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Abstract

The problem of record linkage focuses on determining

whether two object descriptions refer to the same under-

lying entity. Addressing this problem effectively has many

practical applications, e.g., elimination of duplicate records

in databases and citation matching for scholarly articles.

In this paper, we consider a new domain where the record

linkage problem is manifested: Internet comparison shop-

ping. We address the resulting linkage setting that requires

learning a similarity function between record pairs from

streaming data. The learned similarity function is subse-

quently used in clustering to determine which records are

co-referent and should be linked. We present an online ma-

chine learning method for addressing this problem, where

a composite similarity function based on a linear combi-

nation of basis functions is learned incrementally. We il-

lustrate the efficacy of this approach on several real-world

datasets from an Internet comparison shopping site, and

show that our method is able to effectively learn various

distance functions for product data with differing charac-

teristics. We also provide experimental results that show the

importance of considering multiple performance measures

in record linkage evaluation.

1 Introduction

Record linkage is the problem of identifying when two

(or more) references to an object are describing the same

true entity. For example, an instance of record linkage

would be identifying if two paper citations (which may be in

different styles and formats) refer to the same actual paper.

Addressing this problem is important in a number of do-

mains where multiple users, organizations, or authors may

describe the same item using varied textual descriptions.

Historically, one of the most examined instances of

record linkage is determining if two database records for a

person are referring to the same individual, which is an im-

portant data cleaning step in applications from direct mar-

keting to survey response (e.g., the US Census). More re-

cently, record linkage has found a number of applications

in the context of several web applications, e.g., the above-

mentioned task of identifying paper citations that refer to

the same publication is an important problem in on-line

systems for scholarly paper searches, such as CiteSeer and

Google Scholar. Additionally, record linkage has been a

topic of interest in natural language processing research,

where it is known as the co-reference resolution or named

entity disambiguation problem [21, 24].

As we show in this paper, record linkage is a key compo-

nent of on-line comparison shopping systems. When many

different web sites sell the same product, they provide dif-

ferent textual descriptions of the product (which we refer to

as “offers”). Thus, a comparison shopping engine is faced

with the task of determining which offers are referring to

the same true underlying product. Solving this product nor-

malization problem allows the shopping engine to display

multiple offers for the same product to a user who is try-

ing to determine from which vendor to purchase the prod-

uct. Accurate product normalization is also critical for data

mining tasks such as analysis of pricing trends.

In such a context, the number of vendors and sheer num-

ber of products (with potentially very different characteris-

tics) make it difficult to manually craft a single similarity

function that can correctly determine if two arbitrary offers

refer to the same product. Moreover, for different categories

of products, different similarity functions may be needed to

capture the notion of equivalence for each category. Hence,

an approach that allows learning similarity functions be-

tween offers from training data becomes necessary.

Furthermore, in many record linkage tasks including

product normalization, records to be linked contain mul-

tiple fields (e.g., product name, manufacturer, price, etc.).

Such records may either come in pre-structured form (e.g.,

XML or relational database records), or the fields may have

been extracted from an underlying textual description [12].

While it may be difficult for a domain expert to specify a

complete similarity function between two records, they are



often capable of defining similarity functions between in-

dividual record fields. For example, it is relatively simple

to define the similarity between two prices as a function re-

lated to the inverse of the difference of the prices, or the

difference between two textual product descriptions as the

(well-known) cosine between their vector-space representa-

tions. Thus, an appropriate learnable similarity function for

comparing records must be able to leverage multiple basis

similarity functions that capture individual field similarities.

An important property of the product normalization do-

main is the fact that new data is becoming available con-

tinuously as product offers arrive from merchants. At the

same time, a small proportion of the incoming product of-

fers includes the Universal Product Code (UPC) attribute

which uniquely identifies products. This provides a contin-

uous source of supervision, therefore a learning approach to

the linkage problem in such settings must be able to read-

ily utilize new training data without having to retrain anew

on previously seen data. Online learning algorithms are

methods that process training examples incrementally, and

employing such an algorithm provides the most flexibility

in a record linkage setting where new data is arriving as a

stream.

In this paper, we present an online learning approach

for the record linkage problem in the product normalization

setting, in which a similarity function is trained by induc-

ing a linear combination of basis similarity functions be-

tween the fields of different offers. The weights of basis

functions in the linear combination are learned from labeled

training data using a version of the voted perceptron algo-

rithm [14], which is very efficient in an online learning set-

ting for large volumes of streaming data. This algorithm

can also be deployed in batch-mode learning using standard

online-to-batch conversion techniques.

We show empirical results with our proposed method on

several real-world product normalization tasks. Notably, we

show that different similarity functions are learned for dif-

ferent categories of products, and identify the strengths and

weaknesses of the approach. We also compare three link-

age rules for identifying co-referent records, one of which

corresponds to a simple pairwise approach, and two oth-

ers make linkage decisions between record pairs collec-

tively. Finally, we provide some general observations re-

garding evaluation methodology for record linkage tasks

and present an argument for utilizing multiple accuracy

measures when evaluating record linkage solutions.

2 Background and Motivation

2.1 Record Linkage

The problem of identifying co-referent records in

databases has been studied in the research community

under various names, notably record linkage [13], the

merge/purge problem [35], duplicate detection [25, 29, 4],

reference/citation matching [23, 20], entity name matching

and clustering [8], hardening soft databases [7], identity un-

certainty [28], and robust reading [21].

The majority of solutions for record linkage treat it as

a modular problem and consist of multiple stages. In the

first stage, a function is selected for computing the simi-

larity between all pairs of potentially co-referent records.

This similarity function can either be hand-tuned or its pa-

rameters can be learned from training data. In the second

stage, a blocking method is used to select a set of candidate

record pairs to be investigated for co-reference, since it is

typically prohibitively expensive to compute pairwise sim-

ilarities between all pairs of records in a large database. In

the final linkage stage, similarity is computed between can-

didate pairs, and highly similar records are identified and

linked as describing the same entity. This can be achieved

either via pairwise or via collective inference over individ-

ual record pairs.

Pairwise approaches classify all candidate record pairs

into two categories: “matches” or “non-matches”, where

each candidate pair is classified independently of others.

Some of the methods that employ the pairwise approach

include the EM-based technique for finding optimal entity

matching rules [34], the sorted neighborhood method for

limiting the number of potential candidate pairs [16], and

the domain-independent three-stage iterative merging algo-

rithm for duplicate detection [25].

In contrast, collective linkage methods take a more

global view instead of independently processing each can-

didate pair. These methods consider multiple linkage de-

cisions in conjunction, and perform simultaneous inference

to find groups of co-referent entries that map to the same

underlying entity. Recently proposed algorithms that be-

long to this category include context-sensitive duplicate in-

ference by iterative processing of the data [3], learning

a declarative relational probability model that explicitly

specifies the dependencies between related linkage deci-

sions [28], and multi-relational inference using conditional

probabilistic models to simultaneously detect matches for

all related candidate pairs [27, 24]. While some of these

collective approaches have been shown to be more accurate

than the pairwise approach on certain domains, the simul-

taneous inference process makes these methods more com-

putationally intensive.

2.2 Learning similarity functions

An important aspect of any record linkage system is the

choice of the function that is used to compute similarity be-

tween records. Records in databases generally have mul-

tiple attributes of different types, each of which has an as-

sociated similarity measure. For instance, string similar-

ity measures such as edit distance [15] or cosine similar-



ity [1] can be used to compare textual attributes like prod-

uct name or paper title, while numerical functions (e.g.,

relative difference) can be used for real-valued attributes

like price. Several recent papers have studied the prob-

lem of combining such basis similarity functions to obtain a

composite measure of similarity between two database en-

tries [8, 29, 32, 4]. Learning a composite similarity mea-

sure from several basis similarity functions also is related

to recent research on learning composite kernels, where

techniques such as boosting [10], optimizing kernel align-

ment [11], and semi-definite programming [19] are em-

ployed to learn an effective combination of simple base ker-

nels from training data.

An adaptive framework for learning similarity functions

is critical in the product normalization setting since the no-

tion of offer similarity is highly domain-dependent. For ex-

ample, if linkage is performed between book offers, equiv-

alence of product names (book titles and author names) is

highly indicative of co-referent book records. For electronic

products, in contrast, product name similarity is insufficient

to link records: offers named “Toshiba Satellite M35X-

S309 notebook” and “Toshiba Satellite M35X-S309 note-

book battery” have a high textual similarity but refer to dif-

ferent products. At the same time, for electronic items price

similarity is an important indicator of offer equivalence: the

notebook and the battery records have very different prices,

indicating that they are not co-referent. Thus, composite

similarity between product offers must be adapted to a par-

ticular domain using training examples.

An adaptive approach to product normalization can ex-

ploit two unique domain characteristics: (1) availability of

limited (and noisy) training data since a small percentage

of offers contains the Universal Product Codes (UPCs) that

uniquely identify products, and (2) the streaming nature of

the data: new product offers are continuously added to the

database, calling for a similarity learning method that can

utilize incoming training data incrementally. In the remain-

der of the paper, we describe a linkage framework suitable

for this setting. Overall, the main contributions of the paper

can be summarized as follows:

• We introduce a novel application domain of product

normalization for comparison shopping as an instance

of the record linkage problem in a data stream setting;

• We adapt an efficient online learning algorithm (aver-

aged perceptron) for learning the similarity function

for record linkage;

• We compare different types of hierarchical clustering

algorithms and evaluate the accuracy of the linkage

decisions they generate for the product normalization

task;

• We contrast different evaluation metrics for the record

linkage task and identify important issues relating to

the choice of evaluation measures.

3 Approach

Our proposed approach to product normalization is a

modular framework that consists of several components:

an initial set of basis functions to compute similarity be-

tween fields of records to be linked, a learning algorithm for

training the parameters of a composite similarity function, a

method for generating linkage candidates to avoid comput-

ing similarity between all pairs of records, and, finally, the

clustering-based linkage step. The following subsections

describe the details of each of these components.

3.1 Basis Functions

In formulating our approach, we begin with a set of K

basis functions f1(R1,R2), ..., fK(R1,R2), defined as simi-

larity functions between fields of records R1 and R2. We

then learn a linear combination of these basis functions with

K corresponding weights αi and an additional threshold pa-

rameter α0 to create a composite similarity function, f ∗:

f ∗(R1,R2) = α0 +
K

∑
i=1

αi fi(R1,R2)

Values provided by f ∗ are not constrained to be positive:

the learning formulation below assumes that the threshold

α0 may take on a negative value so that for pairs of records

that are not equivalent f ∗ returns a negative value. Once

trained, f ∗ can be used to produce a similarity matrix S

over all pairs of records. In turn, S can be used with any

similarity-based clustering algorithm to identify clusters,

each of which contains a set of records which presumably

should be linked. Then, we can interpret each cluster as a

set of records referring to the same true underlying item.

3.2 Training the Composite Similarity Function

Identifying co-referent records requires classifying ev-

ery candidate pair of records as belonging to the class of

co-referent pairs M or non-equivalent pairs U. Given

some domain ∆R from which each record is sampled,

and K similarity functions fk : ∆R × ∆R → R that oper-

ate on pairs of records, we can produce a pair-space vec-

tor xi ∈ R
K+1 for every pair of records (Ri1 ,Ri2): xi =

[1, f1(Ri1 ,Ri2), ..., fK(Ri1 ,Ri2)]
T . The vector includes the

K values obtained from basis similarity functions concate-

nated with a default attribute that always has value 1, which

corresponds to the threshold parameter α0.

Any binary classifier that produces confidence scores

can be employed to estimate the overall similarity of a

record pair (Ri1 ,Ri2) by classifying the corresponding fea-

ture vector xi and treating classification confidence as sim-

ilarity. The classifier is typically trained using a corpus of

labeled data in the form of pairs of records that are known

to be either co-referent ((Ri1 ,Ri2) ∈ M ) or non-equivalent

((Ri1 ,Ri2) ∈ U).



In previous work a number of classifiers have been

successfully utilized for this purpose, including Naive

Bayes [34], decision trees [32, 33], maximum entropy [8],

and Support Vector Machines [29, 4]. These classifiers have

been deployed in batch settings where all training data is

available in advance. Since in a product normalization set-

ting new data is arriving continuously, an online classifier

that can be trained incrementally is required. For this rea-

son, we employ averaged perceptron [9], a space-efficient

variation of the voted perceptron algorithm proposed and

analyzed by Freund and Schapire [14].

The averaged perceptron is a linear classifier: given

an instance xi, it generates a prediction of the form ŷi =
αavg ·xi, where αavg is a vector of (K + 1) real weights.

Weights are averaged over all weight vectors observed dur-

ing the training process (as opposed to just using the final

weight vector in the regular perceptron algorithm). In our

approach, the weights directly correspond to the weights

of basis similarity functions in the composite function de-

scribed in previous section. Each xi is a pair-space vec-

tor defined above, and we assign label −1 to class U of

non-equivalent record pairs, and label +1 to class M of co-

referent record pairs.

Voted perceptron has several properties which make it

particularly appropriate for the large-scale streaming link-

age task. First and foremost, is a highly efficient online

learning algorithm: the hypothesis (similarity function pa-

rameters) that it generates is updated as more labeled ex-

amples become available without the need to re-train on all

previously seen training data. Second, voted perceptron is a

linear classifier that produces a hypothesis which is intuitive

and easily interpretable by humans as relative importance

of basis similarity functions, a highly attractive property for

a system to be deployed and maintained on a continuous

real-world task. Finally, voted perceptron is a discrimina-

tive classifier with strong theoretical performance guaran-

tees [14]. While several previously used classifiers use lin-

ear hypotheses, online variants of decision trees have been

proposed, and SVMs are also discriminative classifiers with

strong theoretical guarantees, none of the previously used

classifiers combine all benefits of voted perceptron.

Figure 1 shows the training algorithm for learning the pa-

rameters αavg . The algorithm can be viewed as minimiz-

ing the cumulative hinge loss suffered on a stream of exam-

ples [30]. As every training record pair (Ri1 ,Ri2 ,yi) with a

corresponding feature vector xi is presented to the learner,

it incurs a (hinge) loss l(xi,yi) = max{−yiα ·xi,0}, and

the vector of weights α is updated in the direction of the

gradient to reduce the loss: α = α− δl(xi,yi)
δα

. Intuitively,

this training procedure corresponds to iterative evaluation

of the prediction for every training pair, and if the predic-

tion differs from the true label, the weights are adjusted

to correct for the error. This view can lead to variations

Algorithm: Averaged Perceptron Training

Input: Training set of record pairs {(Ri1
, Ri2

, yi)}, y ∈ {−1,+1}
number of epochs T

similarity functions F = {fi(·, ·)}
K

i=1

Output: Weight vector αavg = {αi}
K

i=0

Algorithm:

Initialize αavg = α = 0

Initialize xi = [1, f1(Ri1
, Ri2

), ..., fk(Ri1
, Ri2

)] for i = 1...M
For t = 1...T

For i = 1...M
Compute ŷi = sign(α · xi)
If ŷi 6= yi

α = α + yixi

αavg = αavg + α

αavg =
αavg

T ·M

Figure 1. The training algorithm

of the algorithm using other loss functions, e.g. log-loss

llog(xi,yi) = ln(1 + exp(−yiα ·xi)). In our experiments,

varying the loss function did not lead to a qualitative differ-

ence in final performance on the linkage task, so we only

report results obtained using hinge loss.

3.3 Computing a Similarity Matrix

Once a composite similarity function f ∗ with weights

αavg has been trained to correctly predict whether a pair of

records is co-referent, it can be used to compute an m×m

similarity matrix S = {si j} between all pairs of records con-

sidered for linkage, where each si j = f ∗(Ri,R j),1 ≤ i, j ≤
m. Thus, the task of training a composite similarity func-

tion over pairs of records can be viewed as the problem of

learning a matrix of similarity values where only a few val-

ues in the matrix are initially given (i.e., the labeled training

pairs ((Ri1 ,Ri2),yi). During training the sign of the known

entries in the matrix is constrained, and they are used to es-

timate the remaining matrix values, each of which is a linear

combination of basis similarity functions for the underlying

record pair.

However, we note that for a large number of records m,

computing the full similarity matrix (an O(m2) operation)

may be impractical since the vast majority of record pairs

are not co-referent. Therefore, it is necessary to select a

subset of candidate pairs between which similarity is com-

puted. Several approaches for limiting the number of can-

didate pairs have been proposed in the literature, such as

blocking, where candidate pairs are required to share some

attribute values [18], sorted neighborhood methods, where

only records within a sliding window over a database sorted

on several keys are considered [16], and canopies, where a

computationally cheap similarity function is employed in a

preliminary pass to obtain clusters of records within which

linkage is performed [23]. An experimental comparison of

several methods as well as several new methods based on

an inverted index can be found in recent work by Baxter et

al. [2]. In current work, we employ a variant of the canopies



ProductName Brand Price RawDescription

Canon EOS 20D Digital SLR Body

Kit (Req. Lens) USA

Canon 1499.00 Canon EOS 20d digital camera body (lens not included),

BP511a battery, CG580 battery charger, USB cable, Video

cable, instructions, warranty, 3 CDROM software discs, Wide

strap.

Canon EOS 20d Digital Camera

Body USA - Lens sold separately

Canon USA 1313.75 Canon EOS 20D is a digital, single-lens reflex, AF/AE camera

with built-in flash, providing 8.2 megapixel resolution and

up to 23 consecutive frames at 5fps.

Table 1. Sample records from the DigitalCameras dataset

method where we limit candidate pairs to those having a

minimum token overlap in one of the attributes. Similarity

is not computed for records that do not share a canopy, and

they are not allowed to merge in the clustering process.

3.4 Linkage via Clustering

Armed with a similarity matrix, we face the subsequent

problem of identifying groups of equivalent records. As de-

scribed in Section 2, two primary approaches have been

previously used for the actual task of linking co-referent

records: (1) pairwise linkage followed by transitive closure,

and (2) collective approaches where linkage decisions be-

tween multiple pairs are made in conjunction. In this work,

we compare the linkage performance of three variants of the

Hierarchical Agglomerative Clustering (HAC) algorithm,

of which one, single-link HAC, is a pairwise approach, and

the other two (group-average HAC and complete-link HAC)

are bottom-up greedy collective approaches [17].

Given a combined similarity function trained as de-

scribed above, hierarchical agglomerative clustering ini-

tially places every record in its own singleton cluster. Then,

at every step, two clusters which are most similar accord-

ing to a chosen linkage rule are merged. With single-link

linkage, similarity between clusters is defined as the highest

similarity of any individual cluster members; with group-

average linkage, similarity between clusters is defined as

the average similarity of all pairs of objects from the two

clusters; and with complete-link linkage, similarity between

clusters is defined as the lowest similarity of any individ-

ual cluster members. Thus, group-average and complete-

link HAC variants are greedy but efficient collective link-

age techniques since the merge decision for every record

pair depends on similarities of other pairs from the clusters

to which the records under consideration belong.

4 Experimental Methodology

We have evaluated our approach on three datasets sam-

pled from the FROOGLE comparison shopping site: Digi-

talCameras (4823 product offers), Camcorders (4531 prod-

uct offers), and Luggage (6912 product offers). Each of

the datasets was created by selecting a corresponding cat-

egory in the product hierarchy and sampling product of-

fers that contain the UPC (Universal Product Code) field,

which uniquely identifies any commercial product. While

less than 10% of all data includes the UPC values, they pro-

vide the “golden standard” labels for evaluating linkage ac-

curacy. In our experiments, the UPC values were only used

for evaluation purposes, while in an actual fielded product

normalization system they can be used as a highly useful

attribute for computing overall similarity (although our re-

sults below indicate that UPC values alone should not be

used as a single linkage criterion due to the presence of

noise and certain domain artifacts discussed below).

Every product offer contains several fields, which in-

clude textual attributes such as ProductName and Brand,

as well as numerical attributes such as Price, and categor-

ical features such as ProductCategory. Table 1 presents

an example of co-referent records from the DigitalCameras

dataset.

We have used several base similarity functions fk. For

all string attributes, cosine similarity was used [1], along

with a variant of string edit distance [15] on extracted model

strings for electronic products. For numeric attributes, rela-

tive difference fdi f f (a,b) = |a−b|
max{a,b} was used. For categor-

ical attributes, the inverse of path length in the FROOGLE

category hierarchy was used.

In our experiments, every dataset was split into two folds

for each trial. Every record was randomly assigned to one

of the two folds, and cross-validation was performed with

one of the folds used for training, in which the overall simi-

larity function was trained as described in Section 3.2. The

two folds were then merged, and clustering was done on the

entire dataset. Performance statistics were collected sep-

arately for the pairs on the training and testing folds, as

well as the entire dataset. This methodology corresponds to

the “consulting” linkage evaluation methodology [5], where

the test fold contains records corresponding both to entities

seen in training data as well as entities for which records

can only be found in the test set.

We note that in an operational on-line environment, it

is not necessary to re-cluster all previous data whenever a

new record becomes available. Rather, for efficiency, every

new record can be assigned to the existing cluster closest to

it as long as the record’s similarity to that cluster is above

some predetermined threshold; otherwise the record is to

be placed in a new singleton cluster. While we make note

of this point, the operational set-up of the system is not the

core focus of this paper, and thus our experimental results



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

P
re

c
is

io
n

Recall

Complete Link
Group Average

Single Link

Figure 2. Test set precision­
recall curve for DigitalCamera

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

P
re

c
is

io
n

Recall

Complete Link
Group Average

Single Link

Figure 3. Test set precision­
recall curve for Camcorders

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

P
re

c
is

io
n

Recall

Complete Link
Group Average

Single Link

Figure 4. Test­set precision­
recall curve for Luggage

focus on batch clustering of all available data to accurately

evaluate the efficacy of the learning approach and each clus-

tering method. The problem of making merge decisions

efficiently for incoming records has been recently studied

in the context of data cleaning in data warehouses [6], and

fielded systems should combine that method with our ap-

proach for online learning of similarity functions.

In the clustering process, precision, recall and F-measure

defined over pairs of duplicates were computed after each

merge step in the clustering process. Precision is the frac-

tion of identified co-referent pairs that are correct, recall is

the fraction of co-referent pairs that were identified, and

F-measure is the harmonic mean of precision and recall.

While traditional use of precision-recall curves involves in-

terpolating several precision points at standard recall lev-

els to the highest value seen for any lower recall, we have

found that such interpolation may grossly misrepresent the

dynamics of the clustering process. Therefore, we report

non-interpolated (observed) precision values, averaged over

10 trials of 2 folds each.

5 Results and Discussion

Figures 2-4 show precision-recall curves on the 3

datasets. Different points on the curves were obtained by

successively merging the two most similar clusters dur-

ing the clustering process, and measuring the resulting

precision and recall on records from the test set. Go-

ing along a precision-recall curve from left to right, more

records are grouped into the same cluster as clusters are

successively merged – this typically results in higher recall

for co-referent records but decreases the precision if non-

equivalent records with low similarity are put into the same

cluster.

In the observed precision-recall plots, there is an initial

drop followed by an immediate rise of precision at low re-

call values. To take a closer look at the results, we zoom in

on the early part of the precision-recall curve in Figure 5,
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which shows a sharp drop in precision soon after the begin-

ning. Analysis of the experiment traces reveals that the ob-

served decrease in precision is due to erroneous UPC iden-

tifiers provided by the merchants on some of the product

offers, leading to label noise. Because a number of the erro-

neously labeled offers are highly similar to correctly labeled

co-referent offers, they were merged at very early stages, re-

sulting in the observed precision decrease. Inspection of the

clustering traces revealed that these initial co-reference pre-

dictions were actually correct but were marked as mistakes

due to the erroneous UPCs. As more clusters were merged,

subsequent correct linkages of offers with proper UPC iden-

tifiers cancelled out this effect, bringing the precision back

up. This recovery of precision with increasing recall due to

cluster merging continued till more heterogeneous clusters

started to get merged. This resulted in some non-coreferent

offers being put into the same cluster, making the clusters

impure and decreasing the overall precision, as can be seen

in Figure 2.

Besides the noisy UPC values, we observed other do-

main artifacts that lowered the precision numbers obtained



in our experiments. For example, differently colored vari-

ants of the same product often have different UPC labels.

Their linkage therefore penalizes observed precision values,

although these offers are co-referent for comparison shop-

ping purposes. Nevertheless, compared to a human expert-

constructed similarity function computed on the same at-

tributes (which we considered as a baseline), the perfor-

mance of the learned weights was significantly higher, im-

proving the accuracy of actual fielded linkage systems.

In all the experiments, complete-link HAC outperformed

group-average HAC, which in turn performed better than

single-link HAC. These results conclusively show that for

the product normalization task it is recommended to use

complete-link linkage either in batch or online settings.

This can be explained by the fact that complete-link link-

age avoids elongated clusters created by the single-link rule

due to the chaining effect. Chaining occurs as offers are

added to a cluster because of high similarity to a single clus-

ter member, leading to long “chains” of linked offers, while

offers at the extremes of the chain have low similarity, lead-

ing to error accumulation. In contrast, complete-link link-

age yields tight, well-separated clusters, while the nature of

clusters obtained by group-average linkage is typically in

between single-link and complete-link. Overall, the clus-

ters obtained by collective linkage methods are best suited

for the product normalization task.

While our online approach to learning the similarity

function is highly scalable, computational efficiency of the

clustering algorithm used for linkage is a big concern. Even

though HAC is an O(n2 logn) algorithm [22], it can be ef-

ficiently implemented in practice. If batch clustering is de-

sired, all the three variants of HAC can be parallelized effec-

tively, using different parallel computation models and data

structures [26]. It is also easy to combine blocking tech-

niques (e.g., canopy creation) for data-preprocessing with

hierarchical clustering, further increasing its efficiency.

Learning the similarity function from training data gave

different weights for the various attributes of the 3 datasets.

For example, the weights corresponding to similarity be-

tween Brand and the ModelStrings attributes in the Lug-

gage dataset were higher than that for Camcorders or Dig-

italCameras, which can be explained by the fact that these

attributes tend to identify luggage products uniquely more

often than electronic items. These results show the impor-

tance of learning individual similarity functions for differ-

ent product categories in the product normalization setting.

An important component of the hierarchical cluster

merging stage is deciding when to stop the clusters from

being merged further, so that the remaining clusters can be

reported as groups of co-referent records. While one ap-

proach is to choose the number of clusters which gives the

peak F-Measure value in the precision-recall curve, it is

advisable to look at other cluster evaluation measures be-
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fore making this choice. Another popular cluster evaluation

measure used by clustering practitioners is average clus-

ter purity [31]. It measures the average proportion of the

dominant class label in a cluster – a higher cluster purity

measure typically implies purer clusters. Figure 6 shows

how the pairwise precision and purity values change with

the number of clusters for the Camcorders dataset, as clus-

ters are successively merged in the complete-link HAC al-

gorithm. The purity measure peaks around 4300 clusters,

while precision has a peak value at 4200 clusters. Depend-

ing on whether having homogeneous clusters or pairwise

accuracy is a higher priority, one of these measures may be

preferable. Thus, it is necessary to keep several metrics in

mind when deciding at which level to stop merging to trade

off between correct pairwise linkage and overall cluster pu-

rity, one of which may be preferable in a real-world linkage

system.

6 Conclusions

The record linkage problem is ubiquitous in modern

large-scale databases, and in this paper we have introduced

a scalable, adaptive approach for product normalization, an

instance of linkage critical in online comparison shopping

systems. Our method relies on an online learning algorithm

for training a combined similarity function, permitting it to

be deployed in settings where data is arriving continuously.

Our experimental results show the efficacy of the proposed

approach. We have found that linkage methods which con-

sider similarity of multiple pairs of records jointly lead to

significantly higher performance than a pairwise approach

where each linkage decision is made in isolation. Addition-

ally, we have observed that previously employed clustering

and linkage evaluation metrics have non-overlapping max-

ima, suggesting that for real-world tuning of record linkage

systems several evaluation measures should be considered.
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