
Learning Deep Semantics for Test Completion
Pengyu Nie, Rahul Banerjee, Junyi Jessy Li, Raymond J. Mooney, Milos Gligoric

UT Austin, USA
{pynie,rahulb517,jessy,mooney,gligoric}@utexas.edu

Abstract—Writing tests is a time-consuming yet essential task
during software development. We propose to leverage recent
advances in deep learning for text and code generation to assist
developers in writing tests. We formalize the novel task of test
completion to automatically complete the next statement in a test
method based on the context of prior statements and the code
under test. We develop TECO—a deep learning model using code
semantics for test completion. The key insight underlying TECO
is that predicting the next statement in a test method requires
reasoning about code execution, which is hard to do with only
syntax-level data that existing code completion models use. TECO
extracts and uses six kinds of code semantics data, including the
execution result of prior statements and the execution context
of the test method. To provide a testbed for this new task,
as well as to evaluate TECO, we collect a corpus of 130,934
test methods from 1,270 open-source Java projects. Our results
show that TECO achieves an exact-match accuracy of 18, which
is 29% higher than the best baseline using syntax-level data
only. When measuring functional correctness of generated next
statement, TECO can generate runnable code in 29% of the cases
compared to 18% obtained by the best baseline. Moreover, TECO
is significantly better than prior work on test oracle generation.

Index Terms—test completion, deep neural networks, program-
ming language semantics

I. INTRODUCTION

Software testing is the most common approach in industry to
check the correctness of software. However, manually writing
tests is tiresome and time-consuming.

One option is to automatically generate tests. Researchers
have proposed a number of techniques in this domain, in-
cluding fuzz testing [1]–[3], property-based testing [4]–[10],
search-based testing [11], [12], combinatorial testing [13],
etc. Despite being effective in detecting software bugs, these
techniques generate tests with stylistic issues, as test code
generated through these techniques rarely resemble manually-
written tests [14]–[16] and can be hard to maintain. As a
result, these automated techniques end up being used only
as supplements to manually-written tests.

Another option is to use machine learning (ML), namely
training a model on existing manually-written tests and apply-
ing it when writing new tests, which is a plausible methodol-
ogy supported by the naturalness of software [17], [18]. Ad-
vances in deep learning such as recurrent neural networks [19],
[20] and large-scale pre-trained transformer models [21]–[24]
have led to promising new research in a variety of software
engineering tasks, such as code completion [25]–[30] and code
summarization [31]–[35]. Code generated with modern models
are intelligible to humans, yet we cannot fully rely on them
to generate large chunks of meaningful code, or expect them
to understand larger project context.

Our goal is to design machine learning approaches to aid
developer productivity when writing tests. We present a novel
task—test completion—to help developers write tests faster.
Specifically, once a developer starts writing a test method, she
can leverage test completion to automatically obtain the next
statement in the test code (at any point she desires).

Despite being closely related to code completion [25]–[29],
test completion is distinct in that test code has several unique
characteristics. First, the method under test provides extra
context that can be leveraged when completing a test method.
Second, test code follows a different programming style that
focuses on exercising the method under test. Specifically,
a test method usually consists of a sequence of statements
in the following order: prepare inputs to the method under
test, execute method under test, and check the results of the
execution using assert statements (i.e., test oracles).

We present the first deep learning solution—TECO—that
takes into account these unique characteristics of tests.

TECO uses code semantics as inputs for novel ML
models and performs reranking via test execution.

Code semantics refers to the information related to test/code
execution not available in the syntax-level data (i.e., source
code). TECO extracts code semantics (e.g., types of local
variables) using software engineering tools and feeds them
directly to the model. Once top-k predictions are produced,
TECO further ensures the output quality by executing the gen-
erated statements, and prioritize the runnable and compilable
statements over the others.

We design the code semantics used by TECO based on our
experience with software analysis in order to best capture the
unique characteristics of the test completion task. In total, we
consider six different kinds of code semantics that can be
grouped to two categories: (1) execution result, including the
types of the local variables and whether fields are initialized;
(2) execution context, including the setup and teardown meth-
ods, the last called method in the test method, and statements
in non-test code with similar previous statements.

We implemented TECO to support test methods written
in Java. We evaluate TECO on a newly collected corpus
consisting of 130,934 test methods with 645,633 statements
from 1,270 projects. We release this corpus to the community
as a testbed for the test completion task.

We performed extensive evaluations of TECO on this
corpus—covering lexical similarity, functional correctness,
and downstream application—to show the importance of
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combining code semantics with deep learning. We report
results comparing the generated statements against the gold
manually-written statements using a suite of automatic met-
rics: exact-match accuracy, top-10 accuracy, BLEU [36],
CodeBLEU [37], edit similarity [29], and ROUGE [38]. TECO
significantly outperforms baselines that use only syntax-level
data on all metrics. We also measure functional correctness
by trying to compile and run the generated statements. TECO
can produce a runnable next statement 29% of the time,
while the figure for the best baseline model is only 18%.
Moreover, we also evaluated TECO on the task of test oracle
generation [39], [40], which is a downstream application of
test completion. TECO achieves an exact-match accuracy of
16, which significantly outperforms the prior state-of-the-art’s
exact-match accuracy of 9.

The main contributions of this paper include the following:

• Task. We propose a novel task, test completion, with the
goal to help developers write test methods faster.

• Idea. We propose using code semantics and code execution
when designing ML models targeting code-related tasks.

• Model. We developed TECO, the first transformer model
trained on large code semantics data for test completion.
Furthermore, TECO performs reranking by execution. The
use of code semantics is vital for correctly modeling the
execution process in the test methods.

• Corpus. We created a large corpus of 130,934 test methods
from 1,270 open-source projects. We believe this corpus will
also be useful to many other tasks related to testing.

• Evaluation. Our extensive evaluation shows that TECO
significantly outperforms strong baselines on all automatic
metrics, both on test completion and its downstream applica-
tion: test oracle generation. We also evaluate the functional
correctness of generated code by compiling and running the
generated statements.

TECO and our corpus are publicly available on GitHub:
https://github.com/EngineeringSoftware/teco.

II. TASK

In this section, we more formally describe the test comple-
tion task and illustrate the task using an example.

Given an incomplete test method, our goal is to auto-
matically generate the next statement in that test method.
We assume that the following inputs are provided to a test
completion system: (1) the code under test, which includes
both the test method’s associated method under test as well as
other non-test-method code in the project, (2) the test method
signature, (3) prior statements in the incomplete test method
(which can be zero or more statements).

We illustrate our task in Fig. 1. The example shows (in the
yellow boxes) the method under test, the test method signature,
and the prior statements (only one statement in this example),
as well as (in the last green box) the next statement that should
be generated by a test completion system.

public GMOperation addImage(final File file) {
if (file == null) {
throw new IllegalArgumentException(
"file must be defined"); }

getCmdArgs().add(file.getPath());
return this; }

method under test

@Test
public void addImage_ThrowsException_WhenFileIsNull()
throws Exception

test method signature

exception.except(IllegalArgumentException.class);

prior statements

sut.addImage((File) null);

next statement

Fig. 1: Example of test completion: given the code under test
(represented by the method under test), test method signature,
and prior statements, the goal is to generate the next statement.
Code from sharneng/gm4java in class GMOperationTest.

We seek to generate statements in the body of the test
method, thus the test method signature (including the annota-
tion and the name of test method) are only used as inputs and
they are not the prediction target of the test completion task.
We also do not consider the context of other already available
test methods from the same project when completing a test
method, to prevent any model from cheating by copying code
from other similar test methods. Our defined test completion
task is applicable to the situation when a developer already
knows what to test (thus knows the method under test and
the test method signature), and wants to complete the next
statement at any point when writing the test method, regardless
of whether the project has existing tests or not. We also
focus on modeling the body of test methods as a sequence of
statements, because test methods with control flows (e.g., if
statements, loops, and try blocks) are rare; we found less than
10% test methods have control flows in our experiments. Most
testing frameworks recommend sequential test method body
and provide annotations to replace control flows, for example,
@ParameterizedTest for replacing loops in JUnit 5 [41].

III. EXTRACTION OF CODE SEMANTICS

In this section, we describe the six kinds of code semantics
extracted and used by TECO.

For each kind of code semantics, we design and implement
a static analysis algorithm to extract it. Static analysis is the
analysis of code without executing it, guided by the grammar
and semantics of programming languages. The advantage of
using static analysis is that it does not require configuring
the runtime environment which can be cumbersome for some
projects, and can be applied on partial code (for example,
without accessing the dependency libraries of a project, which
is needed when executing the code). It is also much faster
than executing the code directly, which enables us to collect
code semantics on a large corpus of code. However, static
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Fig. 2: TECO’s workflow of using static analysis to extract
code semantics.

analysis can sometimes be inaccurate; for example, when some
values are unknown without executing code (e.g., user inputs),
static analysis has to over-estimate the analysis results (e.g.,
assuming both branches of an if statement may be executed).
This may not be a problem for TECO as the deep learning
model can learn to ignore the inaccurate parts.

Fig. 2 illustrates the general workflow of TECO’s static
analysis which consists of two phases: given a project, in
the collection phase TECO collects a shared set of all code
elements (classes, methods, fields), and in the analysis phase
TECO extracts each kind of code semantics from the code
elements set using a specific algorithm. The code semantics
can be organized into two categories based on their content: ex-
ecution result and execution context. Execution result includes:
(S1) local var types, (S2) absent types, and (S3) unset fields;
execution context includes: (S4) setup teardown, (S5) last
called method, and (S6) similar statement. In the following
paragraphs we describe the collection phase and the analysis
phase for each kind of code semantics in more detail.
The collection phase. The goal of this phase is to collect a set
of code elements that will be shared by all test methods and all
six kinds of code semantics. TECO collects three kinds of code
elements: classes, methods, and fields; each method and field
should have one class as its parent. For each element, TECO
collects its metadata, including name, type, access modifiers,
annotations (if any), etc. For each class, TECO records if it is
a non-test class, test class, or a class in a dependency. TECO
additionally collects the source code and bytecode for all their
methods of non-test and test classes. We do not utilize the
source code or bytecode in dependency libraries because they
are not needed for the analysis.
(S1) local var types data refers to the types of the
local variables in the test method. The types are
extracted by partially interpreting the bytecode of the
test method without considering the values of variables.
Note that this is more accurate than reading the local
variable table which contains the declared types of local
variables; for example, after interpreting the statement
AbstractWComponent comp = new SimpleComponent(),
the type of comp is SimpleComponent, which is more
accurate than its declared type AbstractWComponent. This
data provides information on what types of test inputs are
available to be used in the next statement.
(S2) absent types are the types of the variables that are needed
by calling the method under test but have not been prepared
in the test method. Types needed by calling the method under

test include its parameter types, plus the class under test (the
declaring class of the method under test) if the method under
test is not a static method. A type is prepared if a local variable
or a field of the test class with this type is initialized. This data
focuses on what types of test inputs are missing, and thus may
likely need to be prepared in the next statement.
(S3) unset fields data refers to the fields of the test class and
the class under test that have not been initialized. We deem a
field as is initialized if there is any statement for setting the
value of the field in the test method, the setup methods, or
methods transitively called from the test method or the setup
methods (up to 4 jumps, as initializations of the fields of our
interest in more in-depth calls are rare). The fields in this data
may likely need to be initialized in the next statement.
(S4) setup teardown data refers to the source code of the
setup and teardown methods in the test class. When a test
framework executes tests, setup methods are executed before
the test method to set up the environment (e.g., connection to
a database), and teardown methods are executed after the test
method to clean up the environment. By providing this context,
the test completion system can know what environment is
available to use in the test method, and also can avoid
duplicating the statements already in setup/teardown methods.
(S5) last called method data is the source code of the last
called method in the prior statements, which could be empty
if no method has been called yet. This data provides more
context on what has been executed in prior statements.
(S6) similar statement data is a statement in the non-test
code of the project that has the most similar prior statements
context to the prior statements in the incomplete test method.
TECO uses the BM25 algorithm [42] to search for similar prior
statements. Only 2 prior statements are considered during the
search, as increasing the window size leads to much longer
search time without improving the quality of the returned
similar statement. We expect this data to be similar to the
next statement to be predicted.
Implementation. In the collection phase, TECO uses Java-
Parser [43] to collect source code and ASM [44] to collect
bytecode. The collection phase takes 136s per project on
average. All analysis algorithms are implemented in Python,
with the help of ASM for partially interpreting bytecode
(for S1) and scikit-learn [45] for the BM25 algorithm. The
analysis phase takes 0.018s–0.247s per test method on average,
depending on code semantics data.
Example. Fig. 3 shows two kinds of code semantics (S2 and
S4) extracted for the example in Fig. 1 that help the generating
the correct next statement. The (S2) absent types data is File,
because calling the method under test addImage requires
GMOperation (because addImage is not a static method) and
File, but GMOperation is already available as a field sut

in the test class (on line 7). The (S4) setup teardown data is
the method setup in the test class GMOperationTest which
initializes the sut field (on line 9). Note that the other kinds of
code semantics are either empty or not useful for this example,
but are useful for some other examples.
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(S2) absent types

(S4) setup teardown

1 public class GMOperation
2 extends org.im4java.core.GMOperation {
3 public GMOperation addImage(final File file) {...}
4 ...}
5
6 public class GMOperationTest {
7 GMOperation sut;
8 @Before
9 public void setup() {... sut = new GMOperation(); ...}

10
11 @Test
12 public void addImage_ThrowsException_WhenFileIsNull()
13 throws Exception {
14 exception.except(IllegalArgumentException.class);
15 sut.addImage((File) null);
16 }
17 ...}

Fig. 3: Some kinds of code semantics (S2 and S4, highlighted
in the first two blue boxes) extracted for the example in
Fig. 1, which help TECO generate the correct next statement
(highlighted in the last green box).

IV. TECO’S DEEP LEARNING MODEL

This section describes the deep learning approach that
TECO uses to solve the test completion task. Fig. 4 illustrates
the overall model architecture: an encoder-decoder transformer
model whose input includes both code semantics and syntax-
level data and output is the next statement.

A. Encoder-Decoder Transformer Model

Our model is based on the encoder-decoder architecture that
considers both input and output as sequences, which has been
applied to many sequence generation tasks including code
summarization [31]–[33] and code generation [46], [47]. In the
context of TECO, the input is the syntax-level data (method
under test, test signature, and prior statements) plus the code
semantics extracted from the test to be completed (S1-S6), and
the output is the next statement.

More formally, TECO is given the test to be completed T
and the code under test C as inputs, where C includes the
method under test xmut, and T consists of two parts: the test
signature xsign and prior statements xprior. The goal is to
generate the next statement y. TECO extracts code semantics
as described in Section III:

xS1, xS2, xS3, xS4, xS5, xS6 = analysis(T,C)

Each input piece x and output y is a sequence of subtokens,
which is obtained by subtokenizing the code or extracted
data’s string format using the BPE (byte-pair encoding) al-
gorithm [22], [48]. TECO combines the input pieces into a
single input sequence by concatenating them with a delimiter
⟨sep⟩ (the ordering of the sequences is configurable):

x = xS3 ⟨sep⟩ xS5 ⟨sep⟩ xS1 ⟨sep⟩ xS2 ⟨sep⟩ xS6 ⟨sep⟩
xS4 ⟨sep⟩ xmut ⟨sep⟩ xsign ⟨sep⟩ xprior

The maximum number of subtokens that TECO can accept,
due to the limitation of the underlying model, is 512. If
the input sequence is longer than that, TECO truncates the
input sequence from the beginning. In our experiments, the

Fig. 4: TECO’s model architecture.

number of subtokens in the input sequence ranges from 23
to 2,426 (average: 243.88) and exceeds the limitation of 512
subtokens in 6% of the cases. As a result, more important
information should be placed at the end of the input sequence
to avoid being truncated. The ordering of code semantics is
decided based on our domain knowledge of which kind of data
would contain more important information, and we always
put the syntax-level data at the end (as they deliver the basic
information for the task). Exploring all possible orderings may
discover better models but is too computationally expensive.
We plan to investigate the impact of the orderings by designing
experiments with more affordable costs in the future.

Then, TECO uses a transformer model [21] to learn the con-
ditional probability distribution P (y|x). The model computes
this by first using an encoder to encode the input sequence into
a deep representation, and then using a decoder which reads
the deep representation and generates the output sequence one
subtoken at a time:

h =encoder(x)

P (y[i]|y[: i], x) =decoder(y[: i], h), for each i

B. Fine-tuning

Recent work shows that pre-training a large-scale trans-
former model on a large corpus of code and text and then
fine-tuning the model on downstream tasks lead to better
performance than training a model from scratch [30], [34],
[35], [49]. However, pre-training is only performed on syntax-
level data in order to be generalizable to many downstream
tasks with different semantics. Prior work shows that large-
scale pre-trained models may not perform well on simple tasks
of executing the code [50]. This indicates that they learned
little about the semantics of execution.

We believe that fine-tuning on code semantics is vital for
pre-trained models to perform well on execution-related tasks
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such as test completion. During pre-training, the model mainly
learns the syntax and grammar of programming languages. If
only syntax-level data is used during fine-tuning, the model
would have to infer the semantics of execution, which can
be very inaccurate because the execution can be complicated
and the context provided by the syntax-level data is limited.
By contrast, code semantics are extracted using reliable static
analysis algorithms in TECO so that the model can directly
use such data instead of inferring. Thus, during fine-tuning of
TECO, the model learns how to understand and process the
additional code semantics in addition to the syntax-level data.

For the pre-trained model, we use CodeT5 [35], which is a
large-scale encoder-decoder transformer model pre-trained on
a bimodal corpus of code in multiple programming languages
(including Java) and text. We fine-tune the model on a corpus
for test completion T C by minimizing the cross-entropy loss:

loss =
∑

x,y∈T C
− logP (y|x) =

∑
x,y∈T C
i∈[0,|y|)

− logP (y[i]|y[: i], x)

C. Evaluation

At evaluation time, TECO uses the beam search algorithm
with a beam size of 10. Specifically, starting from a special
begin-of-sequence subtoken y[0] = ⟨s⟩, TECO iteratively runs
decoder to generate the most likely next subtokens which is
appended to the output sequence; only the top 10 sequences
with the highest total probability are kept at each step. Each
output sequence is completed upon generating a special end-
of-sequence subtoken ⟨/s⟩. The beam search terminates after
generating 10 completed output sequences. As repeating the
same subtoken is unlikely, we apply a repetition prevention
mechanism that penalizes the probability of generating the
same subtoken as the previous subtoken [51].

D. Reranking by Execution

The model can generate plausible outputs by maximizing
the generation probability that it learnt during fine-tuning.
However, there is no guarantee for the generated statements—
subtoken sequences—to be compilable and runnable code.
Arguably, generating compilable and runnable code is more
important than generating plausible but non-executable code
in the test completion task, because it is crucial for developers
to run the code and observe the runtime behavior, in order to
further improve the codebase.

We propose to use reranking by test execution to improve
the quality of the generated statements. Specifically, after
collecting the top-10 predictions from beam search Y ranked
by their probabilities, TECO checks whether each of them
is compilable and runnable. Then, TECO reranks the outputs
into Ŷ where one output yi is ranked higher than another yj if:
(1) yi is runnable and yj is not; or (2) both are not runnable,
but yi is compilable and yj is not; or (3) both have the same
runnable and compilable status, and P (yi) > P (yj). In this
way, generated statements that are compilable and runnable
are prioritized over the others.

Fig. 5: Procedure of detecting whether a generated statement
is compilable and runnable.

TECO detects whether a generated statement is compilable
and runnable by putting it in an ad-hoc test class with the
required context, isolated from being affected by other test
methods in the same project. The procedure is illustrated in
Fig. 5, specifically:
1) Create a class with a test method using the signature and

prior statements, followed by the generated statement.
2) Extract the other non-test methods from the original test

class (including setup, teardown, and utility methods) into
the created class.

3) Generate an ad-hoc main method which calls setup meth-
ods, the test method, and teardown methods in order.

4) Compile the generated class with all the dependencies
specified in the project’s build configuration as well as all
non-test classes in the project.

5) If the compilation succeeds (at which point the statement is
considered to be compilable), execute the compiled class;
the statement is considered to be runnable only if there is
no exception or assertion failure during the execution. The
execution of the class is performed by one of the following:
a) If the project is using JUnit 4 [52] testing framework,

we try to use its command line runner to run the
class with the generated statement; the JUnit 4 runner
is more robust because it properly utilizes all JUnit
features that our ad-hoc main method does not handle,
e.g., @RunWith.

b) If the project is not using JUnit 4 or running with JUnit
4 runner failed, we run the ad-hoc main method.

V. CORPUS

As test completion is a new task, we construct a large-scale
corpus that can serve as a testbed for our work and future re-
search. We collected data from the same subject projects used
by CodeSearchNet [53], which is a large corpus of code and
comments that is frequently used in ML+code research [35],
[49], [54]. Out of the 4,767 Java projects in CodeSearchNet,
we used the 1,535 projects that: (1) use the Maven build
system (for the simplicity of data collection; TECO is not
limited to any build system); (2) compile successfully, and
(3) have a license that permits the use of its data. We collected
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TABLE I: Statistics of our corpus. #proj = number of projects;
#test = number of test method; #stmt = number of statements;
len(test) = average number of tokens in test method; len(MUT)
= average number of tokens in method under test.

#proj #test #stmt len(test) len(MUT)

all 1,270 130,934 645,633 79.57 40.88
training 1,163 120,521 584,924 79.58 40.61
validation 43 5,413 30,515 73.24 45.09
evaluation 64 5,000 30,194 86.26 42.85

the corpus in Spring 2022. To ensure corpus quality, we try
to use the latest stable revision of each project by finding its
latest git-tag; but if it does not have any git-tag on or after Jan
1st, 2020, we use its latest revision.

To extract test methods from these projects, we first col-
lected the set of code elements from each project using the
same toolchain for the collection phase of TECO’s static
analysis (Section III). We identified the test methods written
in JUnit 4 [52] and JUnit 5 [41] testing frameworks, which
are the main frameworks used for writing tests in Java.
Specifically, we searched for methods with a test annotation
(@org.junit.Test or @org.junit.jupiter.api.Test) and
without an ignored-test annotation (@org.junit.Ignore or
@org.junit.jupiter.api.Disabled). This initial search re-
sulted in 221,666 test methods in all projects.

Then, we further filtered the test methods to ensure corpus
quality. We filtered test methods that are badly named (e.g.,
test0; 2,490 cases) or do not follow the required signature of
tests (e.g., parameter list is not empty, return type is not void;
1,908 cases). Then, we tried to locate the method under test
for each test method, using the following enhanced procedure
originally proposed by Waston et al. [39]:
1) If there is only one call to a method, select it (as the method

under test);
2) If a class under test can be found by removing “Test” from

the test class’s name:
a) If there is only one call to a method declared in class

under test, select it;
b) Select the last method declared in class under test

called before the first assertion statement, if any;
3) Select the last method called before the first assertion

statement, if any;
4) Select the last method called, if any.
We removed 36,818 test methods for which we could not
locate the method under test after this procedure.

We used the line number table to find the bytecode in-
structions corresponding to each statement, and we removed
633 cases where we could not do this because of multiple
statements on the same line. After that, we set size constraints
on the data: the test method should have at least 1 statement
(filtered 5 cases) and at most 20 statements (filtered 8,222
cases); the method under test should have at most 200 tokens
(filtered 9,787 cases); the method under test and the test

method together should have at most 400 tokens (filtered 1,288
cases); each statement in the test method should have at most
100 tokens (filtered 1,726 cases).

We also removed several cases that introduce extra overhead
during analysis: test methods with if statements, loops, and try
blocks, because they entail non-sequential control flow which
is not suitable to be modeled by predicting the next statement
given prior statements (22,435 cases); and test methods using
lambda expressions [55], because they prevent many static
analysis algorithms from working (5,420 cases). We plan to
lift these limitations in future work.

Lastly, we mask the string literals in the data by replacing
them with a common token “STR”, similar to prior work on
code completion [29]. Although string literals are frequently
used in test methods, for example as logging messages,
test inputs, or expected outputs, they pose challenges for a
pure-deep-learning solution to generate because they have a
different style than other parts of the code and can sometimes
be very long. Thus, we focus on predicting the next statement
with masked string literals, and leave predicting the content
of the string literals as future work.

After filtering, we obtained a corpus with 1,270 projects
(removed 265 projects because no data was left after filtering),
130,934 test methods, and 645,633 statements.

We follow the same project-level training/validation/evalua-
tion split as CodeSearchNet. Because CodeT5, the pre-trained
model that TECO uses in our experiments, also followed the
same project-level split, our experiments will not have data
leakage issues of evaluating on the data that the model was
pre-trained on. Table I shows the statistics of our corpus, where
the first row is for the entire corpus, and the other three rows
are for each set after the split. Out of the 130,934 test meth-
ods, 101,965 (77.88%) are runnable following our procedure
described in Section IV-D. Note that with the masking of string
literals, some test methods that would originally pass may be
considered as “not runnable” in our current corpus (e.g., when
the test method compares a variable with a string literal).

VI. EXPERIMENTS SETUP

We assess the performance of TECO by answering the
following research questions:

RQ1: What is the performance of TECO on the test completion
task and how does it compare to baselines?

RQ2: On the runnable subset of evaluation set, how frequently
can TECO predict a compilable and runnable next statement?

RQ3: What is the performance of TECO on test oracle
generation, which is a downstream application of the test
completion task, and how does it compare to prior work?

RQ4: How does reranking by execution help with more
accurately predicting the next statement?

RQ5: How does each kind of code semantics help with more
accurately predicting the next statement, and how complemen-
tary are different kinds of code semantics?
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To answer these questions, we setup an experiment to
evaluate TECO and baseline models on our test completion
corpus. We train each model on the training and validation sets
(validation set is used for tuning hyper-parameters and early
stopping), apply the model to predict each statement of each
test method in the evaluation set (or subsets of the evaluation
set), and measure the quality of the prediction via a number
of evaluation metrics, both intrinsically and extrinsically.

All models are trained and evaluated on machines equipped
with 4 NVidia 1080-TI GPUs and Intel(R) Xeon(R) CPU E5-
2620 v4 @ 2.10GHz. We ran each experiment three times
with different random seeds and report average values. When
comparing models, we conducted statistical significance tests
using bootstrap tests [56] with a 95% confidence level.

We next describe the TECO models (Section VI-A) and
baseline models (Section VI-B) used in the experiments, the
subsets of the evaluation set for computing compilable and
runnable metrics and evaluating on the test oracle generation
task (Section VI-C), and the evaluation metrics (Section VI-D).

A. TECO Models

We run a TECO model that uses all six kinds of code
semantics and with reranking by test execution. To study RQ4,
we run a TECO-noRr model that uses the same code semantics
but does not use reranking. To study RQ5, we run six TECO
models with only one kind of code semantics at a time, which
we call TECO-ID (e.g., TECO-S1 only uses S1).

B. Baseline Models

We compare our TECO models to the following baseline
models that only use syntax-level data.
CodeT5 [35] is a pre-trained encoder-decoder transformer
model for code-related tasks, and is built on top of Google’s
popular T5 framework [24]. CodeT5 was pre-trained on eight
commonly used programming languages (including Java) us-
ing both mask language modeling and identifier name recov-
ering tasks. We fine-tune TECO models based on CodeT5. As
such, we compare to a baseline CodeT5 model that is finetuned
on syntax-level data. For completeness, we also compare to a
CodeT5-noFt that is only pre-trained and not fine-tuned.
CodeGPT [54] is a decoder-only transformer model built on
GPT-2 [22]. We used the java-adapted version of it, which
is initialized from GPT-2 pre-trained on natural language, and
then further pre-trained on a corpus of Java code. Svyatkovskiy
et al. [29] used a very similar model (which is not publicly
available) for code completion. As CodeGPT tends to gen-
erate longer code than a statement (without generating the
⟨/s⟩ subtoken to stop the generation), we slightly modify its
decoding algorithm to terminate upon generating the first ‘;’
subtoken for the test completion task.

Test oracle generation is the task of generating the assertion
statement given the code under test (including the method un-
der test), test method signature, and prior statements before the
assertion statement. When studying this task, we additionally
compare to the following two deep learning baseline models
for test oracle generation developed in prior work, both of

which only use syntax-level data. Following the prior works,
we only consider generating the first assertion statement in
each test method.
ATLAS [39] is a RNN encoder-decoder model for test oracle
generation. We used the “raw model” version of it, i.e., that
does not abstract out the identifiers in code.
TOGA [40] is a transformer encoder-only model for classify-
ing the suitability of an assertion statement for an incomplete
test method without assertions. It can be used for test oracle
generation by first generating a set of assertion statements and
then using the model to rank them and select the best one. The
model is initialized from CodeBERT [49], which is also pre-
trained on the CodeSearchNet corpus [53].

For all baseline models, we use the default hyper-parameters
and training configurations recommended by the authors.
We train CodeT5 and CodeGPT on the entire training and
validation set of our corpus. We train ATLAS and TOGA on
a subset of our training and validation set that only predicts the
first assertion statement in each test method, which contains
92,567 statements and 3,050 statements, respectively.

C. Subsets of the Evaluation Set

To study the ability of models in predicting a compilable and
runnable next statement, we evaluate models on the runnable
subset. That is, the subset of the evaluation set where the gold
(i.e., developer-written) statement is runnable. We follow the
same procedure to check if the gold statement is runnable
as described in Section IV-D. Not all gold statements can be
successfully executed because of the difficulties in setting up
the proper runtime environment, such as missing resources
(that may need to be downloaded or generated via other
commands), requiring other runtime environments than Java,
etc. Our runnable subset contains 25,074 statements (83.04%
of all statements in the evaluation set) from 4,223 test methods.

To study the test oracle generation task, we evaluate models
on the oracle subset: the subset of the evaluation set where
the statement to generate is the first assertion statement in
the test method, which contains 4,212 statements. To compute
compilable and runnable metrics on the test oracle generation
task, we evaluate models on the oracle-runnable subset: the
subset of the oracle subset where the gold statement is
runnable, which contains 3,540 statements.

D. Evaluation Metrics

(1) Lexical-level metrics: We use the following automatic
metrics to measure how close the predicted statements are to
the gold statements; these metrics have been frequently used in
prior work on code generation and comment generation [31],
[33], [57], [58]:
Exact-match accuracy (XM) is the percentage of predicted
statements matches exactly with the gold. This metric is the
most strict one; each point of improvement directly entails a
larger portion of code that is both syntactically and semanti-
cally correct, yet it does not take into account paraphrases or
give any partial credit.
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TABLE II: Results for TECO and baseline models. The best number for each metric is bolded. In each table, numbers marked
with the same greek letter prefix are not statistically significantly different.

(a) On the evaluation set.

Model XM Acc@10 BLEU CodeBLEU EditSim ROUGE

CodeT5 13.57 24.11 38.33 33.88 60.81 62.40
CodeT5-noFt 0.00 0.00 0.00 3.36 1.68 0.02
CodeGPT 12.20 22.67 36.30 31.84 59.09 61.10

TECO 17.61 27.20 42.01 37.61 63.49 65.23

(b) On the runnable subset.

Model %Compile %Run XM Acc@10 BLEU CodeBLEU EditSim ROUGE

CodeT5 54.84 17.62 14.38 25.39 39.26 34.55 61.36 63.15
CodeT5-noFt 0.00 0.00 0.00 0.00 0.00 3.35 1.65 0.03
CodeGPT 53.77 15.13 12.95 24.03 37.19 32.46 59.75 61.90

TECO 76.22 28.63 18.96 28.40 43.15 38.45 64.12 66.09

(c) On the oracle subset.

Model XM Acc@10 BLEU CodeBLEU EditSim ROUGE

CodeT5 8.45 24.04 39.03 31.03 66.50 66.63
CodeT5-noFt α0.00 0.00 0.00 1.18 1.86 0.01
CodeGPT 10.56 27.19 40.91 33.33 67.63 67.94
ATLAS α0.21 0.66 21.55 13.39 54.06 50.70
TOGA 9.01 9.01 25.46 24.73 29.60 28.06

TECO 16.44 27.41 43.09 35.88 68.05 68.71

(d) On the oracle-runnable subset.

Model %Compile %Run XM Acc@10 BLEU CodeBLEU EditSim ROUGE

CodeT5 44.45 16.87 8.79 24.37 40.26 32.23 67.08 67.42
CodeT5-noFt 0.00 0.00 α0.00 0.00 0.00 1.26 1.87 0.01
CodeGPT 47.39 16.13 10.41 28.17 41.56 33.79 67.78 68.43
ATLAS 3.62 1.45 α0.23 0.68 21.81 13.56 54.19 50.87
TOGA 25.61 9.37 9.10 9.10 26.51 25.74 31.00 29.38

TECO 67.93 30.29 17.37 27.39 44.27 36.98 68.43 69.35

Top-10 accuracy (Acc@10) is the percentage of any top-
10 predicted statements matches exactly with the gold. This
metric evaluates the use case where the developer can see and
select from the top-10 predictions of the model.
BLEU [36] calculates the number of n-grams (consecutive
n subtokens) in the prediction that also appear in the gold;
specifically, we compute the 1 ∼ 4-grams overlap between
the subtokens in the prediction and the subtokens in the
gold, averaged between 1∼ 4-grams with smoothing method
proposed by Lin and Och [59].
CodeBLEU [37] is an improved version of BLEU adapted
for code. It is a combination of the traditional BLEU, the
BLEU if only considering keywords, syntactical AST match,
and semantic data-flow match.
Edit similarity (EditSim) = 1 - Levenshtein edit distance,
where the Levenshtein edit distance measures the amount
of single-character edits (including insertion, substitution, or
deletion) that need to be made to transform the prediction to
the gold, normalized by the maximum number of characters
in the prediction and the gold. This metric was proposed and
used in prior work on code completion [29].

ROUGE [38] measures the overlap between the prediction
subtokens and the gold subtokens based on the Longest
Common Subsequence statistics, using F1 score.

(2) Functional correctness: The aforementioned metrics
only capture the lexical similarity between the prediction
against the gold, but the gold statement may not be the only
correct solution for competing the next statement. Namely, the
prediction can be functionally correct despite being different
from the gold statement. To measure the functional correct-
ness, we additionally use the following automatic metrics:
%Compile is the percentage of the predicted statements that
are compilable when appended to the incomplete test.
%Run is the percentage of the predicted statements that are
compilable and runnable when appended to the incomplete
test, without incurring assertion failures or runtime errors.

Note that %Compile and %Run are over-estimations of
the functional correctness, as they do not consider whether
the underlying logic of the code is meaningful. That said,
most functional correctness errors relevant to tests, such as
generating the wrong expected outputs, can be captured by the
%Run metric. Prior work has used a similar methodology to
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TABLE III: Results for TECO without and with reranking by execution. The best number for each metric is bolded. The
differences between models for each metric are statistical significant.

(a) On the evaluation set.

Model XM BLEU CodeBLEU EditSim ROUGE

CodeT5 13.57 38.33 33.88 60.81 62.40
TECO-noRr 15.25 40.84 36.34 62.92 64.71
TECO 17.61 42.01 37.61 63.49 65.23

(b) On the runnable subset.

Model %Compile %Run XM BLEU CodeBLEU EditSim ROUGE

CodeT5 54.84 17.62 14.38 39.26 34.55 61.36 63.15
TECO-noRr 60.80 19.49 15.99 41.64 36.82 63.38 65.42
TECO 76.22 28.63 18.96 43.15 38.45 64.12 66.09

(c) On the oracle subset.

Model XM BLEU CodeBLEU EditSim ROUGE

CodeT5 8.45 39.03 31.03 66.50 66.63
TECO-noRr 9.92 40.81 32.90 67.32 67.92
TECO 16.44 43.09 35.88 68.05 68.71

(d) On the oracle-runnable subset.

Model %Compile %Run XM BLEU CodeBLEU EditSim ROUGE

CodeT5 44.45 16.87 8.79 40.26 32.23 67.08 67.42
TECO-noRr 48.13 18.45 9.62 41.55 33.44 67.57 68.41
TECO 67.93 30.29 17.37 44.27 36.98 68.43 69.35

evaluate the functional correctness of text-to-code transduction
by running generated code with test cases [30], which was
performed on a rather small dataset because of the difficulty
in collecting manual labelled data. Thanks to the executable
nature of tests, we are able to design the two automatic
functional correctness metrics for a large corpus.

VII. RESULTS

A. RQ1: Performance of TECO vs. Baseline Models

Table IIa shows the results of TECO and baseline models
on solving the test completion task. Our model TECO sig-
nificantly outperforms all baseline models on all automatic
metrics. TECO achieves 17.61 exact-match accuracy, which
is 29% higher than the best baseline model, CodeT5’s 13.57.
This indicates that using code semantics and reranking by exe-
cution can greatly improve deep learning model’s performance
on test completion.

The non-fine-tuned baseline model, CodeT5-noFt, is not
capable of solving test completion task. This is because the
model is optimized to solve different tasks during pre-training
and does not have the domain knowledge of the input-output
format of the test completion task.

CodeGPT has shown to be effective on the task of code
completion [29], [54], where the primary goal is to continue
generating code similar to the context code. However, it
performs slightly worse than the encoder-decoder baseline
CodeT5 on test completion, because the task requires gen-
erating statement in the test method which has different style
than the method under test in the provided context.

B. RQ2: Functional Correctness
Table IIb shows the results of TECO and baseline models

on the runnable subset, with %Compile and %Run metrics
that measure the functional correctness of the generated state-
ments. Our model, TECO can generate runnable statements for
28.63% of the time, and compilable statements for 76.22%
of the time, much higher than the best baseline model’s
17.62% and 54.84%. On this runnable subset, TECO also
outperforms all baseline models on other metrics measuring
lexical similarity.

The other two baseline models, CodeT5-noFt and
CodeGPT, fail to generate any compilable or runnable state-
ments. After closer inspection, we found that CodeT5-noFt
always generate broken non-code outputs, as it is not fine-
tuned to process the inputs; and CodeGPT always generate
code that is not a valid statement in Java, e.g., code that starts
with a method signature.

C. RQ3: Performance on Test Oracle Generation
Tables IIc and IId show the results of the downstream

application of test oracle generation, on the oracle subset and
the oracle-runnable subset, respectively. TECO significantly
improves the exact-match accuracy on this task by a large
margin (by 82%), from 9.01 for the prior state-of-the-art,
TOGA, to ours 16.44. Note that TOGA’s exact-match accuracy
is on-par with CodeT5, the model that TECO is fine-tuned
from, which confirms that TECO’s improvements primarily
come from using code semantics and reranking by execution.

TOGA is the strongest prior model on this task in terms of
exact-match accuracy. However, it is worse than the CodeT5
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baseline model on other metrics that consider partial matches.
This is because TOGA is a classification model that ranks a set
of assertion statement candidates generated using heuristics,
and when the gold statement is not in the set, the model fails
to correctly rank a sub-optimal candidate.

D. RQ4: Improvements from Reranking by Execution

Table III shows the results of TECO-noRr (the top-10
accuracy for TECO-noRr is always the same as TECO, because
the reranking is performed on top-10 predictions, thus we did
not include this metric in the table).

Comparing TECO with TECO-noRr on the evaluation set
(Table IIIa), reranking by execution alone contributes to 2
points in exact-match accuracy. However, the improvements
over other similarity metrics, which take into account partial
matches, are smaller. This indicates that reranking by exe-
cution is effective in prioritizing the exact correct generated
statement than other non-runnable candidates most of the
times, but in a few cases it may prioritize runnable candidates
that are less similar to the gold statement than the original top-
1. TECO-noRr still significantly outperforms CodeT5 on all
metrics. On the runnable subset (Table IIIb), TECO improves
both %Compile and %Run over TECO-noRr by large margins,
which shows that reranking by execution is an effective
strategy for improving the quality of generated statements.

Reranking by execution ended up being very important for
improving performance on the task of test oracle generation, as
shown on the oracle subset (Table IIIc) and the oracle-runnable
subset (Table IIId). For example, TECO outperforms TECO-
noRr by 6–8 points in exact-match accuracy and 12 points in
%Run. This is because logical errors in assertion statements
can be easily found by execution (e.g., generating the wrong
expected value will cause an assertion to fail).

E. RQ5: Comparisons of Code Semantics

Tables IVa and IVb show the results of the TECO models
with only one kind of code semantics, comparing with the
strongest baseline model CodeT5, on the full evaluation set
and the oracle subset, respectively. We did not perform statisti-
cal significance tests for the results here as the performances of
the models are too close. Each model outperforms CodeT5 on
at least one metric, meaning that each code semantics provides
some information useful for test completion. In Table IVa,
TECO-S2 (absent types) is the best model in terms of BLEU,
CodeBLEU, EditSim and ROUGE metrics, and TECO-S4
(setup teardown) is the best model in terms of exact-match
accuracy and top-10 accuracy, which indicates that these two
kinds of code semantics are relatively more important than
others. Interestingly, in Table IVb, the models that achieved the
best performance among single-data models changed: TECO-
S3 (unset fields) is the best model in terms of BLEU, EditSim,
and ROUGE, and TECO-S6 (similar statement) is the best
model in terms of exact-match accuracy, top-10 accuracy, and
CodeBLEU. Thus, different kinds of code semantics provide
complementary information for test completion.

TABLE IV: Results for TECO models with only one kind of
code semantics on the evaluation set. The best number for
each metric is bolded.

(a) On the evaluation set.

Model XM Acc@10 BLEU CodeBLEU EditSim ROUGE

CodeT5 13.57 24.11 38.33 33.88 60.81 62.40

TECO-S1 13.88 24.93 39.12 34.66 61.58 63.51
TECO-S2 14.06 25.11 39.56 35.17 62.20 63.92
TECO-S3 14.04 24.40 38.81 34.24 61.21 62.87
TECO-S4 14.44 25.55 39.39 35.00 61.63 63.40
TECO-S5 14.05 24.78 38.74 34.34 61.26 63.00
TECO-S6 14.13 24.74 38.70 34.36 60.86 62.52

(b) On the oracle subset.

Model XM Acc@10 BLEU CodeBLEU EditSim ROUGE

CodeT5 8.45 24.04 39.03 31.03 66.50 66.63

TECO-S1 8.86 24.37 38.03 29.93 65.59 65.95
TECO-S2 8.23 23.69 38.13 30.27 65.52 65.98
TECO-S3 8.72 23.57 39.90 31.96 67.20 67.44
TECO-S4 8.14 23.84 38.54 30.77 65.59 65.92
TECO-S5 8.43 24.10 38.67 30.85 66.17 66.23
TECO-S6 9.81 25.47 39.88 32.20 66.89 66.97

VIII. LIMITATIONS AND FUTURE WORK

We discuss several limitations of our work and the future
work inspired by those limitations.

Usability. We envision our models being integrated into an
IDE. At any point, a user would be able to see top-k results
from our models and potentially decide to use one of the
suggestions. This is similar to email completion that has
recently been integrated into several popular web-based email
clients, e.g., GMail.

Structured representation. Currently we do not considering
using any structured representation of code, e.g., abstract
syntax trees (ASTs). Such a representation could enhance
performance of our models and enable a quick check of
validity of generated code. We leave this for future work.

Test-Driven Development (TDD). We assume that code under
test is written before tests when defining the test completion
task, which is the opposite order of TDD. Future work could
explore the mirror task of code completion with a test method
context that is applicable to projects adopting TDD.

Testing frameworks. We focused on tests written in the JUnit
style. Although other testing frameworks are available (e.g.,
TestNG), JUnit is the most popular among Java projects.

Large language models for code. Recent large language
models that scale up to billions of parameters create new
state-of-the-art for many code-related tasks [30], [60], [61].
However, these models do not perform well on simple code
execution tasks [50]. Incorporating code semantics into large
language models for code is a promising direction which we
leave as future work.
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IX. RELATED WORK

Automated test generation. Existing automatic test gener-
ation work includes fuzz/random testing [1]–[3], property-
based testing [4]–[10], search-based testing [11], [12], and
combinatorial testing [13]. The typical goal in automated test
generation techniques, e.g., Randoop [1] and EvoSuite [12],
is to achieve high code coverage of the code under test
by generating a large amount of tests, either randomly or
systematically. However, the generated tests would not be
added to the manually written tests in the code repository
due to their low quality and the excessive amount. Some prior
work explored improving the quality of the generated tests, for
example: Helmes et al. [9] proposed to use relative LOC to
guide the choosing of test generation targets; Reddy et al. [62]
proposed to use reinforcement learning to guide the random
input generator in property-based test generation. So far, these
automated techniques are used only in addition to manually
written tests. In contrast, we focus on improving developers’
productivity when writing manual tests.

Another disadvantage of the automated test generation ap-
proaches is the lack of test oracles. To remedy that, prior
work explored extracting test oracles from code comments,
focusing on test oracles related to exceptional behaviors, null
pointer checks, and boundary conditions [63]–[66]. These
techniques target generating/completing test oracles, but we
target completing any part of the tests, including test oracles.

Prior work also explored using deep learning models for
test oracle generation without the use of comments, including
ATLAS [39] and TOGA [40]. We have described both models
in Section VI-B and compared TECO with them on the task of
test oracle generation, which can be considered as downstream
application of our test completion task.

Tufano et al. [67] developed a code generation technique
for tests based on a BART architecture pre-trained on English
and code corpora. While they target to generate the entire test
method as a whole, we target to complete one statement at a
time, which allows the developer to observe and control the
process of writing a test method.
Test recommendation. Prior work also explored improving
developers’ productivity in testing by test recommendation:
given a method under test, suggest relevant test methods from
the existing test suite using a recommendation system [68]–
[71]. These techniques rely on having a set of relevant existing
tests to recommend tests from, which is usually not the case
when developers are starting a new project or adding tests
to a project without tests. Our technique helps developers by
providing completions while they are writing tests and does
not have this limitation.
ML for SE. The applications of ML models on SE tasks
is an active research area in recent years. One of the most
studied task is code completion, which improves develop-
ers’ productivity by suggesting next tokens or statements as
developers are writing code [26]–[29], [35], [54], [72]–[76].
Researchers have also studied developing ML models for other
SE tasks, including code summarization [31]–[33], [47], [57],

[58], [77], [78], code and comment maintenance [79]–[82],
bug fixing [83]–[85], etc. In this work, we propose the novel
task of test completion, which brings several unique features
(e.g., method under test) and necessitates reasoning about code
execution. We also compared TECO to recent work on code
completion [35], [54].

Prior work explored the use of code execution data in ML
for SE. Wang et al. [86] proposed to train semantic code
embeddings from execution traces, which can be used to
improve the performance of program repair models. Wang and
Su [87] blended syntactical and semantic code embeddings
and applied them in a method naming model. Nie et al. [88]
developed Roosterize, a model for suggesting lemma names
in verification projects which is trained using the runtime
representations of lemmas. Pei et al. [89] developed a transfer
learning framework called TREX that learns execution se-
mantics from forced-execution traces to detect similar binary
functions. Pi et al. [90] proposed PoEt that improves the
reasoning capabilities of language models by pre-training on
code execution data. Shi et al. [91] proposed to improve
code generation models’ outputs using a minimum Bayes risk
decoding algorithm based on execution results. TECO is the
first model designed with code execution in the testing domain,
specifically on the test completion task, where reasoning about
the execution of the code under test is needed. Moreover,
TECO integrates execution to improve both training (using
code semantics) and inference (using reranking via execution)
of the model.

X. CONCLUSION

We introduced an idea of designing ML models for code-
related tasks with code semantics inputs and reranking based
on test execution outcomes. Based on this idea, we developed
a concrete model, named TECO, targeting a novel task: test
completion. We evaluated TECO on a new corpus, containing
130,934 methods and 101,965 executable methods. Our results
show that TECO significantly outperforms the state-of-the-
art on code completion and oracle generation tasks, across
a number of evaluation metrics. We believe that TECO is only
a starting point in the exciting area of ML for code with code
semantics and execution data.
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1 public GMOperation addImage(final File file) {
2 if (file == null) {
3 throw new IllegalArgumentException("file must be

defined");
4 }
5 getCmdArgs().add(file.getPath());
6 return this;
7 }
8
9 // Here is a test for the above method. Please complete

the next statement of the test
10 @Test public void

addImage_ThrowsException_WhenFileIsNull() throws
Exception {

11 exception.except(IllegalArgumentException.class);
12 // Please compete the next statement:

Fig. 6: The prompt to Codex for the example test completion
task in Fig. 1.

APPENDIX A
COMPARISONS WITH LARGE LANGUAGE MODELS

Recent large language models for code that scale up to
billions of parameters, such as Codex [30], have been shown to
be promising for many code-related tasks. In parallel with our
work, researchers applied large language models to generate
tests [92]–[94]. In this appendix, we perform an additional
experiment to evaluate the performance of large language
models on test completion and compare with TECO.

The large language model we used is Codex [30], which is
the state-of-the-art specialized large language model for code.
Following the contemporary work on using large language
models for test generation [92]–[94], we used Codex to per-
form test completion in the zero-shot learning setup [95], i.e.,
providing Codex with a prompt that contains the method under
test, test method signature, and prior statements, and letting it

generate the next statement. Because Codex is pre-trained to
complete code, the prompt needs to be carefully designed as
a code fragment to be completed. Fig. 6 illustrates the prompt
format we used. We configured Codex to generate until seeing
the first ‘;’, similar to the way we used CodeGPT. Because the
current generation speed of Codex is quite slow, we configured
Codex to only generate the top-1 next statement using the
greedy decoding algorithm. We used the code-davinci-002
version of the Codex model. Running Codex on our evaluation
set (with 30,194 statements) took 18 hours.

Table V shows the results of Codex for the test comple-
tion task with comparisons to TECO and the other baseline
models; the results are organized into four parts—on the full
evaluation set, runnable subset, oracle subset, and oracle-
runnable subset—as explained in Section VI. TECO statis-
tically significantly outperforms Codex on all metrics, which
confirms the importance of using code semantics and code
execution together with ML. Compared with the other baseline
models (CodeT5/CodeGPT), Codex has better performance on
some metrics (e.g., %Run on the runnable subset and oracle-
runnable subset; exact-match accuracy on the oracle subset and
oracle-runnable subset) but has slightly worse performance on
others. Although Codex is expected to be much more powerful
than CodeT5/CodeGPT due to the larger scale (billions of
parameters vs. millions of parameters) and more pre-training
data, we hypothesize that fine-tuning CodeT5/CodeGPT on our
large test completion corpus helped with improving their per-
formance. Codex performs better on the test oracle generation
task than the test completion task, which may be because of
the more prior statements context available when performing
test oracle generation.
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TABLE V: Results for Codex, TECO, and other baseline models on test completion. The best number for each metric is bolded.
In each table, numbers marked with the same greek letter prefix are not statistically significantly different.

(a) On the evaluation set.

Model XM Acc@10 BLEU CodeBLEU EditSim ROUGE

Codex 12.69 N/A 34.53 29.91 58.08 56.04
CodeT5 13.57 24.11 38.33 33.88 60.81 62.40
CodeT5-noFt 0.00 0.00 0.00 3.36 1.68 0.02
CodeGPT 12.20 22.67 36.30 31.84 59.09 61.10

TECO 17.61 27.20 42.01 37.61 63.49 65.23

(b) On the runnable subset.

Model %Compile %Run XM Acc@10 BLEU CodeBLEU EditSim ROUGE

Codex 38.80 19.12 12.88 N/A 34.89 30.12 58.44 56.58
CodeT5 54.84 17.62 14.38 25.39 39.26 34.55 61.36 63.15
CodeT5-noFt 0.00 0.00 0.00 0.00 0.00 3.35 1.65 0.03
CodeGPT 53.77 15.13 12.95 24.03 37.19 32.46 59.75 61.90

TECO 76.22 28.63 18.96 28.40 43.15 38.45 64.12 66.09

(c) On the oracle subset.

Model XM Acc@10 BLEU CodeBLEU EditSim ROUGE

Codex 12.30 N/A 35.09 30.24 59.59 57.67
CodeT5 8.45 24.04 39.03 31.03 66.50 66.63
CodeT5-noFt α0.00 0.00 0.00 1.18 1.86 0.01
CodeGPT 10.56 27.19 40.91 33.33 67.63 67.94
ATLAS α0.21 0.66 21.55 13.39 54.06 50.70
TOGA 9.01 9.01 25.46 24.73 29.60 28.06

TECO 16.44 27.41 43.09 35.88 68.05 68.71

(d) On the oracle-runnable subset.

Model %Compile %Run XM Acc@10 BLEU CodeBLEU EditSim ROUGE

Codex 39.46 20.73 12.15 N/A 35.05 30.12 59.79 57.86
CodeT5 44.45 16.87 8.79 24.37 40.26 32.23 67.08 67.42
CodeT5-noFt 0.00 0.00 α0.00 0.00 0.00 1.26 1.87 0.01
CodeGPT 47.39 16.13 10.41 28.17 41.56 33.79 67.78 68.43
ATLAS 3.62 1.45 α0.23 0.68 21.81 13.56 54.19 50.87
TOGA 25.61 9.37 9.10 9.10 26.51 25.74 31.00 29.38

TECO 67.93 30.29 17.37 27.39 44.27 36.98 68.43 69.35
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