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Abstract

Scripts encode knowledge of prototypical sequences of
events. We describe a Recurrent Neural Network model
for statistical script learning using Long Short-Term
Memory, an architecture which has been demonstrated
to work well on a range of Artificial Intelligence tasks.
We evaluate our system on two tasks, inferring held-out
events from text and inferring novel events from text,
substantially outperforming prior approaches on both
tasks.

Introduction
Text understanding requires commonsense inferences based
on world knowledge. Scripts, which model stereotypical se-
quences of events, encode one type of useful world knowl-
edge. A script system can infer events from text: e.g., given
“After being laid off, Smith is looking for work,” we would
like to be able to predict that “Smith will have a job inter-
view,” and perhaps “Smith will find a job.” Inferences of this
type are required for robust question-answering systems.

The use of manually-written scripts dates back to the
seminal work of Schank and Abelson (1977). Mooney and
DeJong (1985) provide an early non-statistical method of
inducing scripts automatically from text. More recently, a
growing body of work has followed Chambers and Jurafsky
(2008) in describing methods of automatically learning sta-
tistical models of event sequences from large text corpora.

We describe a novel statistical script model which
uses a recurrent neural network with a Long Short-
Term Memory (LSTM) architecture. Recently, LSTMs have
yielded substantial performance gains in Machine Transla-
tion (Sutskever, Vinyals, and Le 2014) Speech Recognition
(Graves, Mohamed, and Hinton 2013) Language Modeling
(Sundermeyer, Schlüter, and Ney 2012) and captioning im-
ages and videos (Donahue et al. 2015; Venugopalan et al.
2015), among other tasks.

We are the first to apply LSTMs to the task of script
learning, demonstrating superior performance over a num-
ber of competitive baselines, including the best published
method. Our method can directly incorporate noun informa-
tion about event arguments, which most previous methods
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of script learning for event inference do not easily admit.
We evaluate our proposed LSTM script system against a
number of baselines on the task of predicting held-out verbs
with coreference information about their arguments, show-
ing a 22.6% relative improvement compared to the strongest
baseline. Second, we evaluate on the more difficult task of
predicting held-out verbs with argument nouns, demonstrat-
ing a 64.9% relative improvement over the most competitive
baseline. We find that coreference information is empirically
useful for predicting noun arguments, and, conversely, noun
information helps to predict argument coreference informa-
tion. Third, we demonstrate that human annotators judge the
top inferences made by LSTM script models to be qualita-
tively superior to those from baseline systems. Finally, we
provide a qualitative analysis of the LSTM script model.

Background
We briefly review the field of statistical script learning and
give a short description of Long Short-Term Memory.

Statistical Script Learning
Chambers and Jurafsky (2008; 2009) and Jans et al. (2012)
propose script models of (verb, dependency) pairs1 which
co-occur with the same entity, capable of encoding, for ex-
ample, that the grammatical subject of kill will frequently
also occur as the direct object of arrest. These models are
evaluated quantitatively on the Narrative Cloze task (Cham-
bers and Jurafsky 2008), in which an event is held out from
a document and a system is judged by its ability to infer this
held-out pair from the remainder of the document.

These pair-models are incapable of expressing interac-
tions between entities. For example, the event “X orders
Y ” may strongly predict the event “X eats Y ,” but pair-
based models have no straightforward way of representing
these multi-argument events or making such inferences. Mo-
tivated by these shortcomings, Pichotta and Mooney (2014)
propose a model which represents events as relational atoms,
like eat(X,Y ). They find that modeling co-occurring multi-
argument events and predicting simpler pair events provides
superior performance to modeling co-occurring pair events

1“Dependencies” here are grammatical structures output by a
syntactic parser, one of subject, direct object, or preposition.



directly. These events do not directly incorporate noun infor-
mation. Events with similar relational structure are used in
Balasubramanian et al. (2013) and Modi and Titov (2014),
who present systems for other tasks.

Recurrent Neural Nets and Long Short-Term
Memory
Recurrent Neural Net (RNN) sequence models learn to map
input sequences to output sequence via a continuous vector-
valued intermediate hidden state. The most basic RNNs are
difficult to train due to the so-called vanishing and explod-
ing gradient problem. the phenomenon that the gradient
signal used to train the network tends to either approach
zero (“vanish”) or diverge (“explode”) as it is propagated
back through timesteps during learning, leading to instabil-
ity. Further, long-distance data dependencies, in which some
timestep’s input is highly predictive of a much later output,
are not well modeled by simple RNNs.

Long Short-Term Memory (LSTM) units (Hochreiter and
Schmidhuber 1997) are designed to obviate these problems
by introducing a more complicated hidden unit which targets
long-distance dependencies and addresses the vanishing gra-
dient problem. The LSTM formulation we use is described
in Zaremba and Sutskever (2014). The LSTM unit is a com-
position of easily differentiable functions, so we may use
standard gradient-based methods to train all parameters.

LSTMs are a natural fit to script learning: some events
will be highly predictive of events far ahead in the sequence
(e.g. “the army invaded” may be indicative of “a treaty was
signed” later in the text), while some event types are only
locally predictive (e.g. “he sat down” predict “he stood up,”
but only nearby). The LSTM is in principle able to learn
these sorts of dynamics. Further, since our formulation will
require one event to span multiple timesteps across the RNN,
handling even short-range dependencies across events re-
quires modeling dependencies across tens of timesteps, so
long-range propagation in the network is crucial.

Script Models
We parse a large collection of natural-language documents,
extract sequences of events from them, and learn statistical
models of these sequences. Critically, we must specify what
we mean by an event. We adopt a similar event representa-
tion to Pichotta and Mooney (2014), modeling an event as
a (possibly phrasal) verb with a number of arguments, each
of which may have noun information, coreference informa-
tion, or both. Our proposed LSTM model could straightfor-
wardly handle events with arbitrarily many arguments; how-
ever, in order to compare to previously published systems
with fixed-arity events, we limit events’ arguments to a sub-
ject, a direct object, and one prepositional argument (includ-
ing the preposition, which Pichotta and Mooney (2014) ig-
nore). This amounts to representing events as 5-tuples.

The task we evaluate on, then, is to take as input a se-
quence of events and output additional events, where an
event is a tuple (v, es, eo, ep, p), where v is a verb lemma,
es, eo, and ep are nominal arguments standing in subject, di-
rect object, and prepositional relations, respectively (about
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Figure 1: LSTM Script System at timestep t.

which we may know coreference information, the lemma of
the head noun, or both), and p is the preposition relating v
and ep. Any of es, eo, ep, and p may be null, indicating that
no word stands in that relation to v (ep is null if and only
if p is null). We will refer to v, es, eo, ep, and p as event
components.

LSTM Script Models
We frame script learning as a sequence modeling task, using
the standard technique of training a model to sequentially
predict the next input. That is, at timestep t, the model is
trained to predict the input at timestep t + 1. The sequence
modeled is the sequence of 5-component events; that is, a
sequence of N events has 5N timesteps.

We differentiate between two types of script systems
based on what the models predict. Noun models learn to
predict events as verb lemmas, noun lemmas, and preposi-
tions. Entity models learn to predict verbs, entity IDs, and
prepositions, where an entity ID is an integer identifying an
argument’s entity according to a coreference resolution en-
gine. For example, suppose we observe the two co-occurring
events

(pass, senate, bill1, ·, ·)
(veto, president, it1, ·, ·)

where · represents a null argument and subscripts indicate
entity IDs. An LSTM noun model will be trained to model
the sequence (pass, senate, bill, ·, ·, veto, president, it, ·, ·),
by successively predicting the next element in the sequence
(when receiving pass as input, it is trained to predict senate;
in the next timestep it is trained to predict bill, and so on).
An LSTM entity model will be trained to model (pass, 0,
1, ·, ·, veto, 0, 1, ·, ·), where 0 denotes singleton nouns, and
1 is the entity ID for bill/it. Previously published statistical
event-inference script models are entity models.

We consider four similar model architectures differing in
inputs and outputs, depicted in Figure 1 (the inputs and out-
puts not present in all models have dotted lines). At each
timestep t, there are multiple inputs, each of which is a one-
hot vector (with one 1 and all other entries 0). First, there is
the 1-of-5 input ct, indicating which component of the event
is input at t: verbs will have ct = 1, subject entities ct = 2,



and so on. Next, there is a 1-of-V input wt, with V the size
of the vocabulary, giving the component word at timestep
t. Finally, three of the four models have a one-hot et input,
which gives the entity ID of noun arguments according to a
coreference engine. This et value has special values for null,
singleton entities, and non-entity words (verbs and preposi-
tions). We limit the number of entity IDs to 5,2 treating all
other entities as singletons.

One-hot input vectors are mapped to continuous dis-
tributed representations, labeled “Embeddings” in Figure 1.
These embeddings are learned jointly with the other model
parameters. The embeddings are input to a recurrent LSTM
unit, which modifies a latent state vector at each timestep.
All models have an output vector from the LSTM, in RV ,
which is input to a softmax function, yielding a distribution
over predictions for the next wt value. Additionally, entity
models have a second output vector which is input to a soft-
max predicting the next et value. We train all models by
minimizing the cross-entropy error at the top softmax layer
and backpropagating the error gradient through the network.

We compare four related architectures, which all receive
and predict verbs and prepositions but differ in the input and
output of entity arguments:

1. LSTM-noun-noun, which receives only noun informa-
tion about arguments and learns to predict argument
nouns;

2. LSTM-ent-ent, which receives only entity IDs and learns
to predict entity IDs;

3. LSTM-both-noun, which receives noun and entity IDs
and learns to predict nouns;

4. LSTM-both-ent, which receives noun and entity IDs and
learns to predict entity IDs.
To generate probable event inferences, we perform a five-

step beam search over the components (v, es, eo, ep, p) of
events. In steps 2 through 5 of this search, the previous step’s
output is treated as input. Since the LSTM-both-noun and
LSTM-both-ent models require both noun and entity ID in-
formation but only predict one of the two, we must generate
entity ID information from predicted nouns, and vice versa.
When predicting with the LSTM-both-noun model, we call
any predicted non-null noun a singleton entity; when pre-
dicting with the LSTM-both-ent model, we guess the special
Out-Of-Vocabulary token for any predicted non-null entities.

Baseline Models
We compare against four types of baseline script models.
The first is the unigram model, which infers events by ig-
noring a document and simply guessing events according
to their frequency in the training set. Pichotta and Mooney
(2014) showed this baseline to be surprisingly competitive
on the Narrative Cloze task. To compare with the different
LSTM models presented above, we construct both a un-
igram noun model (with arguments represented by their
head noun lemmas) and a unigram entity model (with ar-
guments represented by entity IDs).

298% of training sequences involve five or fewer non-singleton
entities.

The other baseline systems we compare to follow pre-
viously published systems in making inferences based on
event co-occurrence statistics. The simplest is the all-
bigram system. This system first calculates a closed vocab-
ulary of the most common event types from the training set.
Next, event bigram statistics are calculated from the train-
ing set, where we follow Jans et al. (2012) and Pichotta
and Mooney (2014) in calculating 2-skip bigram counts:
when counting co-occurrence, event b is considered to fol-
low event a if b is observed after awith at most two interven-
ing events. Potential inferences at position t in a sequence
are scored by maximizing the objective

S(a) =

t−1∑
i=0

logP (a|si)

where si is the event at position i of the sequence, and
P (b|a) is the probability of b following event a according
to the 2-skip bigram model.

The third type of baseline system we compare to is
the rewritten all-bigram model. Similar to the all-bigram
model, we calculate 2-skip bigram counts, and events are
inferred by maximizing S(a). However, co-occurrences are
counted differently: during training, if two events a and
b are observed co-occurring, we also “hallucinate” co-
occurrences of all events a′ and b′ such that a′ is a with
any subset of its entity IDs rewritten, and b′ is b with any
of its entity IDs rewritten, and shared entities are rewritten
consistently. The intuition is that if two events co-occur, then
they may also co-occur with different arguments. For more
details, see Pichotta and Mooney (2014). This system does
not easily admit incorporation of nouns.

The final baseline is the 2D rewritten all-bigram model,
which is the method described by Pichotta and Mooney
(2014). This system is similar to the rewritten all-bigram
model, with the difference that it maximizes

S2(a) =

t−1∑
i=0

logP (a|si) +
∑̀

i=t+1

logP (si|a)

with ` the length of the sequence. This model incorporates
the probabilities of an event a preceding events after t in the
document. This is the best performing published system on
the Narrative Cloze evaluation. In order to make these base-
lines as competitive as possible, if none of the test events
si being conditioned upon are in the event vocabulary, the
models fall back to estimating S(a) with a unigram model.

The baselines do not decompose events into constituent
parts, but instead treat entire events as atomic. For exam-
ple, “Barbarians invade Rome” may be one event type, and
“Visigoths sack Rome” another, but the two will be unre-
lated in the event vocabulary. This requires a very large
event vocabulary and will have sparse co-occurrence statis-
tics and poor generalization. On the other hand, in the LSTM
script model, invade, sack, Barbarian, and Visigoth could
individually be in the vocabulary, and each will have a low-
dimensional continuous representation in which predictively
similar words should be similar. We can therefore predict
events never observed in the training set, and never observed



co-occurring with any events in the test document. Further,
the LSTM script model allows us to easily input both noun
and entity information about arguments.

Evaluation
Experimental Details
We use the Stanford dependency parser (De Marneffe, Mac-
Cartney, and Manning 2006) and coreference system (Lee
et al. 2013).3 We lemmatize verbs and directly incorpo-
rate negation, a closed set of particles, and XCOMP nodes
(clausal complements with external subjects). For example,
“Jim didn’t dance” produces a not dance event; “Jim took
his shirt off” a take off event; and “Jim forgot to take it” a
forget to take event. Passive constructions are normal-
ized to be identical to their active counterparts. We represent
noun arguments by their head lemmas.

For our corpus, we use English Language Wikipedia,4
breaking articles into paragraphs. Our training set was ap-
proximately 8.9 million event sequences, our validation set
was approximately 89,000 event sequences, and our test set
was 2,000 events from 411 sequences, such that no test-set
article is in the training or validation set. We add a <s>
beginning-of-sequence pseudo-event and a </s> end-of-
sequence pseudo-event to every sequence. The event com-
ponent vocabulary comprises the 2,000 most common verbs,
the 8,000 most common nouns, and the top 50 prepositions;
all other words are replaced with an Out-Of-Vocabulary
(OOV) token. For the unigram and bigram event vocabulary,
we select the 10,000 most common events (with either nouns
or entity IDs, depending on the system). We apply add-one
Laplace smoothing to bigram co-occurrence counts.

We use the implementation of LSTM provided by the
Caffe library (Jia et al. 2014). We train using batch stochas-
tic gradient descent with momentum with a batch size of
20. Since RNNs are quite sensitive to hyperparameter val-
ues (Sutskever et al. 2013), we measured validation set per-
formance in different regions of hyperparameter space, ulti-
mately selecting learning rate η = 0.1, momentum param-
eter µ = 0.98, LSTM vector length of 1,000, and a Nor-
mal N (0, 0.1) distribution for random initialization (biases
are initialized to 0). Event component embeddings have di-
mension 300. We use `2 regularization and Dropout (Hin-
ton et al. 2012) with dropout probability 0.5. We clip gra-
dient updates at 10 to prevent exploding gradients (Pas-
canu, Mikolov, and Bengio 2013) We damp η by 0.9 ev-
ery 100,000 iterations. We train for 750,000 batch updates,
which took between 50 and 60 hours. We use a beam width
of 50 in all beam searches.

Evaluating Held-Out Event Inferences
We first evaluate using the Narrative Cloze evaluation
(Chambers and Jurafsky 2008), which tests a system’s abil-
ity to reconstruct held-out events from documents. This eval-
uation is fully automated and does not require manually la-
beled evaluation data. We use four metrics. Primarily, we

3We use version 3.3.1 of the Stanford CoreNLP system.
4http://en.wikipedia.org/, dump from Jan 2, 2014.

evaluate with Recall at 25 (“R25”), which is the percentage
of held-out events that appear in the top 25 guesses a system
makes for that event; recall-at-k was also used in Jans et al.
(2012) and Pichotta and Mooney (2014). Since an inference
is counted as “correct” only if all event components match
the held-out exactly, this is a very challenging task in the
multi-argument setting, particularly when predicting nouns.
We also calculate Verb recall at 25 (“R25-V”), which is
recall at 25, but counting an inference as correct if its verb
matches the held-out event’s verb (ignoring arguments), and
4-Tuple recall at 25 (“R25-4”), which is recall at 25 ignor-
ing prepositions. This allows us to compare directly to the
method of Pichotta and Mooney (2014), whose events con-
tain no prepositions. We evaluate LSTM systems by predict-
ing 5-tuples and discarding prepositions, and evaluate base-
line systems by directly modeling (v, es, eo, ep) 4-tuples.

Finally, motivated by the stringency of the R25 metric,
especially in the noun setting, we evaluate using Accuracy
with Partial Credit (“Acc”), in which we compute a sys-
tem’s single most confident inference and calculate, for ev-
ery component of the held-out event, a similarity score be-
tween that component and the respective inferred compo-
nent. This relaxes the requirement that inferred events match
exactly, giving partial credit for similar components. Partial
credit is computed using WUP similarity (Wu and Palmer
1994), based on distance in the WordNet hierarchy (Fell-
baum 1998). We assign a similarity score by taking the
maximum WUP scores over all Synset pairs (with appropri-
ate parts-of-speech). Accuracy is average WUP score across
event components (ignoring OOVs and nulls in the held-out
event). This will be between 0 and 1. We use the NLTK im-
plementation of WUP (Bird et al., 2009).

Table 1 gives results on the Narrative Cloze evaluation.
The LSTM-both-ent system demonstrates a 50.0% relative
improvement (5.7% absolute improvement) over the current
best-published system (2D rewritten all-bigram, evaluated
using 4-Tuple event recall at 25). Note that the simpler all-
bigram system outperforms the rewritten versions. This is
probably because there is information encoded in the en-
tity IDs (the relative ordering of entities, and which entities
are singletons) that is lost during rewriting. Note also that,
on this corpus, the 2D rewritten system, which makes pre-
dictions based on subsequent events in addition to previous
events, does marginally worse than the system using only
previous events. We hypothesize this is because subsequent
events are less predictive than previous events on this cor-
pus, and are comparatively overweighted.

Compared to the strongest baselines, the best-performing
entity system achieves a 22.6% relative improvement on
R25, an 18.4% relative improvement on verb-only R25,
and an 8.8% relative improvement on accuracy with partial
credit. The best-performing noun system achieves a 64.9%
relative improvement on R25, a 33.9% relative improve-
ment on verb-only R25, and an 18.2% relative improvement
on accuracy with partial credit. LSTM-both-ent is the best
entity model, and LSTM-both-noun is the best noun model;
that is, the best performing system in both cases is the one
which is given both noun and entity information.



Entities Nouns
System R25 R25-V R25-4 Acc. R25 R25-V R25-4 Acc.
Unigram 0.101 0.192 0.109 0.402 0.025 0.202 0.024 0.183
All-Bigram 0.124 0.256 0.140 0.420 0.037 0.224 0.039 0.220
Rewrite Bigram 0.110 0.205 0.125 0.421 - - - -
2D Rewrite Bigram 0.104 0.192 0.114 0.416 - - - -
LSTM-ent-ent 0.145 0.279 0.160 0.450 - - - -
LSTM-both-ent 0.152 0.303 0.171 0.458 - - - -
LSTM-noun-noun - - - - 0.054 0.298 0.057 0.256
LSTM-both-noun - - - - 0.061 0.300 0.062 0.260

Table 1: Narrative Cloze results on entity and noun models, with four metrics (higher scores are better).

Evaluating Novel Event Inferences
The low magnitude of the Narrative Cloze scores reflects
the task’s difficulty. The evaluation has a number of intu-
itive shortcomings: by their very nature, most obviously in-
ferred facts are not explicitly stated, and so are not captured.
Also, Cloze scores on individual held-out events are not eas-
ily interpretable. Motivated by these concerns, we evaluate
inferences by eliciting human judgments via Amazon Me-
chanical Turk. Given a text snippet, annotators are asked
to rate, on a 5-point Likert scale, the likelihood of infer-
ences, with 5 signifying “Very Likely” and 1 “Very Un-
likely/Irrelevant” (uninterpretable events are to be marked
“Nonsense”). This provides interpretable scores, and allows
us to directly compare entity- and noun-predicting models,
which is not straightforward using the Narrative Cloze.

We present annotators with a snippet of text and 5 phrases,
4 of which are automatic script inferences based on the
events in the snippet, and one of which is a randomly se-
lected event from the 10,000 most frequent events (“Ran-
dom”). We transform relational events to English phrases us-
ing an LSTM model trained to predict, from extracted event
tuples, the original text from which the event was extracted.
This network uses a hidden state vector of length 1,000 and
a vocabulary of 100k tokens. We elicit three judgments for
each inference, treating “nonsense” judgments as 0 scores.

We asked annotators to judge each system’s most confi-
dent inference not involving one of the ten most frequent
verbs in the corpus.5 We evaluate two noun-predicting sys-
tems: LSTM-both-noun and All-bigram-noun, which were
the best-performing LSTM and Bigram systems on the Nar-
rative Cloze; we also collect judgments for two entity sys-
tems, LSTM-both-ent and All-bigram-ent. We collect judg-
ments on inferences from 100 snippets, each of which is the
smallest set of initial sentences from a different paragraph in
the test set such that the text contains at least two events.

The “All” column in Table 2 gives average ratings for
each system. The “Filtered” column gives the results after
removing annotations from annotators whose average “Ran-
dom” score is higher than 1.0 (this may be viewed as a
quality-control procedure). The LSTM-both-noun system,
which predicts verbs and nouns, significantly outperforms
all other systems, both with and without filtering (p < 0.05,
Wilcoxon-Pratt signed-rank test). Incorporating nouns into

5have, make, use, include, know, take, play, call, see, give.

System All Filtered
Random 2.00 0.87
All-Bigram Ent 2.87 2.87
All-Bigram Noun 2.47 2.21
LSTM-both-ent 3.03 3.08
LSTM-both-noun 3.31 3.67

Table 2: Crowdsourced results (scores range from 0 to 5).

LSTM models improves inferences; on the other hand, bi-
gram models, which do not decompose events into con-
stituent components, perform worse when directly incorpo-
rating nouns, as this increases event co-occurrence sparsity.

Qualitative Analysis
Figure 2 (Top) shows, for two short two-event test se-
quences, the top 3 inferences the LSTM-both-noun system
makes at each position (the inferences following an event
are the system’s top predictions of immediately subsequent
events). Subscripts are entity IDs (singleton entities are un-
subscripted). We do not display bigram inferences, because
in these examples they are exactly the most-common uni-
gram events, as no observed events are in the event vocabu-
lary. These examples clearly illustrate the importance of in-
corporating argument noun information: for example, with-
out nouns, (obtain, OOV1, phd, dissertation, with) would be
represented as, roughly, “someone obtained something with
something,” from which few reasonable inferences can be
made. Note that since the learning objective does not di-
rectly encourage diversity of inferences, the LSTM makes
a number of roughly synonymous inferences.

To get further intuitions for what these models learn, we
can seed a model with a <s> beginning-of-sequence event
and generate events by probabilistically sampling from its
output predictions until it generates </s> (“ask it to gener-
ate a story”). That is, the first event component (a verb) is
sampled from the model’s learned distribution of first com-
ponents, the hidden state is updated with this sample, the
next component is sampled from the model’s predictions,
and so on, until a </s> is sampled. Figure 2 (Bottom) gives
three probabilistically generated sequences from the LSTM-
noun-noun model. These sequences, generated totally from
scratch one component at a time, are reasonably coherent,
and exhibit clear thematic dependencies across events.



Sample Events Inferred from Test Data
Sequence 1 (two events):
Event 1: (obtain, OOV1, phd, dissertation, with) obtained a PhD with a dissertation

Inference 1: (study, he, ., university, at) He studied at a university
Inference 2: (study, OOV, ., university, at) studied at a university
Inference 3: (study, he, ., OOV, at) He studied at

Event 2: (graduate, OOV1, ., university, at) graduated at a university
Inference 1: (move, he, ., OOV, to) He moved to
Inference 2: (move, OOV, ., OOV, to) moved to
Inference 3: (return, he, ., OOV, to) He returned to

Sequence 2 (two events):
Event 1 (destroy, ., airport1, 1945, in) The airport was destroyed in 1945.

Inference 1: (destroy, ., airport, ., .) The airport was destroyed
Inference 2: (rebuild, ., airport, ., .) The airport was rebuilt
Inference 3: (build, ., airport, ., .) The airport was built

Event 2 (open, airport1, ., 1940, in) The airport opened in 1940
Inference 1: (rename, ., airport, ., .) The airport was renamed
Inference 2: (know, ., ., airport, as) . . . known as airport
Inference 3: (use, ., airport, ., .) The airport was used

Probabilistically Generated Event Sequences
((pass, route, creek, north, in); The route passes the creek in the North
(traverse, it, river, south, to)) It traverses the river to the South
((issue, ., recommendation, government, from); A recommendation was issued from the government
(guarantee, ., regulation, ., .); Regulations were guaranteed
(administer, agency, program, ., .); The Agency administered the program
(post, ., correction, website, through); A correction was posted through a website
(ensure, standard, ., ., .); Standards were ensured
(assess, ., transparency, ., .)) Transparency was assessed.
((establish, ., ., citizen, by) Established by citizens, . . .
(end, ., liberation, ., .) . . . the liberation was ended
(kill, ., man, ., .) A man was killed
(rebuild, ., camp, initiative, on) The camp was rebuilt on an initiative
(capture, squad, villager, ., .) A squad captured a villager . . .
(give, inhabitant, group, ., .)) . . . [which] the inhabitants had given the group

Figure 2: Sample Narrative Cloze inferences (Top), and some probabilistically generated event sequences (Bottom). The right
column gives possible English descriptions of the structured events on the left.

Related Work
Scripts in AI date back to the 1970s (Schank and Abelson
1977). Mooney and DeJong (1985) give an early knowledge-
based method for learning scripts from a single document.
Miikkulainen (1993) proposes a Neural Network system
which stores events in episodic memory and is capable of
answering simple questions.

There has been a fair amount of recent work on learn-
ing models of events from large corpora. Some systems are
focused on event inference (Chambers and Jurafsky 2008;
Bejan 2008; Jans et al. 2012; Pichotta and Mooney 2014;
Rudinger et al. 2015); others focus on learning structured
collections of events (Chambers 2013; Cheung, Poon, and
Vanderwende 2013; Balasubramanian et al. 2013; Bam-
man and Smith 2014; Nguyen et al. 2015); others focus on
story generation (McIntyre and Lapata 2009; 2010). There
is also a body of work on building high-precision models
of real-world situations from smaller corpora of event se-
quences (Regneri, Koller, and Pinkal 2010; Li et al. 2012;
Frermann, Titov, and Pinkal 2014; Orr et al. 2014).

There have been a number of recent papers successfully
applying neural nets to tasks above the sentence level. Li, Li,

and Hovy (2014) and Ji and Eisenstein (2015) use RNNs for
discourse parsing. Li and Hovy (2014) and Modi and Titov
(2014) present neural models of event ordering. Kalchbren-
ner and Blunsom (2013) use RNNs to classify speech acts.
Weston, Chopra, and Bordes (2015) describe a model with
a long-term memory component, which they use to answer
questions about short generated stories.

Conclusion
We have presented an LSTM-based statistical script model
capable of modeling and predicting either noun or corefer-
ence information about event arguments. We compared to a
number of baselines, including the previous best-published
system, on the tasks of inferring both held-out and novel
events, demonstrating substantial improvements.
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