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Abstract

The ability to understand and communicate in natural language can make robots
much more accessible for naive users. Environments such as homes and offices contain
many objects that humans describe in diverse language referencing perceptual properties.
Robots operating in such environments need to be able to understand such descriptions.
Different types of dialog interactions with humans can help robots clarify their under-
standing to reduce mistakes, and also improve their language understanding models, or
adapt them to the specific domain of operation.

We present completed work on jointly learning a dialog policy that enables a robot to
clarify partially understood natural language commands, while simultaneously using the
dialogs to improve the underlying semantic parser for future commands. We introduce
the setting of opportunistic active learning - a framework for interactive tasks that use
supervised models. This framework allows a robot to ask diverse, potentially off-topic
queries across interactions, requiring the robot to trade-off between task completion and
knowledge acquisition for future tasks. We also attempt to learn a dialog policy in this
framework using reinforcement learning

We propose a novel distributional model for perceptual grounding, based on learning
a joint space for vector representations from multiple modalities. We also propose a
method for identifying more informative clarification questions that can scale well to a
larger space of objects, and wish to learn a dialog policy that would make use of such
clarifications.
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Chapter 1

Introduction

The ability to understand and communicate in natural language can make robots much
more accessible for naive users. This would minimally require a robot to be able to
understand high level natural language commands, and detect and indicate when it has
failed to understand what a user requires. Further, it would be desirable if a robot could
engage in a dialog with the user, clarifying their intentions in case of uncertainty. Also,
since any environment could have domain specific language (nicknames used for people,
special objects such as a stethoscope in a hospital or a printer in an office), and since
the robot’s models may be limited in coverage, general purpose robots need to able to
improve their models through interaction with users in their operating environment.

An example of a command that a service robot in an office environment may need
to understand could be - “Bring the blue mug from Alice’s office”. Understanding this
requires many types of capabilities. It would need to understand compositionality - how
meanings of individual words combine to give meanings of phrases. Here, it would need
to know that “Alice’s office” means an office that is owned by Alice, and that “the blue
mug” is something which is both a mug and is blue. Semantic parsing is the process
of translating natural language utterances into compositional meaning representations
understandable to the robot.

The robot needs to understand the meanings of words and phrases grounded in its
environment. Here, it would need to know that “Alice’s office” refers to a physical
location. It would also need to be able to identify mugs and blue objects. Some knowledge,
such as which office belongs to whom, can be hard coded as facts. However, environments
such as homes and offices typically contain a large number of smaller objects such as mugs,
whose existence and properties would be tedious to catalog. Thus a robot would need
to be able to identify such objects through perception, perhaps using a camera or by
manipulating it with an arm. For this, it would need to ground words such as “blue” and
“mug” as perceptual properties.

If a robot only partially understands a command given to it, it would be desirable if it
can ask clarification questions, such as “What do you want me to bring?”, to obtain the
missing information and avoid making mistakes. Also, if it does not know the meaning
of a word such as “mug”, it could ask the user to show examples of mugs nearby before it
goes to Alice’s office so that it knows what to look for. It could also opportunistically ask
the user to show examples of other things, such as a “book”, so that it is better prepared
to help a different user that may need a book to be fetched. We would like the robot to
be able to learn both when to ask such questions, and which questions to ask, through
interactions with users.

3



Following a discussion of related work (chapter 2), we present completed work on
jointly learning a dialog policy that enables a robot to ask clarifications when it does not
fully understand natural language commands, while simultaneously using the dialogs to
improve the underlying semantic parser for future commands (chapter 3). We also present
the framework of opportunistic active learning in the context of understanding natural
language descriptions of objects. We demonstrate its effectiveness in this task (chapter
4), and present work on learning a dialog policy for choosing such queries (chapter 5).

In proposed work (chapter 6), we discuss a new model for perceptual grounding, based
on learning a joint space for vector representations from multiple modalities (6.1). We
also propose a method for identifying more informative clarification questions that can
scale well to a larger space of objects (section 6.2), and wish to learn a dialog policy that
would make use of such clarifications (section 6.3).
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Chapter 2

Background and Related Work

2.1. Natural language commands to Robots

Communicating with robots in natural language has been an area of interest for a long
time. Theobalt et al. (2002) is an early attempt at developing a dialog system in-
terface over low level navigation. Users could query the robot about it’s position and
command it to navigate to a specific location using rich language including landmarks.
Semantic parsing with hand-coded rules was used for language understanding. Another
early work is that of Lauria et al. (2002) which proposes a learning from demonstra-
tion framework that uses natural language to instruct robots at a symbolic level. These
used pre-programmed language understanding, perceptual grounding and dialog policies.
They also do not evaluate the performance of the system.

She et al. (2014) build a dialog system for instructing robots to combine simple in-
structions in a blocks world to complex ones. They also use fixed components for semantic
parsing, perceptual grounding and the dialog policy, but report success rates for teaching
different types of instructions. In a contemporary work, Matuszek et al. (2013) learn
a semantic parser from paired sentences and annotated semantic forms to map natural
language commands to high level goals that are more independent of the environment. A
related work is that of Chen and Mooney (2011) who learn a semantic parser to translate
natural language route instructions to logical plans for a simulated environment.

Other works use fixed components for parsing natural language but learn models
for grounding to symbols in the robot’s knowledge base. Kollar et al. (2013b) use a
probabilistic model to perform grounding, and use a static dialog policy to add new
concepts to the knowledge base used for grounding. Tellex et al. (2014) develop a
graphical model for grounding that makes use of a pretrained parser. The model can
also be used for generating clarification questions. Arumugam et al. (2018) learn a
probabilistic model for grounding to symbolic goals that act as rewards in a hierarchical
state and action MDP space to handle commands of varying levels of abstraction. Also
related is Bastianelli et al. (2016), who use symbolic grounding to resolve ambiguities
from semantic parsing.

Other works focus on learning dialog policies for effective human-robot communica-
tion. Zhang and Stone (2015) develop a system that learns a dialog policy by modeling
dialog as a POMDP (section 2.3.2). They also incorporate logical reasoning, and common
sense knowledge with the result of pretrained natural language understanding compo-
nents. Whitney et al. (2017) learn a policy for clarification dialogs that can incorporate
both natural language responses and gestures made by users.
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Human-robot dialog can also be used to improve the natural language understanding
system used by the robot. Thomason et al. (2015) develop a system that learns a semantic
parser for understanding natural language commands. They use a static policy to ask
clarification questions, but also use responses from clarifications as weak supervision to
improve the parser. We extend this in our work (chapter 3) by learning a dialog policy
for clarifications while simultaneously improving the parser from clarification responses.

More recently, there has been interest in learning end-to-end neural networks to map
natural language instructions and observations directly to action sequences. Earlier work
in this space was either on tasks that require only grounding to a knowledge base, such
as mapping to formal queries (Suhr et al., 2018), or used simulated datasets that did
not require real perception (Mei et al., 2016; Misra et al., 2017a). Recently, large scale
simulated datasets (Chang et al., 2017; Yan et al., 2018) have enabled the development of
end to end neural networks that use complex visual observations to map natural language
commands to actions for tasks such as following route instructions (Anderson et al.,
2018), embodied question answering (Das et al., 2018), navigation combined with object
manipulation (Misra et al., 2017a), and continuous control of a quadcopter drone (Blukis
et al., 2018).

2.2. Semantic Parsing

Semantic parsing maps a natural language sentence such as ”Go to Alice’s office” to a
machine understandable meaning representation. In our work, we use λ-calculus logical
forms such as:

navigate(the(λx.office(x) ∧ possess(alice, x) ∧ person(alice)))

This represents that the robot should navigate to a place x which is an office, and owned
by a person alice.

This formalism reduces the number of lexical entries the system needs to learn by
exploiting compositional reasoning over language. For example, if it learns that “Alice
Ashcraft” also refers to the entity alice, it does not need to learn another lexical entry
for “Alice Ashcraft’s office”.

There has been considerable work in semantic parsing using direct supervision in
the form of annotated meaning representations (Wong and Mooney, 2007; Kwiatkowski
et al., 2013; Berant et al., 2013). More recent works use indirect signals from downstream
tasks. Artzi and Zettlemoyer (2011) use clarification dialogs to train semantic parsers
for an airline reservation system without explicit annotation of meaning representations.
Thomason et al. (2015), incorporate this general approach into a system for instructing
a mobile robot using a basic dialog state and fixed hand-coded policy.

In our work (chapter 3), semantic parsing is performed using probabilistic CKY-
parsing with a Combinatory Categorial Grammar (CCG) (Steedman and Baldridge, 2011)
and meanings associated with lexical entries (Zettlemoyer and Collins, 2005). Perceptron-
style updates to parameter values are used during training to weight parses to speed search
and give confidence scores in parse hypotheses.
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2.3. Reinforcement Learning

Reinforcement learning is a computational process of learning to map situations to actions
to maximize a numerical reward signal (Sutton et al., 1998). In a reinforcement learning
problem, an agent interacts with its environment to achieve a goal. The agent can sense
the state of the environment, take actions that affect the state, and have one or more
goals related to this state. It typically needs to take a sequence of actions to achieve
its goal and may receive only delayed numerical feedback (reward) to indicate whether
progress has been made.

Reinforcement learning faces the challenge of trading off exploration and exploitation.
The agent has to exploit actions known to be effective, to obtain reward, but must explore
new actions to find out those that are the most effective.

We now discuss two common formulations of reinforcement learning problems (sections
2.3.1 and 2.3.2), and three algorithms used for policy learning (sections 2.3.3, 2.3.4 and
2.3.5).

2.3.1. Markov Decision Process (MDP)

A Markov Decision Process (MDP) is a tuple 〈S,A,T,R, γ〉, S is a set of states, A is a set
of actions, T is a transition function, R is a reward function and γ is a discount factor.
At any instant of time t, the agent is in a state st ∈ S. It chooses to take an action
at ∈ A according to a policy π, commonly represented as a probability distribution over
actions where π(at|st) is the probability of taking action at when the agent is in state st.
On taking action at, the agent is given a real-valued reward rt and transitions to a state
st+1.

State transitions occur according to the probability distribution P (st+1|st, at) = T(st, at, st+1),
and rewards obtained follow the distribution P (rt|st, at) = R(st, at, st+1).

The objective is to identify a policy π that is optimal in the sense that it maximizes
the expected long term discounted reward, called return, given by

g = Eπ

[
∞∑
t=1

γtrt

]

2.3.2. Partially Observable Markov Decision Process (POMDP)

A Partially Observable Markov Decision Process (POMDP) is an extension of MDPs
where the agent does not know what state it is in, but only receives a noisy observation
indicative of the state.

Formally, a POMDP is a tuple (S,A,T,R,O,Z, γ, b0), where S is a set of states, A
is a set of actions, T is a transition function, R is a reward function, O is a set of
observations, Z is an observation function, γ is a discount factor and b0 is an initial belief
state (Kaelbling et al., 1998).

These are defined as in MDPs, but the the state st is hidden from the agent and only
a noisy observation ot ∈ O of st is available to it. The agent maintains a belief state bt
which is a distribution over all possible states it could be in at time t. bt(si) gives the
probability of being in state si at time t. The agent chooses actions at ∈ A based on bt,
according to a policy π. On taking action at, the agent is given a real-valued reward rt,
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transitions to a state st+1, and receives a noisy observation ot+1 of st+1, which is used to
update its belief bt+1.

State transitions occur according to the probability distribution P (st+1|st, at) = T(st, at, st+1),
observations are related to the states by the probability distribution P (ot|st, at−1) =
Z(ot, st, at−1) and rewards obtained follow the distribution P (rt|st, at) = R(st, at, st+1).

The objective, again, is to identify a policy π that is optimal in the sense that it
maximizes return.

2.3.3. REINFORCE Algorithm

The REINFORCE algorithm (Williams, 1992) is a simple policy gradient algorithm used
to learn a policy in an MDP. The agent learns a policy π(a|s; θ), parameterized with
weights θ that computes the probability of taking action a in state s. An example is a
policy based on a feature representation f(s, a) for a state-action pair (s, a):

π(a|s; θ) =
eθ

T f(s,a)∑
a′ e

θT f(s,a′)

where the denominator is a sum over all actions possible in state s.
The weights are updated using a stochastic gradient ascent rule:

θ ← θ + α∇θJ(θ)

where J(θ) is the expected return from the policy according to the distribution over
trajectories induced by the policy.

2.3.4. Q-Learning

The quality of a policy π can be estimated using the action value function

Qπ(s, a) = Eπ

[
∞∑
t=1

γtrt | s0 = s, a0 = a

]

The optimal policy satisfies the Bellman equation,

Q∗(s, a) = Es′ [R(s, a, s′) + γmaxa′∈AQ
∗(s′, a′)]

For a POMDP, the above equations would be in terms of belief states b.
Q-learning is a temporal difference method used for policy learning. The algorithm

starts off with possibly arbitrary estimates for Q(s, a) and attempts to update them
towards Q∗(s, a) through experience. This experience can be collected using any policy,
and hence, the algorithm is an off-policy algorithm. The following update is performed
when the agent takes action at in state st, receiving reward rt, and transitioning to st+1.

Q(st, at)← Q(st, at) + α(rt + γmax
a′

Q(st+1, a
′))

Given the final estimates Q̂(s, a), the corresponding learned policy would be to take the
action fo highest estimated value at each state. That is,

π(a|s) = max
a
Q(s, a)
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2.3.5. KTD-Q Learning

When the state space is very large or continuous, Qπ cannot be computed for each state
(or belief state) individually and is hence assumed to be a function with parameters θ
over some features that represent the state. When the transition or reward dynamics are
not constant (non-stationary problem), a suitable approximation is the Kalman Temporal
Differences framework (Geist and Pietquin, 2010). This casts the function approximation
as a filtering problem and solves it using Kalman filtering. The specialization for learning
the optimal action value function is called the KTD-Q algorithm.

Filtering problems estimate hidden quantities X from related observations Y, modeling
X and Y as random variables. When estimating action values, X corresponds to the func-
tion parameters, θ and the observations are the estimated returns, rt+γmaxa Q̂θt(st+1, a),
and a random noise is added to both of these to allow for parameters to change over time.
The update rules are derived from Kalman Filtering Theory and details can be found in
Geist and Pietquin (2010).

2.4. Dialog Systems

Spoken Dialog Systems allow users to interact with information systems with speech as
the primary form of communication (Young et al., 2013). They were originally deployed
for call center operations such as airline ticket reservation (Hemphill et al., 1990), and
restaurant recommendation (Wen et al., 2017). More recently, dialog systems have be-
come popular for issuing simple commands on mobile phones through virtual assistants
such as Apple’s Siri, Google Voice and Amazon’s Alexa.

Spoken dialog systems typically follow a pipeline similar to that in figure 2.1. The
user utterance is first processed by a speech recognition module, which produces a text
transcript. This is followed by a language understanding module that extracts the infor-
mation provided by the user in the utterance. This is used by the dialog state tracking
module to update the system’s belief of what the user wishes to accomplish from the
interaction. Following this, the dialog management module uses the system’s dialog pol-
icy to decide which dialog action to take next, for example ask for more information.
The response generation module converts this abstract dialog act into a natural language
response, which is rendered into speech by the speech synthesis module.

Figure 2.1: Spoken Dialog System Pipeline

There has been considerable research in goal directed dialog systems targeted at per-
forming call-center type tasks (Young et al., 2013). These systems model dialog as a
POMDP and focus on either the problem of tracking belief state accurately over the
large state spaces (Young et al., 2010; Thomson and Young, 2010; Mrkšić et al., 2015) or
that of efficiently learning a dialog policy over such state spaces (Gašić and Young, 2014;
Pietquin et al., 2011). These systems typically assume that the other components of the
pipeline are fixed. Some of our completed work (chapter 3) combines this research with
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research on learning semantic parsers from weak supervision provided by clarification
dialogs.

More recently, there has been work on modeling various components of a dialog sys-
tem using neural networks (Mrkšić et al., 2015; Wen et al., 2015a). There have also
been some end-to-end neural network systems that simultaneously learn dialog policy
and language comprehension (Wen et al., 2017; Williams and Zweig, 2016; Bordes and
Weston, 2016). A major challenge in these systems is to find database entries satisfying
certain constraints, and ensuring that all relevant information is included in the system’s
responses. Some systems assume that these functions are performed by deterministic
APIs (Bordes and Weston, 2016). Others attempt to design neural networks to perform
these functions (Wen et al., 2015b; Kiddon et al., 2016).

Some other tasks for which dialog systems have been developed are open domain
conversations (Serban et al., 2016), playing 20 questions games about famous people (Hu
et al., 2018), and converting natural language to code snippets (Chaurasia and Mooney,
2017).

2.5. Active Learning

In machine learning tasks where obtaining labeled examples is expensive, active learning
is used to lower the cost of annotation without sacrificing model performance. Active
learning allows a learner to iteratively query for labels of unlabeled data points that are
expected to maximally improve the existing model. Research in active learning attempts
to identify examples that are likely to be the most useful in improving a supervised model.
A number of metrics have been proposed to evaluate examples, including uncertainty
sampling (Lewis and Gale, 1994), density-weighted methods (Settles and Craven, 2008),
expected error reduction (Roy and McCallum, 2001), query by committee (Seung et al.,
1992), and the presence of conflicting evidence (Sharma and Bilgic, 2016); as surveyed
by Settles (2010).

Multilabel active learning is the application of active learning in scenarios where
multiple labels, that are not necessarily mutually exclusive, are associated with a data
point (Brinker, 2006). These setups often suffer from sparsity, both in the number of
labels that are positive for a data point, and in the number of positive data points per
label. Standard active learning metrics are often extended to the multilabel setting, by
assuming that one-vs-all classifiers are learned for each label, and that all the learned
classifiers are comparable (Brinker, 2006; Singh et al., 2009; Li et al.). Label statistics
have also been incorporated into heuristics for selecting instances to be queried (Yang
et al., 2009; Li and Guo, 2013). There have also been Bayesian approaches that select
both an instance and label to be queried (Qi et al., 2009; Vasisht et al., 2014).

The most commonly used framework for active learning is pool-based active learning,
where the learner has access to the entire pool of unlabeled data at once, and can itera-
tively query for examples. In contrast, sequential active learning is a framework in which
unlabeled examples are presented to the learner in a stream (Lewis and Gale, 1994).
For every example, the learner can decide whether to query for its label or not. This
results in an additional challenge – since the learner cannot compare all unlabeled data
points before choosing queries, each query must be chosen based on local information
only. We introduce the framework of Opportunistic Active Learning (chapter 4) that
extends sequential active learning to an interactive multi-label task.

10



Recently, there has been interest in using reinforcement learning to learn a policy for
active learning. Fang et al. (2017) use deep Q-learning to acquire a policy that sequen-
tially examines unlabeled examples and decides whether or not to query for their labels;
using it to improve named entity recognition in low resource languages. Also, Bachman
et al. (2017) use meta-learning to jointly learn a data selection heuristic, data represen-
tation and prediction function for a distribution of related tasks. They apply this to
one shot recognition of characters from different languages, and in recommender systems.
Woodward and Finn (2017) use reinforcement learning with a recurrent-neural-network-
based Q-function in a sequential one-shot learning task to decide between predicting a
label and acquiring the true label at a cost. We follow in this line of work to learn a policy
for opportunistic active learning in a task of grounding natural language descriptions of
objects (chapter 5).

2.6. Human-robot Dialog for Teaching Perceptual Con-

cepts

A first step towards teaching robots perceptual concepts through dialog is Kollar et al.
(2013a), who develop a system that uses semantic parsing for language understanding,
and grounds meanings of words using SVM-based perceptual classifiers. This is trained
using pairs of images and corresponding language descriptions, and can generate descrip-
tions of objects, but these not evaluated as a complete interactive system.

Other works combine these capabilities to perform clarifications to better ground
descriptions at test time (Dindo and Zambuto, 2010; Parde et al., 2015). Vogel et al.
(2010) learn to ground simple perceptual concepts using only a 20-questions style game,
where there is no initial description, but learning is entirely driven by the robot’s queries
of whether a concept applies to an object. Kulick et al. (2013) use active learning to
enable a robot to learn spatial relations by manipulating objects into specific positions
and querying an oracle about whether a relation holds. However they receive ground
truth positions of objects and do not perform perception.

Thomason et al. (2016) demonstrate that multimodal perceptual concepts, with richer
visual features, as well as auditory and haptic features, can be learned from an I Spy game,
by pairing descriptions with correct guesses by the robot.

Some works also try to learn a dialog policy for learning new ways to refer to known
perceptual concepts (Yu et al., 2017). The perceptual concepts are basic, and dialogue
policy is learned through reinforcement learning from a dataset of human-human conver-
sations. Yu et al. (2016) demonstrate the importance of taking initiative, processing and
expressing perceptual concepts, and understanding ellipsis for the same task.

More generally, natural language can be used to aid learning from demonstration.
She and Chai (2017) learn a system that uses a hierarchical knowledge base over actions
to compose simple action primitives into complex ones. This is learned from human
demonstrations paired augmented by language descriptions, where the robot learns a
dialog policy to ask clarifications for noun phrase grounding, effects of an action, states
of objects and whether actions are necessary to achieve a goal.

In our completed work (chapter 4), we introduce the setting of opportunistic active
learning - a framework for interactive tasks that involve learning of supervised models.
This framework allows a robot to ask more diverse queries across interactions, and requires
the robot to trade-off between task completion and knowledge acquisition for future tasks.
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2.7. Grounding Language in Perception

When humans interact with robots in natural language, they typically refer to entities in
the real world, and expect robots to be able to identify these referents. For many types
of entities, such as physical household objects, people typically describe them in terms of
attributes such as object category, color and weight (Guadarrama et al., 2016; Thomason
et al., 2016). Robots need to be able to perceive properties that humans refer to, and use
these to map referring expressions to referents in the real world. This task is an instance
of the symbol grounding problem (Harnad, 1990).

There has been considerable work on extending word representations to incorporate
visual context. These are found to be useful for predicting lexical similarity (Silberer and
Lapata, 2012, 2014; Lazaridou et al., 2015a), verifying common sense assertions (Kottur
et al., 2016), verifying visual paraphrasing (Kottur et al., 2016), image categorization (Sil-
berer and Lapata, 2014; Lazaridou et al., 2015a) including in the zero shot setting (Lazari-
dou et al., 2014), and retrieval of related images (Kottur et al., 2016). However, these do
not attempt to retrieve images or objects based on free-form natural language descriptions
- as desired in robotics applications.

Guadarrama et al. (2016) assemble a dataset for retrieval of objects based on open
vocabulary natural language descriptions, and compare the performance of image cate-
gorization and instance recognition methods, as well as ensembles of these on this task.
Misra et al. (2017b) learn a network to more intelligently compose classifiers learned for
adjectives and nouns. Hu et al. (2016) propose a neural network model that uses a
vector representation of a region crop, the entire image, and relative bounding box coor-
dinates to score regions in an image to identify the one referred to by a natural language
expression. Other works either align vector representations of images and descriptions/
captions using methods such as CCA (Feng et al., 2015), or learn a joint embedding
of the modalities (Wang et al., 2016) to perform image-to-caption and caption-to-image
retrieval. Xiao et al. (2017) learn to ground descriptions in images by learning mappings
from phrases to attention vectors over the image, and combining attended regions using
linguistic constraints. These works each set up the grounding problem in different ways,
and evaluate their methods on different datasets. We propose to perform a comparison
of these different types of methods for language grounding.

We also propose a new method based on learning a joint embedding of language and
visual modalities (section 6.1) that uses a loss function based on retrieval (Wang et al.,
2016) but using word representations instead of phrase/ sentence representations (Silberer
and Lapata, 2014; Lazaridou et al., 2015a; Kottur et al., 2016) for better generalization.
We also propose to compare this with other proposed methods for grounding based on
classifiers (Guadarrama et al., 2016), a direct scoring network (Hu et al., 2016) and
previous distributional approaches (Wang et al., 2016).

There are also works that focus on learning other aspects of grounding including
spatial relations (Bisk et al., 2016), relative properties such as size, weight and rigidity
of object pairs (Forbes and Choi, 2017), subject-relation-object triples (Hu et al., 2017),
meanings of verbs modeled as state changes (Gao et al., 2016; Liu et al., 2016; Gao et al.,
2018), and semantic roles of a verb in videos (Yang et al., 2016). Grounding of object
descriptions can also be improved by incorporating information such as temporal context
and gesture (Williams et al., 2017).

While most work on grounded language learning focuses on understanding, there is
also work on generating referring expressions of objects for effective human-robot com-
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munication (Fang et al., 2013, 2014).

2.8. Visually Grounded Dialog

Recently, a few new dialog tasks and datasets have been introduced that require grounding
of language in images. The VidDial dataset was collected to teach a robot to coherently
answer a sequence of questions about a single image (Das et al., 2017a). This has also
been used to train a pair of agents, one of which asks questions about an unseen image,
and another that answers them using the image (Das et al., 2017b), with the goal of
the questioning agent attempting to learn a representation of what the image looks like.
They find that the answering agent does provide answers similar to humans, and only
pretraining constrains the agents to retain the semantics of English as used by humans.

Another related work is the GuessWhat?! dataset (De Vries et al., 2017) of humans
playing a 20 questions game to identify an object in images of rich scenes. This is used to
train a questioner that tries to identify the target object by asking yes/no questions, and
the oracle that learns to answer them. It is difficult to evaluate the success of either agent,
as ground truth for both agents is unlikely to be present in the training set. Further, if
they are trained jointly, the challenge of retaining human semantics again arises. Another
work that learns to ask questions that can discriminate between images is Li et al. (2017).

We propose to learn a system that can learn clarification questions that can refine
on an initial description (sections 6.2 and 6.3) - which is not present in the above tasks.
Further, we wish to do this in a setting where we can provide ground truth answers
to questions of the system during training. Hence we choose a more restrictive set of
questions, and propose to answer them using annotations of objects and attributes as in
our completed work (chapter 5).
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Chapter 3

Integrated Learning of Dialog Strategies and

Semantic Parsing

Robots need to be able to understand high-level natural language commands to be accessi-
ble to naive users. Since the types of commands, and language usage vary across domains,
it is desirable that a robot should be able to improve through interaction with users in its
operating environment. For an interactive dialog system, prior work had demonstrated
different methods to independently improve either the natural language understanding
component or the dialog strategy. We discuss an approach to integrate the learning of
both a dialog strategy using reinforcement learning, and a semantic parser for robust
natural language understanding, using only natural dialog interaction for supervision.
Full details are available in Padmakumar et al. (2017). The main challenge involved is
choosing an appropriate reinforcement learning algorithm, and training procedure, as the
simultaneous training of the parser violates the assumption of a non-stationary environ-
ment, made by most reinforcement learning algorithms.

3.1. Task and System Setup

Our goal is to develop a dialog system that enables a robot to translate high level com-
mands such as “go to Alice’s office” to a command represented as an action with as-
sociated semantic roles. The user can command the system to perform two actions:
navigation and delivery. The robot makes an initial guess of the desired action from the
user’s response, and then may ask clarification questions in case of insufficient under-
standing. At each step, it can respond with one of four dialog acts: asking the user to
repeat their command, confirming a command or an argument value, requesting a specific
argument of a command, and executing an action (thereby ending the dialog). A sample
dialog is shown in figure 3.1.

Given a user response, a semantic parser is used to convert utterances to logical
forms (section 2.2) which are then grounded to actions and semantic roles using world
knowledge. The robot maintains a belief state that represents the probability that a
particular combination of action and semantic roles is the command intended by the
user. This is updated based on the grounded response, and is then used by the dialog
policy to choose the next action to be taken by the robot. Once the conversation is
complete, the parser and policy can be updated from the dialog (sections 3.2 and 3.3
respectively).

The dialog is considered a success if the final action taken is correct and a failure oth-
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Figure 3.1: A sample dialog in our interface on Amazon Mechanical Turk.

erwise. The user also has the ability to prematurely end the dialog, and any conversation
terminated in this manner is also considered a failure.

3.2. Semantic Parser Learning

The semantic parser is trained using paired sentences and logical forms. A small super-
vised training set is used to initialize the parser. Training continues using pairs obtained
through weak supervision collected from user dialogs (Thomason et al., 2015).

Figure 3.2: Training pairs induced from the
clarification dialog, by selecting parses that
ground to the final action and its arguments.
The response in red is discarded because no
such parse is found.

Figure 3.2 shows an example of the
training pairs induced from the example
dialog. To obtain these, we obtain mul-
tiple semantic parses for these responses,
and parses are syntactically valid, and that
ground to the action finally taken by the
robot or its arguments, are paired with the
response to training pairs. These paired
responses and semantic forms can then be
used to retrain the parser between conver-
sations. While this weak supervision may
be noisy, the syntactic and grounding con-
straints remove most spurious examples.

3.3. Dialog Policy

Learning

We use a POMDP to model dialog
and learn a policy (section 2.4), adapt-
ing the Hidden Information State model
(HIS) (Young et al., 2010) to track the
belief state as the dialog progresses. The
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key idea behind this approach is to group
states into equivalence classes called partitions, and maintain a probability for each par-
tition instead of each state. States within a partition are those that are indistinguishable
to the system given the current dialog.

More concretely, our belief state can be factored into two main components - the goal
intended by the user g and their most recent utterance u. A partition p is a set of possible
goals which are equally probable given the conversation so far.

After every user response, a beam of possible choices for u can be obtained by ground-
ing the beam of top-ranked parses from the semantic parser. Grounding is performed by
looking up a knowledge base of entities such as people, and relations such as who owns
an office. Given the previous system action m, The belief b(p,u) is calculated as in the
HIS model as follows

b(p,u) = k ∗ P (u) ∗ T (m,u) ∗M(u,m, p) ∗ b(p)

Here, P (u) is the probability of the utterance hypothesis u given the user response,
which is obtained from the semantic parser. T (m,u) is a 0-1 value indicating whether
the response is relevant given the previous system question, determined from the semantic
type of the response. M(u,m, p) is a 0-1 value indicating whether goals in partition p
are relevant to the response and previous system question. b(p) is the belief of partition
p before the update, obtained by marginalizing out u from b(p,u). k is a normalization
constant that allows the expression to become a valid probability distribution.

Probability of top hypothesis
Probability of second hypothesis
Number of goals allowed by the partition in
the top hypothesis
Number of parameters of the partition in the
top hypothesis, required by its action, that are
uncertain (set to the maximum value if there
is more than one possible action)
Number of dialog turns used so far
Do the top and second hypothesis use the
same partition (0-1)
Type of last user utterance
Action of the partition in the top hypothesis,
or null if this is not unique

Table 3.1: Features used in summary
space

We extract features from the belief state
to form a summary space over which a dia-
log policy is learned as in prior work (Young
et al., 2010; Gašić and Young, 2014). Table
3.1 contains the features used to learn the
policy.

The choice of policy learning algorithm
is important because learning POMDP poli-
cies is challenging and dialog applications
exhibit properties not often encountered
in other reinforcement learning applica-
tions (Daubigney et al., 2012). We use
KTD-Q (Kalman Temporal Difference Q-
learning (Geist and Pietquin, 2010)) to learn
the dialog policy as it was designed to sat-
isfy some of these properties and tested in a
dialog system with simulated users (Pietquin
et al., 2011). The properties we wished to be satisfied by the algorithm were the following:

• Low sample complexity in order to learn from limited user interaction.

• An off-policy algorithm to enable the use of existing dialog corpora to bootstrap
the system, and crowdsourcing platforms such as Amazon Mechanical Turk during
training and evaluation.

• A model-free rather than a model-based algorithm because it is difficult to design
a good transition and observation model for this problem (Daubigney et al., 2012).
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• Robustness to non-stationarity because the underlying language understanding
component changes with time (Section 3.2), which is likely to change state transi-
tions.

To learn the policy, we provided a high positive reward for correct completion of the task
and a high negative reward when the robot chose to execute an incorrect action, or if the
user terminated the dialog before the robot was confident about taking an action. The
system was also given a per-turn reward of −1 to encourage shorter dialogs.

3.4. Experiments

The semantic parser was initialized using a small seed lexicon and trained on a small set
of supervised examples constructed using templates. The dialog policy was initialized
with an approximation of a good static policy.

3.4.1. Platform and setup

Our experiments were done through Mechanical Turk as in previous work (Thomason
et al., 2015; Wen et al., 2017). The setup is shown in figure 3.1. During the training
phase, each user interacted with one of four dialog agents (described in section 3.4.2),
selected uniformly at random. Users were not told of the presence of multiple agents and
were not aware of which agent they were interacting with. They were given a prompt for
either a navigation or delivery task and were asked to have a conversation with the agent
to accomplish the given task. No restrictions were placed on the language they could
employ. We use visual prompts for the tasks to avoid linguistic priming (e.g. a picture
of a hamburger instead of the word “hamburger”). Training dialogs were acquired in 4
batches of 50 dialogs each across all agents. After each batch, agents were updated as
described in section 3.4.2.

A final set of 100 test conversations were then conducted between Mechanical Turk
users and the trained agents. These test tasks were novel in comparison to the training
data in that although they used the same set of possible actions and argument values,
the same combination of action and argument values had not been seen at training time.
For example, if one of the test tasks involved delivery of a hamburger to alice, then
there may have been tasks in the training set to deliver a hamburger to other people and
there may have been tasks to deliver other items to alice, but there was no task that
involved delivery of a hamburger to alice specifically.

3.4.2. Dialog agents

We compared four dialog agents. The first agent performed only parser learning (de-
scribed in Section 3.2). Its dialog policy was always kept the static policy used to ini-
tialize the KTD-Q algorithm. Its parser was incrementally updated after each training
batch. This agent is similar to the system used by (Thomason et al., 2015) except that it
uses the same state space as our other agents, and multiple hypotheses from the parser,
for fairer comparison.

The second agent performed only dialog policy learning. Its parser was always kept to
be the initial parser that all agents started out with. Its policy was incrementally updated
after each training batch using the KTD-Q algorithm. The third agent performed both
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parser and dialog learning; but instead of incrementally updating the parser and policy
after each batch, they were trained at the end of the training phase using dialogs across
all batches. This would not allow the dialog manager to see updated versions of the parser
in batches after the first and adapt the policy towards the improving parser. We refer to
this as full learning of parser and dialog policy. The fourth agent also performed both
parser and dialog learning. Its parser and policy were updated incrementally after each
training batch. Thus for the next training batch, the changes due to the improvement in
the parser from the previous batch could, in theory, be demonstrated in the dialogs and
hence contribute towards updating the policy in a manner consistent with it. We refer
to this as batchwise learning of parser and dialog policy.

3.4.3. Experiment hypothesis

We hypothesized that the agent performing batchwise parser and policy learning would
outperform the agents performing only parser or only dialog learning as we expect that
improving both components is more beneficial. However, we did not necessarily expect the
same result from full parser and dialog learning because it did not provide any chance to
allow updates to propagate even indirectly from one component to another, exposing the
RL algorithm to a more non-stationary environment. Hence, we also expected batchwise
learning to outperform full learning.

3.4.4. Results and Discussion

The agents were evaluated on the test set using the following objective performance
metrics: the fraction of successful dialogs and the length of successful dialogs. We also
included a survey at the end of the task asking users to rate on a 1–5 scale whether the
robot understood them, and whether they felt the robot asked sensible questions.

Table 3.2 gives the agents’ performance on these metrics. All differences in dialog
success and the subjective metrics are statistically significant according to an unpaired
t-test with p < 0.05. In dialog length, the improvement of the batchwise learning agent
over the agents performing only parser or only dialog learning are statistically significant.

Learning
involved

% suc-
cessful
di-
alogs

Avg
dia-
log
length

Robot
un-
der-
stood

Sens-
ible
ques-
tions

Parser 75 12.43 2.93 2.79
Dialog 59 11.73 2.55 2.91
Parser &
Dialog -
full

72 12.76 2.79 3.28

Parser &
Dialog -
batchwise

78 10.61 3.30 3.17

Table 3.2: Performance metrics for dia-
log agents tested. Differences in dialog
success and subjective metrics are statisti-
cally significant according to an unpaired
t-test with p < 0.05.

As expected, the agent performing batch-
wise parser and dialog learning outperforms
the agents performing only parser or only di-
alog learning, in the latter case by a large
margin. We believe the agent performing
only parser learning performs much better
than the agent performing only dialog learn-
ing due to the relatively high sample com-
plexity of reinforcement learning algorithms
in general, especially in the partially observ-
able setting. In contrast, the parser changes
considerably even from a small number of ex-
amples. Also, we observe that full learning
of both components does not in fact outper-
form only parser learning. We believe this
is because the distribution of hypotheses ob-
tained using the initial parser at training time
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is substantially different from that obtained
using the updated parser at test time. We
believe that batchwise training mitigates this problem because the distribution of hy-
potheses changes after each batch of training and the policy when updated at these
points can adapt to some of these changes. The optimal size of the batch is a question
for further experimentation. Using a larger batch is less likely to overfit updates to a
single example but breaking the total budget of training dialogs into more batches allows
the RL algorithm to see less drastic changes in the distribution of hypotheses from the
parser.

We also observe quantitative improvements in parser accuracy for agents whose parsers
were trained. With dialog policy learning, a qualitative change observed is that the
system tends to confirm or act upon lower probability hypotheses than is recommended
by the initial hand-coded policy. This is possibly because as the parser improves, its top
hypotheses are more likely to be correct.
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Chapter 4

Opportunistic Active Learning for Grounding

Natural Language Descriptions

An important skill required by robots in a home or office setting is retrieving objects
based on natural language descriptions. We find a number of objects such as books,
mugs and bottles in such environments, that users typically refer to using a descriptive
phrase invoking attributes of the object (eg: “the blue mug”), rather than having a unique
name for each object. The set of such objects in these environments keeps changing,
and sometimes even their properties might (eg: a water bottle becomes lighter as it
gets emptied). This makes it near impossible to catalog the objects present, and their
attributes, requiring robots to use perception to ground such descriptions of objects.
Further, it is impossible to determine beforehand the attributes that people are likely
to use such objects, and collect annotations for them. Thus to learn perceptual models
for objects and attributes, a robot needs to be able to acquire labeled examples during
interactions with users. In this work, we introduce the framework of opportunistic active
learning, where a robot queries for labeled examples that are not immediately required, in
anticipation of using them for future interactions. Full details are available in Thomason
et al. (2017).

4.1. Opportunistic Active Learning

Active learning identifies data points from a pool of unlabeled examples whose labels, if
made available, are most likely to improve the predictions of a supervised model. Oppor-
tunistic Active Learning (OAL) is a setting that incorporates active learning queries into
interactive tasks. Let O = {o1, o2, . . . on} be a set of examples, and M = {m1,m2, . . .mk}
be supervised models trained for different concepts, using these examples. For the prob-
lem of understanding natural-language object descriptions, O corresponds to the set of
objects, M corresponds to the set of possible concepts that can be used to describe the
objects, for example their categories (such as ball or bottle) or perceptual properties (such
as red or tall).

In each interaction, an agent is presented with some subset OA ⊆ O, and must make
a decision based on some subset of the models MA ⊆M . Given a set of candidate objects
OA and a natural language description l, MA would be the set of classifiers corresponding
to perceptual predicates present in l. The decision made by the agent is a guess about
which object is being described by l. The agent receives a score or reward based on this
decision, and needs to maximize expected reward across a series of such interactions. In
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the task of object retrieval, this is a 0/1 value indicating whether the guess was correct,
and the agent needs to maximize the average guess success rate.

During the interaction, the agent may also query for the label of any of the examples
present in the interaction o ∈ OA, for any model m ∈ M . The agent is said to be
opportunistic when it chooses to query for a label m /∈ MA, as this label will not affect
the decision made in the current interaction, and can only help with future interactions.
For example, given a description “the red box”, asking whether an object is red, could
help the agent make a better guess, but asking whether an object is round, would be
an opportunistic query. Queries have a cost, and hence the agent needs to trade-off the
number of queries with the success at guessing across interactions.

The agent participates in a sequence of such interactions, and the models improve
from labels acquired over multiple interactions. Thus the agent’s expected reward per
interaction is expected to improve as more interactions are completed.
This setting differs from the traditional application of active learning in the following key
ways:

• The agent cannot query for the label of any example from the unlabeled pool. It is
restricted to the set of objects available in the current interaction, OA.

• The agent is evaluated on the reward per interaction, rather than the final accuracy
of the models in M .

• The agent may make opportunistic queries (for models m /∈ MA) that are not
relevant to the current task.

Due to these differences, this setting provides challenges not seen in most active learning
scenarios:

• Since the agent never sees the entire pool of unlabeled examples, it can neither
choose queries that are globally optimal, nor use variance reduction strategies that
still use near-optimal queries (such as sampling from a beam of near globally optimal
queries).

• Since the agent is evaluated on task completion, it must learn to trade-off finishing
the task with querying to improve the models.

• The agent needs to estimate the usefulness of a model across multiple interactions,
to identify good opportunistic queries.

4.2. Object Retrieval Task

To test the effectiveness of opportunistic active learning, we created an object identifica-
tion task using a real robot. Figure 4.1 shows the physical setup of our task.

We split the set of objects in the current interaction OA into an active training set Otr
A ,

and an active test set Ote
A . The target object being described is in the active test set and

the robot can query objects present in the active training set. This ensures that the robot
needs to learn generalizable perceptual classifiers. It also simulates the situation where
the target object is in a different room, and the robot needs to query about local objects
(active training set) to learn classifiers that can be used later to identify the target.

The human participant and robot both started facing Table 2, which held the active
test set. The tables flanking the robot (Tables 1 and 3) contained objects in the active
training set.
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Robot

Active Test Set

Active Training Set

Table 3 Table 2 Table 1

Figure 4.1: Participants described an object on Table 2 from the active test set to the
robot in natural language, then answered the robot’s questions about the objects in its
active training set on the side Tables 1 and 3 before the robot guessed the described
target object.

Human participants engaged in a dialog with the robot.1 The robot asked the human
to describe one of the four objects in its active test set with a noun phrase. Participants
were primed to describe objects with properties, rather than categories, given the moti-
vating example “a fuzzy black rectangle” for “an eraser.” They were also told that the
robot had both looked at and interacted with the objects physically using its arm.

Natural Language Grounding. To connect the noun phrases offered by participants
to sensory perception, the robot stripped stopwords from the phrase and considered
all remaining words as perceptual predicates. For each perceptual predicate, the robot
trained an SVM classifier based on multimodal features. See Thomason et al. (2017) for
details. We did not restrict the choice of words that participants were allowed to use to
describe objects, so our system learned from an open vocabulary. For every predicate
p ∈ P for P the set of predicates known to the agent and object o ∈ OA, a decision
d(p, o) ∈ {−1, 1} and a confidence 2 κ(p, o) in that decision are calculated.

Active Learning Dialog Policy. After the participant described a chosen target ob-
ject in natural language, the robot asked a fixed number of questions about objects in its
active training set before guessing a target object. The robot chose between two types of
questions -

• Label queries - A yes/no question about whether a predicate p applies to a specific
object o ∈ Otr

A , e.g. “Is this object yellow?”.

• Example queries - Asking for an object o ∈ Otr
A , that can be described by a predicate

p, e.g. “Show me a white object in this set.”. This is used for acquiring positive
examples since most predicates tend to be sparse. 3

1View a demonstration video of the robot system and dialog agents here:
https://youtu.be/f-CnIF92_wo

2Cohen’s kappa estimated from cross-validation performance on available examples.
3Alternately, we could ask for all positive examples for the predicate in the active training set, but we

chose to query for a single example to allow the agent to minimize the amount of supervision obtained
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In a label query, to select the predicate p and object o ∈ Otr
A to ask about, we first

find the objects in Otr
A with the lowest confidence κ per predicate (ties broken randomly).

omin(p) = argmino∈Otr
A

(κ(p, o)).

and sample predicates inversely proportional to their confidence in their least confident
labels.

prob(p) =
1− κ(p, omin(p))∑

q∈P\{p} 1− κ(q, omin(q))
. (4.1)

For example queries, a predicate p was selected uniformly at random from those with
insufficient data to fit a classifier.

The robot updated relevant perceptual classifiers with each answer, and after all
questions, identified the best guess o∗ ∈ Ote

A , using classifiers of predicates PA ⊆ P
present in the description as follows,

o∗ = argmaxo∈Ote
A

(∑
p∈PA

d(p, o)κ(p, o)

)
. (4.2)

If the robot guessed incorrectly, the human pointed out the correct object. The target
object was then considered a positive example for predicates PA.

4.3. Experiments

We used a dataset of 32 objects (Figure 4.2) explored in Sinapov et al. (2016), divided
in 4 folds of 8 objects each. The folds were indexed {0, 1, 2, 3}.

Figure 4.2: The objects used in our experi-
ments, from fold 0 on the far left to fold 3 on
the far right.

Two dialog agents controlling the robot
were compared. The baseline agent was
only allowed to ask questions about the
predicates relevant to the current dialog.
That is, if a person described the target
object as “a blue cylinder,” then the base-
line agent could only ask about “blue” and
“cylinder.” By contrast, the inquisitive
agent was allowed to ask questions about
any predicate it had previously heard.
Thus, the inquisitive agent could ask about
“heavy” even if a user used “a blue cylin-
der” to describe the target object. The inquisitive agent also asked 2 extra questions per
dialog, making it both more talkative and less task-oriented than the baseline agent. At
test time, both agents behaved like the baseline for fair comparison.

The agents were tested across three rounds, with objects from the active test set
moving to the active training set between rounds. Objects in the active test set were
always novel to the robot. Between rounds, the dialogs that the agents had with their
participants were aggregated and new predicate classifiers were trained to use in the next
round.

We hypothesized that:

1. The inquisitive agent would guess the correct object more often than the baseline
agent.
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2. Users would not qualitatively dislike the inquisitive agent for asking too many
questions and being off-topic compared to the baseline agent.

4.4. Experimental Results

Five participants played two games each with the robot for each agent in each round,
and filled an exit survey afterwards.

Round Baseline Inquisitive
1 0.175 0.35
2 0.225 0.325
3 0.175 0.325

Table 4.1: Fraction of
successful guesses made
in each condition per
round

Table 4.1 shows the robot’s average correctness across
rounds between the two agents. The inquisitive agent consis-
tently outperforms the baseline agent at identifying the cor-
rect object, including round 3 where they use the same pol-
icy. Since there is a considerable overlap of predicates across
rounds, the opportunistic strategy of the inquisitive agent is
beneficial.

Exit surveys show that the inquisitive agent is perceived
as asking too many questions, only when they are off topic,
despite the fact that it always asks more questions than the
baseline agent in the first 2 rounds. However, it was rated as
being more fun and usable, presumably because of its higher success at guessing objects
correctly.
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Chapter 5

Learning a Policy for

Opportunistic Active Learning

Figure 5.1: A sample OAL interaction. Percep-
tual predicates are marked in bold.

In the previous work (chapter 4),
we demonstrated that an interactive
robot following an opportunistic ac-
tive learning policy is better able to
ground natural language descriptions
of objects across interactions. How-
ever, in that work, we compared two
static dialog policies that the robot
could use for the task. In this work,
we learn a dialog policy from inter-
actions using Reinforcement Learning.
Full details are available in Padmaku-
mar et al. (2018).

5.1. Task Setup

We consider the same task as in the
previous work (section 4.2). How-
ever, we set it up in simulation us-
ing the Visual Genome dataset (Kr-
ishna et al., 2017) as we need a large
number of dialogs to learn a dialog
policy. The Visual Genome dataset
contains images with regions (crops)
annotated with natural-language de-
scriptions. Bounding boxes of objects
present in the image are also annotated, along with attributes of objects. Region descrip-
tions, objects and attributes are annotated using unrestricted natural language, which
leads to a diverse set of predicates. Using the annotations, we can associate a list of
objects and attributes relevant to each image region, and use these to answer queries
from the agent.

A sample interaction is seen in figure 5.1. For each interaction, we uniformly sample
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4 regions to form the active test set, and 8 regions to form the active training set. 1 One
region is then uniformly sampled from the active test set to be the target object. Its
description, from annotations, is provided to the agent to be grounded. Following this,
the agent can ask label and example queries on the active training set, before guessing
which object was being described. The objects and attributes associated with active
training regions are used to answer queries. A predicate is labeled as being applicable to
a region if it is present in the list of objects and attributes associated with the region.

5.2. Methodology

We extract predicates from descriptions as in previous work (section 4.2). Predicates are
grounded using binary SVMs trained over deep features extracted from images. These
are obtained from the penultimate layer of the VGG network (Simonyan and Zisserman,
2014a) pretrained on ImageNet (Russakovsky et al., 2015).

5.2.1. Grounding Descriptions

Grounding is performed similar to previous work (section 4.2). Given predicates PA ⊆ P
present in the target description l, a decision d(p, o) ∈ {−1, 1} from the classifier for
predicate p for object o, and the confidence of the classifier C(p) (estimated F1 from
cross-validation on acquired labels), the best guess o∗ is computed as,

o∗ = argmaxo∈Ote
A

∑
p∈PA

d(p, o) ∗ C(p)

5.2.2. MDP Formulation

We model interactions as episodes in a Markov Decision Process (MDP) (section 2.3.1).
At any point, the agent is in a state consisting of the VGG features of the regions in the
current interaction, the predicates in the current description, and the agent’s classifiers.
The agent can choose from the set of actions which includes an action for guessing, and
an action for each possible query the agent can currently make, including both label
and example queries. The guess action always terminates the episode, and query actions
transition the agent to a new state as one of the classifiers gets updated. The agent
gets a reward for each action taken. Query actions have a small negative reward, and
guessing results is a large positive reward when the guess is correct, and a large negative
reward when the guess is incorrect. In our experiments, we treat the reward values as
hyperparameters that can be tuned. The best results were obtained with a reward of 200
for a correct guess, -100 for an incorrect guess and -1 for each query.

5.2.3. Identifying Candidate Queries

Ideally, we would like the agent to learn a policy over all possible queries. However, as
the number of predicates the agent knows continuously increases as it completes inter-
actions, processing the full action space quickly becomes intractable. Hence we sample

1The regions in the dataset are divided into separate pools from which the active training and active
test sets are sampled (described as classifier-training and classifier-test sets in section 5.3), to ensure that
the agent needs to learn classifiers that generalize across objects.
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a few promising queries and learn a policy to choose between them. In our previous
work, predicates were sampled according to a distribution that weighted them inversely
proportional to the confidence in their current classifiers. However, if the space of possi-
ble predicates is large, then this results in no classifier obtaining a reasonable number of
training examples. In this scenario, it is desirable to focus on a small number of predi-
cates, possibly stopping the improvement on a predicate once the classifier for it has been
sufficiently improved. We sample queries from a distribution designed to capture this
intuition. The probability assigned to a predicate by this distribution increases linearly,
for confidence below a threshold, and decreases linearly thereafter.

5.2.4. Policy Learning

We use the REINFORCE algorithm (section 2.3.3) to learn a policy for the MDP. The
state consists of the predicates in the current description, the candidate objects, and the
current classifiers. Since both the number of candidate objects and classifiers varies, and
the latter is quite large, it is necessary to identify useful features for the task to obtain
a vector representation needed by most learning algorithms. In our problem setting, the
number of candidate actions available to the agent in a given state is variable. Hence we
need to create features for state-action pairs, rather than just states.

The object retrieval task consists of two parts – identifying useful queries to improve
classifiers, and correctly guessing the image being referred to by a given description. The
current dialog length is also provided to influence the trade-off between guessing and
querying.

Guess-success features

• Lowest, highest, second highest, and average confidence among classifiers of predi-
cates in the description – learned thresholds on these values can be useful to decide
whether to trust the guess.

• Highest score among regions in the active test set, and the differences between this
and the second highest, and average scores respectively – a good guess is expected to
have a high score to indicate relevance to the description, and substantial differences
would indicate that the guess is discriminative. Similar features are also formed
using the unweighted sum of decisions.

• An indicator of whether the two most confident classifiers agree on the decision of
the top scoring region, which increases the likelihood of its being correct.

Query-evaluation features

• Indicator of whether the predicate is new or already has a classifier – this allows
the policy to decide between strengthening existing classifiers or creating classifiers
for novel predicates.

• Current confidence of the classifier for the predicate – as there is more to be gained
from improving a poor classifier.

• Fraction of previous dialogs in which the predicate has been used, and the agent’s
success rate in these – as there is more to be gained from improving a frequently
used predicate but less if the agent already makes enough correct guesses for it.
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• Is the query opportunistic – as these will not help the current guess.

Label queries also have an image region specified, and for these we have additional
features that use the VGG feature space in which the region is represented for classifica-
tion:

• Margin of the image region from the hyperplane of the classifier of the predicate –
motivated by uncertainty sampling.

• Average cosine distance of the image region to others in the dataset – motivated
by density weighting to avoid outliers.

• Fraction of the k-nearest neighbors of the region that are unlabeled for this predicate
– motivated by density weighting to identify a data point that can influence many
labels.

5.3. Experiments

Sampling Dialogs

We want the agent to learn a policy that is independent of the actual predicates present
at policy training and policy test time. In order to be able to evaluate this, we divide the
set of possible regions in the Visual Genome dataset into policy training and policy test
regions as follows. We select all objects and attributes present in at least 1,000 regions.
Half of these were randomly assigned to the policy test set. All regions that contain one
of these objects or attributes are assigned to the policy test set, and the rest to the policy
training set. Thus regions seen at test time may contain predicates seen during training,
but will definitely contain at least one novel predicate. Further, the policy training and
policy test sets are respectively partitioned into a classifier training and classifier test set
using a uniform 60-40 split.

During policy training, the active training set of each dialog is sampled from the
classifier-training subset of the policy-training regions, and the active test set of the
dialog is sampled from the classifier-test subset of the policy-training set. During policy
testing, the active training set of each dialog is sampled from the classifier training subset
of the policy test regions, and the active test set of the dialog is sampled from the classifier
test subset of the policy test set.

5.3.1. Experiment phases

Our baseline is a static policy similar to that used in previous work (4.2).
For efficiency, we run dialogs in batches, and perform classifier and policy updates at

the end of each batch. We use batches of 100 dialogs each. Our experiment runs in 3
phases:

• Initialization – Since learning starting with a random policy can be difficult, we
first run batches of dialogs on the policy training set using the static policy, and
update the RL policy from these episodes. This “supervised” learning phase is used
to initialize the RL policy.
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• Training – We run batches of dialogs on the policy training set using the RL policy,
starting it without any classifiers. In this phase, the policy is updated using its own
experience.

• Testing – We fix the parameters of the RL policy, and run batches of dialogs on the
policy test set. During this phase, the agent is again reset to start with no classifiers.
We do this to ensure that performance improvements seen at test time are purely
from learning a strategy for opportunistic active learning, not from acquiring useful
classifiers in the process of learning the policy.

5.4. Experimental Results and Analysis

Policy Success
rate

Average
Dialog
Length

Learned 0.44 12.95
–Guess 0.37 6.12
–Query 0.35 6.16
Static 0.29 16

Table 5.1: Results on dialogs
sampled from the policy test set
after 10 batches of classifier train-
ing. –Guess and –Query are
conditions with the guess and
query features, respectively, ab-
lated. Boldface indicates that the
difference in that metric with re-
spect to the Static policy is statis-
tically significant according to an
unpaired Welch t-test with p <
0.05.

We initialize the policy with 10 batches of dialogs,
and then train on another 10 batches of dialogs, both
sampled from the policy training set. Following this,
the policy weights are fixed, the agent is reset to start
with no classifiers, and we test on 10 batches of dialogs
from the policy test set. Table 5.1 compares the aver-
age success rate (fraction of successful dialogs in which
the correct object is identified), and average dialog
length (average number of system turns) of the best
learned policy, and the baseline static policy on the
final batch of testing. We also compare the effect of
ablating the two main groups of features. The learned
agent guesses correctly in a significantly higher frac-
tion of dialogs compared to the static agent, using a
significantly lower number of questions per dialog.

We also explored ablating individual features. We
found that the effect of ablating most single features
is similar to that of ablating a group of features. The
mean success rate decreases compared to the full pol-
icy with all features. It remains better than that of
the static policy, but in most cases the difference stops
being statistically significant. An interesting result is
that removal of features involving the predictions of the second best classifier has more
effect than that of the best classifier. This is possibly because when noisy classifiers are
in use, support of multiple classifiers is helpful.

Qualitatively, we found that the dialog success rate was higher for both short, and
very long dialogs, with a decrease for dialogs of intermediate length. This suggests that
longer dialogs are used to accumulate labels via opportunistic off-topic questions, as
opposed to on-topic questions. The learned policy still suffers from high variance in
dialog length suggesting that trading off task completion against model improvement is a
difficult decision to learn. We find that the labels collected by the learned policy are more
equitably distributed across predicates than the static policy, resulting in a tendency to
have fewer classifiers of low confidence. This suggests that the policy learns to focus on a
few predicates, as the baseline does, but learn all of these equally well, in contrast to the
baseline which has much higher variance in the number of labels collected per predicate.
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Chapter 6

Proposed Work

6.1. Learning to Ground Natural Language

Object Descriptions Using

Joint Embeddings

In our previous work (chapters 4 and 5), we have used binary classifiers for grounding
perceptual predicates. For processing images, we use features extracted from the VGG
network (Simonyan and Zisserman, 2014b) to leverage the recent success of deep neural
networks in image classification. Learning a multi-class classifier allows the model to
learn correlations between labels, but this requires the set of labels to be pre-defined.
This is typically not desirable when trying to understand unrestricted natural language
descriptions, as a wide variety of concepts, and words may be used to describe objects.
However, learning binary classifiers prevents us from exploiting similarities between labels
not present in ImageNet (and hence not seen during the pretraining as a multi-class
classifier).

For example, “red” and “scarlet” are very similar colors, “red” and “blue” are both
colors but less similar in meaning otherwise, “red” and “apple” are not similar in mean-
ing but many apples are red. Word embeddings have been shown to capture many such
similarity and relatedness properties (Mikolov et al., 2013). These are shown to be en-
hanced by training multimodal vectors (Lazaridou et al., 2015b). There are also works

Figure 6.1: Expected joint space for a simple dataset of 4 objects.
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on learning networks to score how well a natural language description or caption applies
to an image (Hu et al., 2016; Xiao et al., 2017; Wang et al., 2016), some of which test
the effectiveness of these methods for retrieving images based on captions - the problem
setting we use for grounding (Hu et al., 2016). However these typically use embeddings
of the entire sentence or phrase, instead of grounding representations of individual words
and combining them.

We wish to design a model for grounding that compares vector representations of
images with word (as opposed to phrase/ sentence) embeddings. We expect these to
be able to learn from fewer training examples, as words recur more frequently across
descriptions. We also expect these to generalize better to novel descriptions, or to different
datasets, as they can be useful if the learned representations of some words transfer.

Figure 6.2: Networks to
embed and project images
and words.

We propose to do this by projecting pre-trained vector
representations of the images and words in their descriptions
to a learned joint space, such that projected word vectors are
close to projected images they are related to, and far from
projected images they are not related to. A simple example
with 4 images, with Euclidean distance as the distance met-
ric, is in figure 6.1. The sum of distances from the projected
image of the blue mug to the words blue and mug, is less
than this sum for any other image. The same holds for all
descriptions.

More formally, given an image representation i, and its
language description l = (w1, w2, . . . wk), and a distance
function d, we learn projection functions f and g such that
for any other image i′,

d(f(i), g(wj)) ≤ d(f(i′), g(wj))

∀ j ∈ {1, 2, . . . k} (6.1)

Figure 6.3: Using the
space in figure 6.1 to
ground “dark blue mug”
among the these objects,
we can probably identify
the correct object without
understanding the word
“dark”.

We will represent the functions f and g using neural net-
works with a single hidden layer (figure 6.2), and learn their
parameters using a ranking loss to capture the above con-
straints (Wang et al., 2016).

To ground a novel description l′ = (w′1, w
′
2, . . . w

′
k′), we

find the image imin which when projected minimizes the av-
erage distance to the projected words in the description,

imin = argmini

(
1

k′
Σk′

j=1d(f(i), g(w′j))

)
(6.2)

A similar model is that of Wang et al. (2016) who project
embeddings of images, and embeddings of their correspond-
ing descriptive phrases into a joint space, using projections
and a ranking loss. We expect the projecting word embed-
dings would result in better performance because it is possi-
ble to directly exploit words, which can be grounded visually, that recur across descrip-
tions. Such a model would be more robust to the presence of unseen words, as it may be
possible to ground a description based on a subset of the attributes provided. For exam-
ple, suppose the space learned in figure 6.1 has to be used to ground the phrase “dark
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blue mug” to one of the objects present in 6.3. Since the target mug can be identified
using the attributes “blue” and “mug”, it is reasonable to expect that the right object
would be identified. However, if the entire phrase has to be embedded before projection,
it is likely that the addition of the extra attribute “dark” will produce an input vector
very different from those seen at train time, and may not be projected in a manner that
its meaning can be grounded well.

We intend to compare the performance of our model with some competitive base-
lines (Guadarrama et al., 2016; Hu et al., 2016; Xiao et al., 2017; Wang et al., 2016) on
existing datasets of images with language descriptions (Hu et al., 2016). This would be an
additional contribution as these different types of grounding methods have not previously
been compared in a single dataset.

6.2. Identifying Useful Clarification Questions for Ground-

ing Object Descriptions

In our previous work on clarification of natural language commands (chapter 3), we allow
the robot to confirm or request for specific semantic roles in a command. If the command
involves manipulating an object, this allows the robot to ask the user for a description
of the object, or ask whether a specific object is the one to be manipulated. If the
robot does not fully understand the object description received, the above clarification
questions are tedious to resolve the ambiguity, and become impractical if the set of
candidate objects is large. Humans typically use categories and attributes to describe
objects, and if appropriately chosen, a robot can use these to ask clarifications.

Table 6.1: An sample clarification dialog

ROBOT How can I help?
USER Bring me the small china mug.
ROBOT What should I bring?
USER The small china mug
ROBOT Is that object white?
USER yes

An example is shown in table 6.1, where
the robot tries to find other attributes, such
as “white”, that can be used to describe the
target object that could not be determined
using the original description “small china
mug”.

We would ideally like the robot to choose
question that is most likely to decrease the
size of the search space. That is, it is
expected to provide the most information.
When using binary classifiers for grounding, this can be estimated using the entropy
of the set of candidates, based on each classifier’s predictions. Let p(c) be the probability
that the attribute predicted by classifier c is true for an object in the set of candidates.
This can be calculated as the fraction of objects in the candidate set for which the clas-
sifier predicts true. Then the entropy E(c) of the candidate set based on this attribute is
calculated as follows

E(c) = −p(c) log p(c) − (1− p(c)) log
(
1− p(c)

)
(6.3)

A higher entropy indicates a higher information content. Hence the best question can be
chosen as the one corresponding to the classifier of maximum entropy.

c∗ = argmaxcE
(c) (6.4)

With binary classifiers, this chooses an attribute such that whether this is true or
false for the target, the search space is reduced by a significant amount. For example, if
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half the objects the robot is considering are white, asking whether the target is white is
helpful. If only one object is red, asking asking whether the target is red is less helpful,
because if the user gives a negative reply, most of the objects still remain as candidates.
In this example, the configuration the entropy for white is much higher than the entropy
for red.

If we use joint embeddings for grounding, adopting the same principle is less trivial,
because it is unclear how to compute the probability p(c) for a concept c. The following
are a few ways to estimate this –

• Learn a distance threshold t, such that given projections of an image f(i) and a word
g(w), w is applicable for image i if the distance between them, d(f(i), g(w)) ≤ t.
Then p(c) is the fraction of images that are closer than this threshold, that is,
d(f(i), g(w)) ≤ t.

• Cluster the images in the projected space. Any word w whose projection lies within
a cluster is applicable to all images in the cluster. Then p(c) is the fraction of images
that lie in the cluster within which c is projected to.

It is possible that choosing this method may be dependent on the nature of the learned
joint space. It may also be possible to cast the problem as an optimization problem
without using heuristics. This requires further exploration.

Related to this is work on learning end-to-end neural networks on object guessing
games (Das et al., 2017b; De Vries et al., 2017). However, in these works, since both
agents are trained simultaneously, there is no constraint besides pretraining, that re-
quires them to learn the same meanings for words that humans would use. Also related
is work on learning to ask discriminative questions (Li et al., 2017). But this only con-
siders differentiating between two images. Further, the questions are not related to any
prior understanding by the system, whereas, we intend to identify questions that are
discriminate between images that the system believes are candidates to satisfy a given
description.

6.3. Learning a Policy for Clarification Questions us-

ing Uncertain Models

We have proposed methods to identify useful clarification questions for grounding natural
language descriptions of objects. However, these are based on information from models
that could be uncertain. For instance, we propose that the robot choose a question that
maximizes entropy. However, the entropy is computed based on predictions made by
uncertain classifiers. If a particularly poor classifier is chosen, which makes an erroneous
prediction on the target object, the robot may either falsely discard it, based on the
response to the clarification, or may not be able to give sufficient importance to the
question and prune the search space as expected.

For distributional models, the questions are chosen on even weaker heuristics that we
expect would model entropy. It may be desirable to learn a policy that selects a question
from a beam of candidates proposed by such heuristic methods, instead of relying on
them completely. This can be learned using reinforcement learning over simulated dialogs
similar to that used in our previous work (chapter 5).
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An important challenge in this setting is identifying features that can be used to
determine confidence in distance measures in a learned embedding space. A possible
heuristic for this could be to the fraction of positive examples within a distance threshold
(a measure of cluster purity).

Another challenge with clarification dialogs in distributional spaces is how to combine
the information from the original description with that obtained from clarification. We
could treat all predicates equally and average them (equation 6.2). But it is possible
that some computed distances are more reliable than others, or some words may be more
salient in a description (for example, if there is only one mug in the set of candidate
objects, additional attributes are superfluous in identifying it).

When classifiers are used for grounding, it is possible handcraft a good rule to combine
predictions of the classifiers, and confidences to identify the target object (equation 5.2.1).
However, if we instead have to use distances in a learned space, it may be beneficial to
learn how to combine distances between projected images and words. This is non-trivial
because the number of words involved changes over time, and the number of images under
consideration could be variable. Some possible models for this include -

• A neural network that maps the current score of an object, its distance to a new
word, and whether this word applies to the target, to a new score. This would
initially be applied sequentially to words in the description, and then to subsequent
new words for each question-answer pair. After each update, scores would have to
be normalized.

• Fix an upper bound on the number of predicates, m, and learn a network to map
the current score of an object, distances to up to m words, with a default value when
fewer predicates are present, and whether they apply to the target, to an updated
score. The network can potentially use representations of the words themselves
to learn correlations between their meanings, and the final score. However, this
requires discarding some words when too many are present, and also requires a
separate normalization step.

• Fix upper bounds both on the number of objects and number of words, and use
features of the objects and words, the current scores of all objects, and distances
and relevances of all words to all objects. This makes no independence assumptions
but uses a very large input space.

Further, if we have a measure of confidence on the distance estimate, that would also be
a relevant feature, and could potentially result in better beliefs.
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Chapter 7

Bonus Contributions

This chapter covers areas of future work that augment the proposed work, that may be
included in the final thesis. This involves extending the proposed model for perceptual
grounding based on joint embeddings to

• Incorporate linguistic and visual context.

• Handle multimodal representations of objects, for example using audio or haptic
information.

7.1. Context Sensitive Joint Embeddings for Language

Grounding

Context is important for understanding language, and often difficult to capture. An
example where linguistic context affects the meaning of a word is distinguishing word
senses:

Swing the baseball bat.
Don’t touch the dead bat.

Visual context may also affect the use and meaning of a word, for example whether
relative adjectives such as big and small apply. An example can be seen in figure 7.1.

Figure 7.1: The highlighted bottle is the
same in both images but can be described
as the big bottle in the image on the left and
the small bottle in the image on the right.

Context sensitive word embeddings
have recently been shown to be more effec-
tive in a number of tasks including ques-
tion answering, textual entailment, seman-
tic role labeling, coreference resolution,
named entity extraction, and sentiment
analysis (Peters et al., 2018). There is also
some prior work on using different forms
of visual context in understanding object
descriptions (Hu et al., 2016; Misra et al.,
2017b).

An interesting extension of our pro-
posed method for grounding object de-
scriptions (section 6.1) would be to explore the effect of using context sensitive repre-
sentations of words and images in that method. For word representations, we will use
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ELMo embeddings (Peters et al., 2018) mentioned above, and for contextual visual rep-
resentations, the following are two possibilities:

• A representation learned using an embedding of the image using a convolutional
neural network (CNN), an embedding of the bounding box of the object using a
CNN, and relative coordinates of the bounding box (Hu et al., 2016).

• Obtain CNN embeddings of object proposals from an object detection network such
as R-CNN (Ren et al., 2015), and combine them using an attention network (An-
derson et al., 2018).

7.2. Multimodal Grounding of

Object Descriptions Using

Joint Embeddings

Robots can sense the world through modalities other than vision, for example sound
through a microphone or by manipulating objects with an arm. Prior work has shown
that when people are allowed to handle objects before describing them, they may use non-
visual predicates such as heavy or rattling to describe them. Using multimodal features
has been shown to allow a robot to better ground object descriptions, and are essential
when non-visual predicates are used (Thomason et al., 2016).

It would be interesting to extend our proposal on using joint embeddings for grounding
object descriptions (section 6.1) to incorporate more modalities. A challenge here is that
collecting multimodal data using a robot is time consuming, thus requiring our methods
to be sample efficient. Also, ideally the method should be usable for objects for which only
visual features are available, so that we can leverage the availability of paired language
and vision datasets.

Given an object o with features in modalities m ∈ M(o), let o(m) be the feature
representation of o in modality m. Also, let w1, w2, . . . wk be embeddings of the words
in the description l. We use a projection function g to project words, and projection
functions f (m) to project feature representations in modality m, o(m), to the joint space.
Then, the following two methods can be used to measure the distance D(o, l) between an
object o and a description l, given a distance function d (such as cosine distance) in the
space.

• Average distance to all modalities:

D(o, l) =
1

M(o)

1

k

∑
m∈M(o)

k∑
i=1

d(f (m)(o(m)), g(wi)) (7.1)

• Averaging the closest modality to each word

D(o, l) =
1

k

k∑
i=1

min
m∈M(o)

d(f (m)(o(m)), g(wi)) (7.2)

This metric is expected to account for the fact that a modality may only be able to
capture the meanings of some words, as a word needs to be close to an object only
in the relevant modality.
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The above metrics allow for training the projection functions g and f (m) using objects
with annotated descriptions, that do not necessarily have feature representations in all
modalities. The learned representations would be expected to be better for those modali-
ties in which features of more objects are present. They would be trained using a ranking
loss that enforces the constraint that given an object o with its paired description l

D(o, l) ≤ D(o′, l) ∀ o′ 6= o (7.3)

D(o, l) ≤ D(o, l′) ∀ l′ 6= l (7.4)
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Chapter 8

Conclusion

Facilitating natural language communication between humans and robots faces a number
of challenges, including the need to ground language in perception, the ability to adapt
to changes in the environment and novel uses of language, and to deal with uncertainty
on the part of the robot. Robots can use two types of questions to achieve this - active
learning queries to elicit knowledge about the environment that can be used to improve
perceptual models, and clarification questions that confirm he robot’s hypotheses, or elicit
specific information required to complete a task. The robot should also be able to learn
how to conduct such dialogs through interaction – which can be achieved by dialog pol-
icy learning. We present completed work on jointly improving semantic parsers from and
learning a dialog policy for clarification dialogs, that improve a robot’s ability to under-
stand natural language commands. We introduce the framework of opportunistic active
learning, where a robot introduces opportunistic queries, that may not be immediately
relevant, into an interaction in the hope of improving performance in future interactions.
We demonstrate the usefulness of this framework in learning to ground natural language
descriptions of objects, and learn a dialog policy for such interactions. We propose a new
model for grounding natural language descriptions of objects based on joint embeddings,
and propose to conduct a systematic comparison of different types of perceptual ground-
ing models. We also suggest possible extensions of this model to incorporate context and
multimodal object representations. We also propose a method to identify useful clarifi-
cation questions when trying to understand natural language descriptions of objects, and
propose to learn a dialog system that makes use of these.
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