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Abstract. Recognizing activities in real-world videos is a chal-
lenging AI problem. We present a novel combination of standard
activity classification, object recognition, and text mining to learn
effective activity recognizers without ever explicitly labeling train-
ing videos. We cluster verbs used to describe videos to automatically
discover classes of activities and produce a labeled training set. This
labeled data is then used to train an activity classifier based on spatio-
temporal features. Next, text mining is employed to learn the correla-
tions between these verbs and related objects. This knowledge is then
used together with the outputs of an off-the-shelf object recognizer
and the trained activity classifier to produce an improved activity rec-
ognizer. Experiments on a corpus of YouTube videos demonstrate the
effectiveness of the overall approach.

1 Introduction

Recognizing activities in real-world videos is a challenging AI prob-
lem with many practical applications [1, 16]. We present a novel ap-
proach to efficiently constructing activity recognizers by effectively
combining three diverse techniques. First, we use natural-language
descriptions of videos as “weak” supervision for training activity rec-
ognizers [15]. We automatically develop a set of activities together
with a labeled training corpus by clustering the verbs used in sen-
tences describing videos. Second, we use previously trained object
recognizers to automatically detect objects in video and use this in-
formation to help identify related activities [14]. For example, de-
tecting a “horse” in the image helps classify the activity as “riding”.
Third, we mine a large corpus of generic, raw natural-language text
to learn the correlations between activities (verbs) and their related
objects (nouns). By mining a large corpus and collecting statistics on
how likely different verbs co-occur with particular nouns, we esti-
mate the probability of specific activities given particular objects.

Integrating these three methods allows for the rapid develop-
ment of fairly accurate activity recognizers without ever explic-
itly providing training labels for videos. By combining text min-
ing to both automatically infer labeled activities and extract relevant
world-knowledge connecting activities and objects, together with
computer-vision techniques for both object and activity recognition,
our work demonstrates the utility of integrating methods in natural
language processing and computer vision to develop effective AI sys-
tems. Experiments on a sizeable corpus of YouTube videos annotated
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with natural-language descriptions [3] verify that our approach im-
proves the accuracy of a standard activity recognizer for real-world
videos. Figure 1 shows sample frames from a couple of videos with
their linguistic descriptions.

The remainder of the paper is organized as follows. Section 2 dis-
cusses related work, Section 3 describes our new system, Section 4
experimentally evaluates it on real-world videos, Section 5 discusses
future work and Section 6 presents our conclusions.

Figure 1. Sample Videos with Natural-Language Descriptions

2 Related Work

Video activity recognition has become an active area of research in
recent years [8, 32]. However, the set of activity classes are always
explicitly provided, whereas we automatically discover the set of ac-
tivities from textual descriptions. Scene context [26] and object con-
text [14, 27, 31, 35] has previously been used to aid activity recog-
nition. But most of this previous work uses a very constrained set of
activities, while we address a diverse set of activities in real-world
YouTube videos.

Also, unlike previous work, we automatically extract correlations
between activities and objects from a large text corpus. There has
been work using text associated with videos in the form of scripts or
closed captions to aid activity recognition [10, 20, 19, 4, 15]. How-
ever, these methods do not use deeper natural language processing.
By contrast, we demonstrate the advantage of full parsing of an un-
related corpus to mine general knowledge connecting objects and
activities.

A particular related project that uses natural-language descriptions
to automatically annotate videos with activity labels is [19]. How-
ever, in [19], the set of activity classes are pre-specified, whereas
we automatically generate activity classes from textual descriptions
by clustering verbs using WordNet as the only source of prior knowl-
edge or supervision. Also, the approach in [19] requires a training set
in which linguistic descriptions are annotated with the pre-specified



activities, whereas our approach does not require any specially anno-
tated text. While our current approach uses training videos each de-
scribed by several different natural-language sentences provided by
multiple human annotators recruited on Amazon Mechanical Turk,
[19] uses freely available movie scripts downloaded from the web.

3 System Description

We first describe our procedure for discovering activity classes au-
tomatically from natural-language descriptions of videos using hier-
archical clustering of verbs. Videos are then automatically labeled
with these classes based on the verbs used in their natural-language
descriptions. We then explain the process of training an activity clas-
sifier using spatio-temporal video features and how this model is used
to obtain initial probability distributions over activities in test videos.
Next, we describe how we detected objects in the videos using an
off-the-shelf object recognizer. After that, we describe how we mined
text to determine the correlation between these activities and objects.
Finally, we explain how we combined all of these pieces together to
produce a final integrated activity recognizer.

Figure 2. Automatic Discovery of Activity Classes

3.1 Automatically Discovering Activities and
Producing Labeled Training Data

We assume that each training video is accompanied by a set of de-
scriptive natural-language sentences and that there is one activity per
video. These descriptions are used to automatically discover activity
labels and produce labeled training data. First, we run the Stanford
Log-Linear Part of Speech (POS) Tagger [33] on the sentences and
compute the most frequent verb used to describe each video. Verbs
are first stemmed using the Porter Stemmer [24]. Using the most-
frequent verb in a set of natural-language descriptions of the video
gives us high confidence that the activity is present in the video.
These verbs could be used as activity labels themselves; however,

this would result in a large set of activities, many of which are seman-
tically similar. Thus, we automatically cluster these verbs to produce
a smaller set of more distinctive activities.

We use WordNet::Similarity [28] to construct a semantic similar-
ity measure between words. Specifically, word similarity is computed
by summing three measures based on path lengths in WordNet: lch
[21], wup [36] and path, and three others based on additional Word-
Net content: res [30], lin [23] and jcn [17]. When computing these
similarity measures, we need the WordNet senses of the two words
being compared. We tried two methods for measuring the final sim-
ilarity of two words with unknown senses. In the first, we summed
the similarity measures for each possible combination of the senses
of the two words; in the second, we measured the similarity between
the most-common senses of the two words according to WordNet. In
the future, we would like to perform word sense disambiguation for
these verbs using their textual as well as visual context. These sim-
ilarity measures were used to produce complete binary taxonomic
hierarchies of verbs by applying standard Hierarchical Agglomera-
tive Clustering using group average to compare clusters [25].

For our dataset, we found that the approach using most-common
senses worked best. We cut the resulting hierarchy at a level that
seemed to provide the most meaningful activity labels and discarded
clusters having fewer than 9 training videos. Automating the selec-
tion of the appropriate number of clusters is another topic for future
work. Figure 2 shows how the similar verbs “cut,” “chop” and “slice”
were clustered together, similarly for “throw” and “hit” etc. Figure 3
shows the final 28 clusters discovered for our data. Finally, we auto-
matically label each training video with the label of the cluster con-
taining its original verb label.

Figure 3. Discovered Verb Clusters that Define Activities

3.2 Activity Classification using Spatio-Temporal
Video Features

The labeled videos produced in the previous step are used to train a
standard video-based activity classifier. First, each video clip is pre-
processed to produce a descriptive “bag of visual words.” To cap-
ture spatially and temporally interesting movements, we use the mo-
tion descriptors developed by Laptev [18]. These features have been
shown to work well for human-activity recognition in real-world
videos [20, 19, 13]. In addition, this approach is easy to apply to
new problems since it does not use any domain-specific features or
prior domain knowledge.

First, a set of spatial temporal interest points (STIP) are extracted
from a video clip. At each interest point, we extract a HoG (His-
tograms of oriented Gradients) feature and a HoF (Histograms of
optical Flow) feature computed on the 3D video space-time vol-
ume. The patch is partitioned into a grid with 3x3x2 spatio-temporal



blocks. Four-bin HoG and five-bin HoF descriptors are then com-
puted for all blocks and concatenated into 72-element and 90-
element descriptors, respectively. We then concatenate these vec-
tors to form a 162-element descriptor. A randomly sampled set of
500,000 motion descriptors from all video clips is then clustered us-
ing K-means(k=200) to form a vocabulary or “visual codebook.” Fi-
nally, a video clip is represented as a histogram over this vocabulary.
The final “bag of visual words” representing a video clip consists
of a vector of k values, where the ith value represents the number of
motion descriptors in the video that belong to the ith cluster. Figure 4
shows some sample frames with detected motion features. As shown,
most motion features are detected on interesting and useful patches
which form an integral part of the activity. A problem with this ap-
proach is that STIP points are extracted from the background when
there is camera movement or a moving background. Many activities
are difficult to distinguish, such as riding and driving. As discussed
later, objects in the video can provide useful additional context for
correctly identifying activities.

We then use the labeled clip descriptors to train an activity classi-
fier. We tried several standard supervised classification methods from
WEKA [34]. We achieved the best results using bagged REP decision
trees. The trained classifier provides an initial probability distribution
over activity labels for each test video based on spatio-temporal fea-
tures.

Figure 4. Spatio-Temporal Interest Points

3.3 Object Detection in Videos

We used an off-the-shelf pre-trained object detector based on Dis-
criminatively Trained Deformable Part Models [12] to detect objects
in videos (release 4.01 [11]). We used models for 19 objects pre-
trained on the “trainval” data for the PASCAL Visual Object Classes
Challenge 2009 [9]. The 19 objects detected are: aeroplane, bicycle,
bird, boat, bottle, bus, car, cat, chair, cow, dining table, dog, horse,
motorbike, potted plant, sheep, sofa, train, tv monitor. This approach
provides robust, state-of-the-art object detection for static images,
which we adapted to videos as follows.

First, we extracted one frame per second from each video in
the test set, and represented each video by a set of frames. Then
we ran the object detector on each resulting frame to produce
bounding-boxes with scores for each of the 19 objects. Figure 5
shows some sample object detections. We used Platt scaling [29]
to map these scores to calibrated probabilities. To produce a proba-
bility, P (Oi|Vj), for object Oi appearing in video Vj , we took the
maximum probability assigned to any detection of object Oi in any
of the frames for video Vj . In this way, we computed a probability

of each of the 19 objects occurring in each video. This approach was
effective for our test corpus; however, exploring other techniques for
using an object detector trained on static images to detect objects in
video is another area for future research.

Figure 5. Horse Detections

3.4 Learning Correlations between Activities and
Objects

To gather information on the correlation between activities and ob-
jects we mined the 2005 English Gigaword corpus, a comprehensive
archive of newswire text assembled by the Linguistic Data Consor-
tium (LDC) [5]. We used five distinct international sources of English
newswire containing a total of 6 million documents or 15 GB of raw
text. Using this corpus, we computed occurrence and co-occurrence
counts for activities and objects. An occurrence of an activity Ai was
defined as an occurrence (after stemming) of any one of the verbs in
the verb cluster defining Ai. An occurrence of an object Oi was de-
fined as any occurrence (after stemming) of the noun defining Oi or
a “synonym.” The set of “synonyms” was found by considering all
nouns in the descriptive sentences in the training data and keeping
those whose Lesk similarity [22] with the defining noun was greater
than 0.5. This approach was found to be more effective than just us-
ing synonyms from WordNet.

In order to test the utility of different levels of language process-
ing, we used one of four different methods for determining the co-
occurrence of an activity and an object. In the first approach, called
windowing, an activity and an object were said to co-occur if and
only if there was an occurrence of the object within w or fewer words
of an occurrence of the activity (after removing stop words). We tried
window sizes, w, of 3, 10 and the entire sentence.

In the second method, called POS tagging, we first Part-of-Speech
(POS) tag the English Gigaword corpus using the Stanford tagger
[33]. Then, an activity and an object were said to co-occur if and only
if there was an occurrence of the object tagged as a Noun within w or
fewer words of an occurrence of the activity tagged as a Verb (after
removing stop words). We tried window sizes, w, of 3, 10 and the
entire sentence.

In the third approach, called parsing I, an activity and an object
were said to co-occur if and only if the object was the direct object of
the activity verb in the sentence. In the fourth approach, called pars-
ing II, an activity and an object were said to co-occur if the object is
syntactically attached to the activity verb by any relevant grammati-
cal relation (e.g. ADVP, PP, NP). We used the Stanford Parser [2] to
produce a typed dependency parse tree for each sentence. Given this



parse tree, it is easy to check if the object appears as the direct object
of the activity verb, or is attached to the activity verb by any other
relation. By comparing the parsing, POS tagging, and windowing
approaches in the experiments below, we evaluated the advantage of
performing deeper language processing to determine the correlation
between activities and objects. For example, consider the following
sentence from the English Gigaword corpus: “Sitting in Bethlehem,
PA., cafe, Kaye thumps a table and wails white blues.” Using the win-
dowing or POS-tagging approach (with one of the larger windows),
we would determine that “sit” and “table” co-occur. However, if we
apply one of the parsing methods, we would find that “table” is nei-
ther a direct object of sit, nor is it attached by any other grammatical
relation, and thus they would not be considered to co-occur.

Using counts of these occurrences and co-occurrences in Giga-
word, we estimated the probability of each activity given each object
using Laplace (add-one) smoothing as follows:

P (Ai|Oj) = (Count(Ai, Oj) + 1)/(Count(Oj) + |A|) (1)

where Count(Ai, Oj) is the number of co-occurrences of Ai and
Oj , Count(Oj) is the number of occurrences of Oj , and |A| is the
total number of activities.

3.5 Integrated Activity Recognizer
Using the information for detected objects along with the correlation
between activities and objects, we obtain an “object-based” probabil-
ity distribution over activity labels for each test video. Our final activ-
ity recognizer combines this distribution with the initial probability
distribution over activity labels based on spatio-temporal features.

Let the features used by the object detector be denoted as Fo. We
compute the probability of an activity Ai given these object features
by applying chain rule as follows:

P (Ai|Fo) =

|O|∑
j=1

P (Ai|Oj) ∗ P (Oj |Fo) (2)

where |O| is the total number of object detectors (19 for our sys-
tem). The first component P (Ai|Oj) is provided by the text min-
ing component described in Section 3.4, and the second component
P (Oj |Fo) is provided by the object detector described in Section
3.3.

As discussed in Section 3.2, a classifier trained on the spatio-
temporal features of the video (denoted as Fv) gives us an ini-
tial probability distribution over activities labels in each test video,
P (Ai|Fv). To recognize the activity in a test video, we combine both
distributions P (Ai|Fo) and P (Ai|Fv) as follows. The final recog-
nized activity is:

Videos on which object detector detected at least one object
= argmax

i
P (Ai|Fo, Fv) (3)

= argmax
i

P (Fo, Fv|Ai) ∗ P (Ai)/P (Fo, Fv) (4)

by Bayes’ Rule

= argmax
i

P (Fo, Fv|Ai) ∗ P (Ai) (5)

by removing terms that are same for all i

= argmax
i

P (Fo|Ai) ∗ P (Fv|Ai) ∗ P (Ai) (6)

by assuming features are independent given the activity

= argmax
i

P (Ai|Fo) ∗ P (Fo) ∗ P (Ai|Fv) ∗ P (Fv)/P (Ai) (7)

by Bayes’ Rule + algebra

= argmax
i

P (Ai|Fo) ∗ P (Ai|Fv)/P (Ai) (8)

by removing terms that are same for all i

Videos on which there were no detected objects
= argmax

i
P (Ai|Fv) (9)

Thus we consider only P (Ai|Fv) when no object is detected and
P (Ai|Fo, Fv) when objects are recognized. Note that this derivation
assumes that the video and object features are independent given the
activity class. This is an instance of the “naive Bayes” assumption,
which, although rarely completely justified, has been demonstrated
to be very useful in practice [7]. In this way, we combine informa-
tion from STIP features of the video with object-detection features
in the static images. This integration could possibly also improve
object detection in video; however, in this paper we focus on activ-
ity recognition, a difficult task which is less well-studied than object
recognition, and therefore more likely to benefit from the integration
of the two.

4 Experimental Evaluation
This section presents an experimental evaluation of our approach.
First we describe the dataset, next we explain our experimental meth-
ods, and finally we present the results.

4.1 Dataset
We used the data collected by Chen et al. [3], consisting of 1,970
short real-world YouTube video clips accompanied with about 122K
natural-language descriptions. The videos were collected by naive
workers recruited using Amazon Mechanical Turk (AMT). They
were given instructions to submit YouTube clips that were short,
have a single unambiguous event, and could be described by a single
natural-language sentence. Natural-language descriptions in more
than 16 languages for these videos were then collected from addi-
tional AMT workers. We used only the English descriptions which
total about 85k. In the future, we would like to extract more infor-
mation from the descriptions in other languages. Each video clip is
approximately 10 seconds long. Much of the work on activity recog-
nition is performed on simple “staged” videos with a single person
performing a very scripted activity. By comparison, this YouTube
data has more complexity, diversity, and noise, making for a difficult
real-world activity-recognition corpus.

4.2 Experimental Method
We divided this data set into disjoint training and test sets. In order
to provide a useful test of the effect of object recognition on activ-
ity detection given the limitations of our off-the-shelf object recog-
nizer, we selected test videos that were likely to contain one of the
19 object classes covered by the object recognizer. We first found
all videos that included a reference to at least one of these 19 ob-
jects in their English descriptions. A description was determined to
reference an object if included the defining word for the object or
one of its synonyms as described in Section 3.4. The rest of the data
was then used to discover activity classes by clustering the original
265 verb stems used to describe these videos (see Section 3.1). Af-
ter manually cutting the resulting hierarchical clustering at a level to
create meaningful activity classes, and removing classes with fewer



than 9 videos, this left a labeled training set containing 28 activity
classes with a total of 1,119 videos.

Finally, a disjoint test set of 128 videos was assembled by selecting
videos that both contained a reference to one of the 19 object classes
and belonged to one of these 28 activity classes (as determined by the
verbs used to describe these test videos). It is important to note that
the system does not use any of the information from the linguistic
descriptions of a test video when predicting the activity it depicts;
classification is based solely on the video. The linguistic descriptions
of the test videos are only used to evaluate the accuracy of activity
recognition. Also, training does not use any information from either
the test videos or their linguistic descriptions.

The training data is used to construct an initial activity classifier
based on spatio-temporal features as described in Section 3.2. The re-
sulting model is used to predict an initial activity distribution for each
of the test videos. Next, we perform object detection on the 128 test
videos as described in section 3.3. This gives us probability of each
of the 19 objects appearing in each test video. For obtaining corre-
lations between activities and objects, we evaluated the windowing,
POS tagging, parsing I and parsing II methods as described in Sec-
tion 3.4 and compared their results. Finally, all this information is
combined to make a final activity prediction for the test videos as
described in Section 3.5. Since the test videos were specifically cho-
sen to refer to the target objects, the distribution of activity classes in
the training and test data are different. Therefore, we found we got
better results using a simple uniform prior over activities (P (Ai)) in
Equation 8 rather than one estimated from the training data. This ef-
fectively removes this term from the equation since it is the same for
all classes.

We evaluated predictions on the test set by measuring classifica-
tion Accuracy and Weighted Average Precision (WAP). The preci-
sion for a given activity class is the fraction of the videos assigned to
the class which are correctly classified. WAP is the average precision
across all classes, weighted by the number of test instances in each
class.

4.3 Results

4.3.1 Results using only Spatio-Temporal Interest Points

Table 1 shows results of activity recognition using just the STIP fea-
tures of the video [18] described in 3.2. Results are shown for various
Weka classifiers. Bagged REP decision trees gave the best results, so
we used that approach in the final system.

Table 1. Recognition Results using only Spatio-Temporal Interest Points

Classifier Accuracy WAP

Decorate 0.289 0.361
Bagged REP Tree 0.3906 0.392
Bagged J48 Decision Tree 0.375 0.387
AdaBoost 0.25 0.314

4.3.2 Results for Object Detection in Videos

To evaluate the accuracy of the object detector on our data, we man-
ually determined the number of correct and incorrect detections of
each object in the test data. For each object class, Table 2 shows the
numbers of correct and incorrect detections as well as the number
of videos actually containing the object. Objects for which there are
no correct or incorrect detections are not shown in the table. Note

that the aeroplane recognizer detects many false positives. The sys-
tem also confused similar objects, such as motorbike and bicycle,
car and bus, etc., which is understandable. But wrongly detecting a
bicycle as a motorbike or vice versa, does not usually hurt the final
activity results, because the same activities tend to be correlated with
such easily confusable objects. For example, the most common verb
correlated with both motorbike and bicycle is “ride.”

Table 2. Results of Object Detection in Videos

Object Model True Positives False Positives Videos with Object

horse 24 0 33
car 15 12 22
motorbike 7 3 25
bicycle 4 6 8
aeroplane 2 28 3
tvmonitor 2 2 3
bottle 1 0 4
bus 0 2 1
train 0 2 2

4.3.3 Results for Our Integrated Activity Recognizer

Final results for our full system using different text-mining ap-
proaches are shown in Table 3. Compared to the initial results in
Table 1, all of the approaches demonstrate the advantage of using
object recognition and text-mined activity/object associations to im-
prove activity recognition. The best results are produced when pars-
ing is used to identify direct objects, demonstrating the advantage of
deeper language processing. Results improve for activities like ride,
fly and drive which have direct objects like horse, and bicycle in case
of ride, plane in case of fly , car in case of drive, etc. Using the pars-
ing I approach, we get 67 of 128 test videos correct as opposed to 50
correct when just using STIP features. Since the aeroplane detector
gives many false positives, when we deleted this detector, the results
improved to 69 correctly-classified videos.

Table 3. Final Results Using Different Text-Mining Methods

Correlation Method Window Accuracy WAP

windowing 3 0.4687 0.4568
windowing 10 0.4687 0.4568
windowing full sentence 0.4609 0.4551
POS tagging 3 0.4609 0.4617
POS tagging 10 0.4375 0.4565
POS tagging full sentence 0.3984 0.4542
parsing I full sentence 0.5234 0.4987
parsing II full sentence 0.4844 0.3823

Table 4 presents results comparing the integrated system to its
individual components, just using video STIP features and just us-
ing object information. The results demonstrate that integrating both
sources of information significantly improves results compared to us-
ing either one alone.

Table 4. Results for System Ablations

Method Accuracy

Only P (Ai|Fv) 0.3906
Only P (Ai|Fo) with parsing I 0.3828
Integrated System 0.5234



5 Future Work
The current approach could be extended and improved in many ways.
With regard to activity discovery, the use of Word Sense Disambigua-
tion could improve the similarity measure used to cluster verbs. Also,
the selection of the appropriate number of clusters needs to be auto-
mated. Our approach could also be tested on other activity recogni-
tion datasets such as the movie-script data used in [19].

With respect to object recognition, models for detecting a much
broader set of object classes should be utilized. Additional object de-
tectors could be trained using the bounding boxes from ImageNet
[6]. A larger set of object detectors would allow extending our ex-
periments to a larger subset of test videos from our YouTube corpus.
Also, object-detection methods specifically designed for video which
use optical flow to help detect object boundaries could be useful. Fi-
nally, it would be useful to explore how an integrated approach like
ours could improve object detection in videos by using information
from activity recognition.

Alternative approaches to integrating spatio-temporal activity
recognition, object detection, and text-mined activity-object correla-
tions should also be explored. Our simple “naive Bayesian” integra-
tion works fairly well, but approaches that model the dependencies
between object and video features could potentially work better.

Finally, our ultimate goal is to construct a system that can produce
complete natural-language sentences for describing videos. This will
require detecting all the arguments of an activity such as subjects,
direct objects, and objects of prepositions; as well as full natural-
language sentence generation.

6 Conclusions
This paper has made three important contributions to video activ-
ity recognition. First, it has introduced a novel method for auto-
matically discovering activity classes from natural-language descrip-
tions of videos. Second, it has demonstrated how existing activity-
recognition systems can be improved using object context together
with correlations between objects and activities. Third, it has shown
how language processing can be used to automatically extract the
requisite knowledge about the correlation between objects and activ-
ities from a corpus of general text. Finally, we integrated these com-
ponents to produce an activity recognizer that improves accuracy on
a realistic video corpus by more than 10 percentage points over a
standard activity recognizer using the features described in [18].
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