need
to process a wide range of text would be an extremely arduous if not impossible fask, This thesis
presents an approach to learning schemata for natural language processing. This approaéh is embodied
in a system called GENESIS {(for GENeralizing Explanations of Stories Into Schemata), which acquires

new schemata in the normal course of processing narratives.

The research work reported in this thesis was initially motivated by problems encountered in
extending the abilities of the FRUMP system [DeJong FRUMP.] FRUMP was a system which produced

summaries of newspaper articles received directly from the UPI news wire. Its approach to understand-

YThe usc of the term “story” in mnatural language processing has been controversial [Brewer82] Therefore, in this paper we



ing was to first determine which of its schemata (if any) a particular story matched and then to skim
the article looking for events predicted by this schema. With a library of 63 sketchy scripts (relatively
undetailed schemata for stereotypical actions) FRUMP was able to “understand” a fair percentage of
newspaper articles. However, it was soon realized that a system capable of understanding unrestricted
text would require on the order of thousands of schemata for typical actions; much too many to con-
struct by hand. Consequeptly, a realistic natural language system must have a way of augmehting its

knowledge of the world by learning new schemata during the normal course of its operation.

In the small amount of currently existing literature and work on learning schemata for natural
language processing [Lebowitz80, Schank77, SchankSZl it is assumed that such a learning process will
require being exposed to numerous examples of a concept and constructing a generalized schema by
extracting the common features across these examples. Such an inductive approach to learning has been
the subject of n:_tuch research in machine learning [Michalski83b, Mitchell78, Vere78, Winston70), and
has been applied. to various domains such as learning concepts in the blocks world [Winston70], gnd

learning rules for diagnosing soybean diseases [Michalski80)

In the work being presented, we take a different approach to learning, This approach, which we
call explanation-based learning [DeJong85], allows a system to learn from a siﬁgle example. The
approach involves acquiring or modifying a problem solving technique by observing and understanding
a sample problem solution. The learning process is driven by an explanation, in terms of the system’s
model of the world, of why the sample solution solves the problem. The new knowledge acquired
from the example can then be applied to conceptually similar future problems. This approach to learn-
ing has received a good deal of recent support. In addition to the work of DeJong and his students,
explanation-based learning is being applied to solving integration problems [Mitchell83], designing VLSI
circuits [Mitchel185], solving linear equations [Silver83] and playing games [Minton84]. Earlier systems
which used explanation-based learning are STRIPS [Fikes72] and HACKER [Sussman73] both of which

learn plans in the blocks world and a system by Soloway which learns about baseball [Soloway 78l

have adopted the term “narrative” to refer to connected text which may lack a plot or other defining aspect of a “story.”



The particular type of explanation-based learning which GENESIS uses is called explanation-
based schema acquisition (ESA). ESA involves generalizing the successful problem solving behavior of
an external agent into a new action schema. In addiﬁon to the GENESIS system for narrative under-
standing [DeJong81, Mooney85], there are ESA systems which learn theorem proving techniques
[O'Rorke84], assembly tasks in robotics [Segre85), and techniques in physics problem solving [Shavl1ik85]..
GENESIS is a completely implemented system which acquires new schemata in the normal course of
processing narratives. After acquiring a new schema, the system is able to correctly process narratives
which were previously beyond its capabilities. The remainder of the thesis is a description of the

GENESIS system and the methodology underlying its abilities.



CHAPTER 2

OVERVIEW OF THE GENESIS SYSTEM

W hat exactly is GENESIS?

Dr. Carol Marcus
Star Trek II: The Wrath of Khan

This section presents the overall architecture of the GENESIS narrative processing system and

demonstrates its learning ability by showing its input/output behavior on a set of example narratives.

2.1. General System Organization

The general organization of the GENESIS narrative processing system is shown in figure 2-1. First,
English input is processed by a parser into a conce ptual representation (CRep), a case-frame representa-

tion which uses some conceptual dependency primitives [Schank75] as well as predicates for complex

| SCHEMA
PARSER UNDERSTANDER LIBRARY

GENERALIZER
- GENERATOR

Figure 2-1: General System Organization
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schemata.! A sample representation of an English sentence is shown in figure 2-2. Currently. We are
using an adaptation of Dyer’s McDYPAR [Dyer83] (a simplified version of the parser used in the BORIS
narrative processor). However, since learning is the focus of our research, we make no claims about
parsing and alternative approaches could be used for this task (e.g. [Marcus80, Waltz84]). Since BORIS
uses integrated parsing [DeJong82, Dyer83] (ie. the parsing process is directly aided by the system’s
higher level pragmatic and schematic knowledge), it should be noted that the parser in GENESIS is not

well integrated with its schematic knowledge. Although we agree with the importance of integrated

parsing, it is not the focus of our present research.

The basic task of the understander is to construct a causally complete explanation of the charac-
ters’ actions in a narrative. It does this by building a model which contains explicit representations for

all the inputs as well as the many inferences that must be made to causally connect them together.

English:
John told Fred if Fred gave him $250000 at Trenos then John would release Mary.

CRep:
[MTRANS (ACTOR (PERSON (NAME (JOHN)) (GENDER (MALE)))
(TO (PERSON (NAME (FRED)) (GENDER (MALE)))
(OBJECT (IMPLIES [ANTE (ATRANS (ACTOR (PERSON (NAME (FRED))
"~ (GENDER (MALE)))
(OBIECT (MONEY (TYPE (DOLLAR))
{AMOUNT 250000))))
{(TO (PERSON (NAME (JOHN))
(GENDER (MALE))) _
(AT (LOCATION (OF (RESTAURANT (NAME (TRENOS]
(CONSE (SET-FREE (ACTOR (PERSON (NAME (JOHN))
(GENDER (MALE)))
(OBJECT (PERSON (NAME (MARY))
(GENDER (FEMALF]

Figure 2-2: A Sample Parse

't is interesting to note that other recent systems which employ conceptual dependency (CD) [Dyer83, Lytinen84] do not in-
sist that all inputs be parsed completely into CD primitives but allow sentences to be represented by direct reference to higher lev-
el schematic consiructs such as TELEPHONE and ARREST. ‘



There are four types of causal links connecting assertions in the model of a narrative. These are:

precondition: A link between a state and an action it enables.
e ffect: A link between an action and a resulting state.

motivation: A link between a volitional action and the beliefs and goals
of the actor which motivated him to perform the action.

in ference: A link between a state and another state which it implies.

To avoid confusion, such “causal” links between assértions in the model will be called support links,
since a precondition of an action supports the performance of that ﬁction but does not cause it. The
closely related term data dependency link [Doyle78), is not used since it is normally reserved for the
support of inferences, not for the support of both inferences and actions. Inferring causal connections
necessarily employs a large amount of background knowledge which is stored in the schema library
(see figure 2-1). The techniques and representations used in the understanding process are similar to
those used in past work in narrative understanding [Charniak77, -Culhngford78, DelJong82, Dyer83,

Wilensky83] and are discussed in chapter 3.

In order to demonstrate the capabilities of the understander, a simple question answering system is
used to inspect the model. Since our interests lie in guiding the generalization process through the use
of causal relationships, this subsystem is primarily used for accessing the reasons why an actor per-
formed a certain action or why a particular state exists. This information is easily retrieved by inspecf—
ing the support links between the various states and actions in the model. Of course, there are many
issues involved in retrieving the most appropriate answers to questions (see [Lehnert78]) which we do

not fully confront in this subsystem.

A simple natural language generator for translating replies into English is also included as part of
the system. This subsystem is an adaptation of McMUMBLE [Schank81] (a micro version of the genera-
tor used by the TAII SPIN narrative generating system). This genérator verbalizes conceptual represen-
tations by using a particular English construction for each type of action and state known to the sys-

tem.



If an actor in a narrative achieves an important goal through a novel combination of actions for
which the system does not already have a schema, this set of actions undergoes generalization into a
new schema. The constructed causal combination of actions in the medel is generalized as far as possi- _
ble without breaking any of the connecting support links or violating the well-formedness of indivi-
dual actions and states. This generalized structure is then stored as a new schéma in the library where
it is used to facilitate the processing of future narratives. This generalization process is discussed at

length in chapter 4 and is the key to the learning technique of explanation-based schema acquisition.

2.2. Example Performance of the GENESIS System

Currently, GENESIS has been tested on two examples. In one example, the system learns a schema
for someone kidnapping an individual and holding them for ransom. In the other example, it learns a
schema for someone burning his own building to collect the insurance. In both cases, before learning
the schema, the system is given a “test” narrative. This narrative is not detailed enough for the system
to construct a causally complete explanation for the characters’ actions without a schema to fill in miss-
ing actions and inferences, Consequently, the system is unable to answer ¢questions which reqguire mak-
.ing certain default inferences about what must have taken place. Next, the system is given a different
narrative on the same topic (e.g. kidnapping or arson) which contains actions and information Which
the previous one lacked. GENESIS is able to construct a causally complete explanation for this narra-
tive and can therefore answer questions about why actors performed particular actions. Since the sys-
tem recognizes that an important goal (e.g. getting money in both examples) has been achieved using a
novel combination of actions, it generalizes these actions into a new schema. Then the system is given
the test narrative for a second time. This time, it can use the schema it has just learned to fill in miss-

ing information and can therefore answer questions which it was previously unable to answer.

First we will show the performance of the system on the kidnapping example. Before processing
the following narratives, GENESIS contains information in its schema library about bargaining, cap-
turing and confining individuals, threatening, and many other concepts; however, it does not have a

schema for kidnapping for ransom. First it receives the ollowing narrative:



INPUT: ((Ted is the husband of Alice)
(He won $ 100000 in the lottery)
(Bob imprisoned Alice in his basement)
(Bob got $ 75000 and released Alice))

Processing Story..
Finished processing,

No thematic goals achieved by a novel combination of actions: no generalization.
Ready for questions:

?(Who gave Bob the money)
Answer unknown.

? (Why did Bob lock Alice in his basement)
Cannot find sufficient reason for his action.

? (Why did Bob release Alice)
Cannot find sufficient reason for his action.

7 (Why does Ted have $ 100000)
Because Ted won $ 100000 in the lottery.

Notice that in this narrative it is not mentioned how Bob got the money or why Bob imprisoned Alice
‘and then released her. Since the system does not have a schema for kidnapping, it cannot infer the
missing information and causally connect the actions in the input. Next, it is given the following nar-

rative.

INPUT: ((Fred is the father of Mary and is a millionaire)
(John approached Mary)
(She was wearing blue jeans)
(John pointed a gun at her and told her he wanted her to get into his car)
(He drove her to his hotel and locked her in his room)
(John called Fred and told him John was holding Mary captive)
(John told Fred if Fred gave him § 250000 at Trenos then John would release Mary)
(Fred gave him the money and John released Mary)) -

Processing Story...
Finished processing.

John achieved the thematic goal: John has $ 250000.
Generalizing... Assembling new schema: CAPTURE-BARGAIN.

Ready for questions:
? (Why did John imprison Mary in_his room)

So John and Fred could make a bargain in which John released Mary and Fred gave
John 250000 dollars at Trenos. ' o o



? (Why did John make the bargain with Fred)
Because John wanted to have 75000 dollars more than he wanted to hold Mary captive.

? (Why did Fred give John the money) :
Because John and Fred made a bargain in which John released Mary and Fred gave
John 250000 dollars at Trenos.

? (Why did Fred make the bargain with John)
Because Fred wanted Mary to be free more than he wanted to have 250000 dollars.

? (Why did Fred want Mary free)
Because Fred was Mary’s father. -

Unlike the first narrative, this one is detailed enough to allow GENESIS to causally connect the indivi-
dual actions. The resulting causal structure is then generalized into a new schema for kidnapping for
ransom (which GENESIS calls CAPTURE-BARGAIN). Next, the system is given the first narrative again,
and using the schema it has just acquired, it is able to infer the missing information and causally con-

nect the actions. Consequently, it is able to answer the questions which previousty it could not answer.

INPUT: ((Ted is the husband of Alice)
(He won $ 100000 in the lottery)
(Bob imprisoned Alice in his basement)
(Bob got § 75000 and released Alice))

Processing Story...
Finished processing,

No thematic goals achieved by a novel sequence of actions: no generalization.
Ready for questions:

? (Who gave Bob the money)
Ted gave Bob 75000 dollars.

? (Why did Bob lock Alice in his basement)
So Bob and Ted could make a bargain in which Bob released Alice and Ted gave
Bob 75000 dollars. :

? (Why did Bob release Alice)
Because Bob and Ted made a bargain in which Bob released Alice and Ted gave
Bob 75000 dollars.

? (Why did Bob make the bargain with Ted)
Because Bob wanted to have 75000 dollars more than he wanted to hold Alice captive.

7 (Why did Ted make the bargain with Bob) :
Because Ted wanted Alice to be free more than he wanted to have 250000 dollars.

? (Why did Ted want Alice free)
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Because Ted was Alice’s husband.

The current implementation has also been tested on the following example about arson. Before
processing the following narratives, the system has schemata for insuring objects, indemnifying clients
for the loss of property, burning objects, and various other concepts; however, it does not have a
schema for burning one’s own property to collect the insurance money. First GENESIS processes the fol-

lowing test narrative.

INPUT: (John owned a barn)
(He burned it)
(He got $ 40000))

Processing Story...
Finished processing.

No thematic goals achieved by a novel combination of actions: no generalization.
Ready for questions:

? (Who gave John the money)
Answer unknown.

? {Why did John burn his barn)
Cannot find sufficient reason for his action.

Since this narrative does not explain how John got the money or why he burned the barn, the system
cannot causally connect the narrative without a schema to fill in missing information. Next, GENESIS

is given the following more detailed narrative.

INPUT: ((Stan owned a warehouse)
(He insured it against fire for § 100000)
(Stan burned the warehouse)
(He called Prudential and told them it was burnt)
(Prudential paid him $ 100000))

Processing Story...
Finished processing.

John achieved the thematic goal: John has $ 100000,
Generalizing... Assembling new schema: INSURE.OBJECT-BURN-INDEMNIFY

Ready for questions:

? (Why did Stan burn his warehouse)
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So Stan could call Prudential and tell them that the warehouse was burnt.!

? (Why did Stan tell Prudential that the warehouse was burnt)
So Prudential would indemnify Stan 100000 dollars for the loss of the warehouse.

? (Why did Prudential give Stan $ 100000)
Because Stan was insured by Prudential for 100000 dollars if the warehouse was burnt
and Prudential believed the warehouse was burnt.

? (Why did Prudential believe the warehouse was burnt)
Because Stan called Prudential and told them that the warehouse was burnt.

? (Why did Stan insure the warehouse)
So Prudential would indemnify Stan 100000 dollars for the 1loss of the warehouse.

Once again, unlike the test narrative, the second narrative is detailed enough to allow the system
to causally connect the characters’ actions. The resulting causal structure is then generalized into a new
schema for arson-for-insurance. GENESIS is then given the test narrative again and this time it uses its

newly acquired schema to fill in the missing information.

INPUT: ((John owned a barn)
(He burned it)
(He got $ 40000))

Processing Story...
Finished processing.

No thematic goals achieved by a novel combination of actions so 1o generalization.
Ready for questions:

7 (Who gave John the money)
The insurance company indemnified John $ 40000 for the loss of the barn.

? (Why did John burn his barn) .
So John could contact the insurance company and tell them that the barn was burnt.

? (Why did John tell the insurance company the barn was burnt) _
So the insurance company would indemnify John 40000 dollars for the loss of the barn.

? (Why did the company pay John $ 40000)
Because John was insured by the insurance company for $ 40000 if the barn was burnt

! The answer to this question may seem a little peculiar. The system considers it an appropriate answer for the following
reasons. It has a very naive model of communication in which believing a proposition is a precondition for telling it to someone
else and telling someone something results in them believing it. In regards to the narrative at hand, when Stan burns his ware-
house it results in him believing it is burnt which enables him to tell the insurance company about it so they will believe it is
burnt and indemnify him. The question answerer assumes if an action produces a state which enables another action then the Tea-
son the actor performed the first action was to enable the second. Improved heuristics for answering guestions could provide a
better answer in this case by following several support links to a more appropriate answer.




and the insurance company believed-the barn was burnt.

? (Why did the company believe that the barn was burnt)
Because John contacted the insurance company and told them that the barn was burat.

12
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CHAPTER 3
REPRESENTATION AND UNDERSTANDING IN GENESIS

1 wish he would explain his explanation.

Lord Byron
Don Juan

This chapter discusses the representation of GENESIS’ knowledge and how this knowledge is used
by the system to construct a causally complete explanation of events in a narrative. An effort has been
made to keep all of the system’s world knowledge in a declarative form in the schema library instead
of distributed throughout fhe system in special purpose procedures. Also, although a planner is not a
part of the current system, an effort has been made to use a representation which would be useful for
planning as well as understanding. Work on the FAUSTUS system has emphasized the importance of
this approach [Norvig83, Wilensky83] Using a uniform declarative representation makes extending the
system’s knowledge base a relatively easy task since it simply involves adding new schemata to the
library. It is also a necessary re_:quirement for a learning system since the system must be able to
automatically construct new representations to add to the sysiem, and this task is obviously much more

difficult if knowledge is encoded in special purpose procedures.

3.1. Knowledge Representation

GENESIS’ knowledge is represented in a library of schemata: packets of general information about
stereotypical objects, situations, and actions. All schemata in the library are arranged in a hierarchical
inheritance net under the three major classes of ACTION, STATE, and OBJECT (the highest level class is
simply called SCHEMA). The present hierarchy is a tree; however, a tangled hierarchy (in which a class
can belong to more than one parent class) will be incorporated in the next version of the system. An
instance of a schema is denoted by a CRep with a set of roles filled by other schemata. All fillers must
eventually bottom out in OBJECT schemata. The parsed representation shown in figure 2-2 is an eiample
of a schema instance. The type of information associated with a schema depends on whether it is an

- ACTION, STATE, or OBIECT so each of these will be discussed in turn.
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ACTION schemata represent dynamic events which change the state of the world. ACTIONS are
immediately subdivided into VOLITIONAL-ACTIONS, which require volitional actors (e.g. BARGAIN), and
NONVOLITIONAL-ACTIONs which represent physical events and processes (e.g. EARTHQUAKE). ACTIONS
- include what Schank and Abelson [Schank77] call scripts and plans. Schank and Abelson make the
distin_ction that scripts are specific and detailed complex actions while plans are more abstract. In
GENESIS, actions can be represented at various levels of abstraction in the hierarchy, and in this sense
are more like the representation of plans in the NOAH planning system [Sacerdoti75} and Schank’s
more recent MOPs representation [Schank82). The following pieces of information are attached to
ACTION schemata. In addition to the information attached directly to a particular schema, each ACTION

inherits the information attached to ACTIONSs above it in the abstraction hierarchy.

Roles: A set of case roles for this action.

Role Constraints: Each role is marked with the type of schema which can legally fill it.

Defaultss - - Default fillers can be specified for each role.

Preconditions: | R States which must be true in order for the action to take place.

Motivations: | ‘States (specifically belief and goal structures) which explain why an ac-
- tor would perform this action (only for VOLITIONAL-ACTIONS).

. Effects: States which are true after the action is performed. |
Terminations: States which .are no Jonger true after the action is performed. (These

are similar to the delete-lists in STRIPs but states are marked as no
longer holding instead of being deleted from the model.)

Expansion Schemata: A set of lower-level states and actions which actually make up this ac-
tion along with the support relationships between them (similar to the
body of a script).

Suggested Schemata: Larger composite actions which this action may be a part of.

1

Determining Conditions: A set of lower-level actions and states which if all present indicate the

occurrence of this action.

Below is an example of some of the information attached to the action representing the transfer of

possession.

! The term determination is used by the FAUSTUS system [Norvig83] to refer to the process of adding a suggested frame to
the system’s representation of a narsative, ) . :
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ATRANS

ROLES: (?ACTOR 70BJECT ?TO)

CONSTRAINTS:  ((?ACTOR (CHARACTER)) (?TO (CHARACTER)) (?0BJECT (OBJECT)))
PRECONDITIONS: (POSSESS (SUBJECT ?ACTOR)OBJECT ?0BJECT))

EFFECTS: (POSSESS (SUBJECT 7TOXOBJECT ?0BIECT))

TERMINATIONS: (POSSESS (SUBJECT ?ACTOR)OBIECT ?0BJECT))

STATES, on the other hand, represent relatively static situations in the world, such as an indivi-
dual being someone’s father or being in possession of some object. Two STATEs which are particularly
important are the psychological States BELIEF and GOAL which represent, respectively, a character
believing or desiring the truth of a particular proposition. The following pieces of informatiﬁn are
attached to STATE schemata. In addition to the information attached directly to a particular schema,

each STATE inherits the information attached to STATEs above it in the abstraction hierarchy. -

Roles: . A set of case roles for this state.

Role Constraints: Each role is marked with the type of schema which can legally fill it.
Defaults: Default fillers can be specified for each role.

Inferences: Other states which are reasonable inferences to make from this state.
Achieving Actions: Actions which can be used to accomplish this state.

~-Below is an example showing some of the information attached to a particular state.
HUSBAND
ROLES: (?SUBJECT ?0BJECT)

CONSTRAINTS : ([?SUBJECT (PERSON (GENDER (MALE]
(?0BJECT (PERSON (GENDER (FEMALE]

INFERENCES : (WIFE (SUBJECT ?0BJECT) (OBIECT ?SUBJECT))

OBJECTs represent types of things in the world. These include PRYSICAL OBJECTS such as people and
cars as well as ABSTRACT-OBIECTS such as names and locations. The information attached to OBJECT sche-

" mata varies from class to class. Common examples for physical objects would be defaults for size,
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shape, and other physical attributes.

3.2. The Understanding Process

Since applying explanation-based schema acquisition depends on having a causal chain of actions
to generalize, the “understanding” ability of GENESIS is concentrated on constructing this chain by
inferring missing information and causaliy connecting inputs together. We do not attempt to deal with
other important issues which have recently occupied researchers in narrative understanding such as plot
units [Lehnert82), thematic abstractions units [Dyer83], story. points [Wilensky82}, affect [Dyer83], and

integrated parsing [Delong82, Dyer83].

To illustrate the result of the understanding process, the constructed causal explanation for the
second kidnapping narrative is shown in ﬁgure 3-1. Tt should be noted that the support networks
shown in this paper (called highest-level support networks) contain only the largest or highest level
schemata which were determined to be in the narrative. Most of the representation at the level of the
inputs and their connecting inferences is contained in the ex pansions of the CAPTURE and BARGAIN sche-

mata which were activated bottom-up from the inputs.

In accomplishing the task of constructing causal connections, GENESIS, like FAUSTUS [Norvig83,
Wilensky83], uses a combination of toja—down and bottom-up processing technigues. If a set of inputs in
a narrative matches a schema which the system already has, then it uses top-down processing to fill in
the expansion of this schema with the particular 'mpufs of this narrative, much like a script driven
program such as SAM [Cullingford78] 6r FRUMP [DeJong82). However, if an action in the narrative is
not explained by a known schema, it attempts to connect it to other actions and states in the narrative
by searching for existing states which fulfill the preconditions for this action, or by hypothesizing
intermediate actions which causally connect it to existing states or actions. In this way, it also operates

in a more bottom-up fashion like plan-based understanders such as PAM [Wilensky78L
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- POSSESS9 John has $250,000.

. FREE4 Mary is free.
‘BARGAIN1 John makes a bargain with Fred in which John releases Mary
: and Fred gives $250,000 to John. '
.POSSESS14 Fred has $250,000. :
POSSESS1 Fred has millions of dollars. - '
GOAL-PRIORITY5  Fred wants Mary free more than he wants to have $250,000.
'FATHER1 Fred is Mary’s father. '
HELD-CAPTIVEL John is holding Mary captive.
CAPTURE1 John captures Mary.
FREEF1 Mary is free.
BELIEF8 Fred believes John is holding Mary captive.
TELEPHONE1 John calls Fred and tells him that he is holding Mary captive.
BELIEF9 John believes he is holding Mary captive.
BELIEF15 John believes Fred has $250,000.
BELIEF16 John believes Fred has millions of dollars.
"BELIFF13 John believes Fred wants Mary to be free more than he wants
o to have $250,000. '
- BELIEF14 John believes Fred is Mary’s father. _
‘GOAL-PRIORITY4  John wants to have $250,000 more than he wants to hold Mary captive.

GOALY9 John wants to have $250,(_)00. '

Figure 3-1: Highest-level Support Network for Kidnap Narrative #2

3.2.1. Schema Activation and Determination

If a schema-based system is to be able to process a broad range of inputs, it must have access to a
large number of schemata. Therefore, in order to avoid repeated searching through the entire database
of schemata, it must also have an efficient method for selecting the particular schemata which are appli-

cable to the current input. This process is frequently referred to as frame selection or schema
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activation. It is a difficult problem and has been the subject of several research projects [Charniak78,

Charniak 82, DeJong82, Lytinen84, Norvig83] Below is description of GENESIS’ approach to this prob-

lem.

When GENESIS processes an input, it adds this schema instance to the model and acfivates
instances for all the schemata in the list of suggested schemata for the input instance. Activating a
schema does not imply that the system immediately infers that this schema is oceurring in the narra-
tive, only that it couid possibly explain the input. Active schemata then monitor subsequent inputs
and check if they match parts of its exparnsion and can therefore be considered part of this active
schema. When all the determining conditions of an active schema are met, it is determined or con-
sidered to have occurred in the narrative and is added to model along with the schemata and support
relationships given in its expansion. If a determining condition is an action, then it is also considered to
have occurred if all of its effects are in the model or if all of its effects can be inferred to exist since

they are preconditions of other determining conditions which are already satisfied,

For example, an individual MTRANSing to someone that they will perform some ‘action if that per-
son performs some other action suggests the BARGAIN schema, which represents a successfully completed
bargain between two indjviduals. Consequently, when GENESIS processes the following input from
the detailed kidnapping narrative: “John told Fred that John would release Mary if Fred gave him
$250,000,” a BARGAIN schema representing a completed bargain between John and Fred is suggested.
The determination conditions for a BARGAIN are the agreed upon actions of the two participants. In this
case these are Fred giving John $250,000 and John releasing Mary. The next input kthe system processes
is: “Fred gave John the money and John released Mary.” This satisfies both of the determining condi-

tions of the active BARGAIN schema, so it is determined and added to the model as the explanation of

these three actions.

3.2.2. Bottom-up Construction of Support Relationships

When a new schema instance is added to the model (either as the result of an input or an infer-

ence on the part of the system), the system first tries to explain it as part of a known schema. However,
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if the new instance does not suggest any higher-level schemata nor match part of any already active
schemata, then GENESIS tries to causally connect it to other actions and states in the model using plan-
ning information. Every time the understander establishes a new support link during this process, it
annotates it with the information from the schema library used in constructing it. This information is
important for maintaining the causal structure of the explanation during generalization. The exact
form of the information stored with each support link and how it is used during generalization is dis-

cussed in detail in chapter 4.

The first step in integrating a new schema instance into the model is to add any primary infer-
ences or effects. The effects and inferences attached to a schema are divided into primary and secon-
dary categories. Primary ones are used in a forward inferencing fashion while secondary_ ones are used
in a backwards inferencing fashion and only added to the ﬁMel if they are required by the explana-
tion. For example, a secondary inference of the state FATHER (inherited from more a more abstract state
POSITIVE-INTERPERSONAL-THEME) is that a father values the freedom of his child more than the posses-

sion of money. One would not want to infer this GOAL-PRIQRITY immediately, but this inference should

be available if the explanation requires it.

If the new instance is an action, then its preconditions must be reconciled with the model. This
means that it first searches the model for each precondition and if it finds it, it adds an appropriately
labeled support link from it to the new action. If it does not find a precondition, it next attempts to
infer it by looking for secondary effects or inferences which match this precondition. If this also fails, it
hypothesizes the existence of an action which can be used to achieve this precondition (using the acfaiev—

ing actions attached to this state) and attempts to reconcile its preconditions with the model.

GENESIS also attempts to find motivarions for volitional actions. It does this by checking if the
action achieves a state which is a goal for the actor, or if it the actor has the specific goals and beliefs
marked as possibly motivating this action. Certain types of goals can be automatically inferred if they
will motivate a character’s action. To determine thesé gﬁals Wwe use aspects of Schank and Abelson’s

theory of goals and themes [Schank77]. In their View, a goal arises either as a subgoal of a plan to
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achieve a higher level goal, or as a result of a theme. Schank and Abelson define themes as: “cohtaining
the background information upon which we base our prediction that an individual will have a certain
goal.” Goals which arise from themes are called thematic goals while subgoals are called instrumental
goals.! Thematic goals are ones which arise from basic human wants and needs and therefore require no
further explanation. They are further classified as either satis faction goals such as satisfying hunger
or sexual desires, achievement goals such as acquiring money or power, en joyment goals such as wanf—
ing to be entertained, and preservation goals such as preserving one’s health or safety. The system
maintains a list of such thematic goals, and if a thematic goal will motivate a character’s action it is

inferred and a support link is added stating that it motivates the given action.

If the new instance to be incorporated in the model is a state, the system also checks to see if it
satisfies a known or inferrable goal for some character. This is to catch any character’s goals which are
achieved by another character’s action. For example, in the detailed arson narrative, Stan’s presumed
goal of possessing money is not achieved as an immediate effect of one. of his own actions, but rather by
Prudential’s abtion of reimbursing him for the loss of his warehouse. Any achieved goals which are
discovered during this process or during the process of motivating actions are specially marked by the
understander. This information is later used by the generalizer to determine whether or not a narrative

can be used to construct a new schema (see chapter 4).

To illustrate the process of construcfing support relationships, we will examine how the BARGAIN
action discussed in the previous section is integrated into the model constructed for the kidnapping nar-
rative. When it is determined that Johﬁ and Fred have completed a bargain in which John released
Mary and Fred gave John $100,000, the action BARGAINI (see ﬁgure. 3-1) is added to the model. Since
this action does not suggest any higher level schemata, GENESIS tries to connect it to other information

in the narrative using its knowledge about bargaining.

First, it adds the effects of BARGAINI to the model. These specify that John has $100,000 and that

Mary has regained her freedom. Next it tries to reconcile the preconditions for the bargain. The precon-

lAlthough Schank and Abelson do not actually use the term thematic geal, it is a natural distinction given their analysis.
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ditions of a BARGAIN include the preconditions of the two actions which make it up. These are that
Fred has $100,000 and that John is holding Mary captive. The first of these is inferred as a secondary
inference from the fact that Fred is a millionaire. The second has already been added to the model as
an effect of the action CAPTURE! which was determined from earlier actions in the narrative. See figure

3-1 for the causal structure resulting from this process.

Since John initiated the bargain, he is considered to be its main actor. The information attached to
BARGAIN specifies that the motivations for the second actor can be considered preconditions from the
main actor’s point of view. Therefore, the condition that the second actor wants the effects of the main
actor’s action more than the state terminated by his own action is treated as a precondition of a BAR-
GAIN. In this case, this precondition is that Fred value Mary’s freedom more than $100000. This GOAL-

PRIORITY is inferred as a secondary inference from the fact that he is Mary’s father (see figure 3-1).

Finally, the system tries to motivate John’s original initiation of the bargain. The motivation
specified for a BARGAIN is that the mam actor want the eﬁ“écts of the other person’s action more than the
state terminated by his 0W1‘1 action. Under the current context, this means that John must Want
$10000(_) more than he wants to hold Mary captive. Since the System cannot infef that John has the
goal of holding Mary captive, it is willing to infer this GOAL-PRIORITY if it can infer that John does
~ have the goal of possessing $100,000. Since the system knows that wanting money is a thematic goal, it
infers this goal and marks it as supporting the GOAL-PRIORITY necessary for motivating John's initiation

of the bargain (see figure 3-1).

3.2.3. Avoiding Extensive Search During Understanding

GENESIS’s understanding process is built on the assumption that combinatorially explosive search
through possible explanations should be avoided. PAM [Wilensky78], on the other hand, is an
explanation-based understanding system which searches for an explanation of an action until it
exhausts its applicable knowledge. PAM searches for an explanation of a character’s action by predict-
ing future actions the character might take and seeing if any of them satisfy a knoﬁrn goal for that

character. In terms of the representation presented here, when PAM processes an action, it searches



22

through possible next actions which have preconditions which match the effects of the previous action.

For example, consider the following narrative which is normally used as an example of how PAM

processes a narrative.
Willa was hungry. She picked up the Michelin guide and got in her car.

When the system processes the action that Willa has picked up the Michelin guide, it considers that the
next action she might perform is to read the guide since possessing a book. is a precondition for reading
it. The effect of reading the Michelin guide is that she will know the location of a restaurant. Since
knowing the location of a restaurant is a precondition for going to a restaurant, it considers the next
action she might take is t0 go to a restaurant. Finally, since being at a restaurant is a precondition for
eating there, it considers eating at the restaurant to be a possible next action. This action is realized .as
satisfying her hunger and therefore the chain of actions just discussed is considered to be the explana-
tion for her actions. If at some time the system cannot propose a possible next action due to lack of
knowledge of an action which has a precondition which matches the previous action’s effect, then it
backtracks to the last choice and picks another possible aétioﬁ. This search is continued until the system
encounters an action which satisfies a known goal or until it has exhausted its knowledge and cannot

predict any more possible future actions.

However, searching through a space of possible future actions is combinatorially explosive. Conse-
quently, such an approach is intractable if a system’s knowledge of actions is large, which it obviously
must be if it is to be able to understand a wide range of narratives. Consider what a PAM-like system
would do if it where used to process the detailed kidnapping narrative. Upon determining that John
had captured Mary, it would conduct an exhaustive search for an explanation of this action. Such a sys-
tem would waste an incredible amount of time exploring possible courses of action which John could
take now that he has Mary locked in his room. If the system had a large knowledge base of actions, it
would be a long time before it stumbled upon the idea of using the action of releasing Mary as part of

a bargain with another person.
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Currently, in order to avoid such combinatorially explosive searches, G}_EN'ESIS does not try to
predict future courses of action at all. Suggesting schemata can be seen as predicting possible future
actions, but this is a much more restricted process and only occurs when an action suggests a known
schema. GENESIS does try to infer possible past actions which could have been used to achieve the
preconditions of a known action, but even this process is limited since the achieving actions attached to
each state are incomplete. GENESIS is probably a little zoo conservative with regards to searching for
an explanatjon. Some searching is probably necessary for understanding narratives such as the PAM
example shown above. But clearly, searéhjng for ap explanation should not be unconstrained since it

quickly becomes intractable,

Since GENESIS does not conduct a complete search for an explanation, it is incapable of “under-
standing™ narratives which have large gaps and do not suggest known schemata. When the first kid-
napping narrative is processed without a schema for “kRidnapping for ransom,” very little of the missing
structure can be inferred and the only support links the system can construct are shown in figure 3-2,

As a result, it is unable to answer the questions shown earlier.

POSSESSS ¢ M2t aTRANS) POSSESSY MRSl yrny.
FREEZ - SHRSLSET-FREEL ¢ PRS00 HE| D-CAPTIVEL € SHEEL CAPTURE ] <RLERONT por ey

- POSSESS1 ‘Ted has $100,000.

WIN1 Ted wins $100,000 in the lottery.

POSSESS3 ' Bob has $75,000. _

ATRANS1 Someone gives Bob $75,000.

FREE2 Alice is free.

SET-FREE1 Bob releases Alice.

HELD-CAPTIVE1  Bob is holding Alice captive.
CAPTURE1 Bob-captures Alice.

FREF1 Alice is free.

Figure 3-2: Support Network for Kidnap Narrative #1 Before Learning
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However, with the same initial knowledge, it is able to understand the second narrative because
the gaps and missing information are not too severe. Consequently, the understander is able to con-
struct the support network shown in figure 3-1. As indicated earlier, this structure is then generalized
into a new schema. When the first narrative is processed again, Bob’s action of imprisoning Alice in his
basement defermines a CAPTURE schema, and this in turn suggests the new “kidnapping for ransom”
schema. The new schema is then used in a top-down fashion to fill in missing information. It is finally
determined when both of the effects of the BARGAIN: Alice becoming free again and Ted receiving
money, are added to the model. The final support network (the expansion of the new schema for this
narrative) is shown in figure 3-3. The corresponding causal structures for the arson narratives are

shown in figures 3-4, 3-5, and 3-6.
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Bob has $75,000.
Alice is free.

- Bob makes a ba:gam with Ted in which Bob releases Alice

and Ted gives $75,000 to Bob.

Ted bhas $75,000.

Ted has $100,000.

Ted wins $100,000 in the lottery.

Ted wants Alice free more than he wants to have $75,000,
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Bob js holding Alice captive.

Bob captures Alice.

Alice is free.
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Bob contacts Ted and tells him that he is holding Alice captive.
Bob believes he is holding Alice captive. '
Bob believes Ted has $75,000,
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Bob wants to have $75,000. - : .

Figure 3-3: Support Network for Kidnap Narrative #1 After Learning
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POSSESS3 Stan has $100,000.
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INSURED1 Stan is insured by Prudential for $100,000 if the warehouse is burnt.

- INSURE-OBJECT1 Stan insures the warehouse with Prudential for
$100,000 in the case that the warehouse is burnt.

~ POSSESS1 Stan owns the warehouse
NOT1 ‘The warehouse is not already burnt.
POSSESS2 Prudential has $100,000,
BELIEF4 Prudential believes that the warehouse is burnt.
TELEPHONE] Stan calls Prudential and tells them that the warehouse is burnt.
BELIEF2 Stan believes that the warehouse is burnt.
BURN1 Stan burns the warehouse.
BURNT? The warehouse is burnt.
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Figure 3-5: Highest-Level Support Network for Arson Narrative #2
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Figure 3-6: Support Network for Arson Narrative #1 After Learning
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CHAPTER 4

THE GENERALIZATION PROCESS

Learning is not attained by chance, it must be
sought for with ardor and attended to with diligence.

Abigail Adams

Once a causally complete explanation for a narrative has been constructed, the learning process
can begin. A top-level outline of the learning process is shown in figure 4-1. First, GENESIS must
decide whether or not an interesting new action schema can be.learned from the narrative. This deci-
sion process is described in the next section. If it decides that a new schema can be learned from this
example, it generalizes the set of actions and states in the narrative which will compose the new
schema. Section 4.2 is a description of this process. Finally, GENESIS must package the new schema
into a form that can be stored in the schema library and used in the processing of future narratives.

This final process is described in section 4.3.

(1)  Decide whether or not to generalize a set of actions in the example into a new schema.

(2) Construct a generalized support network which represents the generalized causal structure of the
set of actions composing the new schema.

(3) Package the schema into a form suitable for the schema library and store it away for use in pro-
cessing future narratives. ‘

Figure 4-1: Top-level outline of the learning procedure.
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4.1. When to Generalize

If every novel combination of actions the system encountered was generalized into a new schema,
the system would soon become overloaded with rarely used schemata. Most actions would activate a
large number of schemata and selecting among these would require an excessive amount of processing.
time.

The problem of generating large numbers of useless schemata is mentioned in the conclusion of
the STRIPS learning paper [Fikes72). The solution proposed there was to include a mechanism for for-
getting old plans. This mechanism would keep statistics on the frequency with which each MACROP is
used and discard those which fell below a certain threshold.! It is important to note that STRIPS gen-
eralized and constructed a MACROP for every sequence of actions which was not subsumed by an
already existing MACROP. A better method is to avoid the effort involved in generalizing and saving
plans which are uniikely to be helpful in future processing. This approach demands having a set of
criteria for judging whether or not a plan is worth generalizing. Of course, this method does not pre-

clude the additional usefulness of a method for forgetting old schemata.

The procedure GENESIS uses to determine when to generalize is outlined in figure 4-2. It uses the

following criteria in deciding whether or not to generalize a set of causally connected actions.

Find all achieved goals;
FOR each achieved goal DO
. IF the goal is not achieved using a known schema AND the goal is a thematic goal
THEN generalize the actions used to achieve this goal into a new schema

Figure 4-2: OQutline of the procedure for determining when to generalize.

This solution was simply a proposal and the authors state: “We have not, however, experimented with any such mechan-
isms.”
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1) Does the combination of actions achieve a goal for a character in the narrative?
2) Does the combination of actions used to achieve this goal fail to match an existing schema?

3) Is the achieved goal a general one which is likely to be encountered again?

Recall that the understander checks each state which is added to the mode] to see if it fulfills
some character’s goal. If it does fulfill a goal, the understander marks that goal as being achieved. Conse-
quently, obtaining a list of achieved goals is simply a matter 6f inspecting the model. Each of these
goals is then examined to see if itvmeets the second two criteria. Each one which meets the remaining
criteria results in the generation of a new schema. Therefore, more thaﬁ one schema could be acquired

from a single narrative.

The second criterion is the obvious one of not already possessing a schema for the combination of
actions which achieves a goal. This simply involves checking the highest level support for the goal state
and mﬁking sure it contains a combination of actions by the character who achieved the goal. If the sys-
tem already had a schema for this case, it would have used it in processing the narrative and the goal

state would be supported at the highest level by an instance of this schema instead of by a combination

of actions.

The third criterion is the crucial one for insuring that the acquired schema will be a useful one.
A novel way of achieving a state which satisfies normal human wants and desires is likely to result in
an interesting schema, one which will arise again and again. Recall that thematic goals were defined as
the highest level goals which motivate a character’s action. If an action achieves a thematic goal for its
actor, it requires no further explanation. Consequently, a novel combination of actions is considered to
be worth generalizing into a new schema if and only if it achieves a thematic goal. Recognizing
instances of thematic goals is easy since the understander specially marks these goals as thematic and
therefore requiring no further explanation. Recall that the understander is able to do this because the

system is given a list of thematic goals including, for example, the goal of possessing money.

In the detailed kidnapping narrative, John achieves the goal of possessing 250,000 dollars. Since

the system does not possess a schema for kidnapping for ransom when it processes this narrative, this
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goal state is supported at the highest level by a combination of actions as shown in figure 3-1. Since

wanting to possess money is a thematic goal, the combination of actions he used to achieve this goal

meets all three criteria for generalization.

Additional criteria for generalization were discussed in [DeJ ong83] These included the following:

4) Are the resources used in the achievement of the goal generally available?

5) Is the new method for achieving the goal at least as efficient as other known schemata for
achieving this goal?

However, we have not yet developed exact methods for determining whether or not a resource is “gen-

erally available,” or for comparing the efficiency of various plans. Consequently, these criteria are not

used in the current implementation.

4.2. Constructing a Generalized Support Network

After deciding to generalize, the system constructs a generalized version of the combination of
actions used to achieve the selected thematic goal. This generalized version contains only the informa-
tion necessary to maintain the causal connectedness and well-formedness of the original network.
Details specific to the particular narrative have been removed. The generalized support network con-

structed from the kidnapping narrative is shown in figure 4-3. The procedure for constructing a gen-

eralized support network is outlined in figure 4-4.

4.2.1. Step 1: Isolate the causal structure

The first step in the generalization procedure is to isolate the actions and states which actually
contribute to the achievement of the thematic goal. This simply involves extracting the highest level
support for the achieved goal state. In the kidnapping example, the achieved state is John possessing
$250,000 and the support for this state i-s shown in figure 3-1. This step eliminates extraneous informa-
tion in the narrative which does not contribute to the achievement of the goal, such as the fact in the
kidnapping example that Mary was wearing blue jeans. In addition, by only including the highest

level action schemata which were determined to be in the narrative, lower lével actions which are sub-
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Figure 4-3: Generalized Support Network for Kidnap Narrative #2
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(1) Isolate the causal structure which contributes 1o the achievement of the thematic goal.

(2) Produce an over-generalized version of this.causal structure. In the remaining steps, this structure
will be specialized just enough to be a causally complete explanation of how a character can use
the technique illustrated in the narrative to achieve a thematic goal.

e

(3) Constrain the achieved goal in the generalized causal structure to be a thematic goal.

(4) Impose interschema constraints on the generalized causal structure. These maintain the validity of
each causal link in the explanation.

(5) Impose intraschema constraints on the generalized causal structure. These maintain the well-
. formedness of each schema instance in the explanation.

(6) Combine individual occurences of objects in the generalized causal structure to form a set of con-
ceptual roles for the overall plan. "

(7)  Remove inappropriate roles from instances in the generalized causal structure, As a result of gen-
eralization, schema instances may be left with roles which are no longer relevant. In this step,
these roles are removed.

Figure 4-4: Outline of the procedure for producing a generalized support network.

sumt:ad by larger actions are ignored. For example, only the fact that John CAPTUREd Mary is included
in the highest level support. The lower level actions which describe exactly how he carried out this
task are subsumed by the CAPTURE and are therefore not included. S_im:e the system already possesses
knowledge about capturing individuals, it is assumed that it will be able to determine this event from
bottom-up clues if it occurs in another narrative. Once a CAPTURE is determiﬁed, it can be incorporated

as part of higher level actions such as kidnapping for ransom.

4.2.2. Step 2: Produce an over-generalized copy of the causal structure

The overall approach in constructing a generalized support network is to initially generalize as
far as possible and then re-introduce only the constraints necessary to maintain the causal connections

between schemata and the well-formedness of individual schemata. But first, in order to avoid destroy-
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ing the original representation of the narrative, a copy is made of the support network extracted in step
1. If the original network. itself was generalized, the specifics of the original narrative would be lost

and the system would be unable to answer questions about it.

The copy which is made is over—generalizéd in two respects. First, the class of each schema
instance in the network is generalized to SCHEMA, the highest level in the hierarchy. In steps 3, 4, and
S, constraints will be introduced which force instances to be in more specialized classes. The class of
each instance will be progressively refined until it is Jjust specific enough to maintain the validity of the
explanation. Second, each slot is filled by a new, unique schema instance. In the model generated by the
understander, there is a single representation for each individual OBJECT. For example, “John” is
represented by the instance PERSON3, and all of John’s actions have PERSONZ as their actor. However, a
single person or object may fill several different roles which could be filled by different individuals
without disrupting the causal \strﬁcture of the narrative. Therefore, in the initially ovér—generzi]ized

copy, each occurrence of an object is represented by a unique instance of an OBJECT schema. For example,

if the model contains:

(CAPTURE! [ACTOR (PERSON3 (NAME (JOHN1)) (GENDER (MALE1]
(OBJECT (PERSONZ (NAME (MARY1))(GENDER (FEMALEL ]

and

(POSSESS9 [SUBJECT (PERSON3 (NAME ( JOHN11)){GENDER (MALE1]
(OBJECT (MONEY1]

then in the corresponding locations in the generalized support network are;!

(SCHEMA12 [ACTOR (SCHEMA13 (NAME (SCHEMA14))(GENDER (SCHEMALS]
(OBJECT (SCHEMA16 (NAME (SCHEMA17))(GENDER (SCHEMAIS]

and

(SCHEMA19 [SUBJECT (SCHEMA20 (NAME (SCHEMAZ21))(GENDER {SCHRvVA22]
(OBJECT (SCHEMA23]

In steps 3, 4, and 5, constraints will be introduced which force separate instances to be equivalent.

Clearly, unique identifiers such as SCHEMAIL2, SCHEMAI3, etc. are only meaningful to a computer and do not allow the reader
to identify which over-generalized instances correspond to which instances in the original model of the narrative. Consequently,
in order to make the trace produced by the generalizer readable, the system uses names which make this correspondence clear. In-
stead of using opague names such as scHEMA12 or GO000252, new names are created which match the class of the instance in the
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During this process, objects which must be the same in order to maintain the validity of the explana-

tion will be marked as being equivalent and merged into a single instance in step 6.

In regards to the over-generalized version of a schema instance, it may seem odd that roles such as
NAME, GENDER, ACTOR, and SUBIECT are retained on instances which are initially only constrained to be
SCHEMAS since these roles are not appropriate for all classes of schemata. All the original roles are kept
in order to maintain the basic skeleton of the original explanation and are necessary for re-introducing
necessary constraints in later steps. Roles which are inappropriate for the final generalized class of an
instance are removed in step 7. It should be possible to remove a1l roles initially and re-introduce them

as the necessary constraints demand them; however, we have not yet explored this approach.

An important part of the original support network which is retained in the over-generalized ver-
sion is the information attached to each support link. As mentioned in the beginning of section 3.2.2,
the understander attaches to each support link information which was used in copstructing the causal
connection it represents. This information will allow us to re-introduce necessary constraints in step 4,

and is described in detail in section 4.2.4.

4.2.3. Step 3: Constrain achieved goal to be thematic

The first step involved in re-introducing necessary constraints is to constrain the achieved goal to
be a thematic one. This insures that the generalized combination of actions will still achjeve an impor-
tant goal and therefore represent an interesting schema. When the understander infers the existence of
a thematic goal, it marks it as being thematic and annotates it with the thematic goal patterﬁ which it
matches. Like the information attached to support links, this infomﬁation is retained in the over-
generalized copy and is used to appropriately constrain it. This is done by constraining the goal and
goal state in the generalized support network to match the thematic goal pattern. The following is the

trace produced by the generalizer when constraining the goal and goal state from the kidnapping exam-

ple?

model, e.g. CAPTURE?, PERSONT. Although these instances retain their original class names, they are over-generalized versions and are
marked as being immediate members of the class scHEMA. This information shouid be kept in mind when reading upcoming ex-
cerpts from the trace produced by the generalizer. .
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Imposing constraints 1o maintain thematic quality of the goal:
(GOAL10 [SUBJECT (PERSONS3 (NAME (JOHN21))
(GENDER (MALE37])
(OBJECT (POSSESS25 [SUBJECT (PERSON54 (NAME (JOHN22) )
(GENDER (MALE38]
(OBJECT (MONEY12 (AMDUNT (#250000#9))
(TYPE (DOLLAR11]

Must match thematic goal pattern:
{(GOAL (SUBJECT ?SUBJECT)
(OBJECT (POSSESS (SUBJECT 7SUBJECT)
{(OBJECT (MONEY]

GOAL10 constrained to be a GOAL
POSSESS25 constrained to be a POSSESS
PERSON54 must be eguivalent to PERSONS3
JOHN22 must be equivalent to JOHN21
MALE38 must be equivalent to MALE37
MONEY12 constrained to be a MONEY

Imposing thematic constraints on achieved state:
(POSSESS17 [SUBJECT (PERSON4 (NAME ( JOHN2))(GENDER (MALE2]
(OBJECT (MONEY3 (AMOUNT (#250000#2))(TYPE (DOLLAR2]

POSSESS17 must be equivalent to POSSESS2S
PERSON4 must be equivalent to PERSONS4
JOHON2 must be equivalent to JOHN22
MALE2 must be equivalent to MALE3S
MONEY3 must be egquivalent to MONEY12

#250000#2 must be equivalent te #250000#9
DOLLAR2 must be equivalent to DOLLARI11

4.2.4. Step 4: Impose interschema constraints.

Interschema constraints are those which maintain the integrity of connecting support links in the
network., We will use the kidnapping narrative to illustrate the process of imposing interschema con-
straints by showing how the FATHER relationship in its support network is only constrained by the
explanation to be a POSITIVE-IPT (for positive interpersonal theme, a superclass of PARENT, SPOUSE, etc.).
Every time a support link is added during understanding, it is annotated with the pattern from the
schema database used to construct it and the class in the schema hierarchy from which it was inherited.

For example, when the system infers the goal priority:

? Remember that GOALLG, PERSONS3, etc. are simply unique identifiers for instances which are actually in the class SCHEMA un-
til further constrained by the generalizer. ' : : : oo
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B

(GOAL-PRIORITY [SUBJECT (PERSON (NAME (FRED]
[ GREATER-GOAL (FREE (SUBJECT (PERSON (NAME (MARY]
[LESSER-GOAL (POSSESS (SUBJECT (PERSON (NAVE (FRED) }))
' (OBJECT (MONEY (TYPE (DOLLAR))
(AMDUNT (25000011

as a secondary inference from the state:

(FATHER (SUBJECT (PERSON (NAME (FRED))))
(OBJECT (PERSON (NAVE (MARY]

it annotates it with the pattern from the schema library:
(GOAL-PRIORITY (SUBJECT ?SUBJECT)

(GREATER-GOAL (FREE (SUBJECT ?0BJECT))) _
(LESSER-GOAL (POSSESS (SUBJECT ?SUBJECT){OBJECT (MONEY]

and the fact that this inference was inherited from the schema POSITIVE-IPT.

When the constraints for a support link are imposed, the schema instance corresponding to the
source of the information is constrained to be in the class from which the information was inherited,
and the schema instance on the opposite end of the link is constrained to match the pattern from the
schema library. Which end of a support link is the source of information depends on the type of sup-
port link involved. In the case of inference support links like the example, the source of the informa-
tion is the antecedent (e.g. FATHER) and the opposite end of the link is the consequent (e.g- GOAL-
PRIORITY). For effect support links, the source of the information is the action and the opposite end is the
state which it‘ supports. For example, if BELIEF7 is supported by an action TELEPHONE] as an effect, then
BELIEF7 is constrained to match the corresponding pattern specifying the effect of a TELEPHONE, énd
TELEPHONEL is constrained to be in the class from which this effect was inherited (i.e. COMMUNICATE).
For precondition and motivation support links, the source of the information is the action and the oppb-
site end is the state which supports it. For example, if BELIEFS supports TELEPHONE1 as a precondition,
then BELIEF8 is constrained to match the corresponding pattern specifying the precondition of a TELE-
PHONE, and TELEPHONEI] is constrained to be in the class from where this precondition was inherited G.e.
COMMUNICATE). The following is the trace produced by the generalizer when imposing the interschema

constraints for the example inference link.
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Imposing interschema constraints for:
(GOAL-PRIORITY7 [SUBJECT (PERSON18 (NAME (FRED3)X(GENDER (MALES]
[GCREATER-GOAL (FREES (SUBJECT (PERSON19 (NAME (MARY6))
‘ "(GENDER (FEMALES6]
(LESSER-GOAL (POSSESS20 [SUBJECT (PERSON20 (NAME (FREDT))
(GENDER (MALE13]
(OBJECT (MONEY7 (AMOUNT (#250000#3))
(TYPE (DOLLARG]

secondary inference of:
(FATHER3 [SUBJECT (PERSON21 (NAME (FREDS)XGENDER (MALE!5]
(OBJECT (PERSON22 (NAME (MARY8)XGENDER (FEMALE7]
FATHER3 constrained to be a POSITIVE-IPT
PERSON18 must be equivalent to PERSON21
FRED3 must be eguivalent to FREDS
MALE6 must be equivalent to MALELS
FREE8 constrained to be a FREE
PERSON19 must be equivalent to PERSON22
MARY6 must be equivalent to MARYS
FEMALES must be equivalent to FEMALE7
POSSESS20 constrained 1o be a POSSHSS
PERSON20 must be equivalent to PERSON21
FRED7 must be equivalent to FREDS
MALE13 must be equivalent to MALE1S
MONEY7 constrained to be a MONEY

Thus, the system only imposes the required relationship between the individuals filling the roles of kid-
nap victim and ransom payer. The fact that there was a specific father-daughter relationship in this
particular narrative is recognized as incidental and not crucial in maintaining the validity of the expla-
nation. The necessary requirement is that there be some kind of positive relationship between these
two individuals so that the ransom payer will value the freedom of the victim more than the posses-
sion of money. The same technique is used to generalize the action TELEPHONE, which represents some-
one using a telephone to MTRANS information to someone else, to the more abstract action COMMUNICATE,
which represents setting up a communication path by some means (e.g. letter, electronic mail etc.) and
then performing an MTRANS. This generalization is possible because the important effect of the TELE-
PHONE action in the original narrative is that the ransom payer believes that the kidnapper has the vic-

tim, and this effect is inherited from COMMUNICATE. _
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4.2.5. Step 5: kmpose intraschema constraints

Intraschema constraints concern maintaining the well-formedness of each individual schema
instance. This is accomplished by imposing on the filler of each role the appropriate role consrfainr
from the schema library. For example, since the role constraints specify that both the SUBIECT and
OBJECT of a POSITIVE-IPT state must be PERSONs, the SUBJECT and OBJECT role fillers of an instance of
POSITIVE-IPT in the generalized support network are constrained to‘be PERSONS. Note that the constraints
that are used are those which are specified for the current generalized class of the instance, not the class
- specified in the original narrative. If the original class FATHER was used instead of the generalized class
POSITIVEIPT, the SUBJECT would be required to be MALE, which is obviousty not a necessary constraint
on the ransom payer in a kidnapping schema. Consequently, interschema constraints must be imposed
before intraschema constraints in order to determine the appropriate class of actions and states in the
generalized support network. Once this is done, the intraschema constraints can be imposed on the sche-
mata filling the roles of these actions and states and then intraschema constraints can be recursively
imposed on the role fillers of these schemata. For example, what follows is a trace of the genéralizer

imposing the intraschema constraints on the POSITIVE-IPT state in the generalized support network for

the kidnapping narrative.3

Imposing intraschema constraints for:
(FATHER3 [SUBJECT (PERSON21 (NAME (FREDS))(GENDER (MALE15]
' (OBJECT (PERSON22 (NAME (MARYS))(GENDER (FEMALE7]

PERSON21 constrained to be a PERSON
FREDS constrained to be a NAMVE
MALE1S constrained to be a GENDER
PERSON22 constrained to be a PERSON
MARYS constrained to be a NAVE
FEMALE7 constrained to be a GENDER

*Remember that FATHERS is just a unique identifier for an instance which is currently in the class PosITIvE-PT (after being spe-
cialized from the class SCHEMA by the interschema constraint just discussed). Also, the instances PERSON21 and PERSON22 are originally
in the class SCHEMA as a result of over-gencralization and are Just now being constrained to be PERsONs. Instances are eventually
renamed at the end of generalization to match their resulting class.
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4.2.6. Step 6: Combine equivalent instances

In this next to last step, each equivalence class of OBJECT instances is replaced by a single instance.
Constraints on the set of equivalent instances are merged so that the resulting single instance is at least
as specific as any individual occurrence in the generalized support network resulting from steps 1
through 5. For example, if one occurrence of an instance has been constrained by the explanation to be
an INANIMATE-OBIECT of ‘color RED, and an equivalent instance has been constrained to be & BLOCK of any

color, then the resulting merged instance will be 2 BLOCK of color RED.

In the kidnapping example, this step merges together all of the individual oceurrences of the kid-
napper, the victim, the ransom payer, and the ransom money and creates a single OBJECT instance for
each of these roles. These are respectively the objects PERSONS, PERSONS, PERSON4, and MONEY3 which
6ccur in the final generalized support network shown in figure 4-3. In the arson example, single objects
are created for the arsonist, the insurance company, the burned object, and the insurance money. These
are easily distinguished in the final generalized support network for the arson example shown in figure
'4-5. In both of the currently running examples, each of the important objects in the original narrative
happens to fill a single conceptual role in the overall schema. Consequently, the explanation requires
that all the individual occurrences be equivalent. Fach original object in the narrative maps igto a sin-
gle object in the final generalized support network. Therefore, the current examples do not adequately
illustrate the importance of separating out the individual occurrences of an object in a narrative and

eventually creating a distinct object for each conceptual role in the final generalized schema.

4.2.7. Step 7: Remove inappropriate roles

The final step in the construction of a generalized support network is removing roles which are
not relevant to the ﬁn_al generalized class of a schema instance. For example, consider an instance which
Wwas a PERSON with NAME and GENDER roles in the original narrative but is only constrained by the
explanation to be a PHYSICAL-OBJECT. Since all PHYSICAL-OBJECTs do not have names and genders, these

roles should be removed from the final generalized representation.
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POSSESSE

INSURED3 ¢-3182%__ INSURE-0BJECT2E
Soong NOT2
POSSESSE XML INDEMNIFY2 POSSESS? ceon’ o
. BURNTi?(——-‘ﬂE‘-BUR.N SrvrsnaF LAMMABLE2
3
ELIEF5 ¢SSt COMNUNICATE 162200 g 1EFR
- POSSESSS Person2 has Money2.
+ INDEMNIFY2 Insurance-Company2 reimburses Person2 Money2 for the loss of -
‘ . Physical-Object2. i
INSURED3 Person2 is insured by Insurance-Company2 for Money2 if
Physical-Object2 is burnt.

INSURE-OBJECT2 ~ Person2 insures Physical-Object2 with Insurance-Company? for
Money2 in the case that Physical-Object2 is burnt.

POSSESS6 Person2 owns Physical-Object2
NOT2 Physical-Object2 is not already burnt.
POSSESS? Insurance-Company2 has Money2.
BELIEFS - Insurance-Company2 believes that Physical-Object2 is burnt.
- COMMUNICATE1 Person2 contacts Insurance-Company?2 and tells them that
: Physical-Object2 is burnt.
- BELIEF6 : Person2 believes that Physical-Object2 is burnt.
;. BURN2 Person2 burns Physical-Object2.
- - BURNT17 Physical-Object2 is burnt.

FLAMMABLE2 Physical-Object2 is able to burn.

Figure 4-5: Generalized Support Network for Arson Narrative #2

Finding such inappropriate roles is easy since no interschema or intraschema constraints will have
been imposed on their fillers. Consequently, their fillers will still be in the class SCHEMA as 4 result of
the initial over-generalization in step 2. The fillers of all appropriate roles will be at least constrained
by an intraschema constraint for that role, and will therefore be in a more specialized class than
SICHEMA. Removing all roles whose fillers are only constrained to be SCHEMAs will therefore remove all :

of the inappropriate roles and leave appropriate ones untouched.
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This process is not well illustrated in the examples since the cases in which the class of an instance
is generalized (such as the COMMUNICATE and POSITIVE-IPT examples) do not generate any inappropriate
roles. Also, as noted in the discussion of step 2, there is probably a way of avoiding this step by remov-
ing all rolés in the initial over-generalization and re-introducing only the roles necessary to make the
explanation complete and well-formed. However, we have not as yet explored this approach to con-

structing a generalized support network.

4.3. Packaging into a Form for the Schema Library

The final step in acquiring a new action schema is separating the generalized support network into
preconditions, effects, expansion schemata, etc., which can be added to the schema library. Following is a

discussion of how this information is extracted,

4.3.1. Roles and role constraints

The subject of the achieved thematic goal becomes the actor of the new schefna. New roles are
created for each remaining OBJIECT which appears in more than one place in the generalized support net-
work or is more constrained than required by the intraschéma constraints of the one action or state in
which it does ai)pear. The reason for omitting objects which appear in only one unconstrained place in
the generalized explanation is that such an object cannot be a crucial object in the overall schema since
it is completely local and is unconstrained by the rest of the explanation. An example of such an
OBJECT in the kidnapping example is the location where the money is delivered. It appears only as part
of the completed BARGAIN schema and the only constraiht on it is that it be a LOCATION, which is an
intraschema constraint required for the BARGAIN to Vbe well-formed. However, roles are created for the
kidnapper, victim, ransom payer, and ransom money since qach of these appears in several places in the

generalized support network.

Each role of the new schema is given the constraint of matching its corresponding OBIECT instance
'in the generalized support network. For example, the constraint for the kidnap victim is that it be a

“PERSON and the constraint for the ransom money is that it be MONEY. The actual instances in the gen-
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eralized support network have the additional constraints that their role fillers be well-formed, that is
that nameé be NAMES, genders be GﬁNDERs etc., but these constraints are not added explicitly since they
are implied by the constraint on the class of the object. If for some reason the explanation requires that
a role filler of an object be more constrained than required for well-formedness, then this constraint is

specified in the role constraints for the new schema.

4.3.2. Preconditions, motivations, effects, and terminations

The preconditions for the new schema are the states which are leaves of the generalized support
network but not motivations of actions by the main actor. In the kidnapping example, the ransom

payer possessing the ransom money is a precondition.

The motivations for the new schema are the states which are leaves of the generalized support
network and motivations of actions by the maijn actor. In the example, the kidnapper wanting to have

money is a motivation.

The effects of the schema are the effects of all actions within the generalized support network
which are not terminated by other internal actions. In the example, the kidnapper possessmg the ran-
som money is an effect. The victim being held captive is not an effect since this state is terminated by

the successfully completed bargain.

Finally, the terminations of the schema are the states which are terminated by an action within
the generalized support network but not produced by another internal action. In the example, the ran-
som payer no longer possessing the ransom money is\a termination. The victim no longer being held
captive is not a termination since this state is originally the effect of the CAPTURE action within the gen-

eralized support.

4.3.3. Suggesting schemata

The schema for each action within the generalized support network is marked as suggesting the
new composite action. In the example, the schema CAPTURE has the new kidnap-for-ransom schema

added to its list of suggested schemata. If an action in the generalized support network has constraints
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on its role fillers, then these must also be met before the new schema is suggested. For example, not just
any BARGAIN will suggest the new kidnapping schema. It will only be suggested if it is 2 BARGAIN in

which a person is released in exchange for money.

In some situations, this approach of having every sub-action suggest the new schema is too liberal.
In the arson example, this approach results in suggesting the new arson-for-insurance schema every
time someone buys ﬁre insurance. There should be a general way of determining which sub-actions
should suggest a new schema and which ones should not. A better approach would be for a sub-action
to suggest the new schema only if it achieves a state which is not normally a goal state. This means
that the actor must have some other reason for performing this action, and perhaps it is because it is
part of the new schema which does achieve a normal goal. Since buying fire insurance achieves a nor-
mal goal of protecting oneself against financial loss, it should not suggest the arson-for-insurance
schema. This would make the system more like PAM in that once it has one explanation for an action

it would not try to find another. A planned revision of the system will incorporate this modification.

4.3.4. Determining conditions and expansion schemata

The determining conditions of the new schema are all the actions within the generalized support

network. Consequently, in the kidnapping example, the determining conditions are:

1) The kidnapper captures the victim.

2) The kidnapper communicates to the ransom payer that he has the victim.

3) The kidnapper and ransom payer complete a bargain in which the kidnapper
releases the victim in exchange for the ransom payer giving him money.

The interior of the generalized support network (ie. all the states and actions except the precondi-
tions, motivations, effects and terminations along With‘ their interconnecting support links), is stored
away as the expansion of the new schema. If the learned schema is ever determined in the context of
another narrative, this structure (instantiated with the current role fillers) will be added to the expla-

nation in the model.

It is instructive to trace through how this approach allows the system to determine the appropri-

ate 1ear;1¢d schemata in the two “test” narratives. In the kidnapping example, Bob locking Alice in his
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basement determines a CAPTURE schema. This schema in turn suggests the learned schema CAPTURE-
BARGAIN. Recall that a determining condition is considered to be ,satisﬁeci if either it is added to the
model (in which case it was either directly in the input or was itself suggested and determined
bottom-up), or if all of its effects can be inferred to exist. An effect is inferred to exist if it is in the
model or if it is a precondition of another determining condition which has already been satisfied.
After the system receives the inputs that Alice has been released and that Bob has received some money,
both of the effects of the BARGAIN determining condition are met and the bargain is inferred to have
i;aken place. Since a precondition for the bargain is that the ransom payer believe that the kidnapper.
has the victim, and since this is the only effect of the determining condition that the kidnapper has
communicated this fact to him, this final determining condition is satisfied and an instance of the

learned schema is added to the model along with the causal structure in its expansion.
In the test narrative for the arson example, the determining conditions for the learned schema are:

1) The actor insures a building against fire.

2) The actor burns the building.

3) The actor communicates to the insurance company that his building is burnt.
4) The insurance company reimburses him for the loss.

When John burns his building, the learned schema is suggested and the second determining condition is
satisfied. Next, John getting money matches the effect of an insarance company indemnifying the actor
of the suggested arson-for-insurance schema, so the 4th determination condition is satisfied. Since the
preconditions of the INDEMNIFY are that the actor have fire insurance on the building and that the
insurance company believes it is burnt, the effects of both the INSURE and the COMMUNICATE are

inferred to exist and the remaining two determining conditions are satisfied.

This approach to determining a learned schema is sometimes too liberal. For example, if in a nar-
rative an insured building is burnt but it is not mentioned who or what caused the fire, the system
would infer that the owner burned it in order to collect the insurance (since all the effects of this sug-
gested action exist). There are at least two possible solutions to this problem. First, if botﬁ the iﬁsuring
and indemnifying actions were kept from suggesting the learned schema (using the approach discussed

in the last section), then arson-for-insurance would never even be suggested in such a situation. Second,
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using arson-for-insurance might also be avoided inl this case if the system had another schema in which
the burnt state was caused by a non-volitional, accidental fire and also had some way of preferring this
explanation to the volitional one. In any case, it is not surprising that constructing appropriate sugges-
tions and determination conditions has lead to problems. Selecting the appropriate schema to use in a
particular situation has always been a difficult problem in building understanding systems [Char-
niak82, DeJong82, Lytinen84, Norvig83)}, and the problem is even harder when the system must con-
struct its own selection criteria for learned schemata. This is obviously an important problem for

~ future research.
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CHAPTER 5

COMPARISON TO OTHER WORK IN LEARNING

Much learning does not teach understanding.

Heraclitus

Most research in machine learning [Langley81, Michalski83a, Michalski83b, Mitchell78, Vere78,
Winston70] has involved constructing a generalized description of a concept by extracting the common
features across a number of examples. Such correiational approaches fo learning can be applied with lit-
tle or no domain knowledge; however, they requirewa large and representative set of examples and can-
not take advantage of causal knowledge about a domain. For example, if a correlational system was
used to learn aﬁout kidnapping and in all the exafnples it was given the victim happened to be wearing
blue jeans, it might consider wearing blue jeans to be an integral part of kidnapping. On the other
hand, an explanation_—based system require;s detailed causal knowledge about a domain, and can use this
knowle(ﬁge to generalize the causal explanation of a single problem solving example into a generalized
description of a combination of actions and the objects ﬁrhich must participate in it. Of course, many
concepts are not determined soley by causal and functional constraints and in many situations causal
information is unavailable or inappropriate. Consequently, explanation-based learning is not alw;ys

applicable,

Before discussing other research in explanation-based learning, a correlational system which
should be specifically mentioned is IPP [Lebowitz80, Schank82] since, like GENESIS, it is a 'na_tural
language processor. IPP processes news articles and uses a correlational approach to learn specializations
of existing schemata. For example, the system already has a schema for kidnapping and after processirig
several stories which describe kidnappings in Italy carried out'by the terrorist group the Red Brigades,
it creates a specialized schema for kidnappings in Italy in which the Red Brigades is the default kid-
napper. Later, if it encounters an article describing a kidnapping in Italy in which the kidnappers are
not mentioned, it assumes the Red Brigades is the responsible party. Besides using a correlational instead

of an explanation-based approach to learning, IPP constructs specializations of existing schemata instead
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of learning new schemata for compositions of actions which achieve important goals.

‘The explanation-based generalization process used by GENESIS can be viewed as using standard
rules of generalization such as those described in [Michalski83b], but applying them in specific cases for
principled reasons motivated by the structure of the explanation. Extracting the causal structure of an

‘ example and ignoring the rest of it is an example of applying what Michalski calls the dropping condi-
tion rule. States and actions which do not contribute to the achievement of the goal are dropped from
the description of the schema being constructed. Geperalizing up the hierarchy to the class where criti-
cal effects or inferences are inherited is an example of what Michalski calls climbing a generalization
tree. Finally, creating unique OBJECT instances for each role filler and eventually collecting togéther
equivalent instanées to form a set of roles for the resulting schema is an example of what Michalski
calls changing constants to variables. The crucial difference is that in an explanation-based system
such as GENESIS, these generalization rules are applied in specific circumstances where it is known that
applying them will not destroy the causai structure of a plan or a chain of inferences. This allows an
explanatioﬁ—based system to learn useful concepts from a single example. In addition, it is guaranteed
that the resulting generalized set of actions can be used to achieve a certain goal state, assuming, of

course, that the system’s model of the world implicit in its knowledge of inferences and actions is accu-

rate.

Of all previous learning systems, the generalization process uséd by GENESIS is most similar to
that used by STRIPS to generalize planning sequences into new MACROPs [Fikes72). Like STRIPS,
GENESIS first produces an over-generalized copy of a causally connected set of actions in which each
occurrence of an object is represented by a distinct parameter. It then specializes this structure so that it
represents a valid causally connected plan of actions. This is done by constraining the over-generalized
copy to match patterns from its knowledge base of inferences and the effects and preconditions of
actions. However, unlike STRIPS, GENESIS generalizes actions and states as well as objects and loca-
tions. As described above, it is able to generalize the state FATHER to POSITIVEIPT and the action TELE-

PHONE 10 COMMUNICATE. This is possible because all actions and states are arranged in an abstraction
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hierarchy and inherit effects, preconditions, inferences, etc. from schemata above them in the hierar-
chy. In addition, GENESIS generalizes the temporal order of independent actions. This is because it uses
a dependency graph to represent the structure of the overall plan, and can therefore represent partially
ordered actions. In contrast, STRIPS uses a triangle table which requires a total ordering on the set of

actions.

Recent work on the LEX system which learns heuristics for solving integration problems
[Mitche1183] has also emphasized an explanation-based approach to learning. By analyzing the explana;

* tion of how an application of an operator contributed to the solution of a single problem, LEX-2 is able
to refine the heuristics-for when to apply this operator. However, LEX-2, unlike GENESIS and STRIPS,

. does' not construct compositions of operators (schemata or MACR(SPS). LLEX-2 only generalizes the
preconditions which an expression must satisfy in order for the operator in question to lead to a solu-

tion in the current example. Constructing a schema, however, would result in a method for completely

solving similar problems and obviate the need for searching for a sequence of operators in these cases.

GENESIS differs from both STRIPS and LEX in that example problem solutions are not generated
by the system solving problems itself but rather by observing and exﬁlaining the behavior of another
intelligent agent. The learning approach GENESIS uses is learning from observation [Carbonell83],
since it can be exposed to arbitrary behavior (within the scope of actions it currently possesses) and
recognize on its own which examples can be generalized into useful new schemata. Although learning
from the behavior of an internal planner makes the system more autonomous, it also limits what the
system can learn. Learning from external behavior allows a system to learn problem solving methods
which it could not generate itself, Sincé searching for a problem solution is combinatorialiy explosive,

learning from external behavior is often a more feasible approach.

Recent work by Winston on learning if-then rules from precedents and exercises is an
explanation-based approach to learning which uses examples explicitly provided by a teacher. Winston
has used this technique in two different systems. One learns principles of character behavior and disease

effects from text describing a particular case [Wins_ton82], and another learns a physical description of
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an object from a functional definition and an'example. [Winston83L Since the domain of the first Sys-
tem is more like that of GENESIS, only it will be discussed in more detail. This system is given a sim-
ple causally complete summary of Shakespeare’s Macbeth and is then given an exercise of showing that
a weak noble with a greedy wife may want to be king. It matches the representation of the exercise
with the Mact;eth precedent and copies the causal structure of the precedent onto the exercise. From
this new causal structure it constructs a generalized rule which states that a weak noble married to a

greedy lady will want to be king.

There are several important aspects which distinguish Winston’s work from ’ghe work presented
 here. First, the “Macbeth system” does not need to do any explanation-driven understanding siﬁce all
actions and causal connections are given to the system directly in the input text. Winston's systefn for
learning physical descriptions, however, does construct an explanation for why a specific example meets
a set of functional specifications. Second, his systems do not learn schemata for typical actions, but
rather rules of inference for making certain conclusions (e.g. that a person will want to be king or that
a particular object is a cup). Finally, it is not clear from the presentation that }:us generalization process
is completely explanation-based. As in GENESIS, relations which do nof enter into the causal structure
are ignored. However, it is not clear how the causal structure itself is generalized, although it appears
to be crucially effected by the statement of the exercise. In the Macbeth example, if the exercise
involves proving something about a noble, then the generated rule is given in terms of a noble, and if
the exercise involves proving something about a man, then the rule is given in terms of & man. If one
were to use the explanation to relax constraints in the Macbeth example, it would involve using back-
ground knowledge, such as the constraint that normally only nobles are possible heirs to a throne, and
that normally people can influence their spouses. Using these constraints, one can generalize appropri-

ately without the need for a guiding exercise.

An explanation-based system which both learns from external behavior and constructs schemata
for successful combinations of operators is Sitver’s LP system [Silver83]. LP learns techniques for solv-

ing algebraic equations by analyzing sample solutions produced by an external agent. Also, the latest
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work by Mitchell and his students on learning VL.SI design techniques [Mitchell85] learns from the
behavior of a human engineer and generalizes a single circuit design into:a technique for implementing
a particular functional unit. There are three other ESA systems besides GENESIS which learn problem
solving techniques in different domains. MA (Mathematician’s Apprentice) ['Rorke84] is a system
which learns schemata for proving theorems in logic from example proofs generated during interactive
problem solving with a human expert. There is system in robotics [Segre85] which learns a general plan
for assembling a given functionz_ll unit from a single assembly example performed by an external agent.
Finally, there is én ESA system which learns methods for solving problems in classical mechanics from

a single specific solution using a particular technique [Shavlik85].

One aspect which distinguifshes GENESIS from all the other explanation-based learning systems is
that GENESIS uses the schemata it learns to increase its ability to understand external behavior rather
than to solve problems on its own. Unlike GENESIS, the other learning systems do not use their sche-
mata to fill in missing steps in the observed behavior of external agents. However, applying learned
schemata to understanding requires constructing criteria for when to apply them during understanding,
which, as discussed in section 4.3, is a difficult problem. Coﬁespondingly, GENESIS currently does not
use learned schemata to construct its own plans; however, the representation of learned actions is

appropriate for planning as well as understanding.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

and this is only the beginning of what they will do;...

Genesis 11:6

GENESIS has been a useful system for exploring explanation-based learning of schemata. It has
demonstrated the feasibility of improving the performance of a narrative prcceséor through
knowledge-based generalization of a single example of a new concept. Although GENESIS was con-
structed with the kidnapping example in mind, an effort was made to keep it 2 general narrative pro-
cessing system only constrained by the representation of actions discussed in chapter 3. Consequently,
the arson example was easily handled by adding information about insurance and the volitional burn-
ing of objects. Future work will demonstrate the applicability of the approach to other areas besides
illegal methods for obtaining money. The method should also be applicable to learning plans for
achieving other important goals such as satisfying hunger (e.g. fishing), preserving health (e.g. vaccina-

tion), or satisfying sexual desires (e.g. using an intoxicant to lessen a potential partner’s inhibition).

However, as many other AJ researchers have noted, the primary contribution of constructing an
Al system is pointing out problems and providing directions for future research. Consequently, listed

below are some problems which require further research.

(1) One goakl.of future Wofk is to further formalize the representation and éttempt the construction
of a completely domain independent generalizer Whiéh could be used to construct schemata for
combinations of actions or inferences in widely different domains. It appears that most of the
work in explanation-based learning of stereotypical combinations of actions or inferences [Fikes72,
Mitchell85, O’'Rorke84, Winston83] uses similar techniques, and it would be interesting to see if a

single generalizer could handle examples in all of these domains.

(2) GENESIS generalization procedure was driven by engineering concerns more than by concerns

‘about psychological validity. Although the general notion of ‘explanation-based generalization
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seems psychologically plausible since pe(;ple are capable of learning a general plan from a single
example; it seems unlikely that the process involves over-generalizing and re-constraining. Conse-
quently, we would like to explore generalization procedures which, unlike STRIPS and GENESIS,
can generalize directly to the correct level without having to initially over-generalize. The latest
impleméntation of MA [O'Rorke84], an ESA system for theorem proving, uses a procedure which
generalizes directly to the correct level. Howeve:, it requires maintaining (in the original causal
structure} distinct representations for every occurrence of an object and equality relationships

between separate representations of the same ob ject.

Currently, GENESIS waits until it finishes processing a narrative before it attempts to generalize a
combination of actions which were used to achieve an important goal. A more rezﬁistié approach
is to generalize as soon as the system has an explanation for how an important goal was achieved.
This allows for within trial learning [Laird84, O'Rorke84], in which the system uses What it
learns from one part of a task to improve its performance in another part of the same task.
Unfortunately, learning cannot simply be triggered by the achievement of a thematic goal, since
the system may know that a goal has been achieved before it has a complete explanation for Aow
it was achieved. For example, consider a narrative in Wh;ch an heiress inherits an estate due to
the death of her rich uncle but the narrative does not reveal until later that she murdered her
uncle. Consequently, allowing for within trial ledrning will require mdnitoring achieved
thematic goals and invoking the generalizer when an explanation .is finally constructed for how

they were achieved.

When constructing a new schema, the current system traces back through the complete set of
actions which a character used to achieve a thematic goal. However, this approach does not

always result in a useful schema. For example, consider the following narrative:

John’s uncle owned a warehouse which was insured against fire for $100,000. John gave
his uncle coffee laced with arsenic. His uncle died and John inherited his warehouse. He
tried to sell the warehouse but couldn’t. He burned the warehouse and called Prudential
and told them it was burnt. Prudential paid him $100,000.

With the current generalizer, the schema constructed for this narrative would include
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generalizations of all of John's actions which support the achievement of his goal, including his
act of killing his uncle. Clearly, there should be a way of “pruning” the support for an achieved
state before constructing a schema. However, determining where to prune is not a trivial prob-
lem. For example, one would not want to prune the support in the kidnapping example so that |
having someone locked in your room is a precondition for using the schema. The problem is that
although the effect of a new schema is constrained to be a state which satisfies a normal goal, its
preconditions are not similarly constrained. In addition to the notion of end states which are nor-

mally desired, there should be a notion of preconditions which are normally met in the world.

- Then a schema would be constructed for that set of actions which achieves a ‘themadtic goal and™

starts at normal preconditions, Owning a building would be considered a normal precondition,

while having someone locked up in your room would not.

Learning better conditions for when to apply a new schema during understanding is another area
for future research. The improvements suggested in sections 4.3.3 and 4.3.4 (e.g. having only oth-
erwise unmotivated actions suggest higher—lgvel schemata) ﬁeed to be implemented. However,
these improvements Wil.l probably .not solve all the problems with suggesting a learned schema in

inappropriate situations or failing to suggest it in appropriate situations.

Anothel_‘ Interesting problem involves generalizing to higher levels. For example, the kidnapping
narrative could feasibly be generalized into a schema for holding any object for ransom, and the
arson example could be generalized into a schema for insurance fraud. However, one would not
want to eliminate acquiring the schemata which are currently learned from these narratives since
they provide more detailed predictions and correspond to situations which people recognize as
stereotypical. Rather, it would be better to generalize to several levels and save each resulting

schema at a different level of abstraction in the schema hierarchy.

When English expressions exist for new schemata, it should be possible to acquire these from con-
text. This would complement past work on learning new linguistic expressions for already .

known concepts [Granger77, Selfridge81].
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(8) Schemata already in the schema 1ibrary (as a result of learning or programming) should be open
to refinement by future inputs to the system. For example, GENESIS has a naive view of bar-
gaining in which both participants faithfully carry out their end of the bargain. If the system
were to encounter a situation in which one participant fajled to complete his end of the bargain
(such as a kidnapping in which the kidnapper got the ransom money and then killed the victim),
it should be able to refine its BARGAIN schema to account for this anomaly. Since the need for
refinement indicates a problem with the system’s model of the world, it will necessarily be
failure-driven, ie. initiated by the violation of one of the system’s expectations. However,
instead of refining a schema based on correlational evidence as in Schank’s work on dynamic
memory [Schank82), it should be possible to refine a schema based on an explanation of why the
expectation failure occurred. [Rajamoney85] describes recent work on a system which refines its
world model after an expectation failure by constructing an explanation for the failure and per-

forming experiments to isolate the part of the explanation which is at fault.

(9) Mapy schemata which are useful for narrative pfocessing rely on social conventions in addition to
causal exj_alénations (e.g. 2 wedding ceremony, a trip to a restaurant or supermarket). Such sche-
mata do not lend themselves to explanation-based learning from a single example. However,
causal well-formedness at least restricts the possible form such schemata can take. Consequently,
it should be possibie to use explanations-to guide correlational learning of schemata which invelve
social conventions. Combining explanation-based and correlational approaches to learning in such

situations is obviously an important area for future research.

In conclusion, generalizing explanations of narratives has proven to be a successful approach to
learning schemata for natural language processing. Of course, many problems, such as those listed
above, remain to be solved and require further research. We intend to continue our work on learning

schemata for natural language processing, and hopefully progress can be made on some of these impor-

tant problems.
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