
Copyright

by

Sheena Liz Panthaplackel

2022

The Dissertation Committee for Sheena Liz Panthaplackel

certifies that this is the approved version of the following dissertation:

Facilitating Software Evolution through Natural Language

Comments and Dialogue

Committee:

Raymond J. Mooney, Supervisor

Junyi Jessy Li, Co-Supervisor

Milos Gligoric

Greg Durrett

Charles Sutton

Facilitating Software Evolution through Natural Language

Comments and Dialogue

by

Sheena Liz Panthaplackel

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2022

Acknowledgments

As these five years come to an end, I cannot but think of the many individuals

whose support have made this thesis possible. First and foremost, I would like to

sincerely thank my advisors Raymond J. Mooney and Junyi Jessy Li for their time

and energy in building me as a researcher over the last five years. I would like to

thank Ray for his broad vision that helped shape my research, for teaching me to not

be afraid to pursue new tasks that have not been previously studied, and for allowing

me immense freedom in structuring my research. I would like to thank Jessy for

guiding me in designing technical approaches, for teaching me how to frame ideas

when writing research papers, and for being patient with me through all my last

minute questions and concerns. Additionally, I would like to thank Milos Gligoric

for helping me identify useful and meaningful problems to solve, for working with

me extensively to design user studies, and for all his feedback throughout these

years. I would like to also thank Greg Durrett and Charles Sutton for serving on my

thesis committee and for insightful discussions and feedback.

I would like to thank my mentors at Microsoft Research Cambridge, Mil-

tos Allamanis and Marc Brockschmidt for all that they have taught me during the

early stages of the PhD, which continue to influence me in the way I formulate re-

search problems, approach technical challenges, and face disheartening outcomes.

I would like to thank my mentors at Bloomberg, Adrian Benton and Mark Dredze,

for getting me excited about new problems outside my area of focus and for guid-

iv

ing me through a completely new terrain. I would also like to thank Bloomberg for

generously granting me the Data Science Fellowship that has funded my research.

I would like to thank my lab mates Angela Lin, Prasoon Goyal, Jialin Wu,

Aishwarya Padmakumar and collaborators Pengyu Nie and Jiyang Zhang for dis-

cussions and technical feedback that have greatly influenced my research. I would

like to thank my grad school friends, Tanya Goyal, Soujanya Ponnapalli, Shailee

Jain, Tushar Nagarajan, and Keya Ghonasgi, for keeping me sane and making

this experience so memorable. I would like to thank my fellow interns at Mi-

crosoft Research Cambridge, Goutham Ramakrishnan, Swathi Jagannath, Rushil

Khurana, Padmaja Jonnalagedda, Praneeth Chakravarthula, Arjun Kashyap, and

Arpita Biswas, for all their support and encouragement during the early stages of

the PhD. I would like to also thank the many individuals who have supported me

and given me feedback from within the broader UT NLP community, Eunsol Choi,

Yasumasa Onoe, Jiacheng Xu, Jifan Chen, Eric Holgate, Pengxiang Cheng, Shrey

Desai, and Anubrata Das, as well as within the borader SE community, Nader Al

Awar, Yu Yuki Liu, Zhiqiang Zhang, Kush Jain, Steven Zhu, and Marko Vasic. I

would like to also thank my friends back home in Chicago, Varsha John, Jasmine

Puthuvelil, Jenny James, Chris Mathew, Priscilla Alex, Lidiya Jacob, Jagan Jimmy,

and Anna Chirayil, for their continuous support throughout the years.

Finally, I would not have reached this point without the incredible love and

support that I received from my family. I would like to thank my aunts, uncles, and

cousins for being the greatest cheerleaders. I would like to thank my little brother,

Kevin, for being my biggest fan and for always brightening up my day. I would like

v

to thank my mom for her unwavering support and patience through these years, for

comforting me and taking care of me in the most stressful times, and for instilling

in me the value of hard work. I would like to thank my dad for being my teacher

ever since I can remember, for encouraging me to be curious and ask questions, for

pushing me to dream big, and for being the greatest inspiration of my life.

vi

Facilitating Software Evolution through Natural Language

Comments and Dialogue

Sheena Liz Panthaplackel, Ph.D.

The University of Texas at Austin, 2022

Supervisors: Raymond J. Mooney and Junyi Jessy Li

Software projects are continually evolving, as developers incorporate changes

to refactor code, support new functionality, and fix bugs. To uphold software qual-

ity amidst constant changes and also facilitate prompt implementation of critical

changes, it is desirable to have automated tools for supporting and driving software

evolution. In this thesis, we explore tasks and data and design machine learning

approaches which leverage natural language to serve this purpose.

When developers make code changes, they sometimes fail to update the ac-

companying natural language comments documenting various aspects of the code,

which can lead to confusion and vulnerability to bugs. We present our work on

alerting developers of inconsistent comments upon code changes and suggesting

updates by learning to correlate comments and code.

When a bug is reported, developers engage in a dialogue to collaboratively

understand it and ultimately resolve it. While the solution is likely formulated

within the discussion, it is often buried in a large amount of text, making it difficult

to comprehend, which delays its implementation through the necessary repository

changes. To guide developers in more easily absorbing information relevant to-

wards making these changes and consequently expedite bug resolution, we investi-

gate generating a concise natural language description of the solution by synthesiz-

vii

ing relevant content as it emerges in the discussion. We benchmark models for gen-

erating solution descriptions and design a classifier for determining when sufficient

context for generating an informative description becomes available. We investigate

approaches for real-time generation, entailing separately trained and jointly trained

classification and generation models. Furthermore, we also study techniques for de-

riving natural language context from bug report discussions and generated solution

descriptions to guide models in generating suggested bug-resolving code changes.

viii

Table of Contents

Chapter 1 Introduction .. 1

Chapter 2 Background and Related Work.. 5

2.1 Software Evolution ... 5

2.2 Natural Language for Software-Related Tasks 6

2.3 Source Code Comments .. 8

2.4 Bug Report Discussions .. 11

2.5 Code Representations.. 13

2.6 Handling Noise in Online Code Repositories................................... 15

Chapter 3 Associating Natural Language Comment and Source Code Entities 16

3.1 Task .. 16

3.2 Data .. 18

3.2.1 Noisy Supervision ... 19

3.2.2 Processing .. 21

3.2.3 Filtering ... 22

3.2.4 Dataset Statistics ... 23

3.3 Representations and Features ... 24

3.4 Models .. 27

3.4.1 Binary Classification.. 27

3.4.2 Sequence Labeling .. 27

3.4.3 Baselines .. 28

3.5 Results... 29

ix

3.5.1 Training on Primary Dataset ... 29

3.5.2 Augmenting Training with Deletions................................... 31

3.5.3 Ablation Study .. 32

3.6 Additional Details... 33

3.6.1 Model Parameters.. 33

3.6.2 Filtering Details .. 33

3.6.3 Annotation Examples... 35

3.6.4 Sample Output .. 36

3.7 Summary ... 37

Chapter 4 Just-In-Time Inconsistency Detection Between Comments and

Source Code... 38

4.1 Task .. 39

4.2 Architecture ... 40

4.2.1 Sequence Code Encoder... 42

4.2.2 AST Code Encoder.. 43

4.3 Data .. 44

4.4 Models .. 47

4.4.1 Baselines .. 47

4.4.2 Our Models... 48

4.5 Results... 51

4.6 Additional Details... 56

4.6.1 Model Parameters.. 56

4.6.2 More Data Details ... 57

x

4.7 Summary ... 59

Chapter 5 Updating Natural Language Comments Based on Code Changes . 60

5.1 Task .. 61

5.2 Edit Model ... 61

5.2.1 Encoders .. 62

5.2.2 Decoder.. 62

5.2.3 Parsing Edit Sequences .. 65

5.2.4 Reranking... 65

5.3 Data .. 67

5.4 Experimental Method.. 67

5.4.1 Baselines .. 67

5.4.2 Generation Model.. 68

5.4.3 Reranked Generation Model ... 69

5.5 Automatic Evaluation ... 69

5.6 Human Evaluation .. 71

5.7 Error Analysis .. 74

5.8 Ablations ... 75

5.9 Additional Details... 76

5.9.1 Model Parameters.. 76

5.9.2 Modified Comment Edit Lexicon .. 77

5.9.3 Deletions .. 82

5.9.4 Sample Output .. 85

5.10 Summary ... 85

xi

Chapter 6 Combined Detection and Update of Inconsistent Comments 87

6.1 Experiments ... 87

6.2 Results... 88

6.3 Qualitative Analysis.. 92

6.4 Summary ... 93

Chapter 7 Describing Solutions for Bug Reports Based on Developer Dis-

cussions ... 94

7.1 Problem Setting.. 95

7.2 Data .. 96

7.2.1 Data Collection ... 96

7.2.2 Handling Noise ... 97

7.2.3 Preprocessing.. 99

7.2.4 Partitioning ... 99

7.3 Models .. 100

7.4 Results: Automated Metrics .. 103

7.5 Results: Human Evaluation ... 104

7.6 Analysis... 106

7.7 Supporting Real-Time Generation .. 110

7.7.1 Pipelined System... 111

7.7.2 Joint System ... 111

7.7.3 Evaluation .. 112

7.8 Additional Details... 116

7.8.1 Model Parameters.. 116

xii

7.8.2 More Data Details ... 117

7.8.3 Additional Generation Baselines ... 118

7.9 Classification Baselines... 121

7.10 Summary ... 122

Chapter 8 Using Bug Report Discussions to Guide Automated Bug Fixing .. 124

8.1 Motivation ... 125

8.2 Deriving Context from Bug Report Discussions............................... 127

8.2.1 Heuristically Deriving Context ... 127

8.2.2 Algorithmically Deriving Context 128

8.3 Data .. 128

8.3.1 Mining Bug Report Discussions.. 129

8.3.2 Data Processing... 130

8.4 Models .. 132

8.4.1 Our Models... 132

8.4.2 Baselines .. 133

8.5 Results... 133

8.6 Examples ... 135

8.7 Analysis: Identifying Useful Discussion Segments 136

8.8 Summary ... 138

8.9 Additional Details... 138

Chapter 9 Future Work.. 141

9.1 Unifying Related Tasks Occurring Upon Code Changes 141

xiii

9.2 Interactively Participating in Code Review Discussions.................... 142

9.3 Enhancing Code Representations with Natural Language 144

9.4 Applying Research to Real-World Software Development 146

Chapter 10 Conclusions .. 148

References... 151

Vita... 174

xiv

List of Tables

3.1 Number of examples, total and unique candidate tokens, and average num-

ber of candidate tokens per example, for each partition of the dataset. 23

3.2 Micro precision, recall, and F1 scores after training on the primary training

set, evaluated on the annotated and unannotated test sets. Differences be-

tween F1 scores within the same test set are statistically significant based

on a signed rank t-test, with p < 0.01. ... 29

3.3 Micro precision, recall, and F1 scores after training on the primary training

set and a varying number of deleted examples, tested on the annotated test

set.. 31

3.4 Micro precision, recall, and F1 scores for the binary classifier upon ablat-

ing certain features, tested on the annotated test set. All differences in F1

are statistically significant based on a signed rank t-test, with p < 0.01. 32

3.5 Number of examples filtered out of the primary dataset by each heuristic.

Prior to filtering, there are 16,305 examples, and following filtering, there

are 970 examples. ... 33

4.1 Dataset partitions for inconsistency detection .. 45

xv

4.2 Statistics on the average lengths of comment and code representa-

tions for inconsistency detection... 46

4.3 Results for baselines, post hoc, and just-in-time models. Differences in

F1 and Acc between just-in-time vs. baseline models, just-in-time vs.

post hoc models, and just-in-time + features vs. just-in-time models are

statistically significant (p < 0.05). .. 51

4.4 Results for @return examples. Scores for which the difference in perfor-

mance is not statistically significant (p < 0.05) are shown with identical

symbols. ... 53

4.5 Results for @param examples. Scores for which the difference in perfor-

mance is not statistically significant (p < 0.05) are shown with identical

symbols. ... 54

4.6 Results for summary comment examples. Scores for which the difference

in performance is not statistically significant (p < 0.05) are shown with

identical symbols. ... 55

4.7 Dataset sizes before downsampling for inconsistency detection......... 58

5.1 Comment update dataset statistics. Number of examples, projects, and edit

actions; average similarity between Mold and Mnew as the ratio of overlap

to average sequence length; average similarity between Cold and Cnew as

the ratio of overlap to average sequence length; number of unique code

tokens and mean and median number of tokens in a method; and number

of unique comment tokens and mean and median number of tokens in a

comment. .. 66

xvi

5.2 Exact match, METEOR, BLEU-4, SARI, and GLEU scores. Differences

that are not statistically significant (p < 0.05) are shown with identical

symbols. ... 70

5.3 Percentage of annotations for which users selected comment suggestions

produced by each model. All differences are statistically significant (p <

0.05). ... 73

5.4 Exact match, METEOR, BLEU-4, SARI, and GLEU for various combi-

nations of code input and target comment output configurations. Features

and reranking are disabled for all models. Scores for which the difference

in performance is not statistically significant (p < 0.05) are indicated with

matching symbols. .. 75

5.5 Exact match, METEOR, BLEU-4, SARI, and GLEU scores of ablated

models. Scores for which the difference in performance is not statistically

significant (p < 0.05) are indicated with matching symbols. 76

5.6 Total number of edit actions; average number of edit actions per example;

percentage of total actions that is accounted by each edit action type. 77

5.7 Examples from open-source software projects. For each example, we

show the diff between the two versions of the method (left: old version,

right: new version, diff lines are highlighted), the existing @return com-

ment prior to being updated (left), and predictions made by the return

type substitution w/ null handling baseline, reranked generation model,

and reranked edit model, and the gold updated comment (right, from top

to bottom).. 86

xvii

6.1 Comparing performance on update between combined systems on the cleaned

test sample. Scores for which the difference in performance is not statisti-

cally significant are shown with identical symbols.................................. 89

6.2 Comparing performance on inconsistency detection between combined

systems on the cleaned test sample. Scores for which the difference in

performance is not statistically significant are shown with identical symbols. 89

6.3 Comparing performance on update between combined systems on the full

test set. Scores for which the difference in performance is not statistically

significant are shown with identical symbols. .. 91

6.4 Comparing performance on inconsistency detection between combined

systems on the cleaned test sample. Scores for which the difference in

performance is not statistically significant are shown with identical symbols. 91

7.1 Data statistics. In parentheses, we show metrics computed on the filtered

subset. .. 100

7.2 Percent of novel unigrams, bigrams, trigrams, and 4-grams in the reference

description, with respect to the title, U1...Utg , and title + U1...Utg . The

high percentages show that generating solutions is an abstractive task. 101

7.3 Automated metrics for generation. Scores for SEQ2SEQ + Ptr and Hier

SEQ2SEQ + Ptr are averaged across three trials. Differences that are not

statistically significant (p < 0.05) are indicated with matching symbols. 103

xviii

7.4 Human evaluation results: Percent of annotations for which users selected

predictions made by each model. This entails 160 annotations for the

full test set, 86 of which correspond to examples in our filtered subset.

Differences that are not significant (p < 0.05) are indicated with matching

symbols. ... 106

7.5 Automated metrics for generation on CS subset. Differences that are not

statistically significant are indicated with matching symbols..................... 107

7.6 Percent of unigrams, bigrams, trigrams and 4-grams in the prediction (or

reference) which appear in the title and in U1..Utg only (excluding the

title). Lower is better for the title and higher is better for U1..Utg only. 109

7.7 Model outputs for the example shown in Figure 7.1. 109

7.8 Output of PLBART (F) for a sample of examples in the test set. 110

7.9 Automated metrics for combined systems when tp ≤ tg. We compare the

generated description @tp with that if the system had generated @tg. Dif-

ferences that are not statistically significant are indicated with matching

superscripts.. 113

7.10 Performance at tp on examples for which both systems predicted tp ≤ tg

(614 of full and 304 of filtered test sets). All differences are statistically

significant.. 113

7.11 Comparing the main models with low-performing baselines for generat-

ing solution descriptions. Scores for Supervised Extractive are averaged

across three trials. ... 120

xix

7.12 Percent of time tp ≤ tg and for these particular cases, the mean absolute

error between tg and tp... 122

8.1 Disc-BFP dataset statistics. We report averages across all data splits.

Average token lengths (split by punctuation and spacing) are presented in

the second block. Note that we consider only utterances occurring before

the bug-fixing commit. .. 130

8.2 Results on the Disc-BFP test sets. Models are initialized from one

of the two checkpoints originally finetuned on the full BFP training

sets, without and with NL. We then finetune on the Disc-BFP train-

ing sets with various input context representations and evaluate on

the Disc-BFP test sets using the same representations. We indicate

representations that statistically significantly outperform baselines

with symbols. .. 134

8.3 Evaluating exact match (%) if the best performing segment (title or any

individual utterance) from the whole discussion is used at test time (as-

suming that it’s known). .. 136

8.4 We measure the effect of finetuning on the Disc-BFP training sets by com-

paring to a setting in which the Chakraborty and Ray (2021) checkpoints

are used directly for inference (without any finetuning). We also mea-

sure the effect of initializing with checkpoints that have already been fine-

tuned on task-specific data by comparing to models directly initialized

from PLBART and then finetuned on the Disc-BFP training sets. 139

xx

List of Figures

3.1 Examples of comment-code associations, with the boxed/bolded tokens in

the code being associated with the underlined NP in the comment. 17

4.1 In the example from the Apache Ignite project shown in Figure 4.1a, the

existing comment becomes inconsistent upon changes to the correspond-

ing method, and in the example from the Alluxio project shown in Fig-

ure 4.1b, the existing comment remains consistent after code changes. 39

4.2 High-level architecture of our approach for inconsistency detection. 40

4.3 AST-based code edit representation (Medit) corresponding to Figure 4.1b,

with removed nodes in red and added nodes in green. 43

5.2 High-level architecture of our edit model for updating comments. 63

7.1 Caption for LOF ... 95

7.2 Metrics for CS subset, with buckets corresponding to the % of tokens in

reference description which also appear in U1...Utg (disregarding title to-

kens). Bucket 10 corresponds to [0, 10)%, 20 corresponds to [10, 20)%,

etc. .. 108

xxi

7.3 The distribution of Likert scale ratings for the pipelined and jointly trained

systems, presented separately for the cases in which there is sufficient

context @tp and there is insuficcient context @tp. Note that numbers

cannot be directly compared across systems, as the exact examples for

which generation is performed varies. ... 114

8.1 Bug-fixing patch from the toml4j project, with context from the corre-

sponding bug report discussion. ... 125

8.2 Examples from the Disc-BFPmedium test set, with the corresponding bug

report discussion (https://github.com/jhalterman/concurrentunit/

issues/4) and generated solution description. 135

9.1 Code review discussion from the Apache Commons IO project: https:

//github.com/apache/commons-io/pull/171. 143

9.2 Illustration of an NL-enhanced code representation. In 9.2a, we show a

method and its accompanying comment, with annotated spans that can be

aligned to nodes (and edges) in the graph presented in 9.2b. The gray

nodes in the graph correspond to AST nodes, with parent/child edges

shown in blue. Red edges correspond to data flow edges.......................... 145

xxii

https://github.com/jhalterman/concurrentunit/issues/4
https://github.com/jhalterman/concurrentunit/issues/4
https://github.com/apache/commons-io/pull/171
https://github.com/apache/commons-io/pull/171

Chapter 1

Introduction

Software is constantly evolving as developers make changes to refactor code,

support new functionality, and fix bugs. When software projects are developed col-

lectively across large teams and through agile development practices emphasizing

software flexibility, the number of developers making changes and frequency of

these changes increase drastically. Due to the sheer volume, there is a high risk

for overall software quality to deteriorate as developers may unintentionally in-

troduce potential vulnerabilities when making changes. Moreover, from the large

mass of changes that need to be made, those that are the most pressing (e.g., crit-

ical bug fixes) can easily get delayed, especially when developers are preoccupied

by their present assignments or are less familiar with the relevant components of

the project. We aim to support software evolution by upholding software quality

amidst constant code changes and drive software evolution by expediting critical

code changes. We address these two goals through natural language.

Natural language serves as an important medium for search, documentation,

and communication throughout the software development process. For example,

developers search online code bases using natural language queries when they are

trying to find a code implementation of a particular functionality. They write natural

language comments alongside source code to document key aspects of the code.

When a software bug is found, a bug report is opened, in which developers engage

1

in a natural language dialogue to collectively resolve the bug. To foster the role

of natural language in software development, there is growing interest in building

AI-driven tools for various tasks, such as code search and comment generation. In

this thesis, we present novel tasks, datasets, and machine learning models which

leverage natural language to facilitate software evolution.

For our first goal of supporting software evolution by upholding software

quality upon code changes, we focus on natural language comments. Many code

changes require reciprocal updates to the accompanying comments to keep them

in sync; however, this is not always done in practice. Outdated comments which

inaccurately portray the code they accompany adversely affect the software devel-

opment cycle by causing confusion and misguiding developers, hence making code

vulnerable to bugs.

We present our work on just-in-time inconsistency detection (Chapter 4), for

alerting developers of inconsistency immediately upon code changes. To help them

revise comments to reflect these code changes, we investigate generating recom-

mended comment revisions. For this, we design a framework which learns to corre-

late changes across two distinct language representations, to generate a sequence of

edits that are applied to the existing comment to reflect the source code modifica-

tions (Chapter 5). We combine the detection and generation models to build a more

comprehensive automatic comment maintenance system that detects and resolves

inconsistencies (Chapter 6). To relate code and comments for such cross-modal

tasks, we employ a rich feature set derived from our work in learning explicit as-

sociations between entities in a comment and elements in the corresponding code

2

(Chapter 3).

Next, to address the second goal of driving software evolution, specifically

for expediting critical code changes that resolve bugs threatening software quality,

we consider natural language dialogue in bug report discussions. Bug resolution is

often strenuous and time-consuming, involving extended deliberations among mul-

tiple participants, spanning long periods of time. Although a solution often emerges

within the bug report discussion, this can easily get lost in a large amount of text.

Wading through a long discussion to determine whether a solution has been recom-

mended, comprehending it, and then implementing it through the necessary code

or documentation changes in the code base can be daunting, especially for devel-

opers who are not closely following the discussion. This delays implementation,

and consequently, the bug persists in the code base, threatening the reliability of the

software. As developers scan through the long discussion, it is desirable to have an

automated system which can guide them to more easily absorb information relevant

towards implementing the changes.

To address this, we study generating a concise natural language description

of the solution by synthesizing relevant content in the discussion (Chapter 7). To

help quickly mobilize developers for implementation and expedite bug resolution in

a real-time setting, the description should be generated as soon as the necessary con-

text for generating an informative description emerges in the discussion. For this,

we also study a classification task for determining when this context becomes avail-

able and develop pipelined and jointly trained approaches for supporting a real-time

generation system. Additionally, we leverage bug report discussions and generated

3

solution descriptions to guide automated bug-fixing models in generating suggested

code changes for bug resolution (Chapter 8).

Finally, we conclude by summarizing our main contributions (Chapter 10)

and outlining directions for future work (Chapter 9).

4

Chapter 2

Background and Related Work

In this chapter, we discuss background information on relevant topics and

prior work related to the research that we present in this thesis. We begin with an

overview of software evolution (Section 2.1) followed by a high-level summary of

common software-related tasks that use natural language (Section 2.2). We then

describe the two specific forms of natural language that are the focus of this thesis:

source code comments (Section 2.3) and bug report discussions (Section 2.4). Fi-

nally, we outline predominant techniques used to model (Section 2.5) and process

(Section 2.6) software-related data.

2.1 Software Evolution

To quickly deliver software to users, software teams prioritize implementing

the simplest solution to meet current needs rather than designing a more involved

solution which anticipates future needs (Turk et al., 2005). Such a strategy re-

quires a high degree of flexibility, as developers must be able to adapt the software

when new requirements emerge in the future, for improving or extending existing

functionality, enhancing performance, or making it compatible with new environ-

ments (Lehman and Fernáandez-Ramil, 2006). In addition to adding code for ad-

dressing these requirements, developers must also refactor existing code to be able

to efficiently integrate new code (Nyamawe et al., 2019). Efforts to resolve defects

5

causing unintended behavior, or bugs (Murphy-Hill et al., 2015), also contribute to

software evolution. Bugs form as a result of faulty code, invalid assumptions, or

incompatibility to external dependencies (Rodrı́guez-Pérez et al., 2020).

Recently, there is growing work in modeling code changes for facilitating

software evolution. Yin et al. (2019) and Hoang et al. (2020) aim to learn vector

representations for common code change patterns, and Chakraborty et al. (2020)

and Yao et al. (2021) focus on learning to apply common code edits. There have

also been efforts to address more specialized forms of code editing, including bug

fixing (Kim et al., 2013; Ke et al., 2015; Le et al., 2017, 2016; Le Goues et al., 2012;

Tufano et al., 2019), resolving compilation errors (Campbell et al., 2014; Gupta et

al., 2017; Mesbah et al., 2019; Tarlow et al., 2020), refactoring (Tansey and Tile-

vich, 2008; Raychev et al., 2013; Ge et al., 2012; Meng et al., 2015), and suggesting

API-related edits (Nguyen et al., 2010, 2016). Brody et al. (2020) and Foster et al.

(2012) study the task of predicting edit completions for partially edited code snip-

pets and Miltner et al. (2019) put forth edit suggestions by observing repetitive edits

made by the user.

2.2 Natural Language for Software-Related Tasks

There is growing interest in software-related tasks that combine various

forms of natural language (NL) with source code. Many have studied generating

code for a given NL input (Dong and Lapata, 2016; Lin et al., 2018; Rabinovich

et al., 2017; Yin and Neubig, 2017; Agashe et al., 2019; Shin et al., 2019; Ye et

al., 2020; Sun et al., 2020; Xu et al., 2020; Wang et al., 2020a; Dahal et al., 2021).

6

Some have explored code search based on NL queries (Husain et al., 2019; Cam-

bronero et al., 2019; Zhao and Sun, 2020). Prior work examines tasks for generating

natural language commit messages (Loyola et al., 2017; Xu et al., 2019a), release

notes (Moreno et al., 2014), and pull request (PR) descriptions (Liu et al., 2019) to

characterize code changes.

There is also extensive work in generating NL descriptions of code. For this,

Iyer et al. (2016), Yao et al. (2018), and Yin et al. (2018) consider StackOverflow

question titles paired with corresponding code snippets in the answers. Allamanis

et al. (2016), Xu et al. (2019b), Alon et al. (2019), and Fernandes et al. (2019)

consider method names paired with method bodies. Sridhara et al. (2011), Sridhara

et al. (2010), Movshovitz-Attias and Cohen (2013), Hu et al. (2018), Liang and Zhu

(2018), LeClair et al. (2019), Fernandes et al. (2019), Ahmad et al. (2020), and Yu

et al. (2020) consider comments paired with methods or classes.

There has been very limited work in building interactive dialogue-based AI

tools for software engineering, with the exception of a few for a handful of tasks.

This includes code generation (Chaurasia and Mooney, 2017; Gur et al., 2018; Yao

et al., 2019; Austin et al., 2021) and query refinement for code search (Zhang et al.,

2020). Wood et al. (2018) recently built a software-related dialogue corpus through

a “Wizard of Oz” experiment to study the potential of a Q&A assistant during bug

fixing. Lowe et al. (2015) developed a dialogue corpus based on Ubuntu chat logs

to study Q&A assistants for technical support. Bradley et al. (2018) designed a

voice-controlled conversational developer assistant which automates a sequence of

low-level actions (e.g., Git commands) based on user intent.

7

2.3 Source Code Comments

Natural language comments appear alongside source code in the form of

single-line comments, block comments, and documentation comments for classes

and methods (Oracle, 2021). Comments document various aspects of code, includ-

ing functionality, usage, implementation, and error cases (Pascarella and Bacchelli,

2017). Comments are critical for program readability (Tenny, 1988) and compre-

hension (Woodfield et al., 1981), and consequently, software maintenance (Oman

and Hagemeister, 1992).

There have been some efforts to model granular associations between nat-

ural language and source code. Li and Boyer (2015, 2016a) ground noun phrases

within an educational dialogue system to a programming environment and Liu et

al. (2018a) link different change intents contained in a single commit message to

source code files in a software project which have changed within the commit. Ad-

ditionally, Movshovitz-Attias and Cohen (2015) develop an approach for detect-

ing coordinate relationships between nouns in technical text on StackOverflow by

grounding them to Java classes. However, there is very limited work which studies

such associations between comments and source code. While there is work that

maps a single source code component (e.g., class, method, statement) to a comment

based on distance metrics and other simple heuristics (Fluri et al., 2007), this does

not capture the more fine-grained associations, which we study in Chapter 3.

As source code evolves, the accompanying comments must be updated ac-

cordingly; however, developers often fail to do this (Wen et al., 2019; Fluri et al.,

8

2009; Ratol and Robillard, 2017; Jiang and Hassan, 2006; Zhou et al., 2017; Tan

et al., 2007). Outdated comments lead to confusion (Wen et al., 2019; Jiang and

Hassan, 2006; Tan et al., 2007; Zhou et al., 2017) and vulnerability to bugs (Jiang

and Hassan, 2006; Tan et al., 2007; Ibrahim et al., 2012). Prior work analyze how

inconsistencies emerge (Fluri et al., 2009; Jiang and Hassan, 2006; Ibrahim et al.,

2012; Fluri et al., 2007) and the various types of inconsistencies (Wen et al., 2019).

To address this, prior work propose rule-based approaches for detecting pre-

existing inconsistencies in specific domains, including locks (Tan et al., 2007), in-

terrupts (Tan et al., 2011), null exceptions for method parameters (Zhou et al.,

2017; Tan et al., 2012), and renamed identifiers (Ratol and Robillard, 2017). The

comments they consider are consequently constrained to certain templates relevant

to their respective domains. Corazza et al. (2018) and Cimasa et al. (2019) address

a broader notion of coherence between comments and code through text-similarity

techniques, and Khamis et al. (2010) determine whether comments, specifically

@return and @param comments, conform to particular format. In Chapter 4,

we also study inconsistency detection. Unlike prior work, we develop a general-

purpose, machine learning approach that is not catered towards any specific types

of inconsistencies or comments. We instead capture deeper code/comment rela-

tionships by learning their syntactic and semantic structures. More importantly,

in contrast to all of these listed approaches which detect inconsistencies that al-

ready exist in a code base, we aim to detect inconsistencies immediately upon code

changes, before they are merged into the code base.

There have also been some efforts for performing inconsistency detection

9

upon code changes. Liu et al. (2018b) detect inconsistencies in a block/line com-

ment upon changes to the corresponding code snippet using a random forest clas-

sifier with hand-engineered features. Our approach does not require such extensive

feature engineering. Although their task is slightly different, we consider their ap-

proach as a baseline. Stulova et al. (2020) concurrently present a preliminary study

of an approach which maps a comment to the AST nodes of the method signature

(before the code change) using BOW-based similarity metrics. This mapping is

used to determine whether the code changes have triggered a comment inconsis-

tency. Our model instead leverages the full method context and also learns to map

the comment directly to the code changes. Malik et al. (2008) predict whether a

comment will be updated using a random forest classifier utilizing surface features

that capture aspects of the method that is changed, the change itself, and ownership.

They do not consider the existing comment since their focus is not inconsistency

detection; instead, they aim to understand the rationale behind comment updating

practices by analyzing useful features. Sadu (2019) develops at approach which

locates inconsistent identifiers upon code changes through lexical matching rules.

Svensson (2015) builds a system to mitigate the damage of inconsistent comments

by prompting developers to validate a comment upon code changes. Comments that

are not validated are identified, indicating that they may be out of date and unre-

liable. Nie et al. (2019) present a framework for maintaining consistency between

code and todo comments by performing actions described in such comments when

code changes trigger the specified conditions to be satisfied.

10

2.4 Bug Report Discussions

Software bugs in open-source projects are reported through issue tracking

systems like Bugzilla, Jira, and GitHub Issues. When a bug report is opened, de-

velopers engage in a discussion by posting comments to collectively understand the

problem, diagnose the cause, and ultimately devise a solution (Arya et al., 2019;

Noyori et al., 2019). The discussion can often be very long (Liu et al., 2020),

encompassing comments from a number of different participants (Kavaler et al.,

2017), and this deliberation can go on for extended periods of time (Kikas et al.,

2015). Following the discussion, the bug is generally resolved by implementing

the solution through code changes in the project’s code base (Zhang et al., 2012).

These changes can be implemented by core project members and other active con-

tributors (Ye and Kishida, 2003), or less active developers, including peripheral de-

velopers (Krishnamurthy et al., 2016) and first-time contributors (Tan et al., 2020).

Many tasks have been proposed to streamline this process and consequently

expedite bug resolution. This includes predicting severity (Lamkanfi et al., 2010;

Chaturvedi and Singh, 2012; Tian et al., 2012a; Yang et al., 2014; Gomes et al.,

2019; Arokiam and Bradbury, 2020), determining validity (Fan et al., 2020; He et

al., 2020), detecting duplication (Tian et al., 2012b; Lazar et al., 2014; Aggarwal et

al., 2015; Hindle and Onuczko, 2019), assigning relevant developers (Anvik, 2006;

Baysal et al., 2009; Xi et al., 2018; Baloch et al., 2021), categorizing reports (Huang

et al., 2011; Thung et al., 2012), and localizing the relevant “buggy” code within

the code base (Saha et al., 2013; Rahman and Roy, 2018; Loyola et al., 2018; Zhu et

11

al., 2020; Koyuncu et al., 2019). There have also been efforts to better understand

the contents of bug report discussions through sentiment analysis (Ding et al., 2018;

Destefanis et al., 2018), language complexity analysis (Kavaler et al., 2017), dia-

logue act classification (Enayet and Sukthankar, 2020), and summarization (Rastkar

et al., 2014; Jiang et al., 2017; Li et al., 2018b; Liu et al., 2020).

In Chapter 7, we propose a task for generating a natural language solution

description by synthesizing content relevant to the solution from within the bug re-

port discussion, as soon as the relevant context becomes available in the ongoing

discussion. While this shares some similarities with bug report summarization, we

identify some major differences. Approaches for bug report summarization are de-

signed to generate holistic summaries of bug reports, with a summary being 25%

of the length of the bug report (Liu et al., 2020). We instead aim to generate a con-

cise description that captures a specific aspect of the bug report, namely the content

related to the solution. Next, bug report summaries are not widely available, so

approaches for this task rely on unsupervised techniques (Li et al., 2018b; Liu et

al., 2020) or supervision from a small amount of data (Rastkar et al., 2014; Jiang et

al., 2017). On the other hand, our approach for obtaining noisy supervision (Sec-

tion 7.2) allows us to train supervised models on a large amount of data. Moreover,

bug report summarization is a post hoc task, done after the bug has been resolved,

to help developers address related bug reports in the future. In contrast, our goal is

to help resolve the present bug report, so our system must learn when to perform

generation during an ongoing discussion. Approaches for bug report summarization

have been predominantly extractive whereas ours is abstractive.

12

2.5 Code Representations

To perform well on code-related tasks, neural models must learn to under-

stand and generate source code representations. Some have represented code as

a simple sequence of tokens (Iyer et al., 2016; Tufano et al., 2019; Ahmad et al.,

2020) while others have considered capturing structural properties of code (i.e., ab-

stract syntax tree (AST), data flow, control flow) through tree-based (Rabinovich et

al., 2017; Yin and Neubig, 2017; Alon et al., 2019, 2020; Sun et al., 2020; Chen

et al., 2019a; Wang et al., 2020b; Bui et al., 2021) and graph-based (Nguyen and

Nguyen, 2015; Li et al., 2016; Allamanis et al., 2018b; Hellendoorn et al., 2020;

Tarlow et al., 2020; Wang et al., 2020c; Mehrotra et al., 2021; Wei et al., 2020;

LeClair et al., 2020; Abdelaziz et al., 2020; Yasunaga and Liang, 2020; Nair et al.,

2020; Cummins et al., 2021) neural approaches.

For tasks entailing code edits, prior work has put forth various types of

edit representations, including token-level and line-level sequential representations,

AST-based representations, as well as graph-based representations (Shin et al.,

2018; Yin et al., 2019; Chakraborty et al., 2020; Tao et al., 2021). In Section 4.2,

we designed a span-level sequential edit representation as well as a consolidated

AST-based edit representation which we found to better correlate with comments

and comment edits, for the tasks we study in Chapters 4-6.

With large pretrained language models leading to remarkable progress for

numerous downstream tasks in NLP, it is no surprise that there are growing efforts

to build analogous models for code. Following the ELMo framework (Peters et

13

al., 2018), Karampatsis and Sutton (2020b) developed SCELMo. C-BERT (Bu-

ratti et al., 2020), CuBERT (Kanade et al., 2020), CodeBERT (Feng et al., 2020),

GraphCodeBERT (Guo et al., 2021), and TreeBERT (Jiang et al., 2021b) all ap-

ply BERT-like (Devlin et al., 2019) training objectives to large amounts of code

(and documentation in some cases) extracted from GitHub. PyMT5 (Clement et al.,

2020) and CodeT5 (Wang et al., 2021) are pretrained much like T5 (Raffel et al.,

2020). Ahmad et al. (2021) proposed PLBART, which was pretrained on a large

amount of code from GitHub and software-related text from StackOverflow using

BART-like (Lewis et al., 2020) training objectives. Inspired by GPT-2 (Radford

et al., 2019), Svyatkovskiy et al. (2020) built GPT-C, and Lu et al. (2021) built

CodeGPT. Chen et al. (2021a) fine-tuned GPT-3 (Brown et al., 2020) on data from

millions of GitHub repos to build Codex, which powers GitHub Copilot1. Chowdh-

ery et al. (2022) developed PaLM, a large pretrained language model that achieves

state-of-the-art performance through few-shot learning on hundreds of tasks, in-

cluding code understanding and generation tasks. Furthermore, to help these large

models better reason about complex programs, some have proposed breaking down

problems into multiple steps (Nye et al., 2021; Nijkamp et al., 2022).

In Chapters 7-8, we explore how such large models can be applied on new

tasks and new forms of data in this domain by leveraging PLBART for learning

from bug report discussions.

1https://copilot.github.com/

14

https://copilot.github.com/

2.6 Handling Noise in Online Code Repositories

Though online code bases like GitHub and StackOverflow offer large vol-

umes of data for code-related tasks, this data is often noisy (Allamanis, 2019; Yin

et al., 2018). For instance, automatically collected data for the task of commit

message generation can consist of poorly written commit messages (Etemadi and

Monperrus, 2020). While deep learning models are robust to some level of noise,

the garbage in, garbage out principle still holds (Geiger et al., 2020; Lee et al.,

2022), in which having a large number of noisy examples impairs a model’s ability

to learn. So, training a model on too many examples with poor target commit mes-

sages can result in the model learning to generate low-quality commit messages.

For more effective supervision and also for more accurate evaluation, automatically

mined data from online code bases often need to be filtered to reduce noise. Iyer et

al. (2016), Yin et al. (2018), and Yao et al. (2018) trained classifiers on manually

annotated subsets of data for this purpose. Others used task-specific heuristics (Al-

lamanis et al., 2016; Hu et al., 2018; Fernandes et al., 2019; Allamanis, 2019). For

example, Allamanis et al. (2016) discard overridden methods for the method nam-

ing task due to them having repetitive names.

Similar to prior work, we also find it necessary to filter data to handle noise

for all the various datasets we collect as part of this thesis. We design filtering

heuristics specific to the tasks we study (Sections 3.2, 4.3, 7.2).

15

Chapter 3

Associating Natural Language Comment and Source

Code Entities

To keep comments in sync with the corresponding body of code, inconsis-

tent comments which materialize as a result of code changes should be quickly de-

tected and updated. Inconsistencies often emerge as a result of discrepancy between

certain comment entities and certain code entities that have changed. In order to de-

termine whether a particular comment entity becomes inconsistent upon changes to

certain code entities and also how it should be updated to reflect these changes, we

formulate a novel task which aims to learn explicit associations between entities in

a comment and entities in the corresponding code. To perform this task, we design

a set of highly salient features, which we later show to be useful for comment in-

consistency detection (Chapter 4) and update (Chapter 5). This chapter is based on

work that was presented in Panthaplackel et al. (2020a).

3.1 Task

Given a noun phrase (NP) in a comment, the task is to classify the relation-

ship between the NP and each candidate code token in the corresponding source

code as either associated or not associated. The candidate set includes all tokens

other than select Java keywords (e.g., try, public, throw), operators (e.g., =), and

16

(a) Example from adriaanm-maxine-
mirror.

(b) Example from node-sharing-plugin.

Figure 3.1: Examples of comment-code associations, with the boxed/bolded tokens in the
code being associated with the underlined NP in the comment.

symbols (e.g., brackets, parentheses). These elements are related to the program-

ming language syntax and are commonly not described in comments. For instance,

in Figure 3.1a, the tokens int, opcode, and currentBC are associated with the NP

“the current bytecode” but int (the return type), setBCI, and nextBCI are not.

This task shares similarities with anaphora resolution in natural language

texts, including ones that explicitly refer to antecedents (coreference) as well as

ones linked by associative relations (bridging anaphora) (Mitkov, 1999). In such

a setting, the selected noun phrase within the comment is the anaphor, and to-

kens belonging to the source code serve as candidate antecedents. However our

task is distinct from either in that it requires reasoning with respect to two dif-

ferent modalities (Allamanis et al., 2015; Loyola et al., 2017; Allamanis et al.,

2018a). In Figure 3.1b, “problems” explicitly refers to e, but we need to know

that InterruptedException is its type, which is a kind of Exception, and that

Exception is a programming term for “problems.”

Further, in our setting, an NP in the comment could be associated with mul-

17

tiple, distinct elements in the source code that do not belong to the same “chain.”

For these reasons, we frame our task broadly as associating a noun phrase in a nat-

ural language comment with individual code tokens in the corresponding body of

code.

3.2 Data

As an initial step towards learning these associations, we focus on Javadoc

@return1 comments, which serve to describe the return type and potential return

values that are dependent on various conditions within a given method. Since these

comments describe the output, which is computed by the various statements that

make up the method, we find them to provide a fairly comprehensive overview of

functionality. We also observe that @return comments tend to be more structured

than other forms of comments, making it a cleaner data source and consequently, a

reasonable starting point for the proposed task. We construct a dataset by extracting

examples from all commits of popular open-source projects on GitHub. We rank

the projects by the number of stars, and used the top ∼1,000 projects, as they are

considered to be of higher quality (Jarczyk et al., 2014). Each example we extract

consists of a code change to a method body as well as a change to the corresponding

@return comment.
1https://docs.oracle.com/javase/8/docs/technotes/tools/windows/

javadoc.html

18

https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html

/**
-.. * @return the opcode of the next bytecode
+.. * @return the opcode of the current bytecode

*/
public int next() {

+....... final int opcode = currentBC();
setBCI(nextBCI);

-....... return currentBC();
+....... return opcode;
}

(a) Diff

-... * @return the opcode of the next bytecode
public int next() {

setBCI(nextBCI);
-....... return currentBC();
}

(b) Before commit

+.. * @return the opcode of the current bytecode
public int next() {

+....... final int opcode = currentBC();
setBCI(nextBCI);

+....... return opcode;
}

(c) After commit

Figure 3.2: Diff from a commit of the adriaanm-maxine-mirror project. Green lines start-
ing with ‘+’: added content; red lines starting with ‘-’: removed. Based on the supervision
provided by the diff, in Figure 3.2c, the bolded code tokens are automatically labeled as
associated with the underlined NP in the comment.

3.2.1 Noisy Supervision

The core idea of our noisy supervision extraction method is to utilize re-

vision histories from software version control systems (e.g., Git), based on prior

research showing that source code and comments co-evolve (Fluri et al., 2007). En-

tities in comments have a higher chance of being associated with entities in source

code if they were edited “at the same time”, which can be approximated by “at the

same commit”. Therefore, mining such co-edits allow us to obtain noisy supervi-

sion for this task: we use the version control system Git to isolate parts of the code

and comment that are added and deleted together.

19

Additions: We assign noisy labels to code tokens based on the intuition that parts

of the code that are added are likely associated with the parts of the comment which

are also added. Namely, we label code tokens in added lines in a given commit as

associated with the NP that is introduced in the comment within the same commit,

and we label all other code tokens as not associated with the NP. These positive

labels are noisy since a developer may also make other code changes that are not

necessarily relevant to the NP that is added. On the other hand, the negative labels

(not associated) have minimal noise, since code tokens in lines that are retained

from the previous version of the code are unlikely to be associated with an NP that

does not exist in the previous version of the comment. This set of examples we

collect from additions constitute our primary dataset.

Deletions: If we assume that the code tokens in deleted lines are associated with an

NP that is deleted from the comment, we can extract one more example from each

commit. However, deleted NPs are much more subtle in this respect than added

NPs. As stated above, since the added NP does not exist in the previous version,

it is unlikely that code tokens in lines that existed previously are associated with

it. On the other hand, since the deleted NP does exist in the previous version, we

cannot reliably claim that a code token in a line that is unchanged between versions

is not associated with the NP. This could consequently lead to more noise for the

negative label in addition to the noise that inherently exists for the positive label.

For instance, in the deleted example from Figure 3.2, nextBCI is automatically

labeled as not associated with the deleted NP “the next bytecode” even though it

20

is arguably associated. Hence we separate such examples from our primary dataset

and form another set of examples we refer to as the deletions dataset.

3.2.2 Processing

We examine the two versions of the code and comment in a commit: before

commit and after commit. Using spaCy2, we extract NPs from the two versions

of the comment, and using the javalang library, we tokenize the two versions of

the code. Using the difflib library, we compute the diff between the NPs in the

two versions of the comment as well as the diff between the two versions of the

tokenized code sequences. These diffs are marked with plus and minus signs for

each changed line, as shown in Figure 3.2.

From the diffs, we identify the NPs and code tokens that are unique to either

the before or the after versions of the comment and code respectively, allowing us to

construct two pairs in the form (NPs, associated code tokens). If either the extracted

NPs or list of associated code tokens is empty, we discard the pair. Additionally, we

discard pairs consisting of more than one NP to obtain unambiguous training data

for determining which code tokens should be associated with which NP. Therefore,

the final set of pairs are in the form (NP, associated code tokens). Note that for

any token in the associated code tokens, if it is not a common Java type (e.g., int,

String), we also treat any other token in the sequence with the same literal string

as associated.

We then go back to the before and after versions of the code (excluding

2https://spacy.io/

21

https://spacy.io/

Java keywords, operators and symbols, c.f. Section 3.1). We tokenize the code

sequence and label any token that is not present in the associated code tokens as

not associated. Following this procedure, each example consists of an NP and a

sequence of labelled code tokens. The example extracted from the previous version

(before) is added to the deletions dataset and the one from the new version (after)

is added to the primary (additions) dataset.

3.2.3 Filtering

We apply heuristics to reduce noise, as done in prior work (Section 2.6). We

impose constraints to filter out duplicates, trivial cases, and examples consisting

of code and comment changes that are unrelated. We define trivial cases as those

examples involving single-line methods which consist of only a few code tokens

that are all likely to be associated with the NP as well as those examples in which

all associations can be resolved with a simple string matching tool.

Additionally, after manually inspecting a sample of approximately 200 ex-

amples, we establish heuristics to minimize the number of examples with unrelated

code and comment changes: (1) those that have lengthy methods or a substantial

number of code changes which are likely not to all be correlated with the comment;

(2) cases with changes to the code and comment that are related to re-formatting,

typo fixes, and simple rephrasing; (3) examples involving comment changes en-

tailing verb phrases as the corresponding code changes could be related to these

phrases rather than the NP. In addition, since we focus on the @return tag that

serves to describe the return value of a Java method, we eliminate examples with

22

Candidate Code Tokens
Examples Total Unique Average

Train 776 23,188 5,908 29.9
Valid 77 2,488 911 32.3
Test (annotated) 117 3,592 1,266 30.7
Deletions 867 25,203 6,186 29.1

Table 3.1: Number of examples, total and unique candidate tokens, and average number
of candidate tokens per example, for each partition of the dataset.

code changes that do not include either a change to the return type or at least one

return statement.3

Applying such heuristics substantially reduced the size of our dataset. How-

ever, we determined such filtering to be necessary after manually inspecting 200

examples and observing significant noise, and finding that is consistent with afore-

mentioned prior work, which pointed out that the levels of noise in large code bases

is too substantial to learn from without aggressive filtering and pre-processing.

3.2.4 Dataset Statistics

Upon filtering, we partition our primary dataset into train, test, and valida-

tion sets, shown in Table 3.1. For more reliable evaluation, the 117 examples in

the test set are annotated by one of the authors who has 7 years of experience with

Java. Based on the assumption that there is minimal noise in the code tokens auto-

matically labeled as not associated, only the tokens that are automatically labeled

as associated are re-labeled as associated or not associated.4 Furthermore, since we

conduct some experiments involving training data from the deletions dataset, we

3See Section 3.6.2 for more details.
4See Section 3.6.3 for examples of annotations.

23

filter out any example from the deletions dataset that is extracted from the same

commit as an example from the test set. Based on the training set, the median

number of words in the NP is 2 with an interquartile range (IQR, difference be-

tween 25% and 75% percentile)5 of 1, the median number of code tokens is 25 with

IQR 21, and the median number of associated code tokens is 10 with IQR 13. Our

dataset is publicly available.6

3.3 Representations and Features

We design a set of features that encompasses surface features, word repre-

sentations, code token representations, cosine similarity between terms, code struc-

ture, and the Java API. Our models leverage the 1,852-dimensional feature vector

that results from concatenating these features.

Surface Features: We incorporate two binary features, subtoken matching and

presence in return statement, which we also use in two of the baseline models that

are discussed in the next section. The subtoken matching feature indicates that a

candidate code token matches exactly with a component of the given noun phrase,

at the token-level or subtoken-level (ignoring case). Subtokenization refers to split-

ting a conjoined code token into its subtokens (e.g., camelCase → camel, case;

snake case → snake, case). The presence in return line feature indicates whether

a candidate code token appears in a return statement or matches exactly with any

token that appears in a return statement.
5We report IQR since the distributions are not normal.
6https://github.com/panthap2/AssociatingNLCommentCodeEntities

24

https://github.com/panthap2/AssociatingNLCommentCodeEntities

Word and Code Token Representations: In order to derive representations of

terms in the comment and code, we pre-train character-level and word-level em-

beddings for the comment and character-level, subtoken-level, and token-level em-

beddings for the code. These 128-dimensional embeddings are trained on a much

larger corpus, consisting of 128,168 @return tag/Java method pairs that are ex-

tracted from GitHub. The pre-training task is to generate @return comments for

Java methods using a single-layer, unidirectional SEQ2SEQ model (Sutskever et al.,

2014). This allows us to learn embeddings which capture aspects of comments and

source code, which are likely not captured in other types of embeddings that are

pre-trained on only natural language text (e.g., BERT (Devlin et al., 2019)).7 We

use averaged embeddings to derive representations for the NP and candidate code

token. Additionally, in order to provide a meaningful context, we average the em-

beddings corresponding to the full @return comment as well as the embeddings

corresponding to the tokens in the same line in which the candidate token appears.

Cosine Similarity: Recent work has used joint vector spaces for code/natural lan-

guage description pairs and has shown that a body of code and its corresponding

description have similar vectors (Gu et al., 2018). Since the content of @return

comments often mention entities in the code, rather than modeling a joint vector

space, we project the NP into the same vector space of the code by computing its

vector representations using the embeddings trained on Java code. We then com-

7Pretrained models like CodeBERT (Feng et al., 2020) were not available at the time of this
work, though we believe embeddings from such models could be useful here.

25

pute the features as the values corresponding to the cosine similarity between the

NP and the candidate code token at the token-level, subtoken-level, and character-

level. The same procedure is followed to compute the cosine similarity between the

NP and the line in the code on which the candidate code token appears.

Code Structure: An abstract syntax tree (AST) captures the syntactic structure of

a given body of code in tree form, as defined by Java’s grammar. Using javalang’s

AST parser, we derive the AST corresponding to the method. In order to represent

properties of the candidate code token with respect to the overall structure of the

method, we extract the node types of its parent and grandparent and represent them

with one-hot encodings. This provides deeper insight into the role of a candidate

code token within the broader context of the method by conveying details such as

whether it appears within a method invocation, a variable declaration, a loop, an

argument, a try/catch block, and so on.

Java API: We use one-hot encodings to represent features related to common Java

types and the java.util package, which is a collection of utility classes, such as

List, that we found to be used frequently. We hypothesize that these features could

shed light into patterns that are exhibited by these frequently occurring tokens. To

capture local context, we also include Java-related characteristics of code tokens

adjacent to the candidate token such as whether it is a common Java type or one of

the Java keywords.

26

3.4 Models

We develop two models representing different ways to tackle our proposed

task: binary classification and sequence labeling. We also formulate multiple rule-

based baselines.

3.4.1 Binary Classification

Given a sequence of code tokens and an NP in the comment, we indepen-

dently classify each token as associated or not associated. Our classifier is a feed-

forward neural network with 4 fully-connected layers and a final output layer. As

input, the network accepts a feature vector corresponding to the candidate code to-

ken (discussed in the previous section) and the model outputs a binary prediction

for that token.

3.4.2 Sequence Labeling

Given a sequence of code tokens and an NP in the comment, we jointly

classify the tokens regarding whether or not they are associated with the NP. The

intuition behind structuring the problem this way is that the classification of a given

code token can often depend on classifications of nearby tokens. For instance, in

Figure 3.2, the int token that denotes the return type of the next() function is not

associated with the specified NP, whereas the int token that is adjacent to opcode

is considered to be associated because opcode is associated, and int is its type.

In order to re-establish the consecutive ordering of the original sequence, we

inject removed Java keywords and symbols back into the sequence and introduce a

27

third class which serves as the gold label for these inserted tokens. Specifically, we

predict the three labels: associated, not associated, and a pseudo-label Java. Note

that we disregard the classifications of these tokens during evaluation, i.e., if this

pseudo-label is predicted for any other code token at test time, we automatically

assign it to be not associated (on average, this happens ∼1% of the time). We

construct a CRF model (Lample et al., 2016) by applying a neural CRF layer on

top of a feedforward neural network that resembles that of the binary classifier in

structure, except that the network accepts a matrix consisting of the feature vectors

of all the tokens in the method.

3.4.3 Baselines

Random. Random classification of a code token as associated or not based on a

uniform distribution.

Weighted random. Random classification of a code token as associated or not

associated based on the probabilities of the associated and not associated classes as

observed from the training set which are 42.8% and 57.2% respectively.

Subtoken matching. Any token for which the subtoken matching surface feature

(introduced in the previous section) is set to be true is classified as associated while

all other tokens are classified as not associated. Note that there will never be a case

in which all associated code tokens will match at the token-level or subtoken-level

with the noun phrase. We removed such trivial examples from the dataset during

filtering because they can be resolved with simple string-matching tools and are not

the focus of this work.

28

Annotated Unannotated
Model Precision Recall F1 Precision Recall F1
Random 32.1 47.2 38.2 39.6 49.8 44.1
Weighted random 33.8 42.8 37.8 39.5 42.5 40.9
Subtoken matching 56.7 33.8 42.8 58.3 29.4 39.1
Presence in return line 51.5 45.8 48.5 56.1 42.3 48.2
Binary Classifier 57.4 65.4 61.0 64.7 63.3 64.0
CRF 48.4 66.3 55.9 52.1 58.1 53.3

Table 3.2: Micro precision, recall, and F1 scores after training on the primary training set,
evaluated on the annotated and unannotated test sets. Differences between F1 scores within
the same test set are statistically significant based on a signed rank t-test, with p < 0.01.

Presence in return statement. Any token for which the presence in a return state-

ment surface feature (discussed in the previous section) is set to be true is classified

as associated and all other tokens are classified as not associated.

3.5 Results

We evaluate our models using micro-level precision, recall, and F1 metrics.

That is, we evaluate our models at the token-level, on the 3,592 NP-code token pairs

in the test set. All reported scores are averaged across three runs. In the following

sections, we discuss results from training on just the primary training set, results

from incorporating the deletions dataset into training, and results from an ablation

study of the features used by the binary classifier and CRF model.

3.5.1 Training on Primary Dataset

The results of the three baselines and our models are given in Table 3.2. Our

analysis is primarily based on the results on the annotated test set, and we show the

29

results from the unannotated set simply for completeness. Relative to scores from

the unannotated set, the models tend to achieve lower precision scores and higher

recall scores with the annotated set. This is expected since the number of tokens

with the gold label associated was reduced during the annotation procedure.

Both of our models outperform the baselines by wide margins. See Sec-

tion 3.6.4 for sample output from the binary classifier. Although the recall score of

the CRF is slightly higher than that of the binary classifier, it is clear that the binary

classifier performs better overall with respect to the F1 score. This may be due to the

fact that the CRF requires additional parameters to model dependencies which may

not be set accurately, given the limited amount of example-level data in our exper-

imental setup. Furthermore, while we expect the CRF to be more context-sensitive

than the binary classifier, we do incorporate many contextual features (embeddings

of surrounding and neighboring tokens, similarity of context with the NP, and Java

API knowledge of neighboring tokens) with the binary classifier. With error anal-

ysis we found that the CRF model tends to make mistakes over tokens following

Java keywords, as well as tokens that appear later in a method. This indicates that

the CRF model could be struggling to reason over longer range dependencies and

over longer sequences. Additionally, in contrast to the binary classification setting,

Java keywords are present in the sequence labeling setting, so the CRF model must

reason about many more code tokens than the binary classifier.

30

Binary Classifier CRF
of Deletion Examples Precision Recall F1 Precision Recall F1

0 57.4 65.4 61.0 48.4 66.3 55.9
100 57.2 63.9 60.3 48.2 73.6 58.2
200 55.4 68.9 61.4 51.2 68.5 58.5
500 62.4 69.3 65.5 50.4 74.0 59.9
867 64.4 71.5 67.7 52.8 74.5 61.8

Table 3.3: Micro precision, recall, and F1 scores after training on the primary training set
and a varying number of deleted examples, tested on the annotated test set.

3.5.2 Augmenting Training with Deletions

We increase the training set by adding data in stages from the deletions

dataset. The results from training the binary classifier and CRF on these new sup-

plemented datasets are shown in Table 3.3. For the binary classifier, adding 500 and

867 deleted examples seems to provide a significant boost in F1, and for the CRF

model, adding any amount of deleted examples leads to improved performance.

This indicates that our models can learn from data that we consider to be more

noisy than the primary training set that we collect. Since we are able to find value

in both the added case as well as the deleted case corresponding to a given commit,

we are able to substantially increase the upper bound on the amount of data that

can be collected to train models that perform our proposed task. This is particularly

encouraging given how difficult it is to obtain a large amount of high-quality data

for this task. Despite having extracted examples from methods in source code files

across all commits of more than 1,000 projects, we only acquire a total of 970 ex-

amples from added cases after filtering for noise. By including the 867 examples

from deleted cases, we increase this number to 1,837. While this is still a relatively

31

Model Precision Recall F1
Full 57.4 65.4 61.0
- code embeddings 51.9 61.7 56.2
- comment embeddings 52.3 67.5 58.7
- cosine similarity 58.2 61.3 59.7
- Java API & AST 54.3 64.1 58.8

Table 3.4: Micro precision, recall, and F1 scores for the binary classifier upon ablat-
ing certain features, tested on the annotated test set. All differences in F1 are statistically
significant based on a signed rank t-test, with p < 0.01.

small number, we expect the potential size to increase substantially as the scope of

the task is extended to other comments beyond the CodeIn@return comments that

we focus on in this paper for an initial study.

3.5.3 Ablation Study

We conduct an ablation study on the binary classifier trained on the primary

dataset in order to analyze the impact of the features we introduce. We ablate co-

sine similarity, embedding, and the Java-related features. The embedding features

include code embeddings (i.e., the embeddings corresponding to the candidate code

token and the tokens in the line of the method) and comment embeddings (i.e., the

embeddings corresponding to the NP and CodeIn@return comment). 8 Based on

the results shown in Table 3.4, all of these features contribute in a positive manner

towards the performance of the full model, with respect to the F1 metric.

8Models without embeddings also do not include cosine similarity, as the latter depends on the
embeddings.

32

Category Filter # Discarded

Trivial
Short methods 5,218
Lexical string matching 828

Unrelated

No return statement/type change 3,709
Long methods 692
Many added code tokens 67
Many diff lines 6
Added VP 397
Re-formatting/typos/rephrasing 1,275

Other

Duplicates 546
Multiple NPs added 1,574
No NPs added 856
No code tokens added 167

15,335

Table 3.5: Number of examples filtered out of the primary dataset by each heuristic. Prior
to filtering, there are 16,305 examples, and following filtering, there are 970 examples.

3.6 Additional Details

3.6.1 Model Parameters

The 4 fully-connected layers have 512, 384, 256, and 128 units. Dropout is

applied to each of these with probability 0.2. We terminate training if there is no

improvement in the F1 score on the validation set for 5 consecutive epochs (after

10 epochs), and we use the model corresponding to the highest validation F1 score

up till that point. We implemented both models with TensorFlow.

3.6.2 Filtering Details

The number of examples filtered out from the primary dataset by each heuris-

tic is shown in Table 3.5. In this section, we discuss specific parameters used for

33

many of these filtering cases.

Poorly maintained projects We extract the majority of examples from the top

1,000 projects in order to minimize the use of poorly maintained projects that may

have inconsistent code and comments as a result of developers not updating com-

ments when making code changes (Jiang and Hassan, 2006).

Trivial cases We do not consider methods with less than 4 lines of code as we

observe that such methods generally have only one line in the method body, and we

believe it would be trivial to classify the few code tokens present in such a method.

Additionally, we remove cases in which the lexical string of all the associated code

tokens match some component of the given NP in the comment, either at the token-

level or subtoken-level (e.g., for NP ”max result” and code token maxResult).

Unrelated code and comment changes Because we are focusing on the @return

tag of the Javadoc comment, code changes involving a return statement or return

type are more likely to be relevant to the change in the comment, and so we only

consider examples extracted from commits in which the code change also includes

either a change to at least one return statement or the return type of the method.

Furthermore, we discard examples involving methods that are longer than 30 lines,

which is the 90th percentile for method lengths in the original primary dataset that

we collect. Since it is unlikely that a @return comments can capture the essence

of extremely long methods, we eliminate such cases. Moreover, most coding stan-

dards discourage such long methods, suggesting that these methods could be poorly

written and possibly even poorly maintained. Additionally, the 90th percentile for

the number of associated code tokens is approximately 40, and in order to reduce

34

the number of cases in which there are substantial code changes that may be un-

related to the change in the comment, we remove such examples from our dataset.

We also eliminate examples extracted from diffs involving more than 500 lines for a

similar reason. To add, we disregard examples in which there are changes involving

verb phrases in the comment as the code changes could be related to these phrases

rather than the NP. We impose constraints to limit commits that involve insubstan-

tial changes to the code or comment such as re-formatting, typo fixes, and simple

rephrasing.

3.6.3 Annotation Examples

/* @return a String representing
the current active version of the ConfigStore.*/

@Override
public String getCurrentVersion() {

try {
return storeMetadata.getCurrentVersion();
} catch ((((((IOException �e) {

Path configStoreDir = new Path(new
Path(this.physicalStoreRoot),
CONFIG STORE NAME);

throw new RuntimeException(String.
format(”Error while checking
current version for configStoreDir
: \”%s\””, configStoreDir), �e);

}
}

(a) eclipse-egit example

/* @return the modified content*/
public byte[] getModifiedContent() {

byte[] result = new byte[modifiedContent.length];

���System .((((arraycopy (modifiedContent, �0, result, �0,
modifiedContent.length);

return result;
}

(b) apache-incubator-gobblin example

Figure 3.3: Annotation example with all the bolded code tokens being automatically la-
beled as associated with the underlined NP in the comment and the crossed out tokens being
manually re-labeled as not associated.

We illustrate our annotation procedure in Figure 3.3. We consider only code

tokens that are automatically labeled as associated and re-label any of these that we

find to be irrelevant to the specified NP as not associated.

35

3.6.4 Sample Output

/* @return the SaveStepExecutionRes*/
private SaveStepExecutionRes

handleSaveStepExecution(
SaveStepExecutionReq request) {

SaveStepExecutionRes response = null;
try {

StepExecution stepExecution =
JobRepositoryRpcFactory.
convertStepExecutionType(request.
stepExecution);

stepExecutionDao.saveStepExecution(
stepExecution);

response = new SaveStepExecutionRes(
stepExecution.getId(), stepExecution.
getVersion());

} catch (Exception e) {
log.error(”error handling command”, e);

}
return response;

}

(a) spring-yarn example

/* @return The ”advance” value or 0 if there is no text.*/
private int getTextWidth(TextLayout textLayout) {

if (textLayout != null) {
return (int)Math.ceil(

textLayout.getAdvance());
}
return 0;

}

(b) apache-pivot example

Figure 3.4: Sample output of the binary classifier. The model classifies the bolded code
tokens as associated with the underlined NP in the comment. The manually labeled, gold
code tokens that are associated with the NP are in blue.

We provide sample output from the binary classifier in Figure 3.4. In all

examples, the bolded code tokens denote the tokens that the model predicts to be

associated with the underlined NP in the comment and the highlighted ones indicate

the true code tokens that the NP is associated with, as determined by manual anno-

tation. For the example shown in Figure 3.4a, the model’s predictions matches the

gold associations in the annotated test set. In Figure 3.4b, the classifier accurately

classifies the code token that is truly associated with the NP; however, it incorrectly

identifies Math and 0 to be associated with the NP. This could be because the word

“value” is often correlated with mathematical operations and numerical values, and

so it could have possibly appeared in the training data with code tokens such as

36

Math and 0.

3.7 Summary

In this work, we formulated the task of associating entities in comments

with elements in source code. We proposed a novel approach for obtaining noisy

supervision for this task, and we presented a rich set of features that aim to capture

aspects of the code, comments, and the relations that hold between them. Based on

evaluation conducted on a manually labeled test set, we showed that two different

models trained on such noisy data can significantly outperform multiple baselines.

Moreover, we demonstrated the potential for learning from noisy data by showing

how increasing the size of the noisy training data can lead to improved performance.

We also highlighted the value of our feature set through an ablation study.

37

Chapter 4

Just-In-Time Inconsistency Detection Between

Comments and Source Code

To minimize the adverse effects of having comments which are out-of-sync

with the corresponding body of code, there has been extensive work in automati-

cally detecting inconsistent comments (Section 2.3). Prior work has predominantly

focused on detecting inconsistencies that already reside within the code repository

for a given software project. We refer to this as post hoc inconsistency detection

since it occurs potentially many commits after the inconsistency has been intro-

duced. Ideally, these inconsistencies should be detected before they ever enter the

repository (e.g., during code review) since they pose a threat to the development

cycle and reliability of the software until they are found. Because inconsistent

comments generally arise as a consequence of developers failing to update com-

ments immediately following code changes (Wen et al., 2019), we aim to detect

whether a comment becomes inconsistent as a result of changes to the accompany-

ing code, before these changes are merged into a code repository. We refer to this

as just-in-time inconsistency detection, as it allows alerting developers of potential

inconsistencies right before they can materialize. In this chapter, we develop a deep

learning approach for just-in-time inconsistency detection that correlates a com-

ment with changes in the corresponding body of code, which outperforms the post

hoc setting. This chapter is based on work originally presented in Panthaplackel et

38

(a) Inconsistent (b) Consistent

Figure 4.1: In the example from the Apache Ignite project shown in Figure 4.1a, the
existing comment becomes inconsistent upon changes to the corresponding method, and in
the example from the Alluxio project shown in Figure 4.1b, the existing comment remains
consistent after code changes.

al. (2021).

4.1 Task

Suppose Mold from the consistent comment/method pair (Cold, Mold) is mod-

ified to Mnew. If Cold is not in sync with Mnew and is not updated, it will become in-

consistent once Mnew is committed. We frame this problem in two distinct settings,

with the task being constant across both: determine whether Cold is inconsistent

with Mnew.

• Post hoc: Here, only the existing version of the comment/method pair is

available; the code changes that triggered the inconsistency are unknown.

• Just-in-time: Here, the goal is to catch inconsistencies before they are com-

mitted. Detecting inconsistencies immediately following code changes al-

lows us to utilize information from Mold. By considering how the changes

affect the relationship the comment holds with the code, we can determine

whether the comment remains consistent after the changes. For instance, in

Figure 4.1a, the comment describes the return type of the nodeIds() as an

39

Figure 4.2: High-level architecture of our approach for inconsistency detection.

array. When the method is modified to return a Set instead of an array, the

comment no longer describes the correct return type, making it inconsistent.

Such analysis is not possible in post hoc inconsistency detection since the

exact code changes that triggered inconsistency cannot be easily pinpointed,

making it difficult to align the comment with relevant parts of the code.

4.2 Architecture

Prior work in post hoc inconsistency detection and the very few existing ap-

proaches in just-in-time inconsistency detection which exploit code changes rely

on task-specific rules (Sadu, 2019), hand-engineered surface features (Liu et al.,

2018b; Malik et al., 2008), and bag-of-words techniques (Liu et al., 2018b). In-

stead, we learn salient characteristics of the various inputs through a deep-learning

framework that encodes their syntactic structures.

We aim to determine whether Cold is inconsistent by understanding its se-

mantics and how it relates to Mnew (or changes between Mold and Mnew). We

present an overview of our approach in Figure 4.2. First, the comment encoder, a

BiGRU (Cho et al., 2014), encodes the sequence of tokens in Cold (Figure 4.2 (1)).

40

When learning a representation for a given token, the forward and backward BiGRU

passes provide context of other tokens in Cold, in principle. However, this informa-

tion can get diluted, especially when there are long-range dependencies, and the

relevant context can also vary across tokens. So, we update these representations

from the comment encoder with more context about how they relate to the other

tokens through multi-head self-attention (Vaswani et al., 2017) with hidden states

of the comment encoder (Figure 4.2 (2)). Next, we learn code representations with

a code encoder, which can be a sequence encoder or an abstract syntax tree (AST)

encoder (Figure 4.2 (3)).

Since the essence of the task comes down to whether Cold accurately re-

flects Mnew, we must capture the relationship between Cold and Mnew (or changes

between Mold and Mnew). Prior work does this by computing comment/code simi-

larity through lexical overlap rules (Ratol and Robillard, 2017; Sadu, 2019), which

do not work well when different terms have similar meanings, and cosine similarity

between vector representations, which have been found to perform poorly on their

own (Liu et al., 2018b; Cimasa et al., 2019). Furthermore, this notion of similarity

is only appropriate for the summary comment which provides an overview of the

corresponding method as a whole. More specialized comment types like @return

and @param describe only specific parts of the method, and thus their representa-

tions may not be very similar to the representation of the full method. We instead

capture this relationship by computing multi-head attention between each hidden

state of the comment encoder and the hidden states of the code encoder (Figure 4.2

(4)).

41

We combine the context vectors resulting from both attention modules to

form enhanced representations of the tokens in Cold, which carry context from other

parts of Cold as well as the code. These are then passed through another BiGRU

encoder (Figure 4.2 (5)). We take the final state of this encoder to be the vector

representation of the full comment, and we feed it through fully-connected and

softmax layers (Figure 4.2 (6)). This leads to the final prediction (Figure 4.2 (7)).

4.2.1 Sequence Code Encoder

In the just-in-time setting, we represent the changes between Mold and Mnew

with Medit, a sequence of edit actions, where each edit action is structured as

<Action> [span of tokens] <ActionEnd>.1 We define four types of edit

actions: Insert, Delete, Replace, and Keep. Because the Replace action

must simultaneously incorporate distinct content from two versions (i.e., tokens in

the old version that will be replaced, and tokens in the new version that will take

their place), it follows a slightly different structure:

<ReplaceOld> [span of old tokens]

<ReplaceNew> [span of new tokens]

<ReplaceEnd>

We encode Medit with a BiGRU encoder. Because Mold is not available

in the post hoc setting, we cannot construct an edit action sequence, and instead

encode the sequence of tokens in Mnew in this case.

1Preliminary experiments showed that this performed better than structuring edits at the token-
level as in other tasks (Shin et al., 2018; Li et al., 2018a; Dong et al., 2019; Awasthi et al., 2019).

42

Figure 4.3: AST-based code edit representation (Medit) corresponding to Figure 4.1b, with
removed nodes in red and added nodes in green.

4.2.2 AST Code Encoder

To better exploit the syntactic structure of code, we leverage the abstract

syntax tree (AST). Following prior work in other tasks (Fernandes et al., 2019; Yin

et al., 2019), we encode ASTs and AST edits using gated graph neural networks

(GGNNs) (Li et al., 2016). For the post hoc setting, we encode T , an AST-based

representation corresponding to Mnew. In the just-in-time setting, we instead en-

code Tedit, an AST-based edit representation. We compute AST node edits between

Told (corresponding to Mold) and T , identifying inserted, deleted, kept, replaced,

and moved nodes. We merge the two, forming a unified representation, by consoli-

dating identical nodes, as shown in Figure 4.3.

GGNN encoders for T and Tedit use parent (e.g., public→ MethodDeclaration)

and child (e.g., MethodDeclaration → public) edges. Like prior work (Fernan-

des et al., 2019), we add “subtoken nodes” for identifier leaf nodes to better handle

previously unseen identifier names. To integrate these new nodes, we add subnode

43

(e.g., toString → to), supernode (e.g., to → toString), next subnode (e.g., to

→ string), and previous subnode (e.g., string → to) edges. When encoding

Tedit, we also include an aligned edge type between nodes in the two trees that cor-

respond to an update (e.g., String and PropertyKey). Additionally, we learn edit

embeddings for each action type. To identify how a node is edited (or not edited),

we concatenate the corresponding edit embedding to its initial representation that

is fed to the GGNN.

4.3 Data

In line with most prior work in inconsistency detection (Corazza et al., 2018;

Tan et al., 2007, 2012; Khamis et al., 2010), we focus on identifying inconsistencies

in comments comprising API documentation for Java methods. API documentation

consists of two components: a main description and a set of tag comments (Ora-

cle, 2020). While some have considered treating the full documentation as a single

comment (Corazza et al., 2018), we choose to perform inconsistency detection at

a more fine-grained level, analyzing individual comment types. Furthermore, in

contrast to previous studies tailored to a specific type of tag (Zhou et al., 2017; Tan

et al., 2012) or specific types of keywords and templates (Tan et al., 2007, 2011),

we simultaneously consider multiple comment types with diverse characteristics.

Namely, we address inconsistencies in the @return tag comment, which describes

a method’s return type, and the @param tag comment, which describes an argument

of the method. Additionally, we examine inconsistencies in the less-structured sum-

mary comment, which comes from the first sentence of the main description.

44

Train Valid Test Total
@return 15,950 1,790 1,840 19,580
@param 8,640 932 1,038 10,610
Summary 8,398 1,034 1,066 10,498
Full 32,988 3,756 3,944 40,688
Projects 829 332 357 1,518

Table 4.1: Dataset partitions for inconsistency detection

By detecting inconsistencies at the time of code change, we can extract au-

tomatic supervision from commit histories of open-source Java projects. Namely,

we compare consecutive commits, collecting instances in which a method is modi-

fied. We extract the comment/method pairs from each version: (C1, M1), (C2, M2).

By assuming that the developer updated the comment because it would have other-

wise become inconsistent as a result of code changes, we take C1 to be inconsistent

with M2, consequently leading to a positive example, with Cold=C1, Mold=M1, and

Mnew=M2. For negative examples, we additionally examine cases in which C1=C2

and assume that if the existing comment would have become inconsistent, the devel-

oper would have updated it. Following this process, we collect @return, @param,

and summary comment examples.

To minimize noise, we filter the data by applying heuristics (Section 2.6).

In line with prior work (Ren et al., 2019; Movshovitz-Attias and Cohen, 2013), we

consider a cross-project setting with no overlap between the projects from which

examples are extracted in training/validation/test sets. From our data collection pro-

cedure, we obtain substantially more negative examples than positive ones, which is

not surprising because many changes do not require comment updates (Wen et al.,

2019). We downsample negative examples, for each partition and comment type,

45

@return @param Summary Full
Cold 9.7 8.4 13.3 10.3
Mold 131.1 186.9 137.0 147.2
Mnew 131.9 187.7 135.4 147.3
Medit 179.4 240.9 186.6 197.3
Told 127.2 184.1 130.5 142.9
T 128.1 184.5 129.5 143.2
Tedit 154.3 213.7 159.1 171.1

Table 4.2: Statistics on the average lengths of comment and code representations
for inconsistency detection.

to construct a balanced dataset. Partition sizes of our final dataset are shown in Ta-

ble 4.1. For more reliable evaluation, we curate a clean a sample of 300 examples

(corresponding to 101 projects) from the test set, consisting of 50 positive and 50

negative examples of each comment type.2 Note that we subtokenize Mnew, and

Medit (as described previously in Section 3.3). Since comments often include code

tokens, we also subtokenize Cold.

In Table 4.2, we show the average lengths of comment and code represen-

tations for the various types of comments in our dataset. The lengths for Cold and

sequential code representations (i.e., Mold, Mnew, Medit) are computed based on the

subtokenized sequences that are used by our model. Note that the Medit represen-

tation also includes edit keywords. We report the sizes of the AST representations

(Told, T , Tedit) in terms of number of nodes. This also includes the added subnodes.

Our dataset is publicly available.3

2See Section 4.6.2 for additional details about data filtering and annotation.
3https://github.com/panthap2/deep-jit-inconsistency-detection

46

https://github.com/panthap2/deep-jit-inconsistency-detection

4.4 Models

In the following section, we outline baseline, post hoc, and just-in-time in-

consistency detection models.

4.4.1 Baselines

Lexical overlap: A comment often has lexical overlap with the corresponding

method. We include a rule-based just-in-time baseline, OVERLAP(Cold, deleted),

which classifies Cold as inconsistent if at least one of its tokens matches a code

token belonging to a Delete or ReplaceOld span in Medit.

Corazza et al. (2018): This post hoc bag-of-words approach classifies whether a

comment is coherent with the method that it accompanies using an SVM with TF-

IDF vectors corresponding to the comment and method. We simplify the original

data pre-processing, but validate that the performance matches the reported num-

bers.

CodeBERT BOW: We develop a more sophisticated bag-of-words (BOW) base-

line that leverages pretrained CodeBERT (Feng et al., 2020) embeddings. These

embeddings were pretrained on a large corpus of natural language/code pairs. In

the post hoc setting, we consider CodeBERT BOW (Cold, Mnew), which computes

the average embedding vectors of Cold and Mnew. These vectors are concatenated

and fed through a feedforward network. In the just-in-time setting, we compute the

47

average embedding vector of Medit rather than Mnew, and we refer to this baseline

as CodeBERT BOW (Cold, Medit).

Liu et al. (2018b): This is a just-in-time approach for detecting whether a block/-

line comment becomes inconsistent upon changes to the corresponding code snip-

pet. Their task is slightly different as block/line comments describe low-level im-

plementation details and generally pertain to only a limited number of lines of code,

relative to API comments. However, we consider it as a baseline since it is closely

related. They propose a random forest classifier which leverages features which

capture aspects of the code changes (e.g., whether there is a change to a while

statement), the comment (e.g., number of tokens), and the relationship between the

comment and code (e.g., cosine similarity between representations in a shared vec-

tor space). We re-implemented this approach based on specifications in the paper,

as their code was not publicly available. We disregard 9 (of 64) features that are not

applicable in our setting.

4.4.2 Our Models

Post hoc: We consider three models, with different ways of encoding the method.

SEQ(Cold, Mnew) encodes Mnew with a GRU, GRAPH(Cold, T) encodes T with

a GGNN, and HYBRID(Cold, Mnew, T) uses both. Multi-head attention in HY-

BRID(Cold, Mnew, T) is computed with the hidden states of the two encoders sepa-

rately and then combined.4

4More complex hybrid approaches for combining sequence and graph representations did not
help for our task (Fernandes et al., 2019; Hellendoorn et al., 2020).

48

Just-In-Time: To allow fair comparison with the post hoc setting, these models

are identical in structure to the models described above except that Medit is used

instead of Mnew.

Just-In-Time + features: Because injecting explicit knowledge can boost the per-

formance of neural models (Chen et al., 2017; Xuan et al., 2018), we investigate

adding linguistic and lexical features to our approach. In Section 3.3, we identified

a set of features which were useful for learning to associate comments and code.

By design, components of our architecture encompass some of these features. For

instance, we derive token representations for code and comments through embed-

dings and learned encoder representations, the GGNN captures code structure, and

attention addresses similarity between comment and code representations to some

extent. We specifically incorporate surface features, some Java-related features, and

a handful of additional features which appear relevant to the task based on our in-

spection of the data. These features, which are computed at the subtoken/subnode-

level, are concatenated to Medit and Cold embeddings and then passed through a

linear layer, before providing them as inputs to the encoders.

• Features specific to Cold: Motivated by the subtoken matching feature from

Section 3.3, we include whether a subtoken matches a code subtoken that is

inserted, deleted, or replaced in Medit. By aligning parts of Cold with code

edits, these features assist the model in identifying subtokens in Cold which

are important for the task. In order to exploit common patterns for different

49

types of subtokens, we incorporate features that identify whether the subtoken

appears more than once in Cold or is a stop word, and its part-of-speech.

• Features specific to Medit: We apply the subtoken matching feature to

subtokens in Medit as well to indicate whether the subtoken matches a subto-

ken in Cold. This is intended to provide additional signal for highlighting spe-

cific locations in Medit which may be directly relevant to Cold. Next, we aim

to take advantage of common patterns among different types of code subto-

kens by incorporating features that identify certain categories: edit keywords,

Java keywords, and operators. If a token is not an edit keyword, we have in-

dicator features for whether it is part of a Insert, Delete, ReplaceNew,

ReplaceOld, or Keep span. We believe this will be particularly helpful for

longer spans since edit keywords only appear at either the beginning or end

of a span.

• Shared features: We incorporate the presence in return statement feature

from Section 3.3, ie., whether a given subtoken matches a subtoken in a re-

turn statement. Since there are two versions of the code, we include 3 sepa-

rate features corresponding to presence in a return statement unique to Mold,

unique to Mnew, and present in both. Similarly, we indicate whether the

subtoken matches a subtoken in the @return type that is unique to Mold,

unique to Mnew, or present in both. Finally, we include whether a subtoken

was originally split from a larger token and its index if so (e.g., split from

camelCase, camel and case are subtokens with indices 0 and 1 respec-

tively). These features aim to encode important relationships between adja-

50

Cleaned Test Sample Full Test Set
Model P R F1 Acc P R F1 Acc
Baselines

OVERLAP(Cold, deleted) 77.7 72.0 74.7 75.7 74.1 62.8 68.0 70.4
Corazza et al. (2018) 65.1 46.0 53.9 60.7 63.7 47.8 54.6 60.3
CodeBERT BOW (Cold, Mnew) 66.2 70.4 67.9 66.9 68.9 73.2 70.7 69.8
CodeBERT BOW (Cold, Medit) 65.5 80.9 72.3 69.0 67.4 76.8 71.6 69.6
Liu et al. (2018b) 77.6 74.0 75.8 76.3 77.5 63.8 70.0 72.6

Post hoc
SEQ(Cold, Mnew) 58.9 68.0 63.0 60.3 60.6 73.4 66.3 62.8
GRAPH(Cold, T) 60.6 70.2 65.0 62.2 62.6 72.6 67.2 64.6
HYBRID(Cold, Mnew, T) 53.7 77.3 63.3 55.2 56.3 80.8 66.3 58.9

Just-In-Time
SEQ(Cold, Medit) 83.8 79.3 81.5 82.0 80.7 73.8 77.1 78.0
GRAPH(Cold, Tedit) 84.7 78.4 81.4 82.0 79.8 74.4 76.9 77.6
HYBRID(Cold, Medit, Tedit) 87.1 79.6 83.1 83.8 80.9 74.7 77.7 78.5

Just-In-Time + features
SEQ(Cold, Medit) + features 91.3 82.0 86.4 87.1 88.4 73.2 80.0 81.8
GRAPH(Cold, Tedit) + features 85.8 87.1 86.4 86.3 83.8 78.3 80.9 81.5
HYBRID(Cold, Medit, Tedit) + features 92.3 82.4 87.1 87.8 88.6 72.4 79.6 81.5

Table 4.3: Results for baselines, post hoc, and just-in-time models. Differences in F1 and
Acc between just-in-time vs. baseline models, just-in-time vs. post hoc models, and just-
in-time + features vs. just-in-time models are statistically significant (p < 0.05).

cent tokens that are lost once the body of code and comment are transformed

into single, subtokenized sequences.

4.5 Results

We report common classification metrics: precision, recall, and F1 (w.r.t.

the positive label) and accuracy (averaged across 3 random restarts). We also per-

form significance testing (Berg-Kirkpatrick et al., 2012). In Table 4.3, we report

results for baselines, post hoc and just-in-time inconsistency detection models. In

the post hoc setting, we find that our three models can achieve higher F1 scores

51

than the bag-of-words approach proposed by Corazza et al. (2018); however, they

underperform the CodeBERT BOW (Cold, Mnew) baseline and significantly under-

perform all just-in-time models, including the simple rule-based OVERLAP(Cold,

deleted) baseline. This demonstrates the benefit of performing inconsistency detec-

tion in the just-in-time setting, in which the code changes that trigger inconsistency

are available. Additionally, by encoding the syntactic structures of the comment

and code changes, our just-in-time models outperform this rule-based baseline as

well as all other baselines and post hoc approaches. While the HYBRID(Cold, Medit,

Tedit) model achieves slightly higher scores (on the basis of F1 and accuracy) than

SEQ(Cold, Medit) and GRAPH(Cold, Tedit), the differences are not statistically sig-

nificant.

Our just-in-time models outperform the rule-based and feature-based base-

lines, without any hand-engineered rules or features. However, by incorporating

surface features into our just-in-time models, we can further boost performance (by

statistically significant margins). This suggests that our approach can be used in

conjunction with task-specific rules (Tan et al., 2007, 2011, 2012; Ratol and Ro-

billard, 2017) and feature sets (Liu et al., 2018b) to build improved systems for

specific domains. Furthermore, we analyze the performance of the three just-in-

time + features models with respect to individual comment types:

Evaluating @return Comments:

We train the (learned) baselines introduced in Section 4.4.1 on only the

15,950 examples pertaining to @return comments. We additionally consider two

52

Cleaned Test Sample Full Test Set
P R F1 Acc P R F1 Acc

Training: @return Only
OVERLAP(Cold, deleted) 69.2 54.0 60.7 65.0∥ 67.6∥¶ 53.3∥ 59.6 63.9
Corazza et al. (2018) 73.2 60.0¶ 65.9 69.0 68.9¶ 61.2§ 64.8 66.8
CodeBERT BOW (Cold, Mnew) 84.9∗ 74.7§ 79.4∗¶ 80.7∗ 85.6 82.7 84.1 84.3
CodeBERT BOW (Cold, Medit) 62.5 74.0§ 67.7∥ 64.7∥ 66.8∥ 78.8∗† 72.2 69.7
Liu et al. (2018b) 76.9 62.0¶ 68.6∥ 71.7 76.0 63.0§ 68.9 71.6
Khamis et al. (2010) 52.1 98.0 68.1∥ 54.0 51.6 97.3 67.4 52.9
GENMATCH 64.6 62.0¶ 63.3 64.0∥ 60.4 54.9∥ 57.5 59.5
SEQ(Cold, Medit) + features 85.3∗ 75.3§ 79.9¶ 81.0∗ 87.2§ 75.9 81.2∗§ 82.4
GRAPH(Cold, Tedit) + features 87.4 77.3∗ 82.0 83.0 84.0∗ 78.0∗ 80.8∗§ 81.4∗†

HYBRID(Cold, Medit, Tedit) + features 84.8∗ 78.0† 81.2 82.0¶ 84.3∗ 78.7† 81.3§ 81.9∗

Training: Combined
SEQ(Cold, Medit) + features 88.5§ 72.0∥ 79.4∗¶ 81.3∗¶ 87.6§ 73.3¶ 79.8¶ 81.4∗†

GRAPH(Cold, Tedit) + features 81.2 77.3∗† 79.1∗ 79.7 82.2 79.3† 80.6∗ 80.9†

HYBRID(Cold, Medit, Tedit) + features 88.7§ 72.0∥ 79.4∗ 81.3∗ 87.3§ 73.7¶ 79.8¶ 81.4∗†

Table 4.4: Results for @return examples. Scores for which the difference in performance
is not statistically significant (p < 0.05) are shown with identical symbols.

baselines for @return comments. Khamis et al. (2010) proposed a heuristic for

detecting inconsistency in @return comments: the comment must begin with the

correct return type of the corresponding method. We implement a baseline based

on this heuristic. We also remove articles (e.g., a, the) from the beginning of the

comment before applying this rule, as we found this to improve performance. We

introduce another baseline, GENMATCH, in which we use a comment generation

model5 to generate an @return comment for Mold and an @return comment for

Mnew. If the two comments match exactly, we consider the code change to be ir-

relevant to @return comments and thus the existing @return comment remains

consistent. We compare these baselines with our models, trained on only @return

comments. We additionally compare with our models, trained on the combined

training set, as done in the main paper.

In Table 4.4, we report results on the 100 @return examples in the cleaned

5We rely on the comment generation model used to build embeddings in Section 3.3

53

test set as well as the 1,840 @return examples in the full test set. While the

CodeBERT BOW (Cold, Medit) baseline performs quite well here, our approach can

outperform baselines (w.r.t. F1 and Acc) on the cleaned test sample, when trained

on only @return comments. We find that training on the combined dataset slightly

deteriorates performance of our models. This is not surprising as in combined

training, models must learn to generalize across comment types, not just @return

comments. Nonetheless, the difference in performance between training on the

comment-specific and combined sets are relatively small.

Evaluating @param Comments:

Cleaned Test Sample Full Test Set
P R F1 Acc P R F1 Acc

Training: @param Only
OVERLAP(Cold, deleted) 85.7 96.0∗§ 90.6 90.0 84.0 93.3 88.4¶ 87.8¶

Corazza et al. (2018) 74.1 40.0 51.9 63.0 59.1§ 43.9 50.4 56.7
CodeBERT BOW (Cold, Mnew) 62.8 57.3 59.9 61.7 58.9§ 64.4 61.5 59.7
CodeBERT BOW (Cold, Medit) 81.8 84.0 82.8 82.7 75.5 82.7 78.9§ 77.9
Liu et al. (2018b) 90.4§ 62.7 74.0 78.0 88.6¶ 72.3 79.6§ 81.5
Khamis et al. (2010) 97.8∗ 90.0∥ 93.8 94.0† 87.7¶ 89.0∗§ 88.3¶ 88.2¶

SEQ(Cold, Medit) + features 95.4 96.0∗ 95.7∗† 95.7∗ 91.4 89.2§ 90.3† 90.4†§

GRAPH(Cold, Tedit) + features 97.3∗ 94.0 95.6∗ 95.7∗ 94.9∗ 90.0 92.4 92.6
HYBRID(Cold, Medit, Tedit) + features 96.6† 95.3§ 96.0† 96.0 94.3† 89.3§ 91.7∗ 91.9∗

Training: Combined
SEQ(Cold, Medit) + features 90.0§ 95.3§ 92.5 92.3§ 92.2 88.3∗ 90.2† 90.4†

GRAPH(Cold, Tedit) + features 96.5† 92.0 94.2 94.3† 94.5∗† 89.0∗§ 91.7∗ 91.9∗

HYBRID(Cold, Medit, Tedit) + features 94.6 89.3∥ 91.8 92.0§ 93.3 85.9 89.4 89.9§

Table 4.5: Results for @param examples. Scores for which the difference in performance
is not statistically significant (p < 0.05) are shown with identical symbols.

For @param comments, we consider another baseline designed to follow the

heuristic proposed by Khamis et al. (2010) for this comment type: the comment

should begin with the name of the parameter being documented. We remove arti-

cles from the beginning of the comment and consider whether the first term is one

54

of the arguments of the method. If this is not the case, we classify it as inconsistent.

We consider the comment-specific and combined settings, as we do for @return

comments. In Table 4.5, we report results on the 100 @param examples in the

cleaned test set as well as the 1,038 @param examples in the full test set. We find

that rule-based baselines can perform very well for @param comments, especially

the Khamis et al. (2010) baseline. This suggests that most @param comments con-

form to the format they suggested. Nonetheless, our models are able to learn this

without explicitly specifying this format and can even achieve higher performance

(by statistically significant margins) when trained on only @param comments. The

combined setting slightly deteriorates performance of our models; however, the

GRAPH(Cold, Tedit) + features model can still perform slightly better than Khamis

et al. (2010) w.r.t. F1 on the cleaned test sample.

Evaluating Summary Comments:

Cleaned Test Sample Full Test Set
P R F1 Acc P R F1 Acc

Training: Summary Only
OVERLAP(Cold, deleted) 75.0∗ 66.0 70.2§ 72.0 71.4 49.7 58.6 64.9§

Corazza et al. (2018) 55.6 30.0 39.0 53.0 61.7 41.1 49.3 57.8
CodeBERT BOW (Cold, Mnew) 61.6† 78.7† 68.8 64.3 63.7§ 75.6∗ 68.9∗†§ 66.0§†

CodeBERT BOW (Cold, Medit) 62.1† 80.0§ 69.8§ 65.3 64.5§ 72.4§ 68.0†§ 65.9§†

Liu et al. (2018b) 2018b 85.2 76.7 80.7† 81.7 77.1∗ 57.0†¶ 65.5 70.0
SEQ(Cold, Medit) + features 72.7 92.7 81.4† 78.7 67.7 74.3∗ 70.6∥ 68.9
GRAPH(Cold, Tedit) + features 74.3∗ 92.0∗ 82.0 79.3 68.4 70.9 69.2∗ 68.2
HYBRID(Cold, Medit, Tedit) + features 70.7 90.0 79.2 76.3 64.5§ 72.9§ 68.4†§ 66.3†

Training: Combined
SEQ(Cold, Medit) + features 96.0 78.7†§ 86.5∗ 87.7 84.7† 58.3† 69.0∗† 73.9∗
GRAPH(Cold, Tedit) + features 80.8 92.0∗ 86.0∗ 85.0 76.0∗ 66.4 70.6∥ 72.5
HYBRID(Cold, Medit, Tedit) + features 93.7 86.0 89.5 90.0 85.0† 57.0¶ 68.1§ 73.5∗

Table 4.6: Results for summary comment examples. Scores for which the difference in
performance is not statistically significant (p < 0.05) are shown with identical symbols.

55

Summary comments do not have a well-defined structure, and thus we do

not have a format-based baseline as we did for @return and @param comments.

We evaluate baselines and our models, trained on comment-specific data, as well

as our model trained on the combined training set. In Table 4.6, we report results

on the 100 summary examples in the cleaned test set as well as the 1,066 summary

examples in the full test set. While Liu et al. (2018b) is a strong baseline here,

we find that we can outperform all baselines in the combined training setting. Un-

like the case for @return and @param comments, combined training appears to

yield improved performance over comment-specific training for our models. This

suggests that the models can extract valuable information from the more structured

comments in the training set that pertain to specific parts of the code in order to

address the less-structured summary comments.

4.6 Additional Details

4.6.1 Model Parameters

Models are trained to minimize negative log likelihood. We use 2-layer bi-

GRU encoders (hidden dimension 64). GGNN encoders (hidden dimension 64) are

rolled out for 8 message-passing steps, also use hidden dimension 64. We initial-

ize comment and code embeddings, of dimension 64, with pretrained ones (Sec-

tion 3.3). Edit embeddings are of dimension 8. Attention modules use 4 attention

heads. We use a dropout rate of 0.6. Training ends if the validation F1 does not

improve for 10 epochs.

56

4.6.2 More Data Details

We provide additional information about our procedures for filtering the

dataset and curating a sample of the test set for evaluation. We also include var-

ious statistics about the examples that comprise our dataset.

Filtering

Recall from our data collection procedure (§4.3) that we extracted commen-

t/method pairs from consecutive commits, of the form (C1, M1), (C2, M2), where

Cold=C1, Mold=M1, and Mnew=M2. We apply heuristics to reduce the number of

cases in which there are unrelated comment and code changes. We filter out pos-

itive examples in which the differences between C1 and C2 entail minor cosmetic

edits (e.g., reformatting, spelling corrections). As done previously in Section 3.6.2,

for @return examples, we require there to be a code change to at least one re-

turn statement or the return type of the method. We discard all @return examples

(positive and negative) that do not satisfy this condition. This is because @return

comments describe aspects of the return value of a method, which is typically re-

lated to the method return type and return statements. We apply the same constraint

to summary comment examples, since they often describe aspects of the output

(e.g., Figure 4.1a). Because @param comments generally pertain to the method’s

arguments, we only use examples in which an argument name or type is changed

within the method. Next, we reduce the number of noisy negative examples in

which a developer fails to update comments in accordance with code changes by

avoiding poorly maintained projects (Section 3.6.2). Furthermore, because we con-

57

Positive Negative Total
@return 9,807 72,826 82,633
@param 5,507 19,007 24,514
Summary 5,904 69,650 75,554
Full 21,218 161,483 182,701

Table 4.7: Dataset sizes before downsampling for inconsistency detection.

sider AST representations, we remove all examples consisting of a method which

cannot be parsed into an AST. Additionally, we remove duplicate examples, as they

have been found to negatively affect training machine learning models for source

code (Allamanis, 2019).

Downsampling Negative Class

In our data collection procedure, we obtained many more negative examples.

Because a naı̈ve classifier trained to always predict the negative label can achieve

high accuracy in such a setting, we downsample the negative class in order to obtain

a balanced dataset. We provide the sizes of the positive and negative classes before

downsampling in Table 4.7. Note that we also discard some examples to ensure no

overlap between the projects in training, validation, and test.

Curating Test Sample

We construct a clean test set by randomly sampling without replacement

from the full test set in such a way that we attain a balanced sample, in terms of

both labels (i.e., positive, negative) and comment type (i.e., @return, @param,

summary). We then remove mislabeled examples from this.

58

We remove 11% of examples for having the incorrect label, 3% for being un-

certain about the correct label due to the limited context provided in the method, and

6% from being poor examples (e.g., comments like “document me” or code changes

that simply comment out the entire method). Therefore, we find 17-20% noise. For

the individual comment types, the percent of noise is 6-15% for @return, 14-16%

for @param, and 26-28% for summary comments. For individual labels, it is 26-

28% for positive and 8-12% for negative.

4.7 Summary

In this work, we developed a deep learning approach for just-in-time incon-

sistency detection between code and comments by learning to relate comments and

code changes. Based on evaluation on a large corpus consisting of multiple types of

comments, we showed that our model substantially outperforms various baselines

as well as post hoc models that do not consider code changes.

59

Chapter 5

Updating Natural Language Comments Based on

Code Changes

Once inconsistent comments are detected upon code changes (Chapter 4),

the next step is to update them to reflect these changes. To guide developers with

this, we aim to generate suggestions for updated comments. In principle, we could

do this by generating a completely new comment that corresponds to the most re-

cent version of the code through the extensive work in comment generation (Sec-

tion 2.2). However, this discards potentially salient content from the existing com-

ment and also fails to consider the code changes which could point to critical as-

pects of the code that should be highlighted in the updated comment. Therefore,

we formulate the novel task of learning to update an existing comment based on

changes to the corresponding body of code. This task is intended to align with how

developers edit a comment when they introduce changes in the corresponding code.

Rather than deleting it and starting from scratch, they would likely only modify

the specific parts relevant to the code changes. We replicate this process through

a novel approach which is designed to correlate edits across two distinct language

representations: source code and natural language comments. This chapter is based

on the work presented in Panthaplackel et al. (2020b).

60

/* @return double the roll euler angle. */
public double getRotX() {

return mOrientation.getRotationX();
}

(a) Previous

/* @return double the roll euler angle in degrees. */
public double getRotX() {

return Math.toDegrees(mOrientation.getRotationX());
}

(b) Updated

Figure 5.1: Changes in the getRotX method and its corresponding @return comment
between two subsequent commits of the rajawali project.

5.1 Task

Given a method, its corresponding comment, and an updated version of the

method, the task is to update the comment so that it is consistent with the code in the

new method. For the example in Figure 5.1, we want to generate “@return double

the roll euler angle in degrees.” based on the changes between the two versions

of the method and the existing comment “@return double the roll euler angle.”

Concretely, given (Mold, Cold) and Mnew, where Mold and Mnew denote the old and

new versions of the method, and Cold signifies the previous version of the comment,

the task is to produce Cnew, the updated version of the comment.

5.2 Edit Model

We design a system that examines source code changes and how they relate

to the existing comment in order to produce an updated comment that reflects the

code modifications. Figure 4.2 shows a high-level overview of our system.

61

5.2.1 Encoders

Using the edit lexicon defined in Section 4.2.1, we unify Mold and Mnew

into a single diff sequence that explicitly identifies code edits, Medit. We encode

this sequence with a BiGRU1 encoder (top right of Figure 5.2). We encode the

existing comment (Cold) with another BiGRU encoder (top left). To better learn

associations between comment and code entities, we also include the linguistic and

lexical features discussed in Section 4.4.2. We incorporate these features into the

network the same way as before.

5.2.2 Decoder

The decoder also takes the form of a GRU. Since Cold and Cnew are closely

related, training the decoder to directly generate Cnew risks having it learn to just

copy Cold. To explicitly inform the decoder of edits, we define the target output as

a sequence of edit actions, Cedit, indicating how the existing comment should be

revised.

For representing Cedit, we introduce a slightly modified set of specifications

that disregards the Keep type when constructing the sequence of edit actions, re-

ferred to as a condensed edit sequence. The intuition for disregarding Keep and

the span of tokens to which it applies is that we can simply copy the content that is

retained between Cold and Cnew, instead of generating it anew. By doing post hoc

copying, we simplify learning for the model since it has to only learn what to change

1We had also considered transformers (Vaswani et al., 2017); however, we found no advantage
during preliminary experiments. Additionally, prior work (Fernandes et al., 2019) found that they
yield lower performance for comment generation.

62

Figure 5.2: High-level architecture of our edit model for updating comments.

rather than also having to learn what to keep. We design a method to determinis-

tically place edits in their correct positions in the absence of Keep spans. For the

example in Figure 5.1, the raw sequence <Insert>in degrees<InsertEnd>

does not encode information as to where “in degrees” should be inserted. To ad-

dress this, we bind an insert sequence with the minimum number of words (aka

“anchors”) such that the place of insertion can be uniquely identified. This results

in the structure that is shown for Cedit in Figure 4.2. Here “angle” serves as the

anchor point, identifying the insert location. Following the structure of Replace,

this sequence indicates that “angle” should be replaced with “angle in degrees,”

effectively inserting “in degrees” and keeping “angle” from Cold, which appears

immediately before the insert location. We provide more details on this procedure

in Section 5.9.2.

The decoder essentially has three subtasks: (1) identify edit locations in

63

Cold; (2) determine parts of Medit that pertain to making these edits; and (3) apply

updates in the given locations based on the relevant code changes. We rely on an

attention mechanism (Luong et al., 2015) over the hidden states of the two encoders

to accomplish the first two goals. At every decoding step, rather than aligning the

current decoder state with all the encoder hidden states jointly, we align it with

the hidden states of the two encoders separately. We concatenate the two resulting

context vectors to form a unified context vector that is used in the final step of

computing attention, ensuring that we incorporate pertinent content from both input

sequences. Consequently, the resulting attention vector carries information relating

to the current decoder state as well as knowledge aggregated from relevant portions

of Cold and Medit.

Using this information, the decoder performs the third subtask, which re-

quires reasoning across language representations. Specifically, it must determine

how the source code changes that are relevant to the current decoding step should

manifest as natural language updates to the relevant portions of Cold. At each step,

it decides whether it should begin a new edit action by generating an edit start

keyword, continue the present action by generating a comment token, or terminate

the present action by generating an end-edit keyword. Because actions relating to

deletions will include tokens in Cold, and actions relating to insertions are likely to

include tokens in Medit, we equip the decoder with a pointer network (Vinyals et al.,

2015) to accommodate copying tokens from Cold and Medit. The decoder generates

a sequence of edit actions, which will have to be parsed into a comment.

64

5.2.3 Parsing Edit Sequences

Since the decoder is trained to predict a sequence of edit actions, we must

align it with Cold and copy unchanged tokens in order to produce the edited com-

ment during inference. We denote the predicted edit sequence as C ′
edit and the

corresponding parsed output as C ′
new. This procedure entails simultaneously fol-

lowing pointers, left-to-right, on Cold and C ′
edit, which we refer to as Pold and Pedit

respectively. Pold is advanced, copying the current token into C ′
new at each point,

until an edit location is reached. The edit action corresponding to the current po-

sition of Pedit is then applied, and the tokens from its relevant span are copied into

C ′
new if applicable. Finally, Pedit is advanced to the next action, and Pold is also

advanced to the appropriate position in cases involving deletions and replacements.

This process repeats until both pointers reach the end of their respective sequences.

5.2.4 Reranking

Reranking allows the incorporation of additional priors that are difficult to

back-propagate, by re-scoring candidate sequences during beam search (Neubig

et al., 2015; Ko et al., 2019; Kriz et al., 2019). We incorporate two heuristics to

re-score the candidates: 1) generation likelihood and 2) similarity to Cold. These

heuristics are computed after parsing the candidate edit sequences (Section 5.2.3).

Generation likelihood: Since the edit model is trained on edit actions only, it does

not globally score the resulting comment in terms of aspects such as fluency and

overall suitability for the updated method. To this end, we make use of a pre-trained

comment generation model (Section 5.4.2) that is trained on a substantial amount

65

Train Valid Test
Examples 5,791 712 736
Projects 526 274 281
Edit Actions 8,350 1,038 1,046
Sim (Mold, Mnew) 0.773 0.778 0.759
Sim (Cold, Cnew) 0.623 0.645 0.635

Code Length
Unique 7,271 2,473 2,690
Mean 86.4 87.4 97.4
Median 46 49 50

Comment Length
Unique 4,823 1,695 1,737
Mean 10.8 11.2 11.1
Median 8 9 9

Table 5.1: Comment update dataset statistics. Number of examples, projects, and edit
actions; average similarity between Mold and Mnew as the ratio of overlap to average se-
quence length; average similarity between Cold and Cnew as the ratio of overlap to average
sequence length; number of unique code tokens and mean and median number of tokens in
a method; and number of unique comment tokens and mean and median number of tokens
in a comment.

of data for generating Cnew given only Mnew. We compute the length-normalized

probability of this model generating the parsed candidate comment, C ′
new, (i.e.,

P (C ′
new | Mnew)

1/N where N is the number of tokens in C ′
new). This model gives

preference to comments that are more likely for Mnew and are more consistent with

the general style of comments.

Similarity to Cold: So far, our model is mainly trained to produce accurate ed-

its; however, we also follow intuitions that edits should be minimal (as an analogy,

the use of Levenshtein distance in spelling correction). To give preference to pre-

dictions that accurately update the comment with minimal modifications, we use

similarity to Cold as a heuristic for reranking. We measure similarity between the

parsed candidate prediction and Cold using METEOR (Banerjee and Lavie, 2005).

Reranking score: The reranking score for each candidate is a linear combination

of the original beam score, the generation likelihood, and the similarity to Cold with

66

coefficients 0.5, 0.3, and 0.2 respectively (tuned on validation data).

5.3 Data

As a first step, we focus on performing this task on @return comments,

which we find to follow a well-defined structure and describe characteristics of the

output of a method (Section 3.2). We use the subset of examples corresponding

to positive @return examples from the dataset we introduced in Section 4.3, in

which the method and comment are simultaneously changed between two consec-

utive commits. We provide dataset statistics in Table 5.1.

5.4 Experimental Method

We evaluate our approach against multiple rule-based baselines and com-

ment generation models.

5.4.1 Baselines

Copy: Since much of the content of Cold is typically retained in the update, we

include a baseline that merely copies Cold as the prediction for Cnew.

Return type substitution: The return type of a method often appears in its @return

comment. If the return type of Mold appears in Cold and the return type is updated

in the code, we substitute the new return type while copying all other parts of Cold.

Otherwise, Cold is copied as the prediction.

Return type substitution w/ null handling: As an addition to the previous method,

67

we also check whether the token null is added to either a return statement or if

statement in the code. If so, we copy Cold and append the string or null if null,

otherwise, we simply copy Cold. This baseline addresses a pattern we observed

in the data in which ways to handle null input or cases that could result in null

output were added.

5.4.2 Generation Model

One of our main hypotheses is that modeling edit sequences is better suited

for this task than generating comments from scratch. However, a counter argument

could be that a comment generation model could be trained from substantially more

data, since it is much easier to obtain parallel data in the form (method, comment),

without the constraints of simultaneous code/comment edits. Hence the power of

large-scale training could out-weigh edit modeling. To this end, we compare with

a generation model trained on 103,473 method/@return comment pairs collected

from GitHub.

We use the same underlying neural architecture as our edit model to make

sure that the difference in results comes from the amount of training data and from

using edit of representations only: a two-layer, BiGRU that encodes the sequence of

tokens in the method, and an attention-based GRU decoder with a copy mechanism

that decodes a sequence of comment tokens. Evaluation is based on the 736 (Mnew,

Cnew) pairs in the test set described in Section 5.3. We ensure that the projects

from which training examples are extracted are disjoint from those in the test set,

adhering to our cross-project partitioning strategy (Section 4.3).

68

5.4.3 Reranked Generation Model

In order to allow the generation model to exploit the old comment, this sys-

tem uses similarity to Cold (Section 5.2.4) as a heuristic for reranking the top candi-

dates from the previous model. The reranking score is a linear combination of the

original beam score and the METEOR score between the candidate prediction and

Cold, both with coefficient 0.5 (tuned on validation data).

5.5 Automatic Evaluation

We compute exact match, i.e., the percentage of examples for which the

model prediction is identical to the reference comment Cnew. This is often used

to evaluate tasks involving source code edits (Shin et al., 2018; Yin et al., 2019).

We also report two prevailing language generation metrics: METEOR (Banerjee

and Lavie, 2005), and average sentence-level BLEU-4 (Papineni et al., 2002) that

is previously used in code-language tasks (Iyer et al., 2016; Loyola et al., 2017).

Previous work suggests that BLEU-4 fails to accurately capture performance

for tasks related to edits, such as text simplification (Xu et al., 2016), grammatical

error correction (Napoles et al., 2015), and style transfer (Sudhakar et al., 2019),

since a system that merely copies the input text often achieves a high score. There-

fore, we also include two text-editing metrics to measure how well our system learns

to edit: SARI (Xu et al., 2016), originally proposed to evaluate text simplification,

is essentially the average of N-gram F1 scores corresponding to add, delete, and

keep edit operations;2 GLEU (Napoles et al., 2015), used in grammatical error cor-
2Although the original formulation only used precision for the delete operation, more recent

69

xMatch (%) METEOR BLEU-4 SARI GLEU
Baselines

Copy 0.0 34.6 46.2 19.3 35.4
Return type subt. 13.7§ 43.1¶ 50.8∥ 31.7 42.5∗

Return type subst. + null 13.7§ 43.4 51.2† 32.1 42.6∗

Non-reranked models
Generation 1.1 11.9 10.5 21.2 17.4
Edit 17.7 42.2¶ 48.2 46.4 45.1

Reranked models
Generation 2.1 18.2 18.9 25.6 22.7
Edit 18.4 44.7 50.7∥† 45.5 46.1

Table 5.2: Exact match, METEOR, BLEU-4, SARI, and GLEU scores. Differences that
are not statistically significant (p < 0.05) are shown with identical symbols.

rection and style transfer, takes into account the source sentence and deviates from

BLEU by giving more importance to n-grams that have been correctly changed.

We report automatic metrics averaged across three random initializations for

all learned models, and use bootstrap tests (Berg-Kirkpatrick et al., 2012) for statis-

tical significance (with p < 0.05). Table 5.2 presents the results. While reranking

using Cold appears to help the generation model, it still substantially underperforms

all other models, across all metrics. Although this model is trained on considerably

more data, it does not have access to Cold during training and uses fewer inputs

and consequently has less context than the edit model. Reranking slightly dete-

riorates the edit model’s performance with respect to SARI; however, it provides

statistically significant improvements on most other metrics.

Although two of the baselines achieve slightly higher BLEU-4 scores than

our best model, these differences are not statistically significant, and our model

is better at editing comments, as shown by the results on exact match, SARI, and

work computes F1 for this as well (Dong et al., 2019; Alva-Manchego et al., 2019).

70

GLEU. In particular, our edit models beat all other models with wide, statistically

significant, margins on SARI, which explicitly measures performance on edit oper-

ations. Furthermore, merely copying Cold, yields a relatively high BLEU-4 score of

46.218. The return type substitution and return type substitution w/ null handling

baselines produce predictions that are identical to Cold for 74.73% and 65.76% of

the test examples, respectively, while it is only 9.33% for the reranked edit model.

In other words, the baselines attain high scores on automatic metrics and even beat

our model on BLEU-4, without actually performing edits on the majority of ex-

amples. This further underlines the shortcomings of some of these metrics and the

importance of conducting human evaluation for this task.

5.6 Human Evaluation

Automatic metrics often fail to incorporate semantic meaning and sentence

structure in evaluation as well as accurately capture performance when there is only

one gold-standard reference; indeed, these metrics do not align with human judg-

ment in other generation tasks like grammatical error correction (Napoles et al.,

2015) and dialogue generation (Liu et al., 2016). Since automatic metrics have not

yet been explored in the context of the new task we are proposing, we find it nec-

essary to conduct human evaluation and study whether these metrics are consistent

with human judgment.

Our study aims to reflect how a comment update system would be used in

practice, such as in an Integrated Development Environment (IDE). When develop-

ers change code, they would be shown suggestions for updating the existing com-

71

ment. If they think the comment needs to be updated to reflect the code changes,

they could select the one that is most suitable for the new version of the code or edit

the existing comment themselves if none of the options are appropriate.

We simulated this setting by asking a user to select the most appropriate

updated comment from a list of suggestions, given Cold as well as the diff between

Mold and Mnew displayed using GitHub’s diff interface. The user can select multiple

options if they are equally good or a separate None option if no update is needed or

all suggestions are poor.

The list of suggestions consists of up to three comments, predicted by the

strongest benchmarks and our model : (1) return type substitution w/ null handling,

(2) reranked generation model, and (3) reranked edit model, arranged in randomized

order. We collapse identical predictions into a single suggestion and reward all

associated models if the user selects that comment. Additionally, we remove any

prediction that is identical to Cold to avoid confusion as the user should never select

such a suggestion. We excluded 6 examples from the test set for which all three

models predicted Cold for the updated comment.

Nine students (8 graduate/1 undergraduate) and one full-time developer at a

large software company, all with 2+ years of Java experience, participated in our

study. To measure inter-annotator agreement, we ensured that every example was

evaluated by two users. We conducted a total of 500 evaluations, across 250 distinct

test examples.

Table 5.3 presents the percentage of annotations (out of 500) for which users

selected comment suggestions that were produced by each model. Using Krippen-

72

Baseline Generation Edit None
18.4% 12.4% 30.2% 55.0%

Table 5.3: Percentage of annotations for which users selected comment suggestions pro-
duced by each model. All differences are statistically significant (p < 0.05).

dorff’s α (Krippendorff, 2011) with MASI distance (Passonneau, 2006) (which ac-

commodates our multi-label setting), inter-annotator agreement is 0.64, indicating

satisfactory agreement. The reranked edit model beats the strongest baseline and

reranked generation by wide statistically-significant margins. From rationales pro-

vided by two annotators, we observe that some options were not selected because

they removed relevant information from the existing comment, and not surprisingly,

these options often corresponded to the comment generation model.

Users selected none of the suggested comments 55% of the time, indicating

there are many cases for which either the existing comment did not need updat-

ing, or comments produced by all models were poor. Based on our inspection of

a sample of these, we observe that in a large portion of these cases, even though

the comment was actually updated in the data that we collected, the comment did

not actually warrant an update based on the given code changes. The comment

was updated for tangential reasons (e.g., comments that became inconsistent based

on a previous set of code changes). This is consistent with prior work in sentence

simplification which shows that, very often, there are sentences that do not need to

be simplified (Li and Nenkova, 2015). Despite our efforts to minimize such cases

in our dataset through rule-based filtering techniques, we found that many remain.

This suggests that it would be beneficial to first determine whether a comment needs

to be updated before proposing a revision. We address this in Chapter 6 by integrat-

73

/* @return item in given position */
public Complex getComplex(final int i) {

return get(i);
}

(a) Previous

/* @return item in first position */
public Complex getComplex() {

return get();
}

(b) Updated

Figure 5.3: Changes in the getComplex method and its corresponding @return com-
ment between two subsequent commits of the eclipse-january project, available on GitHub.

ing the inconsistency detection classifiers from Chapter 4 with the comment update

model, to build a combined system which updates a comment only if it becomes

inconsistent upon code changes.

5.7 Error Analysis

We find that our model performs poorly in cases requiring external knowl-

edge and more context than that provided by the given method. For instance, cor-

rectly updating the comment shown in Figure 5.3 requires knowing that get returns

the item in the first position if no argument is provided. Our model does not have

access to this information, and it fails to generate a reasonable update: “@return

complex in given position.” On the other hand, the reranked generation model pro-

duces “@return the complex value” which is arguably reasonable for the given

context. This suggests that incorporating more code context could be beneficial

for both models. Furthermore, we find that our model tends to make more mis-

takes when it must reason about a large amount of code change between Mold and

Mnew, and we found that in many such cases, the output of the reranked genera-

tion model was better. This suggests that when there are substantial code changes,

Mnew effectively becomes a new method, and generating a comment from scratch

74

Inputs Output xM (%) METEOR BLEU-4 SARI GLEU

Cold, Mnew
Cnew 5.7‡¶ 29.3† 33.5§ 28.0 30.0∗

Cedit 4.8‡∗ 33.8 43.3 35.5 38.0∥

Cold, Mold, Mnew
Cnew 3.7∗ 18.7 20.1 23.9 22.0
Cedit 5.2‡¶ 34.9 44.0∗ 33.5 37.6∥

Cold, Medit
Cnew 6.1¶ 30.0† 34.2§ 29.0 30.5∗

Cedit 8.9 36.2 44.3∗ 40.5 39.9

Table 5.4: Exact match, METEOR, BLEU-4, SARI, and GLEU for various combina-
tions of code input and target comment output configurations. Features and reranking are
disabled for all models. Scores for which the difference in performance is not statistically
significant (p < 0.05) are indicated with matching symbols.

may be more appropriate. Ensembling generation with our system through a re-

gression model that predicts the extent of editing that is needed may lead to a more

generalizable approach that can accommodate such cases.

5.8 Ablations

We empirically study the effect of training the network to encode explicit

code edits and decode explicit comment edits. As discussed in Section 5.2, the

edit model consists of two encoders, one that encodes Cold and another that en-

codes the code representation, Medit. We conduct experiments in which the code

representation instead consists of either (1) Mnew or (2) both Mold and Mnew (en-

coded separately and hidden states concatenated). Additionally, rather than having

the decoder generate comment edits in the form Cedit, we introduce experiments in

which it directly generates Cnew, with no intermediate edit sequence. For this, we

use only the underlying architecture of the edit model(without features or rerank-

ing). The performance for various combinations of input code and target comment

representations are shown in Table 5.4.

75

Model xM (%) METEOR BLEU-4 SARI GLEU

Models Edit 17.7 42.2 48.2 46.4 45.1
- feats. 8.9† 36.2 44.3 40.5 39.9∗

Reranked models Edit 18.4 44.7 50.7 45.5 46.1
- feats. 8.9† 38.4 46.7 36.9 40.3∗

Table 5.5: Exact match, METEOR, BLEU-4, SARI, and GLEU scores of ablated models.
Scores for which the difference in performance is not statistically significant (p < 0.05) are
indicated with matching symbols.

By comparing performance across combinations consisting of the same in-

put code representation and varying target comment representations, the importance

of training the decoder to generate a sequence of edit actions rather than the full up-

dated comment is very evident. Furthermore, comparing across varying code rep-

resentations under the Cedit target comment representation, it is clear that explicitly

encoding the code changes, as Medit, leads to significant improvements across most

metrics. We further ablate the explicit features. As shown in Table 5.5, these fea-

tures improve performance by wide margins, across all metrics.

5.9 Additional Details

5.9.1 Model Parameters

Model parameters are identical across the edit model and generation model,

tuned on validation data. Encoders have hidden dimension 64, the decoder has

hidden dimension 128, and the dimension for code and comment embeddings is

64. The embeddings used in the edit model are initialized using the pre-trained

embedding vectors from the generation model. We use a dropout rate of 0.6, a

batch size of 100, an initial learning rate of 0.001, and Adam optimizer. Models

76

Train Valid Test
Total actions 8,350 1,038 1,046
Avg. # actions per example 1.44 1.46 1.42
Replace 51.9% 49.7% 50.1%
ReplaceKeepBefore 2.9% 2.6% 3.5%
ReplaceKeepAfter 0.7% 0.3% 0.4%
InsertKeepBefore 21.5% 24.1% 23.2%
InsertKeepAfter 4.2% 4.0% 3.3%
Delete 17.4% 18.0% 17.8%
DeleteKeepBefore 1.3% 0.7% 1.1%
DeleteKeepAfter 0.2% 0.5% 0.6%

Table 5.6: Total number of edit actions; average number of edit actions per example;
percentage of total actions that is accounted by each edit action type.

are trained to minimize negative log likelihood, and we terminate training if the

validation loss does not decrease for ten consecutive epochs. During inference, we

use beam search with beam width=20.

5.9.2 Modified Comment Edit Lexicon

We first transform insertions and ambiguous deletions into a structure that

resembles Replace, characterized by InsertOld and InsertNew spans for in-

sertions and DeleteOld and DeleteNew spans for deletions. Next, we require

the span of tokens attached to ReplaceOld, InsertOld, and DeleteOld to be

unique across Cold so that we can uniquely identify the edit location. We enforce

this by iteratively searching through unchanged tokens before and after the span,

incorporating additional tokens into the span, until the span becomes unique. These

added tokens are then included in both components of the action. For instance, if

the last A is to be replaced with C in ABA, the ReplaceOld span would be BA and

the ReplaceNew span would be BC. We also augment the edit types to differentiate

77

between the various scenarios that may arise from this search procedure.

Replace actions for which this procedure is performed deviate from the

typical nature of Replace in which there is no overlap between the spans attached

to ReplaceOld and ReplaceNew. This is because the tokens that are added to

make the ReplaceOld span unique will appear in both spans. These tokens, which

are effectively kept between Cold and Cnew, could appear before or after the edit

location. We differentiate between these scenarios by augmenting the edit lexicon

with new edit types. In addition to Replace, we have ReplaceKeepBefore and

ReplaceKeepAfter to signify that the action entails retaining some content be-

fore or after, respectively.

We include the same for the other types as well with InsertKeepBefore,

InsertKeepAfter, DeleteKeepBefore, DeleteKeepAfter. Table 5.6 shows

statistics on how often each of these edit actions are used. Note that we disregard

basic Insert actions since it is always ambiguous where an insertion should occur

without an anchor point. We provide details about individual actions below.

Replace

<ReplaceOld>[old span]

<ReplaceNew>[new span]

<ReplaceEnd>

This action prescribes that the tokens attached to ReplaceOld are deleted and the

tokens attached to ReplaceNew are inserted in their place. There is almost never

overlap between the span of tokens attached to ReplaceOld and ReplaceNew.

Example: if B is to be replaced with C in Cold=AB to produce Cnew=AC, the corre-

78

sponding Cedit is:

<ReplaceOld>B

<ReplaceNew>C

<ReplaceEnd>

Note that the span attached to ReplaceOld must be unique across Cold for this edit

type to be used.

ReplaceKeepBefore

<ReplaceOldKeepBefore>[old span]

<ReplaceNewKeepBefore>[new span]

<ReplaceEnd>

Replace is transformed into this structure if the span attached to ReplaceOld is

not unique. For example, suppose the first B is to be replaced with D in Cold=ABCB

to produce Cnew=ADCB. If Cedit consists of a ReplaceOld span carrying just B, it

is not obvious whether the first or last B should be replaced. To address this, we

introduce a new edit type, ReplaceKeepBefore, which forms a unique span by

searching before the edit location.

It prescribes that the tokens attached to ReplaceOldKeepBefore are deleted

and the tokens attached to ReplaceNewKeepBefore are inserted in their place.

Unlike Replace, there will be some overlap at the beginning of the spans attached

to ReplaceOldKeepBefore and ReplaceNewKeepBefore. To represent edits

Cold=ABCB to produce Cnew=ADCB, Cedit is:

<ReplaceOldKeepBefore> AB

<ReplaceNewKeepBefore> AD

<ReplaceEnd>

79

The span attached to ReplaceOldKeepBefore is unique, making it clear that the

first B is to be replaced with D. It also indicates that we are effectively keeping A,

before the edit location.

ReplaceKeepAfter

<ReplaceOldKeepAfter>[old span]

<ReplaceNewKeepAfter>[new span]

<ReplaceEnd>

Replace is transformed into this structure if the span attached to ReplaceOld is

not unique and ReplaceKeepBefore cannot be used because we are unable to find

a unique sequence of unchanged tokens before the edit location. For example, sup-

pose the first B is to be replaced with D in Cold=ABCAB to produce Cnew=ADCAB.

Searching before the edit location, we find only AB, which is not unique across

Cold, and so it would still not be clear which B is to be edited. To address this,

we introduce a new edit type, ReplaceKeepAfter, which forms a unique span by

searching after the edit location.

It prescribes that the tokens attached to ReplaceOldKeepAfter are deleted

and the tokens attached to ReplaceNewKeepAfter are inserted in their place. Un-

like Replace and ReplaceKeepBefore, there will be some overlap at the end

of the spans attached to ReplaceOldKeepAfter and ReplaceNewKeepAfter.

Therefore, to represent editing Cold=ABCAB to produce Cnew=ADCAB, Cedit is:

<ReplaceOldKeepAfter> BC

<ReplaceNewKeepAfter> DC

<ReplaceEnd>

80

The span attached to ReplaceOldKeepAfter is unique, making it clear that the

first B is to be replaced with D. It also indicates that we are effectively keeping C,

which appears after the edit location.

InsertKeepBefore

<InsertOldKeepBefore>[old span]

<InsertNewKeepBefore>[new span]

<InsertEnd>

In this representation, the span of tokens attached to InsertOldKeepBeforemust

be unique and serve as the anchor point for where the new tokens should be inserted.

We do this by searching before the edit location. The structure is identical to that of

ReplaceKeepBefore in that the tokens attached to InsertOldKeepBefore are

replaced with the tokens in InsertNewKeepBefore and that there is some overlap

at the beginning of the two spans. As an example, suppose C is to be inserted at the

end of Cold=AB to form Cnew=ABC. Then the corresponding Cedit is as follows:

<InsertKeepBefore> B

<InsertNewKeepBefore> BC

<InserteEnd>

This states that we are effectively inserting C and keeping B, which appears before

the edit location.

81

InsertKeepAfter

<InsertOldKeepAfter>[old span]

<InsertNewKeepAfter>[new span]

<InsertEnd>

We rely on this when we are unable to use InsertKeepBefore because we can-

not find a unique span of tokens to identify the anchor point, by searching be-

fore the edit location. For instance, suppose C is to be inserted at the beginning

of Cold=AB to form Cnew=CAB. There are no tokens that appear before the insert

point, so we instead choose to search after. The structure is identical to that of

ReplaceKeepAfter in that the tokens attached to InsertOldKeepAfter are

replaced with the tokens in InsertNewKeepAfter and that there is some over-

lap at the end of the two spans. The corresponding Cedit from our example is as

follows:
<InsertKeepAfter> A

<InsertNewKeepAfter> CA

<InserteEnd>

This states that we are effectively inserting C and keeping A, which appears after

the edit location.

5.9.3 Deletions

Delete

<Delete>[old span]<DeleteEnd>

82

It prescribes that the tokens that appear in the Delete span are removed from Cold.

Example: if B is to be deleted from Cold=AB to produce Cnew=A, the corresponding

Cedit is:

<Delete>B<DeleteEnd>

Note that the Delete span must be unique across Cold for this edit type to be used.

DeleteKeepBefore

<DeleteOldKeepBefore>[old span]

<DeleteNewKeepBefore>[new span]

<DeleteEnd>

Delete is transformed into this structure if the Delete span is not unique.

For example, suppose the first B is to be deleted from Cold=ABCB to produce

Cnew=ACB. From just Cedit=<Delete>B<DeleteEnd>, it is unclear which B is

to be deleted. To address this, we introduce a new edit type, DeleteKeepBefore,

which forms a unique span by searching before the edit location. The structure is

identical to that of ReplaceKeepBefore in that the tokens attached to DeleteOldKeepBefore

are replaced with the tokens in DeleteNewKeepBefore and that there is some

overlap at the beginning of the two spans. For the example under consideration, the

corresponding Cedit is given below:

<DeleteOldKeepBefore> AB

<DeleteNewKeepBefore> A

<DeleteEnd>

The span attached to DeleteOldKeepBefore is unique, making it clear that the

83

first B is to be deleted. It also indicates that we are effectively keeping A, which

appears before the edit location.

DeleteKeepAfter

<DeleteOldKeepAfter>[old span]

<DeleteNewKeepAfter>[new span]

<DeleteEnd>

Delete is transformed into this structure if the Delete span is not unique and

DeleteKeepBefore cannot be used because we are unable to find a unique se-

quence of unchanged tokens before the edit location. For example, suppose the

first B is to be deleted from Cold=ABCAB to produce Cnew=ACAB. Searching be-

fore the edit location, we find only AB, which is not unique across Cold, and so it

would still not be clear which B is to be deleted. To address this, we introduce a

new edit type, DeleteKeepAfter, which forms a unique span by searching af-

ter the edit location. The structure is identical to that of ReplaceKeepAfter in

that the tokens attached to DeleteOldKeepAfter are replaced with the tokens in

DeleteNewKeepAfter and that there is some overlap at the end of the two spans.

For the example under consideration, Cedit is as follows:

<DeleteOldKeepAfter> BC

<DeleteNewKeepAfter> C

<DeleteEnd>

The span attached to DeleteOldKeepAfter is unique, making it clear that the

first B is to be deleted. It also indicates that we are effectively keeping C, which

84

appears after the edit location.

5.9.4 Sample Output

In Table 5.7, we show predictions for various examples in the test set.

5.10 Summary

In this work, we have addressed the novel task of automatically updating

an existing programming comment based on changes to the related code. We de-

signed a new approach for this task which aims to correlate cross-modal edits in

order to generate a sequence of edit actions specifying how the comment should

be updated. We find that our model outperforms multiple rule-based baselines and

comment generation models, with respect to several automatic metrics and human

evaluation.

85

Examples

Project: ariejan-slick2d

public float getX() {

- return center[NUM];

}

public float getX() {

+ if (left == null) {

+ calculateLeft();

+ }

+ return left.floatValue();

}

Old: @return the x location of the center of this circle Base: @return the x location of the center of this circle or null if null

Gen: @return the x of the angle in this vector

Edit: @return the x location of the left of this circle

Gold: @return the x location of the left side of this shape .

Project: jackyglony-objectiveeclipse

private IProject getProject() {

- return managedTarget.getOwner().getProject();

}

private IProject getProject() {

+ return (IProject) managedProject.getOwner();

}

Old: @return the iproject associated with the target Base: @return the iproject associated with the target

Gen: @return the iproject

Edit: @return the iproject associated with the project

Gold: @return the iproject associated with the managed project

Project: rajawali-rajawali

public double getRotX() {

- return mOrientation.getRotationX();

}

public double getRotX() {

+ return Math.toDegrees(mOrientation.getRotationX());

}

Old: @return double the roll euler angle . Base: @return double the roll euler angle .

Gen: @return the rot x .

Edit: @return parsed double the roll euler angle .

Gold: @return double the roll euler angle in degrees .

Project: Qihoo360-RePlugin

-public static <T extends Collection<?>> T validIndex(final T collection,

final int index) {

- return validIndex(collection, index,

- DEFAULT_VALID_INDEX_COLLECTION_EX_MESSAGE, Integer.valueOf(index));

}

+public static <T extends CharSequence> T validIndex(final T chars,

final int index) {

+ return validIndex(chars, index,

+ DEFAULT_VALID_INDEX_CHAR_SEQUENCE_EX_MESSAGE, Integer.valueOf(index));

}

Old: @return the validated collection (never null for method chaining) Base: @return the validated collection (never null for method chaining)

Gen: @return the index

Edit: @return the validated char sequence (never null for method chaining

)

Gold: @return the validated character sequence (never null for method

chaining)

Project: orfjackal-hourparser

public Date getStart() {

if (records.size() == NUM) {

- return null;

} else {

Date first = records.get(NUM).getDate();

for (Entry e : records) {

if (e.getDate().before(first)) {

first = e.getDate();

}

}

return first;

}

}

public Date getStart() {

if (records.size() == NUM) {

+ return new Date();

} else {

Date first = records.get(NUM).getDate();

for (Entry e : records) {

if (e.getDate().before(first)) {

first = e.getDate();

}

}

return first;

}

}

Old: @return the time of the first record or null if there are no records Base: @return the time of the first record or null if there are no records

Gen: @return the date , or null if not available

Edit: @return the time of the first record or date if there are no records

Gold: @return the time of the first record , or the current time if there

are no records

Table 5.7: Examples from open-source software projects. For each example, we show
the diff between the two versions of the method (left: old version, right: new version,
diff lines are highlighted), the existing @return comment prior to being updated (left),
and predictions made by the return type substitution w/ null handling baseline, reranked
generation model, and reranked edit model, and the gold updated comment (right, from top
to bottom).

86

Chapter 6

Combined Detection and Update of Inconsistent

Comments

In Chapters 4 and 5, we explored the tasks of detecting inconsistent com-

ments and updating them in isolation. We now combine models for these two tasks

to build a comprehensive just-in-time comment maintenance system which first de-

termines whether a comment, Cold, has become inconsistent upon code changes to

the corresponding method (Mold → Mnew), and then automatically suggests a re-

vision if this is the case. This chapter is based on the work originally presented in

Panthaplackel et al. (2021).

6.1 Experiments

We use the dataset that we introduced in Section 4.3. Recall that positive

examples correspond to cases in which both the method and comment are changed,

and negative examples correspond to cases in which only the method is changed.

We consider three different configurations for combining our inconsistency detec-

tion models (Section 4.4.2) with our comment update model (Section 5.2).

• Update w/ implicit detection: We augment training of the update model

with negative examples in which Cold does not need to be updated. This

baseline implicitly performs inconsistency detection by learning to copy Cold

87

when an update is not needed. We evaluate with respect to inconsistency

detection based on whether or not it predicts Cold as Cnew.

• Pretrained update + detection: The update and detection models are trained

separately. At test time, if the detection model classifies Cold as inconsistent,

we take the prediction of the update model. Otherwise, we copy Cold, making

Cnew=Cold. We consider three of our just-in-time detection models.

• Jointly trained update + detection: We jointly train the inconsistency de-

tection model with the update model on the full dataset (including positive

and negative examples). We consider all three of our just-in-time detection

techniques. The update model and detection model share embeddings and

the comment encoder for all three, and for the sequence-based and hybrid

models, the code sequence encoder is also shared. During training, loss is

computed as the sum of the update and detection components. For negative

examples (i.e., Cold does not need to be updated), we mask the loss of the

update component since it does not have to learn to copy Cold. At test time, if

the detection component predicts a negative label, we can directly copy Cold

and otherwise take the prediction of the update model.

6.2 Results

In Tables 6.1 and 6.2, we compare performances of combined inconsistency

detection and update systems on the cleaned test sample. As reference points, we

also provide scores for a system which never updates (i.e., always copies Cold as

Cnew) and our comment update model, which is designed to always update (and

88

Update Metrics
xMatch METEOR BLEU-4 SARI GLEU

Never update 50.0 67.4 72.1 24.9 68.2
Update model (Chapter 5) 25.9 60.0 68.7 42.0∗ 67.4
Update w/ implicit detection 58.0 72.0 74.7 31.5 72.7
Pretrained update + detection

SEQ(Cold, Medit) + features 62.3† 75.6∗ 77.0∗ 42.0∗ 76.2
GRAPH(Cold, Tedit) + features 59.4 74.9§ 76.6† 42.5∥ 75.8∗†

HYBRID(Cold, Medit, Tedit) + features 62.3† 75.8†∥ 77.2 42.3† 76.4
Jointly trained update + detection

SEQ(Cold, Medit) + features 61.4∗ 75.9∥ 76.6† 42.4†∥ 75.6†

GRAPH(Cold, Tedit) + features 60.8 75.1§ 76.6† 41.8∗ 75.8∗

HYBRID(Cold, Medit, Tedit) + features 61.6∗ 75.6∗† 76.9∗ 42.3† 75.9∗

Table 6.1: Comparing performance on update between combined systems on the cleaned
test sample. Scores for which the difference in performance is not statistically significant
are shown with identical symbols.

Detection Metrics
P R F1 Acc

Never update 0.0 0.0 0.0 50.0
Update model (Chapter 5) 54.0 95.6 69.0 57.1
Update w/ implicit detection 100.0 23.3 37.7 61.7
Pretrained update + detection

SEQ(Cold, Medit) + features 91.3∗ 82.0§ 86.4∗ 87.1§¶

GRAPH(Cold, Tedit) + features 85.8 87.1 86.4∗ 86.3†

HYBRID(Cold, Medit, Tedit) + features 92.3 82.4§ 87.1† 87.8∗∥

Jointly trained update + detection
SEQ(Cold, Medit) + features 88.3† 86.2 87.2† 87.3§∥

GRAPH(Cold, Tedit) + features 88.3† 84.7∗ 86.4∗ 86.7†¶

HYBRID(Cold, Medit, Tedit) + features 90.9∗ 84.9∗ 87.8 88.2∗

Table 6.2: Comparing performance on inconsistency detection between combined systems
on the cleaned test sample. Scores for which the difference in performance is not statisti-
cally significant are shown with identical symbols.

only copy Cold if an invalid edit action sequence is generated).

Since our dataset is balanced, we can get 50% exact match by simply copy-

ing Cold (i.e., never updating). In fact, this can even beat our comment update

model on xMatch, METEOR, BLEU-4, and SARI, and GLEU. This underlines the

importance of first determining whether a comment needs to be updated, which

can be addressed with the inconsistency detection component. On the majority of

the update metrics, both of these underperform the other three approaches (Update

89

w/ implicit detection, Pretrained update + detection, and Jointly trained update +

detection). SARI is calculated by averaging N-gram F1 scores for edit operations

(add, delete, and keep). So, it is not surprising that the Update w/ implicit detection

baseline, which learns to copy, performs fewer edits, consequently underperform-

ing on this metric. Because our comment update model is designed to always edit, it

can perform well on this metric; however, the majority of our pretrained and jointly

trained systems can beat this.

The Update w/ implicit detection baseline, which does not include an ex-

plicit inconsistency detection component, performs relatively well with respect to

the update metrics, but it performs poorly on detection metrics. Here, we use gen-

erating Cold as the prediction for Cnew as a proxy for detecting inconsistency. It

achieves high precision, but it frequently copies Cold in cases in which it is incon-

sistent and should be updated, hence underperforming on recall. The pretrained

and jointly trained approaches outperform this model by wide statistically signifi-

cant margins across the majority of metrics, demonstrating the need for explicitly

performing inconsistency detection.

We do not observe a significant difference between the pretrained and jointly

trained systems. The pretrained models achieve slightly higher scores on most up-

date metrics and the jointly trained models achieve slightly higher scores on the

detection metrics; however, these differences are small and often statistically in-

significant. While we had expected the jointly trained system to perform better,

neural networks are often overparameterized, so it is possible that a network can

learn to fit both tasks, without having them affect one another.

90

Update Metrics
xMatch METEOR BLEU-4 SARI GLEU

Never Update 50.0 67.7 71.6 25.1 68.3
Update model (Chapter 5) 21.5 56.2 64.7 37.6∗ 63.4
Update w/ implicit detection 56.1∗ 71.3 73.4∗ 30.2 71.4
Pretrained update + detection

SEQ(Cold, Medit) + features 57.3§ 72.6∗ 73.9† 37.8§ 73.2§
GRAPH(Cold, Tedit) + features 55.2 71.8 73.5∗ 38.0†∥ 72.8∗

HYBRID(Cold, Medit, Tedit) + features 57.3§ 72.6∗ 73.9† 37.6∗ 73.2†§
Jointly trained update + detection

SEQ(Cold, Medit) + features 56.5∗† 72.2†§ 73.5∗ 37.9†∥ 72.9∗

GRAPH(Cold, Tedit) + features 56.2∗ 72.0§ 73.6∗ 37.8†§ 73.0∗†

HYBRID(Cold, Medit, Tedit) + features 56.8† 72.4∗† 73.8 38.1∥ 73.1§

Table 6.3: Comparing performance on update between combined systems on the full test
set. Scores for which the difference in performance is not statistically significant are shown
with identical symbols.

Detection Metrics
P R F1 Acc

Never Update 0.0 0.0 0.0 50.0
Update model (Chapter 5) 53.1 91.8 67.2 55.3
Update w/ implicit detection 98.5 18.2 30.8 59.0
Pretrained update + detection

SEQ(Cold, Medit) + features 88.4† 73.2 80.0† 81.8∗†

GRAPH(Cold, Tedit) + features 83.8 78.3 80.9∗ 81.5†

HYBRID(Cold, Medit, Tedit) + features 88.6† 72.4 79.6† 81.5†

Jointly trained update + detection
SEQ(Cold, Medit) + features 85.7∗ 76.7∗ 80.9∗ 81.9∗†

GRAPH(Cold, Tedit) + features 85.9∗ 76.7∗ 81.0∗ 82.0∗†

HYBRID(Cold, Medit, Tedit) + features 86.7 75.7 80.9∗ 82.1∗

Table 6.4: Comparing performance on inconsistency detection between combined systems
on the cleaned test sample. Scores for which the difference in performance is not statisti-
cally significant are shown with identical symbols.

In Tables 6.3 and 6.4, we show results of combined detection+update sys-

tems on the full test set. The results are analogous to those corresponding to the the

cleaned test set. While the differences for the update metrics are less pronounced,

the pretrained and jointly trained approaches can again outperform Update w/ im-

plicit detection as well as the two reference points: Never Update and Update Model

(Chapter 5). The drastic differences in performance with respect to the detection

metrics further demonstrate the importance of explicit inconsistency detection in a

91

(a) Example from OpenAPI Generator (b) Example from OWASP ZAP

Figure 6.1: Examples in which inconsistencies emerged as a result of developers failing
to update comments upon code changes. Predictions of the combined, pre-trained detec-
tion+update approach are shown.

combined detection+update system. In line with our observations from the cleaned

test set, we find the performances of the pretrained and jointly trained systems to be

very close.

6.3 Qualitative Analysis

Recall that in our data collection procedure, we assign the negative (i.e.,

consistent) label to examples in which the developer did not update a comment

following code changes. Based on our inspection of a sample of the full, unan-

notated test set, we find examples that are mislabeled as negative, and our model

can correctly identify some of these cases. For instance, in the example shown in

Figure 6.1a, the developer failed to amend the comment to indicate that the method

no longer returns enumNumber but rather its value or null if it is not set. Similarly,

in Figure 6.1b, the developer failed to update ZapTextField to JPasswordField

in the comment when the return type of the method was modified. The inconsis-

92

tency in the OWASP ZAP project was fixed after we reported the issue and the

inconsistency in the OpenAPI Generator project continues to persist today. 1

6.4 Summary

We explored various strategies for combining our approach for inconsis-

tency detection (Chapter 4) with our approach for comment update (Chapter 5).

We demonstrate that these approaches can be integrated to build a comprehensive

comment maintenance system that can detect and resolve inconsistent comments.

1We have reported them as issues in their respective projects.

93

Chapter 7

Describing Solutions for Bug Reports Based on

Developer Discussions

In Chapters 3-6, the underlying goal was to support software evolution, for

which we focused on natural language comments. We developed techniques for

detecting and updating comments immediately after code changes to uphold soft-

ware quality once these changes are merged into the code base. In Chapters 7-8, we

shift to our second goal which aims to drive software evolution. For this, we use a

different form of natural language, namely dialogue in bug report discussions1, to

drive critical code changes for resolving bugs which threaten software quality.

Bug report discussions can grow rapidly, through the many exchanges (Liu

et al., 2020) among multiple participants (Kavaler et al., 2017), spanning several

months or even longer (Kikas et al., 2015). The solution is often formulated within

the discussion (Arya et al., 2019; Noyori et al., 2019); however, this can be chal-

lenging to locate and interpret amongst a large mass of text. To enable developers to

more easily absorb information relevant towards implementing the solution through

the necessary code changes, in this chapter, we propose automatically generating

a concise natural language description of the solution by synthesizing the relevant

content as soon as it emerges in the discussion. This chapter is based on work

presented in Panthaplackel et al. (2022b).

1We provide an overview of bug report discussions in Section 2.4.

94

Figure 7.1: Bug report discussion from ExoPlayer2 with user-written and system-
generated solution descriptions.

7.1 Problem Setting

As shown in Figure 7.1, when a user reports a bug, they state the problem in

the title (e.g., “Black screen appears when we seek over an AdGroup”) and initiate

a discussion by making the first utterance (U1), which usually elaborates on the

problem. Other participants join the discussion at later time steps through utterances

(U2...UT), where T is the total number of utterances. Throughout the discussion,

developers discuss various aspects of the bug, including a potential solution (Arya

et al., 2019). We propose the task of generating a concise description of the solution

(e.g., “Prevent shutter closing for within-window seeks to unprepared periods”) by

synthesizing relevant content within the title and sequence of utterances (U1, U2...).

95

7.2 Data

We build a new corpus which has been released publicly.3 Following prior

work on other tasks (Kavaler et al., 2017; Panichella et al., 2021), we mine issue

reports corresponding to open-source Java projects from GitHub Issues. Issue re-

ports can entail feature requests as well as bug reports. In this work, we focus on

the latter. We identify bug reports by searching for “bug” in the labels assigned to

a report and by using heuristics for identifying bug-related commits (Karampatsis

and Sutton, 2020a).

7.2.1 Data Collection

A bug report is organized as an event timeline, recording activity from when

it is opened to when it is closed. From comments that are posted on this timeline,

we extract utterances which form the discussion corresponding to a bug report, or-

dered based on their timestamps. We specifically consider bug reports that resulted

in code (or documentation) fixes (Nguyen et al., 2012). These changes are made

through commits and pull requests, which also appear on the timeline. Changes

made in a commit or pull request are described using natural language, in the cor-

responding commit message (Loyola et al., 2017; Xu et al., 2019a) or pull request

title (Kononenko et al., 2018; Zhao et al., 2019). In practice, commit messages

and pull request titles are written after code changes. However, like contemporary

work (Chakraborty and Ray, 2021), we treat them as a proxy for solution descrip-

tions to drive bug-resolving code changes.

3https://github.com/panthap2/describing-bug-report-solutions

96

https://github.com/panthap2/describing-bug-report-solutions

Furthermore, we extract the position of a commit or pull request on the time-

line, relative to the utterances in the discussion. We consider this as the point at

which a developer acquired enough information about the solution to implement

the necessary changes and describe these changes with the corresponding commit

message or pull request title. So, if the implementation is done immediately after

Ug on the timeline, then we take this position tg as the “gold” time step for when

sufficient context becomes available to generate an informative description of the

solution. This leads to examples of the form (Title, U1...UT , tg, description).

We disregard issues with multiple commit messages/PR titles, so there is at

most one example per issue. This is because the reason for needing multiple sets

of changes is not clear (e.g., the solution could be implemented in parts or the first

solution may have been incorrect and it is later corrected).4

7.2.2 Handling Noise

Upon studying the data, we deemed it necessary to perform filtering for more

effective supervision and accurate evaluation, as commonly done for tasks in this

domain (Section 2.6). First, we apply simple heuristics to reduce noise, which we

discuss in more detail in Section 7.8.2. From this, we obtain the examples that are

primarily used for training and evaluation in this work, which we refer to as the full

dataset. Next, we identify three sources of noise that are more difficult to control

with simple heuristics and use techniques described below to quantify them and

build a filtered subset of the full dataset that is less noisy. This subset is used for

4Since such examples could be useful for future work, they are available in the data we released.

97

more detailed analysis of the models that are discussed in the paper, and we find

that training on this subset leads to improved performance (§7.5).

Generic descriptions: Commit messages and pull request titles are sometimes

generic (e.g., “fix issue.”) (Etemadi and Monperrus, 2020). To limit such cases, we

compute normalized inverse word frequency (NIWF), which is used in prior work

to quantify specificity (Zhang et al., 2018). The filter excludes 1,658 examples

in which the reference description’s NIWF score is below 0.116 (10th percentile

computed from the training data).

Uninformative descriptions: Instead of describing the solution, the commit mes-

sage or pull request title sometimes essentially re-states the problem (which is usu-

ally mentioned in the title of the bug report). To control for this, we compute the

percentage of unique, non-stopword tokens in the reference description which also

appear in the title. The filtered subset excludes 3,552 additional examples in which

this percentage is 50% or more.

Discussions without sufficient context: While enough context is available to a

developer to implement a solution at tg, this context may not always be available

in the discussion and could instead be from their technical expertise or external

resources. For instance, in the discussion in the footnote5, only a stack trace and

personal exchanges between developers are present. From the utterance before the

PR, “Or PM me the query that failed” suggests that an offline conversation occurred.

Since relevant content is not available in such cases, it is unreasonable to expect

to generate an informative description. We try to identify such examples with an

5https://github.com/prestodb/presto/issues/14567

98

https://github.com/prestodb/presto/issues/14567

approach (Nallapati et al., 2017) for greedily constructing an extractive summary

based on a reference abstractive summary. The filtered subset excludes 1,262 more

examples for which a summary could not be constructed (i.e., there is no relevant

sentence that is extracted from the context). After applying all three filters, we have

5,856 examples.

7.2.3 Preprocessing

We subtokenize (Section 3.3) the title, utterances, and description. We retain

inlined code (on average 5.7 tokens/utterance); however, we remove code blocks

and embedded code snippets (with markdown tags), as done in prior work (Tabas-

sum et al., 2020; Ahmad et al., 2021). Capturing meaning from large bodies of code

often requires reasoning with respect to the abstract syntax tree (Alon et al., 2019)

and data and control flow graphs (Allamanis et al., 2018b). However, markdown

tags are not always used to identify code (Tabassum et al., 2020), and consequently,

we observe some instances of larger code blocks within utterances that cannot be

easily removed. We do not use source code files within a project’s repository and

leave it to future work to incorporate large bodies of code. We discard URLs and

mentions of GitHub usernames from utterances. From the description, we remove

references to issue and pull request numbers.

7.2.4 Partitioning

The dataset spans bug reports from April 2011 - July 2020. We partition

the dataset based on the timestamp of the commit or pull request associated with

99

Train Valid Test Total
Projects 395 (330) 145 (111) 134 (104) 412 (344)
Examples 9,862 (4,664) 1,232 (599) 1,234 (593) 12,328 (5,856)

Commit messages 4,520 (2,355) 410 (234) 386 (189) 5,316 (2,778)
PR titles 5,342 (2,309) 822 (365) 848 (404) 7,012 (3,078)

Avg T 3.9 (4.5) 3.8 (4.4) 4.0 (4.4) 3.9 (4.5)
Avg tg 2.9 (3.4) 2.9 (3.4) 3.2 (3.6) 2.9 (3.4)
Avg utterance length (#tokens) 68.4 (75.6) 74.8 (84.3) 70.2 (75.7) 69.2 (76.5)
Avg title length (#tokens) 10.6 (10.6) 11.2 (11.0) 11.5 (11.3) 10.7 (10.7)
Avg description length (#tokens) 9.1 (10.5) 8.9 (9.9) 9.1 (10.1) 9.1 (10.4)

Table 7.1: Data statistics. In parentheses, we show metrics computed on the filtered subset.

a given example. Namely, we require all timestamps in the training set to precede

those in the validation set and all timestamps in the validation set to precede those

in the test set. Partitioning with respect to time ensures that we are not using models

trained on future data to make predictions in the present, more closely resembling

the real-world scenario (Nie et al., 2021). Dataset statistics are shown in Table 7.1.

7.3 Models

We benchmark various models for generating solution descriptions in a static

setting, in which we leverage the oracle context from the discussion (i.e., the title

and U1...Utg). From Table 7.1, the average length of a single utterance is ∼70 to-

kens while the average description length is only ∼9 tokens. Therefore, this task

requires not only effectively selecting content about the solution from the long con-

text (which could span multiple utterances) but also synthesizing this content to

produce a concise description. Following See et al. (2017), we compute the percent

of novel n-grams in the reference description with respect to the input context in

Table 7.2. The high percentages underline the need for an abstractive approach,

100

1 2 3 4

Full
Title 73.0 88.9 94.0 96.1
U1...Utg 54.7 87.6 95.0 97.6
Title + U1...Utg 47.9 82.0 91.2 94.8

Filtered
Title 82.3 95.6 98.4 99.4
U1...Utg 49.9 87.4 95.1 97.8
Title + U1...Utg 47.5 86.0 94.5 97.5

Table 7.2: Percent of novel unigrams, bigrams, trigrams, and 4-grams in the reference
description, with respect to the title, U1...Utg , and title + U1...Utg . The high percentages
show that generating solutions is an abstractive task.

rather than an extractive one which generates a description by merely copying over

utterances or sentences within the discussion.6 Furthermore, success on this task re-

quires complex, bimodal reasoning over technical content in the discussion, encom-

passing both natural language and source code. We describe the models we consider

below. To represent the input in neural models, we insert <TITLE START> before

the title and <UTTERANCE START> before each utterance.

• Copy Title: Though the bug report title typically only states a problem, we

observe that it sometimes also puts forth a possible solution, so we evaluate

how well it can serve as a concise description of the solution.

• SEQ2SEQ + Ptr: We consider a transformer encoder-decoder model in

which we flatten the context into a single input sequence (Vaswani et al.,

2017). Generating the output typically requires incorporating out-of-vocabulary

tokens from the input that are specific to a given software project, so we sup-

port copying with a pointer generator network (Vinyals et al., 2015).

• Hier SEQ2SEQ + Ptr: Inspired by hierarchical approaches for dialogue re-

6We observe very low performance with extractive approaches, as shown in Section 7.8.3.

101

sponse generation (Serban et al., 2016), we consider a hierarchical variant of

the SEQ2SEQ + Ptr model with two separate encoders: one that learns a repre-

sentation of an individual utterance, and one that learns a representation of the

whole discussion. We encode Ut using a transformer-based encoder and feed

the contextualized representation of its first token (<UTTERANCE START>)

into the RNN-based discussion encoder to update the discussion state, st.

When encoding Ut, we also concatenate st−1 to embeddings, to help the

model relate Ut with the broader context of the discussion. Note that we

treat the title as U0 in the discussion. This process continues until Utg is en-

coded, at which point all accumulated token-level hidden states are fed into

a transformer-based decoder to generate the output. Unlike the SEQ2SEQ +

Ptr model which is designed to reason about the full input at once, this ap-

proach reasons step-by-step, with self-attention in the utterance encoder only

being applied to tokens within the same utterance. Since the input context for

this task is often very large, we investigate whether it is useful to break down

the encoding process in this way. We also equip this model with a pointer

generator network.

• PLBART: Ahmad et al. (2021) recently proposed PLBART, which is pre-

trained on a large amount of code from GitHub and software-related natural

language from StackOverflow, using BART-like (Lewis et al., 2020) training

objectives. With finetuning, PLBART achieves state-of-the-art performance

on many program and language understanding tasks like code summariza-

tion/generation. We finetune PLBART on our training set and evaluate its

102

Model BLEU-4 METEOR ROUGE-L

Full

Copy Title 14.4∥ 13.1 24.4§

SEQ2SEQ + Ptr 12.6 9.8 25.0‡

Hier SEQ2SEQ + Ptr 12.4 9.6 24.1§

PLBART 16.6 14.5 28.3
PLBART (F) 14.2∥ 12.3 25.1‡

Filtered

Copy Title 10.0∗† 8.3 16.6
SEQ2SEQ + Ptr 10.2∗ 7.5 20.1
Hier SEQ2SEQ + Ptr 9.9† 7.4 19.6
PLBART 12.3‡ 9.9 21.1
PLBART (F) 12.3‡ 10.2 21.9

Table 7.3: Automated metrics for generation. Scores for SEQ2SEQ + Ptr and Hier
SEQ2SEQ + Ptr are averaged across three trials. Differences that are not statistically signif-
icant (p < 0.05) are indicated with matching symbols.

ability to comprehend bug report discussions and generate descriptions of

solutions.7 Note that PLBART truncates input to 1024 tokens.

• PLBART (F): Since PLBART is pretrained on a large amount of data, we

can afford to reduce the finetuning data. So we finetune on only the filtered

subset of the training set (Section 7.2.2), to investigate whether finetuning on

this “less noisy” sample can lead to improved performance.

7.4 Results: Automated Metrics

We compute common text generation metrics, BLEU-4 (Papineni et al.,

2002), METEOR (Banerjee and Lavie, 2005), and ROUGE-L (Lin, 2004). We com-

pute statistical significance with bootstrap tests (Berg-Kirkpatrick et al., 2012) with

p < 0.05. Results are in Table 7.3. On the full test set, PLBART outperforms other

models by statistically significant margins, demonstrating the value of pretraining

7We use PLBART rather than vanilla BART because it achieves higher performance for our task.

103

on large amounts of data8. PLBART (F) underperforms PLBART on the full test

set; however, on the filtered subset, PLBART (F) either beats or matches PLBART.

We find that there is a large drop in performance across models between the full test

set and filtered subset. As demonstrated by the relatively high performance of the

naive Copy Title baseline, models can perform well by simply copying or rephras-

ing the title in many cases, for the full test. However, the filtered subset is designed

to remove uninformative reference descriptions that merely re-state the problem.

Nonetheless, because critical keywords relevant to the solution are often also in the

title, the Copy Title baseline can still achieve reasonable scores on the filtered sub-

set, even beating SEQ2SEQ + Ptr and Hier SEQ2SEQ + Ptr on METEOR. Although

automated metrics provide some signal, they emphasize syntactic similarity over

semantic similarity. For further evaluation, we conduct human evaluation.

7.5 Results: Human Evaluation

Users are asked to read through the content in the title and the discussion

(U1...Utg). For each example, they are shown predictions from the 5 models dis-

cussed in Section 7.3, and they must select one or more of the descriptions that is

most informative towards resolving the bug. If all candidates are uninformative,

then they select a separate option: “All candidates are poor.” There is also another

option to indicate that there is insufficient context about the solution (Section 7.2.2),

making it difficult to evaluate candidate descriptions. They must also write a ratio-

8While SEQ2SEQ + Ptr and Hier SEQ2SEQ + Ptr are slightly smaller than PLBART in model
size, we find that randomly initializing a model resembling PLBART’s architecture results in lower
performance than both of these.

104

nale for their selection. Before starting the annotation task, users must watch a

training video in which we walk through seven examples in detail.

Since annotation requires not only technical expertise, but also high cogni-

tive load and time commitment, it is hard to perform human evaluation on a large

number of examples with multiple judgments per example. Similar to Iyer et al.

(2016), we resort to having each example annotated by one user to annotate more

examples. We recruited 8 graduate students with 3+ years of programming ex-

perience and familiarity with Java. Each user annotated 20 examples, leading to

annotations for 160 unique examples in the full test set. Note that these users are

not active contributors to the projects they were asked to review, thus they will

likely select the option pertaining to insufficient context more often than if they

were active contributors to these projects who have a deeper understanding of their

implementations. However, it is difficult to conduct a user study at a similar scale

with contributors. Nonetheless, there are developers aiming to become first-time

contributors for a particular project (Tan et al., 2020). Our study better aligns with

this use case.

In Table 7.4, we show that PLBART (F) substantially outperforms all other

models, with users selecting its output 33.1% of the time. Even though the title

typically only states a problem, users selected it 8.1% of the time. From rationales

that users were asked to write, we found that there were cases in which the title

not only posed the problem but also offered a solution. Users rarely preferred the

output of SEQ2SEQ + Ptr and Hier SEQ2SEQ + Ptr as they usually just rephrased

the problem. PLBART also appears to be re-stating the problem in many cases;

105

Model Full Filtered
Copy Title 8.1 6.0
SEQ2SEQ + Ptr 1.3∗ 1.2†

Hier SEQ2SEQ + Ptr 1.3∗ 1.2†

PLBART 11.9 10.5
PLBART (F) 33.1‡ 39.5
All Poor 20.0 22.1
Insufficient Context 31.9‡ 25.6

Table 7.4: Human evaluation results: Percent of annotations for which users selected pre-
dictions made by each model. This entails 160 annotations for the full test set, 86 of which
correspond to examples in our filtered subset. Differences that are not significant (p < 0.05)
are indicated with matching symbols.

however, less often than other models.

Though we see similar trends across the full test set and the filtered subset,

all models except PLBART (F) tend to perform worse on the filtered subset, as

previously observed on automated metrics. Also, the average number of cases with

insufficient context is lower for the filtered subset, confirming that we are able to

reduce such cases through filtering. We find the results on the filtered data to align

better with human judgment. By finetuning on the filtered training set, PLBART

(F) learns to pick out important information from within the context and generate

descriptions which reflect the solution rather than the problem.

7.6 Analysis

Of the 160 annotated examples in Table 7.4, users found 51 to have insuf-

ficient context about the solution. We consider the remaining 109 as the context-

sufficient subset (CS), which we released for future research. We present automated

metrics for this subset in Table 7.5. Results are analogous to the full test set, ex-

106

Model BLEU-4 METEOR ROUGE
Copy Title 12.6 12.2¶ 22.1
SEQ2SEQ + Ptr 11.6 8.9 23.1
Hier SEQ2SEQ + Ptr 12.0 9.0 22.9
PLBART 14.6 13.2 26.0
PLBART (F) 14.2 12.3¶ 25.1

Table 7.5: Automated metrics for generation on CS subset. Differences that are not statis-
tically significant are indicated with matching symbols.

cept that the numbers are generally lower for all models other than for PLBART

(F), which achieves consistent performance. PLBART (F) slightly underperforms

PLBART on automated metrics overall. However, this is because these metrics

are computed against the single reference description, which could diverge from

how the solution is formulated in the discussion since the developer could have

written an uninformative/generic description. To do more fine-grained analysis, in

Figure 7.2, we plot automated metrics for varying percentages of token overlap

between the reference description and U1...Utg (excluding tokens already present

in the title which have been used to state the problem). Higher overlap suggests

that the reference description draws more content from within the discussion. For

higher percentages, PLBART (F) generally achieves higher scores against the ref-

erence than PLBART and all other models, indicating that this model is better at

gathering information from within the discussion.

To analyze how models exploit the provided context, we measure the percent

of n-grams in the prediction which overlap with the title and U1...Utg (excluding n-

grams already in the title) in Table 7.6. PLBART (F)’s predictions tend to have less

n-gram overlap with the title and more overlap with the utterances. This suggests

that this model predicts fewer uninformative descriptions which merely re-state the

problem mentioned in the title and instead focuses on content from the utterances.

107

(a) BLEU (b) METEOR

(c) ROUGE
Figure 7.2: Metrics for CS subset, with buckets corresponding to the % of tokens in ref-
erence description which also appear in U1...Utg (disregarding title tokens). Bucket 10
corresponds to [0, 10)%, 20 corresponds to [10, 20)%, etc.

In Table 7.7, we show model outputs for the example in Figure 7.1. SEQ2SEQ

+ Ptr and Hier SEQ2SEQ + Ptr essentially rephrase aspects of the problem, which

are described in the title. Both PLBART and PLBART (F) capture the solution,

with PLBART (F) providing more information. When there is sufficient context,

we find that many times, PLBART (F) generates output that is informative towards

bug resolution. While this demonstrates that finetuning this large, pretrained model

on our data can be useful in supporting bug resolution in on-line discussions to

some extent, it also shows that there is clearly room for improvement.

We manually inspected PLBART (F)’s outputs and associated user ratio-

108

Title ↓ U1...Utg only ↑
Model 1 2 3 4 1 2 3 4

Full

Copy Title 100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0
SEQ2SEQ + Ptr 65.6 34.4 39.3 46.5 28.6 24.9 27.0 25.0
Hier SEQ2SEQ + Ptr 60.2 33.9 41.1 50.4 37.4 27.9 28.3 29.2
PLBART 79.3 75.0 72.5 71.7 30.7 34.8 34.6 39.9
PLBART (F) 43.2 37.4 38.3 43.1 47.1 38.1 35.6 37.2
Reference 35.1 30.9 33.5 37.7 34.5 22.2 22.2 25.3

Filtered

Copy Title 100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0
SEQ2SEQ + Ptr 64.5 33.8 39.1 38.3 29.4 25.3 23.8 0.0
Hier SEQ2SEQ + Ptr 58.4 33.3 39.3 45.7 40.4 28.4 30.0 29.2
PLBART 76.9 73.4 71.1 70.4 34.0 37.0 36.3 41.2
PLBART (F) 38.4 33.9 35.2 40.7 51.0 40.0 36.6 38.1
Reference 23.7 18.6 18.4 16.3 40.1 22.8 21.4 23.0

CS

Copy Title 100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0
SEQ2SEQ + Ptr 64.8 37.1 38.5 22.5 31.6 25.3 33.1 25.0
Hier SEQ2SEQ + Ptr 60.3 34.2 37.9 28.3 38.7 26.1 29.2 0.0
PLBART 80.8 77.7 72.8 70.3 31.0 41.4 37.0 50.0
PLBART (F) 36.9 28.4 30.8 34.1 52.8 42.3 39.4 45.0
Reference 32.7 22.2 26.2 35.6 38.8 25.4 23.1 27.1

Table 7.6: Percent of unigrams, bigrams, trigrams and 4-grams in the prediction (or refer-
ence) which appear in the title and in U1..Utg only (excluding the title). Lower is better for
the title and higher is better for U1..Utg only.

Model Prediction
Copy Title black screen appears when we seek over an ad group .
SEQ2SEQ + Ptr fix black ads
Hier SEQ2SEQ + Ptr fix seeking in ad tag
PLBART suppress closing shutter when seeking over an ad group
PLBART (F) suppress closing the shutter when seeking to an unprepared period
Reference prevent shutter closing for within - window seeks to unprepared periods

Table 7.7: Model outputs for the example shown in Figure 7.1.

nales. We observe that the model tends to perform better when the solution is

clearly stated in 1-3 consecutive sentences (Table 7.8 (1) and (2)). When more

complex synthesis is needed, it sometimes stitches together tokens from the input

incorrectly (Table 7.8 (3)). Next, although the model picks up on information in

the context, sometimes, it draws content from an elaboration of the problem from

within the discussion rather than a formulation of the solution (Table 7.8 (4)). This

demonstrates that it still struggles to disentangle content relevant to the solution

109

Title PLBART (F) Reference
(1) Issue with dex: OIDC server is not available at the

’quarkus.oidc.auth-server-url’ URL
fix trailing slash in auth -
server url

strip trailing forward slash
from oidc url

(2) InvalidDataTypeException: UDATA contains
value larger than Integer.MAX VALUE DDR
issue decoding lookswitch

fix bug in byte code
dumper when tableswitch
instruction precedes ta-
bleswitch instruction

fix interpretation of switch
instructions in byte code
dumper

(3) Worldmap viewport changes when switching be-
tween dashboard pages

don ’ t refresh widget
grid when worldmap loses
viewport

define key prop for map vi-
sualization to update map
on dimension change

(4) Workaround comments exist in opengrok-
indexer/pom.xml file while the related issues are
already fixed.

fix jflex - de / jflex # 705 (
comment)

use jflex 1.8.2

(5) Why subscribe with single action for onNext de-
sign to crush if error happened?

1 . x : fix subscription .
subscribe () to return ob-
servable . empty () 2 .
x : fix subscription . sub-
scribe () to return observ-
able . empty ()

fixed sonar findings

Table 7.8: Output of PLBART (F) for a sample of examples in the test set.

from that about the problem. We also find that it sometimes struggles to gener-

ate meaningful output when in-lined code is present, highlighting the challenge in

bimodal reasoning about code and natural language (Table 7.8 (5)). Finally, we

find problems with repetition and fluency (Table 7.8 (1)), as commonly seen in the

outputs of neural models (Holtzman et al., 2020).

7.7 Supporting Real-Time Generation

Generating an informative description requires sufficient context about the

solution being available in the discussion. In a real-time setting, this context is likely

not immediately available but rather emerges as the discussion progresses, and we

must wait until it becomes available to generate a solution description. However,

the time step at which it becomes available (tg) is not known beforehand, so we

must instead predict it (tp) in order to perform generation during ongoing discus-

110

sions. For this, we consider classifying whether sufficient context is available upon

each new utterance. In Figure 7.1, the solution is formulated in U4, so the correct

behavior is to predict the negative label at t = 1, 2, 3 and the positive label at t = 4.

Once the positive label is predicted at tp9, the description is generated, conditioned

on the title and U1...Utp . We develop two systems for integrating classification with

a generation model: pipelined and joint trained.

7.7.1 Pipelined System

We design an independent classifier built on PLBART’s encoder. When a

new utterance Ut is made in the discussion, we encode the context so far (the title

and all utterances up to and including Ut). We take the final hidden state, et, as the

context representation at t, which we feed et through a 3-layer classification head

and apply softmax to classify whether or not sufficient context is available. We train

to minimize cross entropy loss. At test time, we use the already trained PLBART

(F) model to generate a solution description with context available at tp.

7.7.2 Joint System

We initialize an encoder-decoder model from PLBART with an additional

classification head (§7.7.1). The encoder is shared among the two tasks. When

classifying whether sufficient context about the solution is available, there is likely

specific solution-related content that contributes to predicting the positive label. So,

classification may enhance encoder representations, improving content selection for

generating solution descriptions.
9Classification is not performed for t > tp.

111

Furthermore, having sufficient context correlates with whether it can be used

to generate an informative description. So, the informativeness of a description

that can be generated with the available context can provide signal for classifying

whether that context is sufficient. Additionally, if sufficient context was not previ-

ously available at t − 1 but becomes available at t, we expect an improvement in

the informativeness of the descriptions generated at the two time steps. We repre-

sent these descriptions with the final decoder states at the two time steps, dt−1 and

dt. We concatenate et, dt−1, and dt to form the input into the classification head.10

For training loss, we sum the generation and classification losses across time steps

t1...tg. Sufficient context for generation may not be available at t < tg, so we mask

generation loss for earlier time steps.

7.7.3 Evaluation

We train on filtered data since we found this to improve performance. At test

time, a system can generate a solution description at tp ≤ tg, or it can fail to predict

the positive label before or at tg. After a commit/PR for fixing the bug is made at

tg, the state of the discussion changes, with possible mentions of the solution that is

implemented. Since using this as context to generate a solution description can be

considered “cheating,” we do not make predictions for time steps after tg. We treat

this as the system refraining from generating after not finding sufficient context.

The pipelined and joint systems refrained from generating 33.3-35.4% and

10In initial experiments, we tried explicitly quantifying the extent of improvement in informative-
ness between the timesteps by feeding in the difference vector, dt − dt−1, instead of two separate
vectors. However, we found that this did not perform as well, and it was better to let the model learn
to reason about the differences.

112

tp ≤ tg tg − tp BLEU METEOR ROUGE

Pipelined
Full @tp 1.69 14.3‡ 12.4§ 25.1¶

@tg - 14.4‡ 12.5§ 25.3¶

Filtered @tp 1.85 12.5∗ 10.1 21.7
@tg - 12.6∗ 10.5 22.3

Joint
Full @tp 1.81 13.1 11.4 22.4†

@tg - 13.2 11.7 22.5†

Filtered @tp 1.97 11.7 9.5 19.3
@tg - 11.9 9.9 19.7

Table 7.9: Automated metrics for combined systems when tp ≤ tg. We compare the
generated description @tp with that if the system had generated @tg. Differences that are
not statistically significant are indicated with matching superscripts.

tg − tp BLEU METEOR ROUGE

Full Pipelined 2.09 14.4 12.4 24.8
Joint 1.86 12.9 11.3 22.3

Filtered Pipelined 2.16 12.4 10.0 21.0
Joint 2.03 11.4 9.2 18.7

Table 7.10: Performance at tp on examples for which both systems predicted tp ≤ tg (614
of full and 304 of filtered test sets). All differences are statistically significant.

36.4-39.8% of the time respectively. We present automated metrics for the remain-

ing cases in Table 7.9. We find that tg−tp is between 1.69 and 1.85 for the pipelined

system and between 1.81 and 1.97 for the joint system. While a system should wait

until sufficient context is available, sometimes, the last couple utterances before the

implementation do not add context about the solution but are personal exchanges

(e.g., “Thanks”, “I’ll open a PR”). So, generating slightly before tg is acceptable in

some cases. Moreover, despite generating early in some cases, the generated output

@tp achieves comparable performance to that @tg, with respect to the generation

metrics (BLEU, METEOR, and ROUGE).

Note that the numbers are not directly comparable across the two systems

since the exact subset of examples for which tp ≤ tg varies between the two. In

113

(a) Pipelined: Sufficient Context @tp (b) Joint: Sufficient Context @tp

(c) Pipelined: Insufficient Context @tp (d) Joint: Insufficient Context @tp

Figure 7.3: The distribution of Likert scale ratings for the pipelined and jointly trained
systems, presented separately for the cases in which there is sufficient context @tp and
there is insuficcient context @tp. Note that numbers cannot be directly compared across
systems, as the exact examples for which generation is performed varies.

Table 7.10, we present results for the subset of examples for which both systems

predict tp ≤ tg. The joint system achieves lower average error (tg − tp) for classifi-

cation while the pipelined system performs better on generation metrics.

We also do human evaluation, for which we recruited 6 graduate students

with 3+ years of Java experience. Each user evaluated outputs of the two systems

for 20 random examples from the filtered test set. Users are given the same in-

formation as Section 7.5. If the system refrained from generating, we ask them if

there is sufficient context about the solution at any time step t ≤ tg. Otherwise,

114

we show them the generated description and ask if there is sufficient context about

the solution at tp and also to rate the informativeness of the description on a Likert

scale: 1: incomprehensible, completely incorrect, irrelevant; 2: generic, rephrasing

problem; 3: includes some useful information but does not capture the solution; 4:

partially captures solution; 5: completely captures solution.

In the cases that the system generated a description, users found there to

be sufficient context at tp 39.0% and 33.8% of the time for the pipelined and joint

systems respectively, with average informativeness being 3.3 for both (distributions

of ratings in Figures 7.3a and 7.3b). This suggests that when sufficient context is

available, these systems generate descriptions which can be useful for bug resolu-

tion.

Because a real-time system must act at a given time step agnostic to future

activity, classifying when to generate is challenging. It should defer generation to

later time steps if the optimal context is not available. Generating too early can

result in output that is generic and re-states the problem. For the cases in which the

system generated a description without sufficient context at tp, the average informa-

tiveness ratings were 2.2 (pipelined) and 2.0 (joint). Based on the distributions of

ratings presented in Figures 7.3c and 7.3d, we see that model predictions are gener-

ally given low informativeness ratings for cases with insufficient context. However,

deferring generation for too long by expecting more context to emerge later also

poses a risk. After the solution has already been implemented, it is too late for a

generated description to be useful towards resolving the bug. In the cases that the

pipelined and joint systems refrained from generating, there was sufficient context

115

about the solution 34.2% and 37.0% of the time respectively.

Despite the pipelined and joint systems having nuanced differences, we find

them to perform similarly. Through our evaluation of these systems, we demon-

strate room for improvement, particularly for the classification component in deter-

mining the optimal time step for generation. We leave it to future work to develop

more intricate end systems.

7.8 Additional Details

7.8.1 Model Parameters

All neural models were implemented using PyTorch. For SEQ2SEQ + Ptr

and Hier SEQ2SEQ + Ptr, we use a batch size of 8, an initial learning rate of 3e-

05, and a dropout rate of 0.2. Our transformer models have 4 encoder and decoder

layers, 4 heads in multi-head attention, a hidden size of 64, and feedforward hidden

size 256. We use Adam as the optimizer and have a learning rate scheduler with

gamma 0.95 which decays after an epoch if the validation loss has not improved.

We use early stopping with patience 5 during training.

For classification, the classification head consists of a linear layer (dimen-

sion 768), followed by a tanh non-linear layer, and a final linear projection layer

(dimension 2). When computing cross entropy loss for classification, we weight

the positive and negative labels using the inverse of the class proportion to handle

class imbalance (1.70 and 0.71 respectively). For the joint model, loss for a given

example is computed as follows, with λ1 = 0.8, λ2 = 0.2 (tuned on validation

116

data).

L = λ1Lgen(tg) + λ2

t=tg∑
t=1

Lclass(t)

7.8.2 More Data Details

We focus on closed bug reports from the top 1,000 Java projects (in terms of

number of stars), as a way of identifying well-maintained projects (Section 3.2). We

require there to be at least two distinct “actors” in the discussion, in which the actor

can either be a developer who makes an utterance in the discussion or an actor who

implements the solution through a commit or pull request. We discard examples

in which the reference description is identical to the title (disregarding stopwords),

as these are cases in which either the reference description only states the problem

and is uninformative or the title already puts forth a solution (in which case a gen-

erated description would not be useful). We remove examples with commits or pull

requests which simultaneously address multiple bug reports.

We mined 141,389 issues (from 770 of the top 1,000 projects). After apply-

ing heuristics, we get 35,010 (from 525 projects), which will be released. Of these,

16,899 pertain to bugs and 18,111 pertain to non-bugs. From the 16,899 bug-related

issues, we focus on the 12,328 issues with a single commit message/PR title. We

explain our reasoning for discarding examples linked to multiple commits and/or

pull requests in Section 7.2.1. However, such examples (which are available in the

data we release) can be useful for supporting generating descriptions at multiple

time steps in future work.

From an example’s description, we remove references to issue and pull re-

117

quest numbers, as they do not contribute to the meaning and are instead used as

identifiers for organizational purposes.

7.8.3 Additional Generation Baselines

We considered additional baselines; however, since they were performing

much lower than other approaches (on wide statistically significant margins), we

chose to exclude them from the main results. We briefly describe these baselines

below.

Extractive Baselines

Supervised Extractive: Using a greedy approach for obtaining noisy extractive

summaries (Nallapati et al., 2017), we train a supervised extractive summarization

model, similar to (Liu and Lapata, 2019).

LexRank: We use LexRank (Erkan and Radev, 2004), an unsupervised graph-

based extractive summarization approach. We extract a single sentence, with thresh-

old 0.1.

U1 (Lead 1): This entails simply taking the first sentence of the first utterance,

intended to simulate the Lead-1 baseline that is commonly used in summarization.

U1 (Lead 3): This entails simply taking the first 3 sentences of the first utterance,

intended to simulate the Lead-3 baseline that is commonly used in summarization.

Utg : Since some part of the solution is often mentioned within Utg , we copy this

utterance.

Utg (Lead 1): Since the length of an utterance is quite different than that of a

118

description (Table 7.1), we extract only the lead sentence of Utg .

Utg (Lead 3): For the reason stated above, we also apply the Lead-3 baseline to

this utterance.

Utg (Last sentence): Rather than extracting the lead sentence, we extract the last

sentence of Utg .

Utg (Last 3 sentences): Rather than extracting the lead 3 sentences, we try extract-

ing the last 3 sentences of Utg .

Retrieval Baselines

Retrieval (Title-Title): Using TF-IDF, we compute cosine similarity between the

test example’s title and titles in the training set, to identify the closest training ex-

ample, from which we take the description.

Retrieval (Title-Desc): Using TF-IDF, we compute cosine similarity between the

test example’s title and descriptions in the training set, to identify the closest train-

ing example, from which we take the description.

Project Retrieval (Title-Title): Using TF-IDF, we compute cosine similarity be-

tween the test example’s title and titles for the same project in the training set, to

identify the closest training example, from which we take the description.

Project Retrieval (Title-Desc): Using TF-IDF, we compute cosine similarity be-

tween the test example’s title and descriptions for the same project in the training

set, to identify the closest training example, from which we take the description.

119

Model BLEU METEOR ROUGE

Full

Supervised Extractive 0.5 0.5 0.8
LexRank 2.2 1.9 2.5
U1 (Lead 1) 4.8 6.5 8.8
U1 (Lead 3) 3.1 8.0 8.7
Utg 2.8 5.4 6.7
Utg (Lead 1) 4.0 4.5 6.9
Utg (Lead 3) 3.2 5.7 7.4
Utg (Last sentence) 3.5 3.5 5.5
Utg (Last 3 sentences) 3.2 5.1 6.8
Retrieval (Title-Title) 6.9 4.5 10.7
Retrieval (Title-Desc) 8.8 6.2 14.8
Project Retrieval (Title-Title) 7.4 4.7 10.9
Project Retrieval (Title-Desc) 9.1 6.3 14.1
Copy Title 14.4 13.1 24.4
SEQ2SEQ + Ptr 12.6 9.8 25.0
Hier SEQ2SEQ + Ptr 12.4 9.6 24.1
PLBART 16.6 14.5 28.3
PLBART (F) 14.2 12.3 25.1

Filtered

Supervised Extractive 0.7 0.7 1.0
LexRank 2.4 1.9 2.6
U1 (Lead 1) 5.0 6.2 8.6
U1 (Lead 3) 3.1 7.9 8.8
Utg 2.9 6.0 7.3
Utg (Lead 1) 4.4 4.8 7.6
Utg (Lead 3) 3.4 6.3 8.1
Utg (Last sentence) 3.5 4.0 5.9
Utg (Last 3 sentences) 3.3 5.7 7.4
Retrieval (Title-Title) 6.1 3.7 9.0
Retrieval (Title-Desc) 7.0 4.5 11.4
Project Retrieval (Title-Title) 6.6 4.2 9.2
Project Retrieval (Title-Desc) 7.6 5.1 11.3
Copy Title 10.0 8.3 16.6
SEQ2SEQ + Ptr 10.2 7.5 20.1
Hier SEQ2SEQ + Ptr 9.9 7.4 19.6
PLBART 12.3 9.9 21.1
PLBART (F) 12.3 10.2 21.9

Table 7.11: Comparing the main models with low-performing baselines for generating
solution descriptions. Scores for Supervised Extractive are averaged across three trials.

120

Baseline Results

We present baseline results in Table 7.11. All of these baselines substantially

underperform models presented in Table 7.3, especially the Supervised Extractive

model. We believe this model performs so poorly due to noise in the supervision

and because the extracted summaries are longer and structured differently than the

reference descriptions in our dataset. Additionally, there are many examples in

which the model does not select a single sentence from the input, resulting in the

prediction being the empty string. LexRank also performs poorly in terms of auto-

mated metrics against the reference description. This unsupervised approach aims

to identify a “centroid” sentence that summarizes the full input context and is not

designed to specifically focus on solution-related context.

All baselines that extract a whole utterance or sentences from specific ut-

terances perform poorly, demonstrating the need for content selection from the

broader context and content synthesis rather than relying on simple heuristics to

produce a description of the solution. We find that the retrieval baselines tend to

achieve higher scores, as retrieved descriptions are from the same distribution as

the reference descriptions. However, these numbers are still much lower than those

in Table 7.3.

7.9 Classification Baselines

To benchmark performance on the classification task for determining when

sufficient context is available for generating an informative description, we consider

121

FIRST SECOND RAND (uni) RAND (dist) Pipelined Joint

Full (↑) tp ≤ tg 100.0% 70.5% 76.0% 77.1% 66.7% 60.2%
(↓) tg − tp 2.2 2.1 2.2 2.2 1.7 1.8

Filtered (↑) tp ≤ tg 100.0% 76.2% 79.4% 80.1% 64.6% 63.6%
(↓) tg − tp 2.6 2.4 2.5 2.5 1.9 2.0

Table 7.12: Percent of time tp ≤ tg and for these particular cases, the mean absolute error
between tg and tp.

some simple baselines. We observe that there are many cases in which tg = 1, 2,

i.e., the solution is implemented immediately after the first or second utterance. So,

we include the FIRST baseline which always predicts a positive label at t = 1, and

SECOND which predicts negative at t = 1 and positive at t = 2, if tg ≥ 2 (otherwise

it never predicts positive).

We include the RAND (uni) baseline which progresses through the discus-

sion, randomly deciding between the positive and negative label after each utter-

ance, based on a uniform distribution. We also include RAND (dist), which instead

uses the probability distribution of labels at the example-level estimated from the

filtered training set (pos = 1
N

∑N
n=1

1
tg

=0.510, neg = 0.490). Results are averaged

across 3 trials. We present results in Table 7.12.

7.10 Summary

We presented the novel task of generating concise natural language solu-

tion descriptions to guide developers in absorbing information relevant towards bug

resolution from long discussions. We established benchmarks for this task using

a dataset that we constructed with supervision derived from commit messages and

pull request titles. Through automated and human evaluation, we demonstrated the

122

utility of these models and also highlight their shortcomings, to encourage more re-

search in exploring ways to address these challenges. We also simulated a real-time

setting through two approaches for combining a generation model with a classi-

fication component for determining when sufficient context for generating an in-

formative description emerges in an ongoing discussion. We believe this lays the

groundwork for future work on building a dialogue agent that participates in bug

report discussions to foster efficient resolution.

123

Chapter 8

Using Bug Report Discussions to Guide Automated

Bug Fixing

In Chapter 7, we proposed generating natural language solution descriptions

based on bug report discussions. While this can provide a high-level overview of the

solution, developers must still reason about how it should manifest as concrete code

changes in order to actually fix the bug. Due to the extensive developer time and

effort needed to fix bugs (Weiss et al., 2007), there is growing interest in automated

bug fixing (Tufano et al., 2019; Chen et al., 2019b; Lutellier et al., 2020; Mashhadi

and Hemmati, 2021; Allamanis et al., 2021; Chakraborty and Ray, 2021). While

recent work (Chakraborty and Ray, 2021) showed that natural language context is

useful in guiding bug-fixing models, their approach required prompting developers

to provide this context, which was simulated through commit messages written

after the bug-fixing code changes were made. We instead propose using bug report

discussions, which are available before the task is performed and are also naturally

occurring, avoiding the need for any additional information from developers. This

chapter is based on work presented in Panthaplackel et al. (2022a).

124

(a) Buggy and fixed code snippets in emptyImplicitTable

method with commit message for the oracle bug-fixing commit

(b) Bug-fixing patch from the toml4j project, with context from
the corresponding bug report discussion.

Figure 8.1: Bug-fixing patch from the toml4j project, with context from the corresponding
bug report discussion.

8.1 Motivation

Most existing approaches for automated bug fixing only consider the buggy

code snippet when generating the fix. However, with such limited context, this is

extremely challenging. For instance, in Figure 8.1a, generating the fixed code re-

quires removing .append(“\n”), but this is not obvious from inspecting the buggy

code alone. To address this, Chakraborty and Ray (2021) proposed prompting de-

125

velopers for a natural language description of intent (e.g., “Removed trailing new-

lines...”) that can guide a model in performing the task. As a proxy, in their study,

they used the commit message corresponding to the oracle commit which fixed the

bug.

By showing that natural language can aid bug-fixing, their study yields promis-

ing results. However, we raise two concerns with their approach. First, prompting

developers for additional information can be burdensome for them, as it requires

time and manual effort. Second, and more importantly, it is unrealistic to use the

oracle commit message as a proxy. Since it is written after the bug is fixed to docu-

ment the code changes (Tao et al., 2021), it does not accurately reflect information

actually available when the task needs to be performed.

In reality, there are more appropriate sources of natural language to guide

fixing bugs, which are naturally occurring and available before the task is to be per-

formed. Namely, many bugs are first reported through issue tracking systems (e.g.,

GitHub Issues), where developers engage in a discussion to collectively understand

the problem, investigate the cause, and formulate a solution (before they are fixed)

(Chapter 7).

Content in these discussions are often relevant to generating the fix. For ex-

ample, in Figure 8.1b, the title suggests that the bug pertains to “trailing newlines”

and the last utterance of the discussion recommends “removing the newlines.” Addi-

tionally, using our technique (Chapter 7) that summarizes content relevant towards

implementing the solution in a bug report discussion, we can also automatically

obtain a natural language description of the solution (“remove trailing newlines...”).

126

Note that these sequences provide insight on the intent of the fix, much like the ora-

cle commit message, without requiring any additional input or any context beyond

what is naturally available. In this work, we use bug report discussions to facilitate

automated bug fixing.

8.2 Deriving Context from Bug Report Discussions

We devise various strategies for heuristically and algorithmically deriving

context from bug report discussions.

8.2.1 Heuristically Deriving Context

We consider using the whole discussion, including the title and all utterances

(occurring before the bug-fixing code changes are implemented). However, these

discussions can be extremely long (Table 8.1), making them difficult for neural

models to reason about and also extending beyond the input length capacities of

many models (e.g., 1,024 tokens) (Ahmad et al., 2021) in some cases. For this

reason, we look at more concise elements within the discussion which might convey

its meaningful aspects. First, we consider the title, as it is a brief summary of the

bug (Chen et al., 2020). Next, we consider the last utterance before the bug-fixing

commit, since it captures the most recent information and also roughly corresponds

to the point at which a developer acquired enough context about the fix to implement

it (Section 7.2.1).

127

8.2.2 Algorithmically Deriving Context

To guide developers in absorbing information relevant towards implement-

ing the solution for a given bug report, in Chapter 7, we proposed generating a

brief natural language description of the solution by synthesizing relevant content

from within the whole bug report discussion. We finetuned PLBART on a filtered

dataset, to build PLBART (F), the best-performing model for generating solution

descriptions (Table 7.4).

While these solution descriptions are intended to guide humans in manu-

ally fixing bugs, we evaluate whether they can also guide models in automatically

performing the task. Furthermore, since the title corresponding to the bug report

discussion and the solution description summarize different aspects of the discus-

sion, we investigate the benefits of combining the two (solution description + title).

Next, the segments (title or individual utterances) from the discussion that

contribute the most towards generating a natural language description of the solu-

tion are likely to also be useful towards implementing that solution (i.e., generating

the fix). To approximate the most relevant discussion segments, we use attention.

Namely, we examine the last layer of PLBART (F)’s decoder to determine the most

highly attended input token at each decoding step and the segment (title or individ-

ual utterance) to which it belongs. From this, we obtain the attended segments.

8.3 Data

Chakraborty and Ray (2021) relied on the commonly used bug-fixing patches

128

(BFP) datasets (Tufano et al., 2019). This entails BFPsmall, with examples extracted

from Java methods spanning fewer than 50 tokens, and BFPmedium, with examples

extracted from methods spanning 50-100 tokens. In this work, we also focus on

these datasets, particularly the preprocessed versions released by Chakraborty and

Ray (2021). However, since they do not include the associated bug report discus-

sions, we enrich examples with this information.

8.3.1 Mining Bug Report Discussions

We mine issue reports from GitHub Issues, for the 58,597 projects that en-

compass examples in the BFP datasets. We obtain 1,878,096 issue reports, 365,005

of which are linked to commits made between March 2011 and October 2017 (time

frame used for mining the BFP datasets). By matching these commits to the bug-

fixing commits from which the BFP examples were drawn, we identify the examples

that correspond to bug reports. We map 3,028 (of the 58,287) examples in BFPsmall

and 3,333 (of the 65,404) examples in BFPmedium to bug report discussions, forming

the discussion-augmented bug-fixing patches (Disc-BFP) datasets: Disc-BFPsmall

and Disc-BFPmedium.

Note that Disc-BFP is comparatively smaller than BFP. While construct-

ing BFP, Tufano et al. (2019) did not consider any mining criteria related to bug

reports, so it is not surprising that many of their examples do not have bug report

discussions. Bugs can be identified through various development activities like code

review, testing, and bug reporting. In this work, we focus on the last scenario, for

which bug report discussions would naturally be available.

129

Disc-BFPsmall Disc-BFPmed
#Ex 3,028 3,333
#Discussions/Ex 1.3 1.3
#Utterance/Discussion 2.8 2.9
#Attn Segments/Ex 1.0 1.0
Buggy 22.1 42.4
Fixed 19.3 40.8
Method 32.2 74.2
Oracle Msg 19.7 19.6
Title 7.9 8.1
Utterance 127.6 136.4
Last Utterance 114.0 109.3
Soln Desc 8.5 8.5

Table 8.1: Disc-BFP dataset statistics. We report averages across all data splits. Average
token lengths (split by punctuation and spacing) are presented in the second block. Note
that we consider only utterances occurring before the bug-fixing commit.

Disc-BFPsmall consists of 2,445 training, 290 validation, and 293 test exam-

ples. Disc-BFPmedium consists 2,660 training, 341 validation, and 332 test examples.

In doing this, we maintain the original data splits (e.g., Disc-BFPsmall’s training set

is strictly a subset of BFPsmall’s training set).

8.3.2 Data Processing

A bug report discussion is organized as a timeline (Section 7.2.1), and we

consider only content that precedes the bug-fixing commit on the timeline, corre-

sponding to the naturally-available context. Since a commit can be linked to mul-

tiple issue reports, some examples have multiple bug report discussions. In these

cases, we order them so that discussions with the most recent activity appear first

and are less likely to get truncated due to input length constraints (as explained in

the next paragraph). When leveraging individual discussion components (e.g., title,

generated solution description), we derive them from each discussion separately

130

and concatenate them (separated with <s>).

Though PLBART is capable of handling up to 1,024 tokens as input, Chakraborty

and Ray (2021) limit to 512 tokens. However, since the sequences we consider can

be particularly long after the SentencePiece tokenization (Kudo and Richardson,

2018) employed by PLBART, we choose to utilize the full capacity during finetun-

ing. Note that the input is truncated by removing from the end if it exceeds the

limit.

Before using PLBART (F) to obtain solution descriptions, we re-train the

model after removing 7 examples in the original training set (Table 7.1) that have

bug reports overlapping with the Disc-BFP test sets. We run inference on all parti-

tions of the Disc-BFP datasets. For this, we first preprocess the bug report discus-

sions following the original procedure (Section 7.2.3). Note that this preprocessing

of bug report discussions is done only for generating solution descriptions. For our

main models (Section 8.4), we rely solely on SentencePiece tokenization, closely

following Chakraborty and Ray (2021). Additionally, bug report discussions often

include source code, either in-lined with natural language or as longer code blocks,

which are often delimited with markdown tags. In Section 7.2.3, we had retained

in-lined code but removed longer marked blocks of code. While these longer code

blocks may not be as relevant to generating natural language descriptions, we be-

lieve they could be useful in gathering insight for generating the fixed code. There-

fore, we do not remove them from bug report discussions, even when generating

solution descriptions. We provide dataset statistics in Table 8.1.

131

8.4 Models

Chakraborty and Ray (2021) achieved state-of-the-art performance on the

BFP datasets by finetuning PLBART on large amounts of source code from GitHub

and technical text from StackOverflow. Similarly, we consider finetuning PLBART

to generate the fixed code given varying input context representations.

Since Chakraborty and Ray (2021) finetuned using significantly more data

(i.e., BFP training sets), we initialize models using their checkpoints, corresponding

to two different input context representations. The first one corresponds to concate-

nating the buggy code snippet and the full method context (emptyImplicitTable

in Figure 8.1a): buggy <s> method. This helps contextualize the buggy code snip-

pet and was shown to improve performance.1 Since this representation entails only

source code, we also consider the checkpoint for the representation that includes

natural language: buggy <s> method <s> oracle commit message.2

8.4.1 Our Models

After initializing, we further finetune on the Disc-BFPsmall and Disc-BFPmedium

training sets (separately). All input context representations used for this are formed

by concatenating buggy <s> method <s> with the various natural language se-

quences tied to bug report discussions outlined in Section 2.4. Sequences entailing

multiple elements (e.g., utterances in the whole discussion, titles from multiple bug

1Note that the method also contains the buggy code snippet. Though repetitive, this outperformed
a unified format.

2This input is used only for the initial finetuning and not used in the later finetuning stage or
evaluation of our models.

132

report discussions) are separated with <s>.

8.4.2 Baselines

We consider models which use only buggy <s> method (without natural

language). We also consider models that use the oracle commit message rather

than context from bug report discussions: buggy <s> method <s> oracle commit

message. We finetune baselines on the Disc-BFP training sets, using a context

window of 1,024 tokens.

8.5 Results

Following Chakraborty and Ray (2021), we compute how often (%) the gen-

erated output exactly matches the target fixed code snippet. We perform statisti-

cal significance testing with bootstrap tests (Berg-Kirkpatrick et al., 2012), using

10,000 samples (with sample size 5,000) and p < 0.05.

We present results in Table 8.2. Reaffirming previous findings (Chakraborty

and Ray, 2021) on the benefits of using natural language for fixing bugs, we find that

leveraging context from bug report discussions yields from 1.8-5.4% improvement

over baselines which do not include natural language context. Importantly, using

bug report discussions leads to 1.5-3.0% improvements over baselines that use the

oracle commit message (during finetuning and test). This suggests that context de-

rived from bug report discussions, encompassing diverse types of information, can

offer richer context than oracle commit messages for fixing bugs. This is especially

promising since these discussions are often readily available in a real world setting.

133

Init FT/Test Ctxt Disc-BFPsmall Disc-BFPmed

W
ith

ou
tN

L
(B

F
P

) Without NL∗ 33.8 27.1§¶

Oracle Msg† 33.4 27.4§¶

Whole Disc 33.1 27.1§¶

Title 35.5∗† 25.9
Last Utterance 35.2∗† 28.9∗†§¶
Soln Desc 33.8 27.4§¶

Soln Desc + Title 35.5∗† 25.6
Attended Seg 36.2∗† 28.0∗§¶

W
ith

N
L

(B
F

P
)

Without NL§ 35.5∗† 25.3
Oracle Msg¶ 36.2∗† 25.9
Whole Disc 34.1 25.6
Title 35.2∗† 25.3
Last Utterance 36.2∗† 25.6
Soln Desc 33.4 26.5§

Soln Desc + Title 39.2∗†§¶ 26.2§

Attended Seg 36.9∗†§ 24.1

Table 8.2: Results on the Disc-BFP test sets. Models are initialized from one of the
two checkpoints originally finetuned on the full BFP training sets, without and with
NL. We then finetune on the Disc-BFP training sets with various input context rep-
resentations and evaluate on the Disc-BFP test sets using the same representations.
We indicate representations that statistically significantly outperform baselines with
symbols.

Overall, the scores and magnitude of improvement tend to be lower for Disc-

BFPmedium. This is likely due to the challenges of generating longer sequences (Varis

and Bojar, 2021) and the stringent evaluation metric requiring exact match with the

reference. The best performance on the Disc-BFPsmall test set comes from using

solution description + title. For Disc-BFPmedium, it is with the last utterance. Since

both of these are derived from the whole discussion, one may expect using the

whole discussion to yield similar or even improved performance; however, this is

not the case.

Including the whole discussion substantially increases the input length, which

models like PLBART cannot easily handle. This can be partially attributed to the

134

Figure 8.2: Examples from the Disc-BFPmedium test set, with the corresponding bug report
discussion (https://github.com/jhalterman/concurrentunit/issues/
4) and generated solution description.

practical challenge of fitting the entire sequence in the model’s limited context win-

dow, with 12.8-15.8% training examples getting truncated. However, the bigger

challenge is drawing meaning from such large amounts of text. We demonstrate

the benefits of using more concise sequences, through various natural language el-

ements that are likely to capture critical aspects of the whole discussion.

8.6 Examples

For the Disc-BFPsmall test example in Figure 8.1, the two models which

leverage only buggy <s> method during finetuning and test (Without NL in Ta-

ble 8.2) do not generate the correct output. Note that neither of these models have

access to any natural language context. Two other models (which do use natural

language) also fail to generate the correct output, corresponding to the whole dis-

cussion and solution description representations (initialized using the “Without NL”

135

https://github.com/jhalterman/concurrentunit/issues/4
https://github.com/jhalterman/concurrentunit/issues/4

Init Finetune Context Disc-BFPsmall Disc-BFPmed

Without NL (BFP)

Whole Discussion 36.9 29.8
Title 40.3 27.4
Last Utterance 36.9 32.2
Attended Segments 37.2 31.3

With NL (BFP)

Whole Discussion 39.6 29.2
Title 38.2 26.8
Last Utterance 39.2 29.5
Attended Segments 42.3 27.1

Table 8.3: Evaluating exact match (%) if the best performing segment (title or any individ-
ual utterance) from the whole discussion is used at test time (assuming that it’s known).

checkpoint). In all four of these error cases, the model simply copies the buggy code

snippet. However, the other 12 models generate the correct output for this particular

example.

Some examples are difficult for models, even with natural language context.

We provide one such example from the Disc-BFPmedium test set in Figure 8.2. The

fix requires reversing the order of the method parameters, which is actually evident

from the bug report discussion, as well as the generated solution description. How-

ever, performing this reversal involves more complex reasoning, and so the majority

of models are unable to generate the correct output for this example. Nonetheless,

the model which leverages the last utterance (initialized using the “Without NL”

checkpoint) does manage to generate the correct output.

8.7 Analysis: Identifying Useful Discussion Segments

We acquire context from bug report discussions in various ways, either heuris-

tically (whole discussion, title, last utterance) or algorithmically (attended segments

when generating solution descriptions). (Note that we do not include solution de-

136

scriptions in these groups since they do not actually appear within the bug report

discussions.) As we saw in Table 8.2, using the whole discussion may not be ben-

eficial, since models struggle to reason about large amounts of text. We show that

we are able to achieve improved performance by selecting more concise segments

from within this discussion (e.g., title, last utterance, attended segments) that are

likely to be relevant to fixing the bug.

However, we may not always being selecting the most useful segment(s)

yielding the best performance. The most useful segments may vary by example, and

there could also be other utterances (beyond the title, last utterance, and attended

utterances) that have relevant information.

Therefore, we also estimate the performance of an “oracle” upper-bound

that employs the most useful segment as the natural language context. For this, we

consider models finetuned with the various segments from the discussion, including

models finetuned on the whole discussion. We run inference with these models,

using buggy <s> method <s> segment, for all segments, including the title and

each utterance in the discussion. So, if there are N segments derived from the

discussion (title and N − 1 utterances before the bug-fixing commit), we obtain N

candidates for the fixed code.

For a given example, we compute best exact match, or how often at least

one of these candidates matches the reference. We present results in Table 8.3. We

observe a 3.1–3.3% gap, relative to the highest scores in Table 8.2, suggesting that

there is useful context in these discussions that is not being exploited. We leave it

to future work to learn models for extracting the most useful segments from bug

137

report discussions for fixing bugs.

8.8 Summary

In this work, we investigated the utility of natural language for automated

bug fixing. Unlike prior work, which leveraged an unrealistic source of natural

language for this purpose, through oracle commit messages, we considered a natu-

rally occurring source that is often available: bug report discussions. We explored

various strategies for deriving natural language context from these discussions, us-

ing our newly compiled discussion-augmented, bug-fixing patches datasets. We

showed that when these discussions are available, they offer useful context for bug

fixing, even leading to improved performance over using oracle commit messages.

8.9 Additional Details

Our models are based on the architecture of PLBART, which itself follows

from the BART-base model (Lewis et al., 2020). The encoder and decoder each have

6 layers, with hidden dimension 768 and 12 heads. There are approximately 140M

parameters. We use the same hyperparameters as Chakraborty and Ray (2021). The

batch size is 4, with gradient accumulation over every 4 batches. Early stopping

is employed, with a patience of 5 epochs, based on validation performance. All

models are trained for a single run. At test time, beam search is used, with a beam

size of 5.

In Table 8.2, we present results from initializing model parameters from two

138

Inference Only Finetuned
Init Context Disc-BFPsmall Disc-BFPmed Disc-BFPsmall Disc-BFPmed

PLBART

Without NL - - 22.2 14.8
Oracle Msg - - 28.0 16.6
Whole Disc - - 25.3 16.0
Title - - 27.3 1.5
Last Utterance - - 23.2 19.0
Soln Desc - - 20.5 17.2
Soln Desc + Title - - 24.2 16.3
Attended Seg - - 18.1 1.8

Without NL (BFP)

Without NL 30.7 25.3 33.8 27.1
Oracle Msg 30.7 25.0 33.4 27.4
Whole Disc 21.5 19.0 33.1 27.1
Title 31.4 25.9 35.5 25.9
Last Utterance 29.0 23.2 35.2 28.9
Soln Desc 31.7 25.9 33.8 27.4
Soln Desc + Title 29.7 25.0 35.5 25.6
Attended Seg 23.5 20.8 36.2 28.0

With NL (BFP)

Without NL 31.1 22.3 35.5 25.3
Oracle Msg 31.1 24.4 36.2 25.9
Whole Disc 20.5 16.9 34.1 25.6
Title 28.7 22.3 35.2 25.3
Last Utterance 25.3 22.3 36.2 25.6
Soln Desc 29.4 24.1 33.4 26.5
Soln Desc + Title 28.3 22.6 39.2 26.2
Attended Seg 23.5 19.9 36.9 24.1

Table 8.4: We measure the effect of finetuning on the Disc-BFP training sets by comparing
to a setting in which the Chakraborty and Ray (2021) checkpoints are used directly for infer-
ence (without any finetuning). We also measure the effect of initializing with checkpoints
that have already been finetuned on task-specific data by comparing to models directly ini-
tialized from PLBART and then finetuned on the Disc-BFP training sets.

of the checkpoints released by Chakraborty and Ray (2021). One corresponds to

finetuning PLBART without NL using task-specific data from the larger BFP train-

ing sets. The other one corresponds to finetuning PLBART with NL (from oracle

commit messages), also using task-specific data from the BFP training sets. Since

these checkpoints have already been finetuned on bug-fixing data, it is reasonable to

run inference on them directly without further finetuning on the Disc-BFP training

sets. We show these results in Table 8.4. We find the overall performances to be

lower, especially when testing with input context representations that were not seen

during Chakraborty and Ray (2021)’s finetuning (e.g., whole discussion).

139

We also tried initializing model parameters directly from PLBART and fine-

tuning on the Disc-BFP training sets. Table 8.4 shows that this works poorly, likely

because the Disc-BFP training sets are smaller than the BFP training sets, with

which the Chakraborty and Ray (2021) checkpoints were finetuned. Therefore, to

reap the benefits of finetuning on more data, we believe it is best to first finetune on

larger bug-fixing datasets (for which bug report discussions do not need to be avail-

able). Following that, another stage of finetuning should be done using the smaller

training set that includes context from bug report discussions.

140

Chapter 9

Future Work

In this chapter, we outline future directions for using natural language to sup-

port and drive software evolution (Sections 9.1-9.2). We also discuss our ideas for

using natural language to learn improved source code representations for broader

applications in software engineering (Section 9.3). Finally, we describe the steps

required in applying the research presented in this thesis to real-world software

development (Section 9.4).

9.1 Unifying Related Tasks Occurring Upon Code Changes

In this thesis, we frame supporting software evolution in terms of assisting

developers with upholding software quality when they make code changes. For this,

we focused on detecting and updating comments based on code changes. However,

these are just two of the many development tasks that are performed following code

changes. For example, developers must write commit messages to document the

code changes in a given commit, write release notes to document changes in a set

of commits, and update the test suite based on code changes to verify the modified

functionality.

There have been efforts to automate these tasks (Loyola et al., 2017; Moreno

et al., 2014; Mirzaaghaei, 2011). Note that these tasks are closely related, and the

general idea is the same: Given code changes, generate X. However, researchers

141

tend to develop models that are very task-specific and evaluate models on those

tasks only. This makes it difficult to truly appreciate a newly proposed model and

also makes it harder to study new problems, since existing models could have con-

straints that are not applicable to different problems.

Recently, Chen et al. (2021b) proposed a unified framework that is suitable

for addressing multiple tasks, such as code summarization, bug classification, and

bug repair. Inspired by this, we propose applying a similar strategy with the various

tasks that occur following code changes. For this, we could also consider a multi-

task learning technique, in which tasks can complement one another during training.

Furthermore, we could evaluate whether large pretrained autoregressive models,

like Codex (Chen et al., 2021a) and PaLM (Chowdhery et al., 2022), are able to

reason about code changes in such a way that they more or less offer a “unified

framework” for addressing these tasks through prompt engineering and few shot

learning.

9.2 Interactively Participating in Code Review Discussions

We frame the goal of driving code evolution in terms of expediting critical

code changes. In this thesis, we focused on using bug report discussions to generate

solution descriptions and suggested bug-fixing code snippets to guide developers in

quickly resolving bugs. However, there is a second step in which the code changes

must be reviewed by other developers to ensure that they efficiently implement the

correct functionality and adhere to established style guidelines (Brown and Parnin,

2020; Li et al., 2017).

142

Figure 9.1: Code review discussion from the Apache Commons IO project: https:
//github.com/apache/commons-io/pull/171.

As illustrated in Figure 9.1, like bug report discussions, code review dis-

cussions entail interactive dialogue between developers. Reviewers post comments

about specific parts of the code changes to point out problems they see and de-

scribe additional code changes for addressing these problems. The author of the

code changes responds by posting comments or by implementing the recommended

changes. Reviewers may then post new comments in response, either addressing the

author’s comments or providing more feedback about the new changes (Tufano et

al., 2021; Li et al., 2017). This can go on for a series of exchanges (Tsay et al.,

2014; Golzadeh et al., 2019).

Code review is a very time-consuming process that requires significant man-

ual effort (Hellendoorn et al., 2021; Jiang et al., 2021a; Wessel et al., 2020). Due

to developers’ tight project schedules, code review and the release of important

changes can get delayed (Yu et al., 2015; Maddila et al., 2020).

143

https://github.com/apache/commons-io/pull/171
https://github.com/apache/commons-io/pull/171

There have been efforts to build tools for streamlining reviewing through

auxiliary tasks like automatically recommending relevant reviewers (Yu et al., 2014),

review prioritization (van der Veen et al., 2015). There is also work that aims to

more directly assist developers with code review by identifying parts of a given set

of code changes that likely need to be reviewed, generating review comments, and

refining code based on a particular review comment (Hellendoorn et al., 2021; Tu-

fano et al., 2021; Li et al., 2022). However, all of these ignore the interactive nature

of code review.

As future work, we propose building an agent that can participate in code

review discussions and essentially collaborate with human developers for more ef-

ficient code review. The agent can assume two different roles. First, it can interac-

tively provide review comments to guide developers in making code changes. Sec-

ond, it can even participate in the discussion by generating suggested code changes

based on reviewers, which may help the author more quickly address them.

We believe such an agent can be useful in settings beyond code review, such

as an educational programming environment (Li and Boyer, 2016b), in which it can

take on the role of a tutor by providing natural language feedback to students on

their code and suggested code changes to improve code quality.

9.3 Enhancing Code Representations with Natural Language

As discussed in Section 2.5, there are various ways for representing source

code for software-related tasks, such as with token sequences, abstract syntax trees

(ASTs), and control and data flow graphs. However, the accompanying natural lan-

144

(a) Method and Comment

(b) Enhanced Code Representation

Figure 9.2: Illustration of an NL-enhanced code representation. In 9.2a, we show a method
and its accompanying comment, with annotated spans that can be aligned to nodes (and
edges) in the graph presented in 9.2b. The gray nodes in the graph correspond to AST
nodes, with parent/child edges shown in blue. Red edges correspond to data flow edges.

guage elements (e.g., natural language comments), are often ignored when building

these representations. For example, considering only the code in the method shown

in Figure 9.2a, we can build a graph representation (Figure 9.2b) using AST nodes

(gray nodes), AST edges (blue edges), and data flow edges (red edges). Using the

AST nodes/edges, we see that p1 and p2 are both arguments of the method since

they are children of the Arguments node. From the data flow edges, we also see that

they both appear beneath the Binary Operation node. However, we do not obtain

any obtain any additional information about these two entities.

However, from the comment, we know that the method assumes that p1 and

p2 are vertically adjacent points, so this is another relation we can incorporate into

145

this representation. Similarly, the specific type of distance that is being computed

is L1 distance based on the comment, and the x attributes of p1 and p2 can be

further described as X coordinates from the comment. Therefore, by considering

the natural language comment, we can enhance this representation with more fine-

grained relation and type information which may be useful to a model.

We believe developing such NL-enhanced code representations is an inter-

esting future direction, with potential implications for a diverse set of applications.

Building these representations requires first extracting bimodal relationships be-

tween natural language and source code entities. While we explored this in Chap-

ter 3, we focused on learning a binary relationship, on whether a natural language

entity is associated with a particular entity in code, rather than on how it is associ-

ated. We leave it to future work to extract more fine-grained relations.

9.4 Applying Research to Real-World Software Development

In this thesis, we evaluated our models through automated metrics and sim-

ulated user studies. While these results are promising and suggest that our models

can be useful towards streamlining software development activities, we have not yet

been able to measure their true utility in a real-world environments. For example,

we envision building an Integrated Development Environment (IDE) plugin that

can detect and update comments as developers make code changes in real-time.1

Additionally, we envision building custom GitHub tools in order to integrate our

models for generating solution descriptions and suggested bug-fixes into the issue
1We could also evaluate how developers perceive the utility of this tool, compared to a tool which

operates in the opposite direction (e.g., given comment changes, generate code changes).

146

tracking workflow. Such tools will allow us to conduct a more accurate evaluation

on how useful our models are in helping real developers in accomplishing tasks.

Evaluating in such a setting also gives us an opportunity to improve our models by

understanding the types of errors they are prone to making and also by collecting

qualitative feedback from developers.

Building, deploying, and evaluating such tools require many steps. For in-

stance, we will need to collaborate with Human-Computer Interaction (HCI) ex-

perts to determine exactly how our model predictions should be presented to devel-

opers, in such a way that they are most easily accessible without being distracting.

Next, we must design a mechanism for quality control that ensures that we do not

display low-quality or factually incorrect model predictions. To be able to quickly

display model predictions to users, we must be able to achieve minimal model la-

tency. Additionally, to address a diverse set of user needs, we need to scale up to

more programming languages (beyond Java) and more types of data (e.g., class-

level comments, in-line comments). Finally, we must determine the most appropri-

ate metrics for evaluating performance, such as how often a generated suggestion is

accepted or the average difference in time needed to perform a given task with and

without our model predictions. Moreover, in addition to evaluating whether these

tools expedite certain development activities, we could evaluate whether they im-

prove the overall quality of software artifacts (e.g., comments), by measuring trends

in the number of stars and forks.

147

Chapter 10

Conclusions

Software is constantly evolving to accommodate ever-changing technologi-

cal user needs, wants, and concerns. To prevent software quality from deteriorating

under the large volume of changes and also foster timely implementation of im-

portant changes, we design tasks, models, and datasets to support and drive code

evolution through natural language.

First, we studied natural language comments, and we developed a rich set of

features for explicitly associating comments (Chapter 3). which we found to be use-

ful for our later tasks. Next, inconsistent comments often materialize as a result of

developers failing to update comments when they make changes to the correspond-

ing body of code. To prevent such inconsistencies from forming, we first designed

a deep learning approach for just-in-time inconsistency detection that encodes the

syntactic structures of comments and code, which we showed to outperform various

baselines as well as post hoc models that do not consider code changes (Chapter 4).

Additionally, we formulated the novel task of automatically updating inconsistent

comments based on code changes, which we addressed through a framework that

generates a sequence of edit actions by correlating cross-modal edits (Chapter 5).

We found that our approach outperforms multiple rule-based baselines and com-

ment generation models, with respect to several automatic metrics and human eval-

uation. We further studied multiple techniques for combining the two tasks to build

148

a comprehensive comment maintenance system that can detect and update incon-

sistent comments (Chapter 6).

Furthermore, when a software bug is reported, a discussion forms between

developers to collaboratively resolve it. While the solution is often recommended

within the discussion, this can get buried under a large amount of text. We designed

techniques for using these discussions to expedite bug resolution. First, to enable

developers to more easily locate and comprehend information relevant towards im-

plementing the bug-fixing code changes, we proposed an automated system which

generates a concise natural language description of the solution as soon as the nec-

essary context becomes available in an ongoing bug report discussion (Chapter 7).

Using supervision derived from commits and pull requests, we benchmarked ap-

proaches for generating informative solution descriptions. We also conducted a

study on integrating such a generation model into a real-time setting by pipelining

or jointly training with a classifier for determining when sufficient context emerges

in an ongoing discussion. Through automated and human evaluation, we demon-

strated the utility of these models. Next, to provide developers with suggested bug-

fixing code changes, we improved automated bug-fixing models by incorporating

natural language context from generated solution descriptions as well as other ele-

ments from within bug report discussions (Chapter 8).

In Chapter 9, we outlined future directions for using natural language to

support and drive code evolution. This includes developing a unified framework

for addressing the many tasks that occur following code changes and building an

interactive agent for automated code review. Additionally, we discussed a more

149

general future direction for enhancing the code representations used for different

software-related tasks with natural language, to capture broader context and more

fine-grained relation and type information. We also described a way forward in

applying the research presented in this thesis to build developer tools for real-time

settings.

In conclusion, this thesis makes important contributions to the growing field

of research focused on designing machine learning and NLP techniques to facilitate

software development activities. We believe our research has laid the groundwork

for progress in this field which can lead to more efficient and effective software

development, ultimately leading to more reliable software in all facets of life, in

years to come.

150

References

Ibrahim Abdelaziz, Julian Dolby, James P McCusker, and Kavitha Srinivas.
Graph4Code: A machine interpretable knowledge graph for code. arXiv preprint
arXiv:2002.09440, 2020.

Rajas Agashe, Srinivasan Iyer, and Luke Zettlemoyer. JuICe: A large scale distantly
supervised dataset for open domain context-based code generation. In EMNLP-
IJCNLP, pages 5436–5446, 2019.

Karan Aggarwal, Tanner Rutgers, Finbarr Timbers, Abram Hindle, Russ Greiner,
and Eleni Stroulia. Detecting duplicate bug reports with software engineering
domain knowledge. In SANER, pages 211–220, 2015.

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. A
transformer-based approach for source code summarization. In ACL, pages
4998–5007, 2020.

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Unified
pre-training for program understanding and generation. In NAACL-HLT, pages
2655–2668, 2021.

Miltiadis Allamanis, Daniel Tarlow, Andrew Gordon, and Yi Wei. Bimodal mod-
elling of source code and natural language. In ICML, pages 2123–2132, 2015.

Miltiadis Allamanis, Hao Peng, and Charles Sutton. A convolutional attention net-
work for extreme summarization of source code. In ICML, pages 2091–2100,
2016.

Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. A
survey of machine learning for big code and naturalness. CSUR, 51(4):1–37,
2018.

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to
represent programs with graphs. In ICLR, 2018.

Miltiadis Allamanis, Henry Jackson-Flux, and Marc Brockschmidt. Self-supervised
bug detection and repair. NeurIPS, 34, 2021.

151

Miltiadis Allamanis. The adverse effects of code duplication in machine learning
models of code. In SPLASH, Onward!, pages 143–153, 2019.

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq: Generating se-
quences from structured representations of code. In ICLR, 2019.

Uri Alon, Roy Sadaka, Omer Levy, and Eran Yahav. Structural language models
for any-code generation. In ICML, 2020.

Fernando Alva-Manchego, Louis Martin, Carolina Scarton, and Lucia Specia.
EASSE: Easier automatic sentence simplification evaluation. In EMNLP-
IJCNLP: System Demonstrations, pages 49–54, 2019.

John Anvik. Automating bug report assignment. In ICSE, pages 937–940, 2006.

Jude Arokiam and Jeremy S. Bradbury. Automatically predicting bug severity early
in the development process. In ICSE: New Ideas and Emerging Results, pages
17–20, 2020.

Deeksha Arya, Wenting Wang, Jin L. C. Guo, and Jinghui Cheng. Analysis and
detection of information types of open source software issue discussions. In
ICSE, pages 454–464, 2019.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk
Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc
Le, et al. Program synthesis with large language models. arXiv preprint
arXiv:2108.07732, 2021.

Abhijeet Awasthi, Sunita Sarawagi, Rasna Goyal, Sabyasachi Ghosh, and Vihari
Piratla. Parallel iterative edit models for local sequence transduction. In EMNLP-
IJCNLP, pages 4251–4261, 2019.

Muhammad Zubair Baloch, Shahid Hussain, Humaira Afzal, Muhammad Rafiq
Mufti, and Bashir Ahmad. Software developer recommendation in terms of
reducing bug tossing length. In Guojun Wang, Bing Chen, Wei Li, Roberto
Di Pietro, Xuefeng Yan, and Hao Han, editors, SpaCCS, pages 396–407, 2021.

Satanjeev Banerjee and Alon Lavie. METEOR: An automatic metric for MT evalu-
ation with improved correlation with human judgments. In ACL Workshop on In-
trinsic and Extrinsic Evaluation Measures for Machine Translation and/or Sum-
marization, pages 65–72, 2005.

152

Olga Baysal, Michael W. Godfrey, and Robin Cohen. A bug you like: A framework
for automated assignment of bugs. In ICPC, pages 297–298, 2009.

Taylor Berg-Kirkpatrick, David Burkett, and Dan Klein. An empirical investigation
of statistical significance in NLP. In EMNLP-CoNLL, pages 995–1005, 2012.

Nick C. Bradley, Thomas Fritz, and Reid Holmes. Context-aware conversational
developer assistants. In ICSE, pages 993–1003, 2018.

Shaked Brody, Uri Alon, and Eran Yahav. A structural model for contextual code
changes. Proceedings of the ACM on Programming Languages, 4(OOPSLA):1–
28, 2020.

Chris Brown and Chris Parnin. Understanding the impact of GitHub suggested
changes on recommendations between developers. In ESEC/FSE, pages 1065–
1076, 2020.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, et al. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020.

Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang. InferCode: Self-supervised learning
of code representations by predicting subtrees. In ICSE, pages 1186–1197, 2021.

Luca Buratti, Saurabh Pujar, Mihaela Bornea, Scott McCarley, Yunhui Zheng, Gae-
tano Rossiello, Alessandro Morari, Jim Laredo, Veronika Thost, Yufan Zhuang,
et al. Exploring software naturalness through neural language models. arXiv
preprint arXiv:2006.12641, 2020.

Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik Sen, and Satish Chandra.
When deep learning met code search. In ESEC/FSE, pages 964–974, 2019.

Joshua Charles Campbell, Abram Hindle, and José Nelson Amaral. Syntax errors
just aren’t natural: Improving error reporting with language models. In MSR,
pages 252–261, 2014.

Saikat Chakraborty and Baishakhi Ray. On multi-modal learning of editing source
code. In ASE, 2021.

Saikat Chakraborty, Yangruibo Ding, Miltiadis Allamanis, and Baishakhi Ray.
CODIT: Code editing with tree-based neural models. TSE, 2020.

153

Krishna Kumar Chaturvedi and VB Singh. Determining bug severity using machine
learning techniques. In CONSEG, pages 1–6, 2012.

Shobhit Chaurasia and Raymond Mooney. Dialog for language to code. In IJCNLP,
pages 175–180, 2017.

Ruey-Cheng Chen, Evi Yulianti, Mark Sanderson, and W. Bruce Croft. On the ben-
efit of incorporating external features in a neural architecture for answer sentence
selection. In SIGIR, pages 1017–1020, 2017.

Long Chen, Wei Ye, and Shikun Zhang. Capturing source code semantics via
tree-based convolution over API-enhanced AST. In International Conference
on Computing Frontiers, pages 174–182, 2019.

Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noël Pouchet, Denys
Poshyvanyk, and Martin Monperrus. SequenceR: Sequence-to-sequence learning
for end-to-end program repair. TSE, 47(9):1943–1959, 2019.

Songqiang Chen, Xiaoyuan Xie, Bangguo Yin, Yuanxiang Ji, Lin Chen, and
Baowen Xu. Stay professional and efficient: Automatically generate titles for
your bug reports. In ASE, pages 385–397, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy
Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plap-
pert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin,
Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374, 2021.

Zimin Chen, Vincent J Hellendoorn, Pascal Lamblin, Petros Maniatis, Pierre-
Antoine Manzagol, Daniel Tarlow, and Subhodeep Moitra. PLUR: A unify-
ing, graph-based view of program learning, understanding, and repair. NeurIPS,
34:23089–23101, 2021.

154

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representa-
tions using RNN encoder–decoder for statistical machine translation. In EMNLP,
pages 1724–1734, 2014.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. PaLM: Scaling language modeling with pathways. arXiv
preprint arXiv:2204.02311, 2022.

Alfonso Cimasa, Anna Corazza, Carmen Coviello, and Giuseppe Scanniello. Word
embeddings for comment coherence. In SEAA, pages 244–251, 2019.

Colin Clement, Dawn Drain, Jonathan Timcheck, Alexey Svyatkovskiy, and Neel
Sundaresan. PyMT5: multi-mode translation of natural language and python
code with transformers. In EMNLP, pages 9052–9065, 2020.

Anna Corazza, Valerio Maggio, and Giuseppe Scanniello. Coherence of comments
and method implementations: A dataset and an empirical investigation. Software
Quality Journal, 26(2):751–777, 2018.

Chris Cummins, Zacharias Fisches, Tal Ben-Nun, Torsten Hoefler, Michael
O’Boyle, and Hugh Leather. ProGraML: A Graph-based Program Represen-
tation for Data Flow Analysis and Compiler Optimizations. In ICML, 2021.

Samip Dahal, Adyasha Maharana, and Mohit Bansal. Analysis of tree-structured
architectures for code generation. In Findings of ACL-IJCNLP, pages 4382–
4391, 2021.

Giuseppe Destefanis, Marco Ortu, David Bowes, Michele Marchesi, and Roberto
Tonelli. On measuring affects of GitHub issues’ commenters. In International
Workshop on Emotion Awareness in Software Engineering, pages 14–19, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of deep bidirectional transformers for language understanding. In
NAACL-HLT, pages 4171–4186, 2019.

Jin Ding, Hailong Sun, Xu Wang, and Xudong Liu. Entity-level sentiment analysis
of issue comments. In International Workshop on Emotion Awareness in Software
Engineering, pages 7–13, 2018.

155

Li Dong and Mirella Lapata. Language to logical form with neural attention. In
ACL, pages 33–43, 2016.

Yue Dong, Zichao Li, Mehdi Rezagholizadeh, and Jackie Chi Kit Cheung. Ed-
itNTS: An neural programmer-interpreter model for sentence simplification
through explicit editing. In ACL, pages 3393–3402, 2019.

Ayesha Enayet and Gita Sukthankar. A transfer learning approach for dialogue
act classification of GitHub issue comments. arXiv preprint arXiv:2011.04867,
2020.

Günes Erkan and Dragomir R. Radev. LexRank: Graph-based lexical centrality
as salience in text summarization. Journal of Artificial Intelligence Research,
22(1):457–479, 2004.

Khashayar Etemadi and Martin Monperrus. On the relevance of cross-project learn-
ing with nearest neighbours for commit message generation. In ICSE Workshops,
pages 470–475, 2020.

Yuanrui Fan, Xin Xia, David Lo, and Ahmed E. Hassan. Chaff from the wheat:
Characterizing and determining valid bug reports. TSE, 46(5):495–525, 2020.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. CodeBERT:
A pre-trained model for programming and natural languages. In Findings of
EMNLP, pages 1536–1547, 2020.

Patrick Fernandes, Miltiadis Allamanis, and Marc Brockschmidt. Structured neural
summarization. In ICLR, 2019.

Beat Fluri, Michael Wursch, and Harald C Gall. Do code and comments co-evolve?
On the relation between source code and comment changes. In WCRE, pages 70–
79, 2007.

Beat Fluri, Michael Würsch, Emanuel Giger, and Harald C. Gall. Analyzing the co-
evolution of comments and source code. Software Quality Journal, 17(4):367–
394, 2009.

Stephen R. Foster, William G. Griswold, and Sorin Lerner. WitchDoctor: IDE
support for real-time auto-completion of refactorings. In ICSE, pages 222–232,
2012.

156

Xi Ge, Quinton L. DuBose, and Emerson Murphy-Hill. Reconciling manual and
automatic refactoring. In ICSE, pages 211–221, 2012.

R. Stuart Geiger, Kevin Yu, Yanlai Yang, Mindy Dai, Jie Qiu, Rebekah Tang, and
Jenny Huang. Garbage in, garbage out? Do machine learning application pa-
pers in social computing report where human-labeled training data comes from?
In Conference on Fairness, Accountability, and Transparency, pages 325–336,
2020.

Mehdi Golzadeh, Alexandre Decan, and Tom Mens. On the effect of discussions
on pull request decisions. In Belgium-Netherlands Software Evolution Workshop,
2019.

Luiz Alberto Ferreira Gomes, Ricardo da Silva Torres, and Mario Lúcio Côrtes.
Bug report severity level prediction in open source software: A survey and re-
search opportunities. Information and Software Technology, 115:58–78, 2019.

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. Deep code search. In ICSE,
pages 933–944, 2018.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Jian Yin, Daxin Jiang, and M. Zhou. GraphCodeBERT: Pre-
training code representations with data flow. In ICLR, 2021.

Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. DeepFix: Fixing
common c language errors by deep learning. In AAAI, 2017.

Izzeddin Gur, Semih Yavuz, Yu Su, and Xifeng Yan. DialSQL: Dialogue based
structured query generation. In ACL, pages 1339–1349, 2018.

Jianjun He, Ling Xu, Yuanrui Fan, Zhou Xu, Meng Yan, and Yan Lei. Deep learning
based valid bug reports determination and explanation. In ISSRE, pages 184–194,
2020.

Vincent J. Hellendoorn, Charles Sutton, Rishabh Singh, Petros Maniatis, and David
Bieber. Global relational models of source code. In ICLR, 2020.

Vincent J. Hellendoorn, Jason Tsay, Manisha Mukherjee, and Martin Hirzel. To-
wards automating code review at scale. In ESEC/FSE, pages 1479–1482, 2021.

Abram Hindle and Curtis Onuczko. Preventing duplicate bug reports by contin-
uously querying bug reports. Empirical Software Engineering, 24(2):902–936,
2019.

157

Thong Hoang, Hong Jin Kang, David Lo, and Julia Lawall. CC2Vec: Distributed
representations of code changes. In ICSE, pages 518–529, 2020.

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin Choi. The curious case of
neural text degeneration. In ICLR, 2020.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. Deep code comment generation.
In ICPC, pages 200–210. IEEE, 2018.

LiGuo Huang, Vincent Ng, Isaac Persing, Ruili Geng, Xu Bai, and Jeff Tian. Au-
toODC: Automated generation of orthogonal defect classifications. In ASE, pages
412–415, 2011.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. CodeSearchNet challenge: Evaluating the state of semantic code
search. arXiv preprint arXiv:1909.09436, 2019.

Walid M. Ibrahim, Nicolas Bettenburg, Bram Adams, and Ahmed E. Hassan. On
the relationship between comment update practices and software bugs. Journal
of Systems and Software, 85(10):2293–2304, 2012.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Summa-
rizing source code using a neural attention model. In ACL, pages 2073–2083,
2016.

Oskar Jarczyk, Blazej Gruszka, Szymon Jaroszewicz, Leszek Bukowski, and Adam
Wierzbicki. Github projects. Quality analysis of open-source software. In
SocInfo, pages 80–94, 2014.

Zhen Ming Jiang and Ahmed E. Hassan. Examining the evolution of code com-
ments in PostgreSQL. In MSR, pages 179–180, 2006.

He Jiang, Jingxuan Zhang, Hongjing Ma, Najam Nazar, and Zhilei Ren. Mining au-
thorship characteristics in bug repositories. Science China Information Sciences,
60(1):1–16, 2017.

Jing Jiang, Jiateng Zheng, Yun Yang, Li Zhang, and Jie Luo. Predicting accepted
pull requests in GitHub. Science China Information Sciences, 64, 2021.

Xue Jiang, Zhuoran Zheng, Chen lv, Liang Li, and Lei Lyu. TreeBERT: A tree-
based pre-trained model for programming language. In UAI, 2021.

158

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. Learning
and evaluating contextual embedding of source code. In ICML, 2020.

Rafael-Michael Karampatsis and Charles Sutton. How often do single-statement
bugs occur? The ManySStuBs4J dataset. In MSR, pages 573–577, 2020.

Rafael-Michael Karampatsis and Charles Sutton. Scelmo: Source code embeddings
from language models. arXiv preprint arXiv:2004.13214, 2020.

David Kavaler, Sasha Sirovica, Vincent Hellendoorn, Raul Aranovich, and
Vladimir Filkov. Perceived language complexity in GitHub issue discussions
and their effect on issue resolution. In ASE, pages 72–83, 2017.

Yalin Ke, Kathryn T Stolee, Claire Le Goues, and Yuriy Brun. Repairing programs
with semantic code search. In ASE, pages 295–306, 2015.

Ninus Khamis, René Witte, and Juergen Rilling. Automatic quality assessment
of source code comments: The JavadocMiner. In International Conference on
Application of Natural Language to Information Systems, pages 68–79, 2010.

Riivo Kikas, Marlon Dumas, and Dietmar Pfahl. Issue dynamics in GitHub projects.
In PROFES, pages 295–310, 2015.

Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. Automatic patch
generation learned from human-written patches. In ICSE, pages 802–811, 2013.

Wei-Jen Ko, Greg Durrett, and Junyi Jessy Li. Linguistically-informed specificity
and semantic plausibility for dialogue generation. In NAACL-HLT, pages 3456–
3466, 2019.

Oleksii Kononenko, Tresa Rose, Olga Baysal, Michael Godfrey, Dennis Theisen,
and Bart de Water. Studying pull request merges: A case study of shopify’s
active merchant. In ICSE: Software Engineering in Practice Track, pages 124–
133, 2018.

Anil Koyuncu, Kui Liu, Tegawendé F Bissyandé, Dongsun Kim, Martin Monper-
rus, Jacques Klein, and Yves Le Traon. iFixR: Bug report driven program repair.
In ESEC/FSE, pages 314–325, 2019.

Klaus Krippendorff. Computing Krippendorff’s alpha reliability. Technical report,
University of Pennsylvania, 2011.

159

Rajiv Krishnamurthy, Varghese Jacob, Suresh Radhakrishnan, and Kutsal Dogan.
Peripheral developer participation in open source projects: an empirical analysis.
TMIS, 6(4):1–31, 2016.

Reno Kriz, João Sedoc, Marianna Apidianaki, Carolina Zheng, Gaurav Kumar,
Eleni Miltsakaki, and Chris Callison-Burch. Complexity-weighted loss and di-
verse reranking for sentence simplification. In NAACL-HLT, pages 3137–3147,
2019.

Taku Kudo and John Richardson. SentencePiece: A simple and language indepen-
dent subword tokenizer and detokenizer for neural text processing. In EMNLP:
System Demonstrations, pages 66–71, 2018.

Ahmed Lamkanfi, Serge Demeyer, Emanuel Giger, and Bart Goethals. Predicting
the severity of a reported bug. In MSR, pages 1–10, 2010.

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami,
and Chris Dyer. Neural architectures for named entity recognition. In NAACL-
HLT, pages 260–270, 2016.

Alina Lazar, Sarah Ritchey, and Bonita Sharif. Improving the accuracy of duplicate
bug report detection using textual similarity measures. In MSR, pages 308–311,
2014.

Xuan Bach D. Le, David Lo, and Claire Le Goues. History driven program repair.
In SANER, volume 1, pages 213–224, 2016.

Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
S3: Syntax- and semantic-guided repair synthesis via programming by examples.
In FSE, pages 593–604, 2017.

Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. Gen-
Prog: A generic method for automatic software repair. TSE, 38(1):54–72, 2012.

Alexander LeClair, Siyuan Jiang, and Collin McMillan. A neural model for gener-
ating natural language summaries of program subroutines. In ICSE, pages 795–
806, 2019.

Alexander LeClair, Sakib Haque, Lingfei Wu, and Collin McMillan. Improved
code summarization via a graph neural network. In ICPC, pages 184–195, 2020.

160

Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck,
Chris Callison-Burch, and Nicholas Carlini. Deduplicating training data makes
language models better. In Proceedings of the 60th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers), pages 8424–8445,
2022.

Meir Lehman and Juan Fernáandez-Ramil. Software Evolution, pages 7–40. John
Wiley & Sons, 2006.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mo-
hamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising
sequence-to-sequence pre-training for natural language generation, translation,
and comprehension. In ACL, pages 7871–7880, 2020.

Xiaolong Li and Kristy Boyer. Semantic grounding in dialogue for complex prob-
lem solving. In NAACL-HLT, pages 841–850, 2015.

Xiaolong Li and Kristy Boyer. Reference resolution in situated dialogue with
learned semantics. In SIGDIAL, pages 329–338, 2016.

Xiaolong Li and Kristy Boyer. Reference resolution in situated dialogue with
learned semantics. In SIGDIAL, pages 329–338, 2016.

Junyi Jessy Li and Ani Nenkova. Fast and accurate prediction of sentence speci-
ficity. In AAAI, pages 2281–2287, 2015.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. Gated graph
sequence neural networks. In ICLR, 2016.

Zhixing Li, Yue Yu, Gang Yin, T. Wang, Qiang Fan, and Huaimin Wang. Automatic
classification of review comments in pull-based development model. In SEKE,
pages 572–577, 2017.

Juncen Li, Robin Jia, He He, and Percy Liang. Delete, retrieve, generate: a simple
approach to sentiment and style transfer. In NAACL-HLT, pages 1865–1874,
2018.

Xiaochen Li, He Jiang, Dong Liu, Zhilei Ren, and Ge Li. Unsupervised deep bug
report summarization. In ICPC, pages 144–155, 2018.

161

Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh Jannu, Grant Jenks, Deep
Majumder, Jared Green, Alexey Svyatkovskiy, Shengyu Fu, et al. CodeRe-
viewer: Pre-training for automating code review activities. arXiv preprint
arXiv:2203.09095, 2022.

Yuding Liang and Kenny Zhu. Automatic generation of text descriptive comments
for code blocks. In AAAI, volume 32, 2018.

Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer, and Michael D Ernst.
NL2Bash: A corpus and semantic parser for natural language interface to the
linux operating system. In LREC, 2018.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text
Summarization Branches Out, pages 74–81, 2004.

Yang Liu and Mirella Lapata. Text summarization with pretrained encoders. In
EMNLP-IJCNLP, pages 3730–3740, 2019.

Chia-Wei Liu, Ryan Lowe, Iulian Serban, Mike Noseworthy, Laurent Charlin, and
Joelle Pineau. How NOT to evaluate your dialogue system: An empirical study
of unsupervised evaluation metrics for dialogue response generation. In EMNLP,
pages 2122–2132, 2016.

Xiaoyu Liu, LiGuo Huang, Chuanyi Li, and Vincent Ng. Linking source code to
untangled change intents. In ICSME, pages 393–403, 2018.

Zhiyong Liu, Huanchao Chen, Xiangping Chen, Xiaonan Luo, and Fan Zhou. Au-
tomatic detection of outdated comments during code changes. In COMPSAC,
pages 154–163, 2018.

Zhongxin Liu, Xin Xia, Christoph Treude, David Lo, and Shanping Li. Automatic
generation of pull request descriptions. In ASE, pages 176–188, 2019.

Haoran Liu, Yue Yu, Shanshan Li, Yong Guo, Deze Wang, and Xiaoguang Mao.
BugSum: Deep context understanding for bug report summarization. In ICPC,
pages 94–105, 2020.

Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle Pineau. The Ubuntu dialogue
corpus: A large dataset for research in unstructured multi-turn dialogue systems.
In SIGDIAL, pages 285–294, 2015.

162

Pablo Loyola, Edison Marrese-Taylor, and Yutaka Matsuo. A neural architecture
for generating natural language descriptions from source code changes. In ACL,
pages 287–292, 2017.

Pablo Loyola, Kugamoorthy Gajananan, and Fumiko Satoh. Bug localization by
learning to rank and represent bug inducing changes. In CIKM, pages 657–665,
2018.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambro-
sio Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al.
CodeXGLUE: A machine learning benchmark dataset for code understanding
and generation. arXiv preprint arXiv:2102.04664, 2021.

Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to
attention-based neural machine translation. In EMNLP, pages 1412–1421, 2015.

Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and
Lin Tan. CoCoNut: combining context-aware neural translation models using
ensemble for program repair. In ISSTA, pages 101–114, 2020.

Chandra Maddila, Sai Surya Upadrasta, Chetan Bansal, Nachiappan Nagappan,
Georgios Gousios, and Arie van Deursen. Nudge: Accelerating overdue pull
requests towards completion. arXiv preprint arXiv:2011.12468, 2020.

Haroon Malik, Istehad Chowdhury, Hsiao-Ming Tsou, Zhen Ming Jiang, and
Ahmed E. Hassan. Understanding the rationale for updating a function’s com-
ment. In ICSME, pages 167–176, 2008.

Ehsan Mashhadi and Hadi Hemmati. Applying CodeBERT for automated program
repair of java simple bugs. In MSR, pages 505–509, 2021.

Nikita Mehrotra, Navdha Agarwal, Piyush Gupta, Saket Anand, David Lo, and
Rahul Purandare. Modeling functional similarity in source code with graph-
based siamese networks. TSE, 2021.

Na Meng, Lisa Hua, Miryung Kim, and Kathryn S. McKinley. Does automated
refactoring obviate systematic editing? In ICSE, pages 392–402, 2015.

Ali Mesbah, Andrew Rice, Emily Johnston, Nick Glorioso, and Edward Aftandil-
ian. DeepDelta: Learning to repair compilation errors. In ESEC/FSE, pages
925–936, 2019.

163

Anders Miltner, Sumit Gulwani, Vu Le, Alan Leung, Arjun Radhakrishna, Gustavo
Soares, Ashish Tiwari, and Abhishek Udupa. On the fly synthesis of edit sugges-
tions. Proceedings of the ACM on Programming Languages, 3(OOPSLA):1–29,
2019.

Mehdi Mirzaaghaei. Automatic test suite evolution. In ESEC/FSE, pages 396–399,
2011.

Ruslan Mitkov. Anaphora resolution: The state of the art. Technical report, 1999.

Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrian
Marcus, and Gerardo Canfora. Automatic generation of release notes. In FSE,
pages 484–495, 2014.

Dana Movshovitz-Attias and William Cohen. Natural language models for predict-
ing programming comments. In ACL, pages 35–40, 2013.

Dana Movshovitz-Attias and William W Cohen. Grounded discovery of coordinate
term relationships between software entities. arXiv preprint arXiv:1505.00277,
2015.

Emerson Murphy-Hill, Thomas Zimmermann, Christian Bird, and Nachiappan Na-
gappan. The design space of bug fixes and how developers navigate it. TSE,
41(1):65–81, 2015.

Aravind Nair, Avijit Roy, and Karl Meinke. funcGNN: A graph neural network
approach to program similarity. In ESEM, pages 1–11, 2020.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. SummaRuNNer: A recurrent neu-
ral network based sequence model for extractive summarization of documents. In
AAAI, pages 3075–3081, 2017.

Courtney Napoles, Keisuke Sakaguchi, Matt Post, and Joel Tetreault. Ground truth
for grammatical error correction metrics. In ACL-IJCNLP, pages 588–593, 2015.

Graham Neubig, Makoto Morishita, and Satoshi Nakamura. Neural reranking im-
proves subjective quality of machine translation: NAIST at WAT2015. In Work-
shop on Asian Translation, pages 35–41, 2015.

Anh Tuan Nguyen and Tien N. Nguyen. Graph-based statistical language model
for code. In ICSE, pages 858–868, 2015.

164

Hoan Anh Nguyen, Tung Thanh Nguyen, Gary Wilson Jr, Anh Tuan Nguyen,
Miryung Kim, and Tien N Nguyen. A graph-based approach to api usage adap-
tation. SIGPLAN Notices, 45(10):302–321, 2010.

Anh Tuan Nguyen, Tung Thanh Nguyen, Hoan Anh Nguyen, and Tien N. Nguyen.
Multi-layered approach for recovering links between bug reports and fixes. In
FSE, pages 63:1–63:11, 2012.

Anh Tuan Nguyen, Michael Hilton, Mihai Codoban, Hoan Anh Nguyen, Lily Mast,
Eli Rademacher, Tien N. Nguyen, and Danny Dig. API code recommendation
using statistical learning from fine-grained changes. In FSE, pages 511–522,
2016.

Pengyu Nie, Rishabh Rai, Junyi Jessy Li, Sarfraz Khurshid, Raymond J. Mooney,
and Milos Gligoric. A framework for writing trigger-action todo comments in
executable format. In ESEC/FSE, pages 385–396, 2019.

Pengyu Nie, Jiyang Zhang, Junyi Jessy Li, Raymond J Mooney, and Milos
Gligoric. Evaluation methodologies for code learning tasks. arXiv preprint
arXiv:2108.09619, 2021.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Sil-
vio Savarese, and Caiming Xiong. A conversational paradigm for program syn-
thesis. arXiv preprint arXiv:2203.13474, 2022.

Yuki Noyori, Hironori Washizaki, Yoshiaki Fukazawa, Keishi Ooshima, Hideyuki
Kanuka, Shuhei Nojiri, and Ryosuke Tsuchiya. What are good discussions within
bug report comments for shortening bug fixing time? In QRS, pages 280–287,
2019.

Ally S. Nyamawe, Hui Liu, Nan Niu, Qasim Umer, and Zhendong Niu. Automated
recommendation of software refactorings based on feature requests. In Interna-
tional Requirements Engineering Conference, pages 187–198, 2019.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Ja-
cob Austin, David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, et al. Show your work: Scratchpads for intermediate computation
with language models. arXiv preprint arXiv:2112.00114, 2021.

Paul Oman and Jack Hagemeister. Metrics for assessing a software system’s main-
tainability. In Conference on Software Maintenance, pages 337–338, 1992.

165

Oracle. Javadoc, 2020. https://docs.oracle.com/javase/8/docs/
technotes/tools/windows/javadoc.html.

Oracle. Comments, 2021. https://www.oracle.com/java/
technologies/javase/codeconventions-comments.html.

Sebastiano Panichella, Gerardo Canfora, and Andrea Di Sorbo. “Won’t we fix
this issue?” Qualitative characterization and automated identification of wontfix
issues on github. Information and Software Technology, 139:106665, 2021.

Sheena Panthaplackel, Milos Gligoric, Raymond J. Mooney, and Junyi Jessy Li.
Associating natural language comment and source code entities. In AAAI, pages
8592–8599, 2020.

Sheena Panthaplackel, Pengyu Nie, Milos Gligoric, Junyi Jessy Li, and Raymond
Mooney. Learning to update natural language comments based on code changes.
In ACL, pages 1853–1868, 2020.

Sheena Panthaplackel, Junyi Jessy Li, Milos Gligoric, and Raymond J. Mooney.
Deep just-in-time inconsistency detection between comments and source code.
In AAAI, pages 427–435, 2021.

Sheena Panthaplackel, Milos Gligoric, Junyi Jessy Li, and Raymond J. Mooney.
Learning to describe solutions for bug reports based on developer discussions.
Under Submission, 2022.

Sheena Panthaplackel, Junyi Jessy Li, Milos Gligoric, and Ray Mooney. Learning
to describe solutions for bug reports based on developer discussions. In Findings
of ACL, pages 2935–2952, 2022.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a method
for automatic evaluation of machine translation. In ACL, pages 311–318, 2002.

Luca Pascarella and Alberto Bacchelli. Classifying code comments in java open-
source software systems. In MSR, pages 227–237, 2017.

Rebecca Passonneau. Measuring agreement on set-valued items (MASI) for seman-
tic and pragmatic annotation. In LREC, 2006.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations.
In NAACL-HLT, pages 2227–2237, 2018.

166

https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://www.oracle.com/java/technologies/javase/codeconventions-comments.html
https://www.oracle.com/java/technologies/javase/codeconventions-comments.html

Maxim Rabinovich, Mitchell Stern, and Dan Klein. Abstract syntax networks for
code generation and semantic parsing. In ACL, pages 1139–1149, 2017.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. Language models are unsupervised multitask learners. Ope-
nAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits
of transfer learning with a unified text-to-text transformer. Journal of Machine
Learning Research, 21(140):1–67, 2020.

Mohammad Masudur Rahman and Chanchal K Roy. Improving ir-based bug local-
ization with context-aware query reformulation. In ESEC/FSE, pages 621–632,
2018.

Sarah Rastkar, Gail C. Murphy, and Gabriel Murray. Automatic summarization of
bug reports. TSE, 40(4):366–380, 2014.

Inderjot Kaur Ratol and Martin P. Robillard. Detecting fragile comments. ASE,
pages 112–122, 2017.

Veselin Raychev, Max Schäfer, Manu Sridharan, and Martin Vechev. Refactoring
with synthesis. SIGPLAN Notices, 48(10):339–354, 2013.

Xiaoxue Ren, Zhenchang Xing, Xin Xia, David Lo, Xinyu Wang, and John Grundy.
Neural network-based detection of self-admitted technical debt: From perfor-
mance to explainability. TOSEM, 28:1–45, 2019.

Gema Rodrı́guez-Pérez, Gregorio, Robles, Alexander Serebrenik, Andy, Zaidman,
Daniel M. Germán, Jesus, and Jesus M. Gonzalez-Barahona. How bugs are born:
A model to identify how bugs are introduced in software components. Empirical
Software Engineering, 25:1294–1340, 2020.

Ankita Sadu. Automatic detection of outdated comments in open source Java
projects. Master’s thesis, Universidad Politécnica de Madrid, 2019.

Ripon K Saha, Matthew Lease, Sarfraz Khurshid, and Dewayne E Perry. Improving
bug localization using structured information retrieval. In ASE, pages 345–355.
IEEE, 2013.

Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summa-
rization with pointer-generator networks. In ACL, pages 1073–1083, 2017.

167

Iulian V. Serban, Alessandro Sordoni, Yoshua Bengio, Aaron Courville, and Joelle
Pineau. Building end-to-end dialogue systems using generative hierarchical neu-
ral network models. In AAAI, pages 3776–3783, 2016.

Richard Shin, Illia Polosukhin, and Dawn Song. Towards specification-directed
program repair. In ICLR Workshop, 2018.

Eui Chul Shin, Miltiadis Allamanis, Marc Brockschmidt, and Alex Polozov. Pro-
gram synthesis and semantic parsing with learned code idioms. NeurIPS,
32:10825–10835, 2019.

Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K Vijay-
Shanker. Towards automatically generating summary comments for java meth-
ods. In ASE, pages 43–52, 2010.

Giriprasad Sridhara, Lori Pollock, and K Vijay-Shanker. Generating parameter
comments and integrating with method summaries. In ICPC, pages 71–80, 2011.

Nataliia Stulova, Arianna Blasi, Alessandra Gorla, and Oscar Nierstrasz. Towards
detecting inconsistent comments in java source code automatically. In SCAM,
pages 65–69, 2020.

Akhilesh Sudhakar, Bhargav Upadhyay, and Arjun Maheswaran. “Transforming”
delete, retrieve, generate approach for controlled text style transfer. In EMNLP-
IJCNLP, pages 3267–3277, 2019.

Zeyu Sun, Qihao Zhu, Yingfei Xiong, Yican Sun, Lili Mou, and Lu Zhang. Tree-
Gen: A tree-based transformer architecture for code generation. In AAAI, pages
8984–8991, 2020.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. In NeurIPS, pages 3104–3112, 2014.

Adam Svensson. Reducing outdated and inconsistent code comments during soft-
ware development: The comment validator program. Master’s thesis, Uppsala
University, 2015.

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. In-
telliCode compose: Code generation using transformer. In ESEC/FSE, pages
1433–1443, 2020.

Jeniya Tabassum, Mounica Maddela, Wei Xu, and Alan Ritter. Code and named
entity recognition in StackOverflow. In ACL, pages 4913–4926, 2020.

168

Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. /*iComment: Bugs or
bad comments?*/. In SOSP, pages 145–158, 2007.

Lin Tan, Yuanyuan Zhou, and Yoann Padioleau. aComment: Mining annotations
from comments and code to detect interrupt related concurrency bugs. In ICSE,
pages 11–20, 2011.

Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T. Leavens. @tComment: Test-
ing javadoc comments to detect comment-code inconsistencies. In ICST, pages
260–269, 2012.

Xin Tan, Minghui Zhou, and Zeyu Sun. A first look at good first issues on GitHub.
In ESEC/FSE, pages 398–409, 2020.

Wesley Tansey and Eli Tilevich. Annotation refactoring: Inferring upgrade trans-
formations for legacy applications. SIGPLAN Notices, 43(10):295–312, 2008.

Wei Tao, Yanlin Wang, Ensheng Shi, Lun Du, Shi Han, Hongyu Zhang, Dongmei
Zhang, and Wenqiang Zhang. On the evaluation of commit message generation
models: An experimental study. In ICSME, pages 126–136, 2021.

Daniel Tarlow, Subhodeep Moitra, Andrew Rice, Zimin Chen, Pierre-Antoine Man-
zagol, Charles Sutton, and Edward Aftandilian. Learning to fix build errors with
Graph2Diff neural networks. In ICSE Workshops, pages 19–20, 2020.

Ted Tenny. Program readability: Procedures versus comments. TSE, 14(9):1271–
1279, 1988.

Ferdian Thung, David Lo, and Lingxiao Jiang. Automatic defect categorization. In
WCRE, pages 205–214, 2012.

Yuan Tian, David Lo, and Chengnian Sun. Information retrieval based nearest
neighbor classification for fine-grained bug severity prediction. In WCRE, pages
215–224, 2012.

Yuan Tian, Chengnian Sun, and David Lo. Improved duplicate bug report identifi-
cation. In CSMR, pages 385–390, 2012.

Jason Tsay, Laura Dabbish, and James Herbsleb. Let’s talk about it: Evaluating
contributions through discussion in GitHub. In FSE, pages 144–154, 2014.

169

Michele Tufano, Cody Watson, G. Bavota, M. D. Penta, Martin White, and
D. Poshyvanyk. An empirical study on learning bug-fixing patches in the wild
via neural machine translation. TOSEM, 28:1–29, 2019.

Rosalia Tufano, Luca Pascarella, Michele Tufano, Denys Poshyvanyk, and Gabriele
Bavota. Towards automating code review activities. In ICSE, 2021.

Daniel E. Turk, Robert B. France, and Bernhard Rumpe. Assumptions underly-
ing agile software-development processes. Journal of Database Management,
16:62–87, 2005.

Erik van der Veen, Georgios Gousios, and Andy Zaidman. Automatically prioritiz-
ing pull requests. In MSR, pages 357–361, 2015.

Dusan Varis and Ondřej Bojar. Sequence length is a domain: Length-based overfit-
ting in transformer models. In EMNLP, pages 8246–8257, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In NeurIPS, volume 30, 2017.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In NeurIPS,
pages 2692–2700, 2015.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew
Richardson. RAT-SQL: Relation-aware schema encoding and linking for text-
to-SQL parsers. In ACL, pages 7567–7578, 2020.

Wenhan Wang, Ge Li, Sijie Shen, Xin Xia, and Zhi Jin. Modular tree network for
source code representation learning. TOSEM, 29(4):1–23, 2020.

Wenhan Wang, Kechi Zhang, Ge Li, and Zhi Jin. Learning to represent programs
with heterogeneous graphs. arXiv preprint arXiv:2012.04188, 2020.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. CodeT5: Identifier-
aware unified pre-trained encoder-decoder models for code understanding and
generation. In EMNLP, pages 8696–8708, 2021.

Jiayi Wei, Maruth Goyal, Greg Durrett, and Isil Dillig. LambdaNet: Probabilistic
type inference using graph neural networks. In ICLR, 2020.

Cathrin Weiss, Rahul Premraj, Thomas Zimmermann, and Andreas Zeller. How
long will it take to fix this bug? In MSR, pages 1–1, 2007.

170

Fengcai Wen, Csaba Nagy, Gabriele Bavota, and Michele Lanza. A large-scale
empirical study on code-comment inconsistencies. In ICPC, pages 53–64, 2019.

Mairieli Wessel, Alexander Serebrenik, Igor Wiese, Igor Steinmacher, and
Marco A. Gerosa. Effects of adopting code review bots on pull requests to oss
projects. In ICSME, pages 1–11, 2020.

Andrew Wood, Paige Rodeghero, Ameer Armaly, and Collin McMillan. Detecting
speech act types in developer question/answer conversations during bug repair.
In ESEC/FSE, pages 491–502, 2018.

Scott N Woodfield, Hubert E Dunsmore, and Vincent Yun Shen. The effect of
modularization and comments on program comprehension. In ICSE, pages 215–
223, 1981.

Shengqu Xi, Yuan Yao, Xusheng Xiao, Feng Xu, and Jian Lu. An effective ap-
proach for routing the bug reports to the right fixers. In Asia-Pacific Symposium
on Internetware, pages 1–10, 2018.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen, and Chris Callison-Burch.
Optimizing statistical machine translation for text simplification. TACL, 4:401–
415, 2016.

Shengbin Xu, Yuan Yao, Feng Xu, Tianxiao Gu, Hanghang Tong, and Jian Lu.
Commit message generation for source code changes. In IJCAI, pages 3975–
3981, 2019.

Sihan Xu, Sen Zhang, Weijing Wang, Xinya Cao, Chenkai Guo, and Jing Xu.
Method name suggestion with hierarchical attention networks. In SIGPLAN
Workshop on Partial Evaluation and Program Manipulation, pages 10–21, 2019.

Frank F Xu, Zhengbao Jiang, Pengcheng Yin, Bogdan Vasilescu, and Graham Neu-
big. Incorporating external knowledge through pre-training for natural language
to code generation. In ACL, pages 6045–6052, 2020.

Huong Nguyen Thi Xuan, Vo Cong Hieu, and Anh-Cuong Le. Adding external
features to convolutional neural network for aspect-based sentiment analysis. In
NICS, pages 53–59, 2018.

Cheng-Zen Yang, Kun-Yu Chen, Wei-Chen Kao, and Chih-Chuan Yang. Improving
severity prediction on software bug reports using quality indicators. In ICSESS,
pages 216–219, 2014.

171

Ziyu Yao, Daniel S Weld, Wei-Peng Chen, and Huan Sun. StaQC: A systematically
mined question-code dataset from stack overflow. In WWW, pages 1693–1703,
2018.

Ziyu Yao, Yu Su, Huan Sun, and Wen-tau Yih. Model-based interactive semantic
parsing: A unified framework and a text-to-SQL case study. In EMNLP-IJCNLP,
pages 5447–5458, 2019.

Ziyu Yao, Frank F. Xu, Pengcheng Yin, Huan Sun, and Graham Neubig. Learning
structural edits via incremental tree transformations. In ICLR, 2021.

Michihiro Yasunaga and Percy Liang. Graph-based, self-supervised program repair
from diagnostic feedback. In ICML, 2020.

Yunwen Ye and Kouichi Kishida. Toward an understanding of the motivation open
source software developers. In ICSE, pages 419–429, 2003.

Xi Ye, Qiaochu Chen, Xinyu Wang, Isil Dillig, and Greg Durrett. Sketch-driven reg-
ular expression generation from natural language and examples. TACL, 8:679–
694, 2020.

Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose
code generation. In ACL, pages 440–450, 2017.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan Vasilescu, and Graham Neubig.
Learning to mine aligned code and natural language pairs from Stack Overflow.
In MSR, pages 476–486, 2018.

Pengcheng Yin, Graham Neubig, Miltiadis Allamanis, Marc Brockschmidt, and
Alexander L. Gaunt. Learning to represent edits. In ICLR, 2019.

Yue Yu, Huaimin Wang, Gang Yin, and Charles X. Ling. Reviewer recommender
of pull-requests in GitHub. In ICSME, pages 609–612, 2014.

Yue Yu, Huaimin Wang, Vladimir Filkov, Premkumar Devanbu, and Bogdan
Vasilescu. Wait for it: Determinants of pull request evaluation latency on github.
In MSR, pages 367–371, 2015.

Xiaohan Yu, Quzhe Huang, Zheng Wang, Yansong Feng, and Dongyan Zhao. To-
wards context-aware code comment generation. In Findings of EMNLP, pages
3938–3947, 2020.

172

Feng Zhang, Foutse Khomh, Ying Zou, and Ahmed E. Hassan. An empirical study
on factors impacting bug fixing time. In WCRE, pages 225–234, 2012.

Ruqing Zhang, Jiafeng Guo, Yixing Fan, Yanyan Lan, Jun Xu, and Xueqi Cheng.
Learning to control the specificity in neural response generation. In ACL, pages
1108–1117, 2018.

Neng Zhang, Qiao Huang, Xin Xia, Ying Zou, David Lo, and Zhenchang Xing.
Chatbot4QR: Interactive query refinement for technical question retrieval. TSE,
2020.

Jie Zhao and Huan Sun. Adversarial training for code retrieval with question-
description relevance regularization. In Findings of EMNLP, pages 4049–4059,
2020.

Guoliang Zhao, Daniel Alencar da Costa, and Ying Zou. Improving the pull re-
quests review process using learning-to-rank algorithms. Empirical Software
Engineering, 24:2140–2170, 2019.

Yu Zhou, Gu Ruihang, Chen Taolue, Huang Zhiqiu, Panichella Sebastiano, and Gall
Harald. Analyzing APIs documentation and code to detect directive defects. In
ICSE, pages 27–37, 2017.

Ziye Zhu, Yun Li, Hanghang Tong, and Yu Wang. CooBa: Cross-project bug local-
ization via adversarial transfer learning. In IJCAI, pages 3565–3571, 2020.

173

Vita

Sheena Panthaplackel was brought up in a suburb of Chicago, Illinois, and

she graduated from Downers Grove South High School in 2013. For her undergrad-

uate studies, she attended the University of Illinois at Urbana-Champaign, where

she obtained a B.S. degree in Computer Science in 2016. Following that, she

worked as a software developer at a trading firm in Chicago. In August 2017, she

moved to Austin to begin the PhD program in the Department of Computer Science

at the University of Texas at Austin.

She was a recipient of the Bloomberg Data Science Fellowship in 2020. Her

research has been published as conference papers at AAAI 2020, ACL 2020, AAAI

2021, and ACL 2022. She has also been a reviewer at AAAI, EMNLP, ARR, and

workshops at ICSE, AACL, and NAACL. During her PhD, she also did summer

internships at Microsoft Research Cambridge and Bloomberg AI, where she worked

on research that have also been published as conference papers in AAAI 2021 and

ACL 2022.

Permanent Address: spantha@utexas.edu

This dissertation was typeset with LATEX 2ε1 by the author.

1LATEX 2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark
of the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and extended
by Bert Kay, James A. Bednar, Ayman El-Khashab and Dan Garette. The author used a template
released by Dan Garette with small modifications to account for changes in formatting requirements.

174

	Chapter Introduction
	Chapter Background and Related Work
	Software Evolution
	Natural Language for Software-Related Tasks
	Source Code Comments
	Bug Report Discussions
	Code Representations
	Handling Noise in Online Code Repositories

	Chapter Associating Natural Language Comment and Source Code Entities
	Task
	Data
	Noisy Supervision
	Processing
	Filtering
	Dataset Statistics

	Representations and Features
	Models
	Binary Classification
	Sequence Labeling
	Baselines

	Results
	Training on Primary Dataset
	Augmenting Training with Deletions
	Ablation Study

	Additional Details
	Model Parameters
	Filtering Details
	Annotation Examples
	Sample Output

	Summary

	Chapter Just-In-Time Inconsistency Detection Between Comments and Source Code
	Task
	Architecture
	Sequence Code Encoder
	AST Code Encoder

	Data
	Models
	Baselines
	Our Models

	Results
	Additional Details
	Model Parameters
	More Data Details

	Summary

	Chapter Updating Natural Language Comments Based on Code Changes
	Task
	Edit Model
	Encoders
	Decoder
	Parsing Edit Sequences
	Reranking

	Data
	Experimental Method
	Baselines
	Generation Model
	Reranked Generation Model

	Automatic Evaluation
	Human Evaluation
	Error Analysis
	Ablations
	Additional Details
	Model Parameters
	Modified Comment Edit Lexicon
	Deletions
	Sample Output

	Summary

	Chapter Combined Detection and Update of Inconsistent Comments
	Experiments
	Results
	Qualitative Analysis
	Summary

	Chapter Describing Solutions for Bug Reports Based on Developer Discussions
	Problem Setting
	Data
	Data Collection
	Handling Noise
	Preprocessing
	Partitioning

	Models
	Results: Automated Metrics
	Results: Human Evaluation
	Analysis
	Supporting Real-Time Generation
	Pipelined System
	Joint System
	Evaluation

	Additional Details
	Model Parameters
	More Data Details
	Additional Generation Baselines

	Classification Baselines
	Summary

	Chapter Using Bug Report Discussions to Guide Automated Bug Fixing
	Motivation
	Deriving Context from Bug Report Discussions
	Heuristically Deriving Context
	Algorithmically Deriving Context

	Data
	Mining Bug Report Discussions
	Data Processing

	Models
	Our Models
	Baselines

	Results
	Examples
	Analysis: Identifying Useful Discussion Segments
	Summary
	Additional Details

	Chapter Future Work
	Unifying Related Tasks Occurring Upon Code Changes
	Interactively Participating in Code Review Discussions
	Enhancing Code Representations with Natural Language
	Applying Research to Real-World Software Development

	Chapter Conclusions
	References
	Vita

