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Abstract

Statistical Scripts are probabilistic models of sequences of events. For example, a script
model might encode the information that the event “Smith met with the President” should
strongly predict the event “Smith spoke to the President.” We present a number of results
improving the state of the art of learning statistical scripts for inferring implicit events. First,
we demonstrate that incorporating multiple arguments into events, yielding a more complex
event representation than is used in previous work, helps to improve a co-occurrence-based
script system’s predictive power. Second, we improve on these results with a Recurrent Neural
Network script sequence model which uses a Long Short-Term Memory component. We eval-
uate in two ways: first, we evaluate systems’ ability to infer held-out events from documents
(the “Narrative Cloze” evaluation); second, we evaluate novel event inferences by collecting
human judgments.

We propose a number of further extensions to this work. First, we propose a number of new
probabilistic script models leveraging recent advances in Neural Network training. These in-
clude recurrent sequence models with different hidden unit structure and Convolutional Neural
Network models. Second, we propose integrating more lexical and linguistic information into
events. Third, we propose incorporating discourse relations between spans of text into event
co-occurrence models, either as output by an off-the-shelf discourse parser or learned automat-
ically. Finally, we propose investigating the interface between models of event co-occurrence
and coreference resolution, in particular by integrating script information into general corefer-
ence systems.
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1 Introduction
Natural Language documents are written with the clear assumption that readers will be able to
seamlessly perform many different types of inferences in order to make sense of the text. If auto-
mated systems are to answer questions about Natural Language documents, they must be able to
make the same sorts of inferences. Consider the following example:

(1) Following the Battle of Actium, Octavian invaded Egypt. As he approached Alexandria,
Antony’s armies deserted to Octavian on August 1, 30 BC.1

From Example 1, we would like to be able to infer that “Octavian defeated Antony,” which is
not explicitly stated in the document (it is assumed that the reader will infer this from the fact
that the latter’s armies deserted). What we mean by “we would like to infer” this fact is that a
competent automated Question Answering system should be able to answer “yes” to the query
“Did Octavian defeat Antony?” A Statistical Script model encodes statistical information about
prototypical sequences of events; ideally, for example, such a system will encode the fact that if
X’s armies desert to Y , then it is very probable that Y defeats X . This would allow an automated
system to make the inference we desire in Example 1.

In this proposal, we describe a number of improvements on the state of the art of statistical
script learning for implicit event inference, first by enriching the structure of the events modeled
by scripts (Section 3) and, second, by applying Recurrent Neural Nets to the task (Section 4). We
go on to propose a number of areas of further research. First, we propose improving the Neu-
ral Net models used for script learning (Section 5.1). Second, we propose further enrichments
of events to encode more useful information (Section 5.2). Third, we propose incorporating dis-
course relations between events, expanding from a single global notion of event co-occurrence to
more nuanced types of co-occurrence depending on discursive structure (Section 5.3). Finally, we
propose integrating script information into noun coreference systems (Section 5.4).

2 Background and Related Work
This proposal concerns advances in the learning of statistical scripts, in particular by leveraging
recent advancements in the art of training large neural nets on large amounts of data. We first
give a background on prior work in statistical script learning, and then provide a short summary
of Recurrent Neural Networks relevant to our methods. We conclude with a short survey of recent
applications of Neural Networks to discourse processing.

2.1 Statistical Script Learning
The modeling of sequences in events for reasoning in AI dates back to the 1970s. Minsky (1974)
and Rumelhart (1975) provide early methods for incorporating hand-constructed notions of co-
occurring events into reasoning systems. Schank and Abelson (1977) provide a particularly de-

1Unless specified otherwise, all examples in this paper are taken from English Language Wikipedia, sometimes
with minor modifications for readability.
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tailed and influential analysis of structured scripts for understanding situations in AI. These ap-
proaches are non-probabilistic and depend on complicated hand-structured world information,
which results in brittle systems that cannot straightforwardly generalize to situations differing
significantly from the ones encoded. Around the same time, there was a related effort to de-
scribe narratives using Story Grammars (Mandler and Johnson, 1977; Thorndyke, 1977), which
are essentially Context-Free Grammars describing the structures of stories, analogous to the more
familiar word-level CFGs describing the syntactic structure of sentences.

Mooney and DeJong (1985) present a non-probabilistic method of learning script structures
automatically from text. This is a first step to helping obviate the need for hand-engineering
knowledge structures for situation understanding. Miikkulainen (1993) proposes a Neural Network
system which stores events in episodic memory and is capable of answering simple questions.

The literature about scripts following Schank and Abelson (1977) typically uses quite complex
notions of events to capture the subtleties of interacting events, and the script objects themselves
are typically not learned and disjoint across different situations. For example, there may be a
“restaurant script,” giving the stereotypical description of a diner at a restaurant, and a distinct
“workday at office” script, and the two are unrelated. These scripts are non-probabilistic (that is,
there is no notion of probability associated with any states or transitions). As a means of describing
situations as expressed in documents, these scripts will have high precision and low recall: a
document may invoke the events in a hand-written script exactly as it was written, but any variation
on this rigid structure is difficult to handle. Further, since these objects are non-probabilistic, there
is no way of resolving ambiguity in event inference probabilistically. For example, consider the
following (constructed) examples:

(2) Nancy commutes to her job in New York City.

(3) Nancy commutes to her job in upstate New York.

Under a reasonable conception of script knowledge, we should be able to infer either Nancy drives
to her job or Nancy takes the subway to her job from either sentence; however, given the differing
commuting scenarios of the two locations (as, ideally, expressed in a sufficiently large text corpus),
taking the subway is much more likely in the former example than in the latter. This sort of
information is difficult to encode and learn without a probabilistic framework that learns from
data, and is crucial for making probable inferences.

These difficulties may be addressed by simplifying event representations and adding probabili-
ties. This is somewhat analogous to the history of automatic parsers, where theoretically satisfying
lexical and grammatical frameworks with complex structure and non-probabilistic semantics are
not typically used by state-of-the-art parsers, which instead use greatly simplified lexical represen-
tations with learned probabilities. Simplifying event representations enables tractable statistical
learning of script models, along with probabilistic event inference.

Chambers and Jurafsky (2008) give a method of learning co-occurrence statistics between sim-
ple events in which entities engage, learning their model from a large corpus of text. Their approach
follows the following general method, explained in more detail below, for learning a script model:

1. Syntactically parse a large corpus of documents.
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2. Run a coreference resolution engine on each document to determine which noun phrases
refer to the same entity.

3. Extract events (consisting of verbs and their entity arguments) from each document.

4. Aggregate statistics on which events frequently co-occur, involving the same entity in the
same document.

The syntactic analysis in step (1) will output information on, e.g., how verbs relate to various
noun phrases within a sentence, and which nouns are grammatical heads of noun phrases. The
coreference resolution engine in step (2) will output which noun phrases across a document refer
to the same entity. For example, in the sentence Chaucer travelled to Picardy the next year; in
1373 he visited Florence, a coreference system will annotate that Chaucer and he refer to the same
entity. In step (3), Chambers and Jurafsky (2008) treat events as (verb, dependency) pairs, dividing
these events into sets based on the entity participating. So in the above example, there is one entity
(Chaucer) which engages in two events, (travel, subject) and (visit, subject), indicating that the
same entity was grammatical subject of both of these verbs.

In step (4), a co-occurrence statistic N(a, b) is calculated for all pairs of events a and b, where
N(a, b) is the total number of event sets from step (3) where both a and b occur, across all docu-
ments. For example, we would expect (eat, subject) and (drink, subject) to have a high N value,
since entities that are mentioned being the subject of eat are also likely to be subjects of drink;
however, we would expect (eat, object) and (drink, object) to be lower, since things which are
eaten are not typically also drunk.

In order to infer novel (verb, dependency) event pairs which a document’s entity is likely to
have engaged in, Chambers and Jurafsky (2008) pick events maximizing Pointwise Mutual In-
formation (PMI) with that entity’s observed events. That is, if an entity e is involved in events
a1, . . . , a` in a document, then novel events b are inferred by maximizing the objective

Spmi(b) =
∑̀
i=1

PMI(ai, b) (1)

with PMI defined in the usual way:

PMI(a, b) = log
P (a, b)

P (a)P (b)

∝ log
N(a, b)

(
∑

xN(a, x)) (
∑

xN(b, x))

Events inferred for an entity will be those which co-occur more frequently than chance with the
events the entity is observed as having engaged in.

In order to evaluate a system’s inferences, Chambers and Jurafsky (2008), like some subsequent
work (including our work described below), use what they call the Narrative Cloze test, in which an
observed event is held out and a system is judged by its ability to infer this held-out event, given the
remaining observed events. This is somewhat like the standard use of perplexity or cross-entropy
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when measuring sequence model performance: a model is judged quantitatively by its ability to
statistically model observed data.

Bejan (2008) and Manshadi et al. (2008) also described systems with somewhat similar ideas
roughly contemporaneously. Bejan (2008) represents events as single words, and uses Latent
Dirichlet Allocation (Blei et al., 2003) to build an unsupervised generative model (where a “topic”
becomes instead a “scenario” describing a notion of event co-occurrence). Manshadi et al. (2008)
represent events as (verb, noun) pairs, with “verb” the main verb of a sentence, and “noun” the
head noun of the verb’s patient argument, based on a classifier trained on PropBank (Palmer et al.,
2005). Each of these pairs is treated as an item in an event vocabulary, and a language model is
trained on this the sequence of such events. Systems are evaluated on two tasks: (1) differentiating
between sequences of events with their observed document order and randomly shuffled sequences
of the same events; and (2) differentiating between a sequence and the same sequence with its last
event replaced by a random imposter event.

Chambers and Jurafsky (2009) extend the methods of Chambers and Jurafsky (2008) in a num-
ber of ways. First, they incorporate the noun identity of arguments into their event inference
objective, providing performance gains under the Narrative Cloze evaluation. We will similarly
demonstrate below, in Section 4, that incorporating noun information into a more complex script
model provides significant performance improvements. Second, they account for all of a docu-
ment’s entities when inferring novel events, rather than just a single entity; however, the cost of
doing so is that they infer only bare verbs rather than more structured (verb, dependency) pairs.

Jans et al. (2012) describe a model for sequences of (verb, dependency) events, showing im-
provements on the Narrative Cloze evaluation over the method of Chambers and Jurafsky (2008).
Unlike the latter, they take the relative ordering between events in a document into account. That
is, during learning and inference, Chambers and Jurafsky (2008) treat the collection of events in
which an entity engages as an unordered set, resulting in N(a, b) = N(b, a) for all events a, b;
on the other hand, Jans et al. (2012) account for the document order of events, so in general
N(a, b) 6= N(b, a). When accounting for event ordering, the task under evaluation becomes “infer
an event at a position t in the observed sequence of events,” rather than “infer an event co-occurring
with the observed set of events.” They infer such events by maximizing the objective

Sbigram(b) =
t∑

i=1

logP (b|ai) +
∑̀
i=t+1

logP (ai|b) (2)

where ` is the length of the event chain from which we are inferring novel events, and P (b|a) is
the learned bigram probability of observing event b in a sequence after event a:

P (b|a) = P (a, b)

P (a)

=
N(a, b)∑
xN(a, x)

where N(a, b) is the 2-skip bigram count, defined to be the number of times event b is observed
following a in a training corpus with at most two intervening events. Using this objective, they
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demonstrate substantial improvements over the method of Chambers and Jurafsky (2008) under
the Narrative Cloze evaluation.

Rudinger et al. (2015b) demonstrate improved results in modeling chains of (verb, dependency)
pair events by applying the log-bilinear language model of Mnih and Hinton (2007) to the task.
This model learns, for each event type a, two dense vectors in Rd: ta, representing the event a
when it occurs as a target event to be inferred, and ca, representing a when it occurs as a context
event used to infer other events. It also learns a real-valued bias ba ∈ R to represent a’s prior
probability. The probability of an event b following a sequence of events a1, . . . ak is represented
as a log-linear model:

p(b|a1, . . . , ak) =
1

Z
exp

(
tTb t̂a + bb

)
(3)

with Z the partition function normalizing the distribution, and t̂a being a sum of the context vectors
in the k-element context window, modulated pointwise by a collection of final learned vectors:

t̂a =
k∑

i=1

mi ◦ cbi

where x ◦ y is the elementwise product of two identically-sized vectors x and y, and mi is a vector
weighting the relative importance of different dimensions when preceding an inferred event by i
event. They demonstrate superior performance to Chambers and Jurafsky (2008) and Jans et al.
(2012) on the Narrative Cloze evaluation.

In addition to prior work directly focused on modeling sequences of events for the goal of event
inference, there are a number of related threads of prior work which we describe here more briefly.
First, there is a body of work focusing on automatically inducing structured collections of events
intended to be useful for information extraction. Chambers and Jurafsky (2011) gives a method
for unsupervised learning of event templates, evaluating on the MUC-4 terrorism corpus. They are
able to perform slot-filling2 in an unsupervised manner, achieving system performance comparable
to supervised systems. Cheung et al. (2013), Chambers (2013), and Nguyen et al. (2015) describe
different generative models aimed at learning event templates and evaluated on the MUC template
filling task.

There is also a body of work on learning models of co-occcurring events with the aim of inter-
pretability. Balasubramanian et al. (2013) give an unsupervised method of learning collections of
events that annotators on a crowdsourcing platform judge to be coherent. That is, where previously
described methods evaluate on ability to infer held-out events or perform a slot-filling task, their
method is evaluated on human coherence judgments on grounded instances of event templates.
Bamman et al. (2013) describe a generative model of sequences of actions characterizing charac-
ters in films. Bamman and Smith (2014) describe a method for learning biographical models from
Wikipedia, evaluating quantitatively on the task of predicting the age of a person at life events.

2A learned event template will be a data structure encoding, for example, the fact that bombing events have lo-
cations, perpetrators, and destroyed targets; slot-filling will identify the entity a particular text indicates is, e.g., the
perprtrator.
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There is also a body of work aimed at producing small, high-precision models of real-world
situations from smaller corpora. Regneri et al. (2010) and Li et al. (2012) provide methods of learn-
ing directed graphs of events from human-elicited event sequences describing specific situations
(for example, “visiting a doctor” or “going on a date in a movie theater”). Frermann et al. (2014)
describe a hierarchical Bayesian model which is able to outperform that of Regneri et al. (2010)
on the task of properly ordering event pairs. Orr et al. (2014) describe a Hidden Markov Model
system which learns event structure from human-generated narratives of different household tasks.
In these systems, events are either simple verbs or snippets of text. Rudinger et al. (2015a) apply
a number of simple models of (verb, dependency) event pairs to a corpus of 143 short blog posts
about dining experiences.

McIntyre and Lapata (2009) and McIntyre and Lapata (2010) give systems which learn event
structure in an unsupervised fashion for the end goal of automatic story generation, evaluated by
collecting human judgments of the generated stories. Rahman and Ng (2012) and Peng et al. (2015)
find event co-occurence features to be beneficial for a limited coreference resolution problem. Adel
and Schütze (2014) demonstrate that event co-occurrence information is empirically useful for the
task of antonym detection.

2.2 Recurrent Neural Networks
Neural Networks (NNs) are a general class of (statistical or non-statistical) models which date back
to the 1940s and 1950s (McCulloch and Pitts, 1943; Rosenblatt, 1958). Neural nets are, abstractly,
functions which apply a sequence of linear and nonlinear transformations to some input data.
The transformation coefficients are learned using some method which optimizes parameters to get
the NN’s output to match, as closely as possible, some target distribution generating a training
set. Neural Nets are often conceptualized as directed graphs describing their computations, with
designated input nodes and output nodes. In this respect they cosmetically resemble Probabilistic
Graphical Models (PGMs), but the nodes in the graph need not (and typically do not) have strict
probabilistic semantics, being instead learned deterministic functions; because of this, there is not
a large overlap in the methods used to train NNs and PGMs.

Figure 1 depicts the simplest nontrivial NN with latent learned features, a feedforward NN
with one hidden layer. The net is “feedforward” because the computation graph has no cycles. The
intermediate hidden layer is a series of z totally latent nonlinearities (of a fixed function type, for
example, sigmoids or rectified linear units) applied to a linear transformation of the input layer. The
coefficients parametrizing both the linear transformations (represented by arrows between nodes)
and nonlinear transformations (represented by Hi nodes) are learned from data, frequently with
first-order gradient-based methods (e.g. backpropagation).

Recurrent Neural Nets (RNNs) are Neural Nets whose computation graphs contain cycles. In
particular, RNN sequence models are RNNs which learn to map an arbitrarily long input sequence
x1, . . . , xn to an output sequence oi, . . . , on via a learned intermediate hidden state zi, . . . , zn. Sup-
pose that, for t = 1, . . . , n, xt ∈ RN , ot ∈ RM , and zt ∈ RH . The most basic RNN sequence
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Figure 1: Single Hidden Layer Feedforward Network.

models (so-called “vanilla RNNs”) are described by the following equations:

zt = f(Wi,zxt +Wz,zzt−1)

ot = g(Wz,ozt)

where xt is the vector describing the input at time t; zt is the vector giving the hidden state at time
t; ot is the vector giving the predicted output at time t; f and g are element-wise nonlinear func-
tions (typically sigmoids, hyperbolic tangent, or rectified linear units, chosen as part of the model
design process); and Wi,z, Wz,z, and Wz,o are the appropriately-sized weight matrices describing
the linear transformations of the input-to-hidden, hidden-to-hidden, and hidden-to-output connec-
tions, respectively. The cycle in the computation graph arises from the fact that zt is a function of
zt−1. That is, vectors zt and zt−1 are computed by the same dynamics matrix Wz,z and the same
nonlinear function f , and to calculate zt we need zt−1 as input.

Vanilla RNNs are notoriously difficult to train on account of the so-called vanishing and ex-
ploding gradient problem (Hochreiter et al., 2001), the phenomenon that the gradient signal used
to train the network will likely either approach zero (“vanish”) or diverge (“explode”) as it is prop-
agated back through timesteps during learning, leading to instability. The spectral radius (the mag-
nitude of the largest eigenvalue) of the hidden-to-hidden dynamics matrix Wz,z should be around 1
for stability of learning (Sutskever et al., 2013), and this property is not necessarily straightforward
to initialize or maintain. Further, long-distance data dependencies (in which some timestep’s input
is highly predictive of output at some much later timestep) are not well modeled by vanilla RNNs
(Hochreiter et al., 2001).

Long Short-Term Memory (LSTM) units (Hochreiter and Schmidhuber, 1997) sidestep both of
these problems by introducing a more complicated hidden unit. The LSTM formulation we use,
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Figure 2: Graphical Depiction of Long Short-Term Memory unit at timestep t. The four nonlinear-
ity nodes (it, gt, ft, and ot) all have, as inputs, xt and zt−1. Small circles with dots are elementwise
vector multiplications. Though all of ot, ft, it, gt, and mt are vectors, we only depict mt, the
memory, as a vector, for clarity.

from Zaremba and Sutskever (2014),3 is described by the following equations (explained below):

it = σ (Wx,ixt +Wz,izt−1 + bi)

ft = σ (Wx,fxt +Wz,fzt−1 + bf )

ot = σ (Wx,oxt +Wh,izt−1 + bo)

gt = tanh (Wx,mxt +Wz,mzt−1 + bg)

mt = ft ◦mt−1 + it ◦ gt
zt = ot ◦ tanhmt.

These equations are depicted graphically in Figure 2. Here, as with the vanilla RNN above, we
have an input vector xt ∈ RN , an output vector ot ∈ RM , and a hidden state vector zt ∈ RH . Now,
however, we have three additional vectors in RH : ft, gt, and mt, the forget gate, input modulation
gate, and memory cell, respectively. The vectors bi, bf , bo, and bg are constant bias vectors. The
functions σ and tanh are the sigmoid and hyperbolic tangent, defined by

σ(x) =
1

1 + e−x

tanhx =
ex − e−x

ex + e−x
= 2σ(2x)− 1.

3We use this formulation of LSTM because it is the one implemented in the library we used, Caffe (Jia et al., 2014),
as described below in Section 4; it is a minor modification of the architecture of Graves et al. (2013), which is used in
much recent published research using LSTMs.
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Note that 0 ≤ σ(x) ≤ 1 and −1 ≤ tanhx ≤ 1. The operator v ◦ w denotes element-wise
multiplication between two identically-sized vectors v and w. The memory cell mt is multiplied
element-wise by the forget vector ft, whose values are between 0 and 1, calculated from the current
input and the previous hidden state; this mechanism allows the network to learn to “forget” or
“remember” information in the hidden state, based on the input and hidden state. The input at state
t is also fed directly into mt, modulated by the vector gt, whose values are between −1 and 1. The
only directly recurrent variable is the memory cell mt. Note that since the LSTM unit is simply a
composition of easily differentiable functions, we may use standard gradient-based methods (e.g.
backpropagation) to train all of the parameters.

2.3 Neural Networks for NLP and Discourse
In recent years, LSTMs have been applied quite successfully to a number of difficult natural lan-
guage problems, for example, Machine Translation (Kalchbrenner and Blunsom, 2013b; Cho et al.,
2014; Sutskever et al., 2014; Bahdanau et al., 2015), Speech Recognition (Graves et al., 2013) Lan-
guage Modeling (Sundermeyer et al., 2012; Kim et al., 2016) and captioning images and videos
(Donahue et al., 2015; Venugopalan et al., 2015b,a).

There is a small but growing body of work applying various Neural models to various tasks
in discourse processing, computationally modeling nonlocal phenomena in documents above the
sentence level. Li et al. (2014), Ji and Eisenstein (2015), and Ji and Eisenstein (2014) use RNNs for
discourse parsing, the task of determining how spans of text in documents relate to each other from
a discourse perspective. Li and Hovy (2014) and Modi and Titov (2014) present neural models of
event ordering, optimizing for the binary decision of deciding if one event precedes another in text.
It is not immediately obvious how to infer novel events from these models.

Kalchbrenner and Blunsom (2013a) use RNNs to classify speech acts in dialog (classifying ut-
terances as opinions, yes/no questions, opinions, and so on). Weston et al. (2015) describe a model
with a long-term memory component, which they use to answer questions about short generated
stories. Kiros et al. (2015) describe a method of mapping sentences to low-dimensional embed-
dings (which they call “skip-thought vectors”) such that two contextually similar sentences will
have similar embeddings. They do this by training an RNN to predict the previous and subsequent
sentences. This is conceptually somewhat similar to the system we present in Section 4 below, but
they do not evaluate directly on their system’s predictive power.

3 Statistical Script Learning with Multi-Argument Events
Here, we describe a method of learning co-occurrence-based statistical scripts with more complex
events modeling interactions between entities, described in more detail in Pichotta and Mooney
(2014). The statistical model is a simple Markov-like co-occurrence model; Section 4 describes a
more complex Neural Net system (with superior performance) which models similar events.
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Napoleon Marie Louise Elba
(remain married, subj) (remain married, prep)
(not join, obj) (not join, subj) (not join, prep)
(not see, obj) (not see, subj)

remain married(n, ml, ·)
not join(ml, n, e)
not see(ml, n, ·)

Figure 3: (Top) Pair event representation of text in Example 4. (Bottom) Multi-argument event
representation of the text.

3.1 Methods
Statistical scripts are models of co-occurring events learned from large corpora. In this setting,
the precise formulation of what constitutes an “event” becomes crucial. Prior work focuses on in-
ferring (verb, dependency) pair events (Chambers and Jurafsky, 2008; Jans et al., 2012; Rudinger
et al., 2015b), (verb, noun) pair events (Manshadi et al., 2008) or simplex verb events (Bejan,
2008; Chambers and Jurafsky, 2009; Orr et al., 2014). These events are simple enough to enable
straightforward learning and inference algorithms (and they are simple enough that the total num-
ber of events remains manageable); however, they are incapable of expressing fundamental aspects
of event structure. Consider, for example, the following example:

(4) Napoleon remained married to Marie Louise until his death, though she did not join him
in exile on Elba and thereafter never saw her husband again.

A representation of this sentence with (verb, dependency) pair events is given in Figure 3 (Top).
Each column gives the sequence of pair events for a different entity in the discourse (so Napoleon
and Marie Louise each engage in three different events, while Elba engages in one). Some cru-
cial aspects of the event structure, e.g. that Napoleon and Marie Louise are married to each other
(and that one didn’t see the other), are not captured by this pair representation. That is, the (re-
main married, subj) event and the (remain married, obj) event are totally unrelated to each other:
the pairwise interaction between the entities Napoleon and Marie Louise cannot be captured with
pair events, even in principle. From (3), we may wish to infer something like “Napoleon stayed
on Elba” or “Napoleon sent letters to Marie Louise;” however, it is not obvious how to represent
these events with multiple arguments in this framework.

We therefore enrich our event representation by introducing multi-argument events, described
in Pichotta and Mooney (2014). These multi-argument events are more complex than pair events,
but still simple enough to enable tractable learning and inference. Figure 3 (Bottom) gives the
multi-argument event representation of Example 4. There are three entity variables n, ml, and e,
representing Napoleon, Marie Louise, and Elba, respectively, and these variables serve as argu-
ments to the multi-argument predicates based on verbs. This formulation is capable of capturing
relationships between different entities.
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Formally, we define a multi-argument event to be a relational atom of the form v(es, eo, ep),
where v is a predicate and es, eo, and ep are entity variables standing in subject, direct object, and
prepositional relations to the predicate v. In the present work, v will be a verb lemma (possibly
phrasal), and es, eo, and ep will take values of different entities observed in documents, depending
on the syntactic relation those entities have to the verb v. Any of es, eo, or ep may be null, indicating
that no noun phrase stands in that particular relation to v. We represent null arguments with a dot
“·”. For example, “Napoleon was exiled to Elba” could be represented as exile(·, n, e).

In this section, we describe the simple multi-argument event co-occurrence model from Pi-
chotta and Mooney (2014) (in Section 4 we describe a superior model which also uses relational
events). A simple objective function we will use to infer novel events is (2) from Section 2.1, which
requires only a conditional distribution P (a2|a1) describing the probability of observing event a2
after having observed event a1. By definition, we have

P (a2|a1) =
P (a1, a2)

P (a1)

where P (a1, a2) is the probability of seeing a1 and a2, in order. The most straightforward way
to estimate P (a1, a2) is, if possible, by counting the number of times we observe a1 and a2 co-
occurring and normalizing the function to sum to 1 over all pairs (a1, a2). For Chambers and
Jurafsky (2008; 2009) and Jans et al. (2012), such an estimate is straightforward to arrive at:
events are (verb, dependency) pairs, and two events co-occur when they are in the same event
chain, relating to the same entity (Jans et al. (2012) further require a1 and a2 to be near each other).
One need simply traverse a training corpus and count the number of times each pair (a1, a2) co-
occurs. The Rel-grams of Balasubramanian et al. (2012; 2013) admit a similar strategy: to arrive
at a joint distribution of pairwise co-occurrence, one can simply count co-occurrence of ground
relations in a corpus and normalize.

However, given two multi-argument events of the form v(es, eo, ep), this strategy will not suf-
fice. For example, if during training we observe the two co-occurring events

(5) ask(mary, bob, question)
answer(bob, ·, ·)

we would like this to lend evidence to the co-occurrence of events ask(x, y, z) and answer(y, ·, ·)
for all distinct entities x, y, and z. If we were to simply keep the entities as they are and calculate
raw co-occurrence counts, we would get evidence only for x = mary, y = bob, and z = question,
resulting in poor generalization.

A good deal of the relationship between the entities in two multi-argument events may be
captured by paying attention to their overlapping entities. For example, to describe the relationship
between the three entities in (5), it is most important to note that the object of the first event is
identical with the subject of the second (namely, both are bob). The exact identity of the non-
overlapping entities mary and question is not incredibly important for capturing the relationship
between the two events.4

4Though note these intuitions break down in the presence of idiomatic singleton entities: in the event pay(bob,
attention, mary), it is crucial to note that the direct object is attention; that is, “x paid y to z” fails to capture the crucial
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Algorithm 1 Learning with entity substitution
1: for a1, a2 ∈ evs do
2: N(a1, a2)← 0
3: end for
4: for D ∈ documents do
5: for a1, a2 ∈ coocurEvs(D) do
6: for σ ∈ subs(a1, a2) do
7: N(σ(a1), σ(a2)) += 1
8: end for
9: end for

10: end for

Two multi-argument events v(es, eo, ep) and v′(e′s, e
′
o, e
′
p), share at most three entities. We thus

introduce four variables x, y, z, and O. The three variables x, y, and z represent arbitrary distinct
entities, and the fourth, O, stands for “Other,” for entities not shared between the two events. We
can rewrite the entities in our two multi-argument events using these variables, with the constraint
that two identical (i.e. coreferent) entities must be mapped to the same variable in {x, y, z}, and
no two distinct entities may map to the same variable in {x, y, z}. This formulation simplifies
calculations while still capturing pairwise entity relationships between events.

To learn a co-occurrence-based model for novel event inference, we must count the number of
times two events a1 and a2 co-occur. Call this countN(a1, a2). The joint co-occurrence probability
then becomes simply

P (a1, a2) =
N(a1, a2)∑

a′1,a
′
2
N(a′1, a

′
2)
, (4)

from which we may straightforwardly calculate a conditional probability P (a2|a1). To calculate
N(a1, a2) in such a way that pairwise relationships are maintained and exact entity identity is ab-
stracted away, we, upon observing a2 following a1 in a training document, “hallucinate” observing
co-occurrences of all events a′1 and a′2, where a′1 is a1 with any subset of its entities rewritten,
a′2 is a2 with any subset of its entities rewritten, subject to the constraint that entities overlapping
between a1 and a2 are rewritten consistently with variables {x, y, z}.

Algorithm 1 gives this method in more formal pseudocode. The algorithm populates a co-
occurrence table N , where entry N(a1, a2) gives the co-occurrence count of events a1 and a2. The
variable evs in line 1 is the set of all events in our model, which are of the form v(es, eo, ep), with
v a verb lemma and es, eo, ep ∈ {x, y, z, O}. The variable documents in line 4 is the collection
of documents in our training corpus. The function cooccurEvs in line 5 takes a documentD and
returns all ordered pairs of co-occurring events in D, where, following the 2-skip bigram model
of Jans et al. (2012), and similar to Balasubramanian et al. (2012; 2013), two events a1 and a2 are
said to co-occur if they occur in order, in the same document, with at most two intervening events

fact that y is “attention” and interacts idiomatically with the verb. The system presented below in Section 4 better
handles this.
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between them.5 The function subs in line 6 takes two events and returns all variable substitutions
σ mapping from entities mentioned in the events a1 and a2 to the set {x, y, z, O}, such that two
coreferent entities map to the same element of {x, y, z}. A substitution σ applied to an event
v(es, eo, ep), as in line 7, is defined as v(σ(es), σ(eo), σ(ep)), with the null entity mapped to itself.

Once we have calculated N(a1, a2) using Algorithm 1, we may define P (a1, a2) for two events
a1 and a2, giving an estimate for the probability of observing a2 occurring after a1, from (4), and
then define the conditional probability of seeing a2 after having seen a1 as:

P (a2|a1) =
P (a1, a2)∑
a′ P (a1, a

′)

=
N(a1, a2)∑
a′ N(a1, a′)

. (5)

3.2 Experiments
We evaluate four systems on the task of inferring held-out relational events from unseen test doc-
uments. That is, we extract a sequence of events from an unseen test document, hold one out, and
judge systems by their ability to infer this event. These four systems are:

1. Random: This system guesses randomly selected events observed during training.

2. Unigram: This system ignores the observed events in test documents and infers events ac-
cording to their observed frequency (that is, its most confident inference is always the most
common event, the next inference is the second-most-common event, and so on).

3. Multiple Protagonist: This is the most direct way of guessing a full multi-argument event
using a single protagonist pair-event model (a co-occurrence model of pair-events relating to
a single entity). The multiple protagonist system uses a single-protagonist model to predict
multi-argument events, given a sequence of known multi-argument events.

Suppose we have a non-empty set E of entities mentioned in the known events. We use a
single-protagonist system to infer additional multi-argument events involving E. A multi-
argument event a = v(es, eo, ep) represents three pairs: (v, es), (v, eo), and (v, ep). The
multiple protagonist model scores an event a according to the score the single protagonist
model assigns to these three pairs individually.

For entity e ∈ E in some multi-argument event in a document, we first extract the sequence
of (verb, dependency) pairs corresponding to e from all known multi-argument events. For a
pair d, we calculate the score Se(d), the score the single protagonist system assigns the pair
d, given the known pairs corresponding to e. If e has no known pairs corresponding to it (in
the cloze evaluation described below, this will happen if e occurs only in the held-out event),
we fall back to calculating Se(d) with a unigram model over (verb, dependency) pair-events.

5Other notions of co-occurrence could easily be substituted here.
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We then rank a multi-argument event a = v(es, eo, ep), with es, eo, ep ∈ E, with the follow-
ing objective function:

M(a) = Ses((v, subj)) + Seo((v, obj)) + Sep((v, prep)) (6)

where, for null entity e, we define Se(d) = 0 for all d. In the cloze evaluation, E will be the
entities in the held-out event. Each entity in a contributes independently to the score M(a),
based on the known (verb, dependency) pairs involving that entity.

This model is somewhat similar to the multi-participant narrative schemas described in
Chambers and Jurafsky (2009), but whereas they infer bare verbs, we infer an entire multi-
argument event.

4. Joint: Finally, we evaluate the system described in Section 3.1, which directly models the
multiple entities serving as event arguments.

We follow previous work in using the narrative cloze task to evaluate statistical scripts (Cham-
bers and Jurafsky, 2008, 2009; Jans et al., 2012; Rudinger et al., 2015b), evaluating a system on
its ability to infer a held-out event given the other events in an unseen test document. In other
work, the cloze task is to guess a pair event, given the other events in which the held-out pair’s
entity occurs. We will evaluate directly on this task of guessing pair events shortly. First, however,
we evaluate on the task of guessing a multi-argument event, given all other events in a document
and the entities mentioned in the held-out event. This is, we argue, the most natural way to adapt
the cloze evaluation to the multi-argument event setting: instead of guessing a held-out pair event
based on the other events involving its lone entity, we will guess a held-out multi-argument event
based on the other events involving any of its entities.

A document may contain arbitrarily many entities. The script models we evaluate, however,
only model events involving entities from a closed class of four variables {x, y, z, O}. We therefore
rewrite entities in a document’s sequences of events to the variables {x, y, z, O} in a way that
maintains all pairwise relationships between the held-out event and others. That is, if the held-out
event shares an entity with another event, this remains true after rewriting.

We perform entity rewriting relative to a single held-out event, proceeding as follows:

• Any entity in the held-out event that is mentioned at least once in another event gets rewritten
consistently to one of x, y, or z, such that distinct entities never get rewritten to the same
variable.

• Any entity mentioned only in the held-out event is rewritten as O.

• All entities not present in the held-out event are rewritten as O.

This simplification removes some structure from the original sequence, but retains the pairwise
entity relationships between the held-out event and the other events.

For each document, we use the Stanford dependency parser (De Marneffe et al., 2006) to get
syntactic information about the document; we then use the Stanford coreference resolution engine
(Raghunathan et al., 2010) to get (noisy) equivalence classes of coreferent noun phrases in a doc-
ument.6 We train on approximately 1.1M articles from years 1994-2006 of the NYT portion of

6We use version 1.3.4 of the Stanford CoreNLP system.
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the Gigaword Corpus, Third Edition (Graff et al., 2007), holding out a random subset of the arti-
cles from 1999 for development and test sets. Our test set consists of 10,000 randomly selected
held-out events, and our development set is 500 disjoint randomly selected held-out events. We
use add-one smoothing on all joint probabilities. To reduce the size of our model, we remove all
events that occur fewer than 50 times.7

We evaluate performance using the following two metrics:

1. Recall at 10 (R10): Following Jans et al. (2012), we measure performance by outputting the
top 10 guesses for each held-out event and calculating the percentage of such lists containing
the correct answer.8 This value will be between 0 and 1, with 1 indicating perfect system
performance.

2. Accuracy: A multi-argument event v(es, eo, ep) has four components. For a held-out event,
we may judge the accuracy of a system’s top guess by giving one point for getting each
of its components correct and dividing by the number of possible points. We average this
value over the test set, yielding a value between 0 and 1, with 1 indicating perfect system
performance.

Method R10 Accuracy
Random 0.001 0.334
Unigram 0.216 0.507
Multiple Protagonist 0.209 0.504
Joint 0.245 0.549

Table 1: Results for multi-argument events.

Table 1 gives the Recall at 10 and accuracy scores for the different systems. The unigram
system is quite competitive, achieving performance comparable to the multiple protagonist system
on accuracy, and superior performance on recall at 10. Evaluating by the recall at 10 metric, the
joint system provides a 2.9% absolute (13.2% relative) improvement over the unigram system,
and a 3.6% absolute (17.2% relative) improvement over the multiple protagonist system. These
differences are statistically significant (p < 0.01) by McNemar’s test. By accuracy, the joint
system provides a 4.2% absolute (8.3% relative) improvement over the unigram model, and a 4.5%
absolute (8.9% relative) improvement over the multiple protagonist model. Accuracy differences
are significant (p < 0.01) by a Wilcoxon signed-rank test. These results provide evidence that
directly modeling full multi-argument events, as opposed to modeling chains of (verb, dependency)
pairs for single entities, allows us to better infer held-out verbs with all participating entities.

The “Multiple Protagonist” system adapts a baseline pair-event system to the task of guessing
multi-argument events. We may also do the converse, adapting our multi-argument event system

7A manual inspection reveals that the majority of these removed events come from noisy text or parse errors.
8Jans et al. (2012) instead use recall at 50, but we observe, as they also report, that the comparative differences

between systems using recall at k for various values of k is similar.
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to the task of guessing the simpler pair events. That is, we infer a full multi-argument event and
extract from it a (subject,verb) pair relating to a particular entity. This allows us to compare directly
to previously published methods which infer pair-events.

Method R10 Accuracy
Random 0.001 0.495
Unigram 0.297 0.552
Single Protagonist 0.282 0.553
Joint Pair 0.336 0.561

Table 2: Results for pair events.

Table 2 gives the comparative results for on the task of inferring held-out pair events. The
random and unigram systems are analogous to the identically-named multi-argument systems, but
on pair events instead. The single protagonist system is our reimplementation of the methods of
Jans et al. (2012), maximizing the objective (2) (the “Multiple Protagonist” model pieces together
inferences from this single protagonist model). The joint pair system takes the multi-argument
events guessed by the joint system and converts them to pair events by discarding any information
not related to the target entity; that is, if the held-out pair event relates to an entity e, then every
occurrence of e as an argument of a guessed multi-argument event will be converted into a single
pair event, scored identically to its original multi-argument event. Ties are broken arbitrarily. The
test set is constructed by extracting one pair event from each of the 10,000 multi-argument events
in the test set used in Table 1, such that the extracted pair event relates to an entity with at least one
additional known pair event.

Somewhat to our surprise, on the task of inferring pair events, the joint system provides a 3.9%
absolute (13.1% relative) improvement over the unigram baseline, and a 5.4% absolute (19.1%
relative) improvement over the single protagonist system, according to R10. These differences
are significant (p < 0.01) by McNemar’s test. By accuracy, the joint system provides a 0.9%
absolute (1.6% relative) improvement over the unigram model, and a 0.8% absolute (1.4% relative)
improvement over the single protagonist model. Accuracy differences are significant (p < 0.01)
by a Wilcoxon signed-rank test.

These results indicate that modeling more complex multi-argument event sequences allows
better inference of simpler pair events. These performance improvements may be due to the fact
that the joint model conditions on information not representable in the single protagonist model
(namely, all of the events in which a multi-argument event’s entities are involved).

4 Script Learning with Recurrent Neural Networks
In this section, we describe an LSTM-based script system, described in more detail in Pichotta and
Mooney (2016), which provides superior performance to the simpler co-occurrence-based system
from Section 3.
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The co-occurrence joint model of Section 3 has a number of shortcomings which the LSTM-
based model we present below can in principle address:

1. The Joint model does not decompose events into constituent components: when calculating
co-occurrence scores between two events, the events are treated as essentially atomic, so no
information is shared between similar events. So “x married y” and “x is married to y” are
totally unrelated events (since they have different argument structure).

2. There is no mechanism for generalization beyond the lexical level. For example, “x jour-
neyed to y” and “x traveled to y” are only related insofar as they might co-occur with each
other; the fact that “x arrived at y” is quite likely to co-occur with both can only be learned
if the latter is observed directly with both of them.

3. The noun identity of entity arguments is entirely ignored. So, for example, “she sits on the
chair” and “she sits on the board of directors” will get identical representations. This is a
considerable shortcoming, given that the most common verbs (which account for a very large
portion of event tokens) are typically very polysemous, and incorporating noun information
about arguments can provide useful cues for sense disambiguation.

4. There is only a single notion of “event co-occurrence,” so, during inference, the relative
position of an observed event to an inferred event (whether it immediately precedes or is
relatively far back) is ignored.

5. The model cannot infer events not observed exactly in the training set, nor can it infer events
never observed co-occurring with observed events (modulo smoothing effects, which typi-
cally do not greatly affect top inferences).

6. Finally, there is a particularly important special case of Point 3 above, namely, that nouns
which behave idiomatically with other event components are ignored. For example, “the hur-
ricane made landfall” and “the elves made shoes” will get identical representations, though
“make landfall” is an idiomatic light verb construction whose semantics are very poorly cap-
tured by only using the verb “make.” As such constructions are quite common in English
(Butt, 2010), this is an important consideration.

Though the Neural Net model we propose in this section handily outperforms the co-occurrence
model from Section 3, the extent to which the performance improvement is actually due to ad-
dressing any of these issues in particular is not straightforward to determine. Though we hope to
perform a further analysis to tease these issues apart, we leave any such analysis to future work.

4.1 Methods
Motivated by these concerns, we propose using a Recurrent Neural Net model (in particular, an
LSTM, described in Section 2.2) to statistically model events in sequence. This model will be capa-
ble of incorporating noun information about event arguments and will give verbs and nouns low-
dimensional embeddings, capturing predictive similarity between words. Critically, the model’s
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inferences are generated from a continuous-valued hidden state vector to model the dynamics of
event sequences, rather than simple Markov associations between surface forms of events. The
qualitative analysis we provide below in Section 4.2 will provide evidence that learned latent states
capture fairly long-range dependencies between events.

We frame script learning as an RNN sequence modeling task, using the standard technique of
training an RNN sequence model to sequentially predict the next input. At timestep t, the model is
trained to predict the input at timestep t+1. The sequence modeled is the sequence of 5-component
events (in this section we model events as atoms v(es, eo, ep, p), where we add p, the preposition
relating ep to v). That is, a sequence of N events has 5N timesteps.

We differentiate between two types of script systems based on what the models predict. Noun
models learn to predict events as verb lemmas, noun lemmas, and prepositions. Entity models
learn to predict verbs, entity IDs, and prepositions, where an entity ID is an integer identifying an
argument’s entity according to a coreference resolution engine. This is similar to the entity-based
systems in Section 3; however, where before we rewrore entities relative to a single (held-out)
event’s entities, here we assign global entity IDs instead and do not perform any entity rewriting.

For example, suppose we observe the two co-occurring events

(pass, senate, bill1, ·, ·)
(veto, president, it1, ·, ·)

where subscripts indicate entity IDs. An LSTM noun model will be trained to model the sequence

(pass, senate, bill, ·, ·, veto, president, it, ·, ·)

by successively predicting the next element in the sequence (when receiving pass as input, it is
trained to predict senate; in the next timestep it is trained to predict bill, and so on). An LSTM
entity model will be trained to predict

(pass, 0, 1, ·, ·, veto, 0, 1, ·, ·)

where 0 denotes singleton nouns, and 1 is the entity ID for bill/it. To infer a five-element event, it
suffices to infer five timesteps’ output.

We consider four similar model architectures differing in inputs and outputs, depicted in Figure
4 (the inputs and outputs not present in all models have dotted lines). At each timestep t, there are
multiple inputs, each of which is a one-hot vector (with one 1 and all other entries 0). First, there is
the deterministic 1-of-5 input ct, indicating which component of the event is input at t: verbs will
have ct = 1, subject entities ct = 2, and so on. Next, there is a 1-of-V input wt, with V the size of
the vocabulary, giving the component word at timestep t (this may be a verb, a noun, a preposition,
or null). Finally, three of the four models have a one-hot et input, which gives the entity ID of noun
arguments according to a coreference engine. This et value has special values for null, singleton
entities, and non-entity words (verbs and prepositions). We limit the number of entity IDs to 5,9

treating all other entities as singletons.

9 98% of training sequences involve five or fewer non-singleton entities, so we lose coreference information in
only 2% of sequences.
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Figure 4: LSTM Script System at timestep t.

One-hot input vectors are mapped to continuous distributed representations, labeled “Embed-
dings” in Figure 4. These embeddings are learned jointly with the other model parameters. Pre-
dictively similar words should get similar embeddings. The embeddings are input to a recurrent
LSTM unit, which modifies a latent state vector at each timestep. All models have an output vector
from the LSTM, in RV , which is input to a softmax function, yielding a distribution over predic-
tions for the next wt value. Additionally, entity models have a second output vector which is input
to a softmax predicting the next et value. We train all models by minimizing the cross-entropy
error at the top softmax layer and backpropagating the error gradient through the network.

We compare four related architectures, which all receive and predict verbs and prepositions but
differ in the input and output of entity arguments:

1. LSTM-noun-noun, which receives only noun information about arguments and learns to
predict argument nouns;

2. LSTM-ent-ent, which receives only entity IDs and learns to predict entity IDs;

3. LSTM-both-noun, which receives noun and entity IDs and learns to predict nouns;

4. LSTM-both-ent, which receives noun and entity IDs and learns to predict entity IDs.

To generate probable event inferences, we perform a five-step beam search over the components
(v, es, eo, ep, p) of events. In steps 2 through 5 of this search, the previous step’s output is treated
as input. Since the LSTM-both-noun and LSTM-both-ent models require both noun and entity ID
information but only predict one of the two, we must generate entity ID information from predicted
nouns, and vice versa. When predicting with the LSTM-both-noun model, we call any predicted
non-null noun a singleton entity; when predicting with the LSTM-both-ent model, we guess the
special Out-Of-Vocabulary token for any predicted non-null entities.

4.2 Experiments
As in Section 3, we evaluate using the Narrative Cloze (we will also provide human judgments
of inferences below). We compare the four systems enumerated in Section 4.1 to four baseline
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systems:

1. Unigram: Like the unigram system in Section 4, this infers events (either with or without
nouns, as appropriate) according to their unigram frequency, ignoring the other elements in
the test document.

2. All-bigram: This is the “Joint” system of Section 3, but without rewriting, and conditioning
only on previous events. That is, a closed event vocabulary of the most frequent events is
calculated, co-occurrence event statistics are counted from the training corpus as in Section
3, and an event a is scored as an inference at position t by maximizing the objective

S(a) =
t−1∑
i=0

logP (a|si).

3. Rewrite Bigram: This is the All-bigram system, but we rewrite entity IDs during learning
as in Section 3.

4. 2D Rewrite Bigram: This is the Rewrite bigram system, but it optimizes the objective given
in (2), incorporating events after timestep t in addition to past events. This will allow us to
compare directly to the system of Section 3.

We use four different metrics, all based on the Narrative Cloze:

1. Recall at 25 (“R25”), as above, is the percentage of held-out events that appear in the top
25 system inferences. We relax from 10 to 25 because the task is exceptionally difficult for
noun systems, which must infer the verb and head nouns of entity arguments. Note, however,
that results are comparatively similar for R10 and R25.

2. Verb recall at 25 (“R25-V”) is recall at 25, but counting an inference as correct if its verb
matches the held-out event’s verb (ignoring arguments).

3. 4-Tuple recall at 25 (“R25-4”) is recall at 25, ignoring prepositions. This allows us to
compare directly to the methods in Section 3, which do not directly include prepositions.
We evaluate LSTM systems by predicting 5-tuples and discarding prepositions, and evaluate
baseline systems by directly modeling (v, es, eo, ep) 4-tuples.

4. Accuracy with Partial Credit (“Acc”) is like “accuracy” in Section 3.2, but with partial
credit for similar words. We compute a system’s single most confident inference and calcu-
late, for every component of the held-out event, a similarity score between that component
and the respective inferred component. This relaxes the requirement that inferred events
match exactly, which is intuitively appealing for systems that predict nouns as well as verbs.
Partial credit is computed using WUP similarity (Wu and Palmer, 1994), based on distance
in the WordNet hierarchy (Fellbaum, 1998). We assign a similarity score by taking the
maximum WUP scores over all Synset pairs (with appropriate parts-of-speech). Accuracy
is average WUP score across event components (ignoring OOVs and nulls in the held-out
event). This will be between 0 and 1. We use the NLTK implementation of WUP (Bird et al.,
2009)
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Entities Nouns
System R25 R25-V R25-4 Acc. R25 R25-V R25-4 Acc.
Unigram 0.101 0.192 0.109 0.402 0.025 0.202 0.024 0.183
All-Bigram 0.124 0.256 0.140 0.420 0.037 0.224 0.039 0.220
Rewrite Bigram 0.110 0.205 0.125 0.421 - - - -
2D Rewrite Bigram 0.104 0.192 0.114 0.416 - - - -
LSTM-ent-ent 0.145 0.279 0.160 0.450 - - - -
LSTM-both-ent 0.152 0.303 0.171 0.458 - - - -
LSTM-noun-noun - - - - 0.054 0.298 0.057 0.256
LSTM-both-noun - - - - 0.061 0.300 0.062 0.260

Table 3: Narrative Cloze results on entity and noun models, with four metrics (higher scores are
better).

We use the Stanford dependency parser (De Marneffe et al., 2006) and coreference system
(Raghunathan et al., 2010).10 We represent noun arguments by their head lemmas. For a training
and testing corpus, we use English Language Wikipedia,11 breaking articles into paragraphs. We
switched to Wikipedia from newswire because, first, it is larger (the RNN model is quite complex
and needs a large training corpus) and, second, a qualitative analysis indicates it contains a fair
amount more narrative text describing events in order than newswire does.

Our training set was approximately 8.9 million event sequences, our validation set was ap-
proximately 89,000 event sequences, and our test set was 2,000 events from 411 sequences, such
that no test-set article is in the training or validation set. We add a <s> beginning-of-sequence
pseudo-event and a </s> end-of-sequence pseudo-event to every sequence. The event compo-
nent vocabulary comprises the 2,000 most common verbs, the 8,000 most common nouns, and the
top 50 prepositions; all other words are replaced with an Out-Of-Vocabulary (OOV) token. For
the unigram and bigram event vocabulary, we select the 10,000 most common events (with either
nouns or entity IDs, depending on the system). We apply add-one Laplace smoothing to bigram
co-occurrence counts. We use the implementation of LSTM provided by the Caffe library (Jia
et al., 2014), training using batch stochastic gradient descent with momentum with a batch size of
20.

Table 3 gives results on the Narrative Cloze evaluation. The LSTM-both-ent system demon-
strates a 50.0% relative improvement (5.7% absolute improvement) over the current best-published
system (2D rewritten all-bigram, evaluated using 4-Tuple event recall at 25). Note that the simpler
all-bigram system outperforms the rewritten versions. This is probably because there is informa-
tion encoded in the entity IDs (the relative ordering of entities, and which entities are singletons)
that is lost during rewriting. Note also that, on this corpus, the 2D rewritten system, which makes
predictions based on subsequent events in addition to previous events, does marginally worse than
the system using only previous events. We hypothesize this is because subsequent events are less
predictive than previous events on this corpus, and are comparatively overweighted.

10We use version 3.3.1 of the Stanford CoreNLP system in these experiments.
11http://en.wikipedia.org/, dump from Jan 2, 2014.
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Compared to the strongest baselines, the best-performing entity system achieves a 22.6% rela-
tive improvement on R25, an 18.4% relative improvement on verb-only R25, and an 8.8% relative
improvement on accuracy with partial credit. The best-performing noun system achieves a 64.9%
relative improvement on R25, a 33.9% relative improvement on verb-only R25, and an 18.2%
relative improvement on accuracy with partial credit. LSTM-both-ent is the best entity model, and
LSTM-both-noun is the best noun model; that is, the best performing system in both cases is the
one which is given both noun and entity information.

The low magnitude of the Narrative Cloze scores in Table 3 reflects the task’s difficulty. The
evaluation has a number of intuitive shortcomings: first, by their very nature, most obviously infer-
able facts are not explicitly stated in documents, and so the Narrative Cloze cannot evaluate such
inferences. Further, Cloze scores on individual held-out events are not easily interpretable (if a sys-
tem has difficulty inferring a single held-out event, it is unclear if it is from a system shortcoming
or because the held-out event was simply inherently difficult to predict in that context).

Motivated by these concerns, we also evaluate inferences by eliciting human judgments via
Amazon Mechanical Turk. Given a text snippet, annotators are asked to rate, on a 5-point Likert
scale, the likelihood of inferences, with 5 signifying “Very Likely” and 1 “Very Unlikely/Irrelevant”
(uninterpretable events are to be marked “Nonsense”). This provides interpretable scores, and, fur-
ther, allows us to directly compare entity- and noun-predicting models, which is not straightforward
using the Narrative Cloze.

We present annotators with a snippet of text and 5 phrases, 4 of which are automatic script
inferences based on the events in the snippet, and one of which is a randomly selected event from
the 10,000 most frequent events (“Random”). We transform relational events to English phrases
using an LSTM model trained to predict, from extracted event tuples, the original text from which
the event was extracted. This network uses a hidden state vector of length 1,000 and a vocabulary
of 100k tokens. We elicit three judgments for each inference, treating “nonsense” judgments as 0
scores.

We asked annotators to judge each system’s most confident inference not involving one of
the ten most frequent verbs in the corpus.12 We evaluate two noun-predicting systems: LSTM-
both-noun and All-bigram-noun, which were the best-performing LSTM and Bigram systems on
the Narrative Cloze; we also collect judgments for two entity systems, LSTM-both-ent and All-
bigram-ent. We collect judgments on inferences from 100 snippets, each of which is the smallest
set of initial sentences from a different paragraph in the test set such that the text contains at least
two events.

The “All” column in Table 4 gives average ratings for each system. The “Filtered” column
gives the results after removing annotations from annotators whose average “Random” score is
higher than 1.0 (this is intended to be a simple quality-control procedure). The LSTM-both-noun
system, which predicts verbs and nouns, significantly outperforms all other systems, both with and
without filtering (p < 0.05, Wilcoxon-Pratt signed-rank test). Incorporating nouns into LSTM
models improves inferences; on the other hand, bigram models, which do not decompose events
into constituent components, perform worse when directly incorporating nouns, as this increases
event co-occurrence sparsity.

12 have, make, use, include, know, take, play, call, see, give.
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System All Filtered
Random 2.00 0.87
All-Bigram Ent 2.87 2.87
All-Bigram Noun 2.47 2.21
LSTM-both-ent 3.03 3.08
LSTM-both-noun 3.31 3.67

Table 4: Crowdsourced results (scores range from 0 to 5).

Sequence 1 (two events):
Event 1: (obtain, OOV1, phd, dissertation, with) obtained a PhD with a dissertation

Inference 1: (study, he, ., university, at) He studied at a university
Inference 2: (study, OOV, ., university, at) studied at a university
Inference 3: (study, he, ., OOV, at) He studied at

Event 2: (graduate, OOV1, ., university, at) graduated at a university
Inference 1: (move, he, ., OOV, to) He moved to
Inference 2: (move, OOV, ., OOV, to) moved to
Inference 3: (return, he, ., OOV, to) He returned to

Sequence 2 (two events):
Event 1 (destroy, ., airport1, 1945, in) The airport was destroyed in 1945.

Inference 1: (destroy, ., airport, ., .) The airport was destroyed
Inference 2: (rebuild, ., airport, ., .) The airport was rebuilt
Inference 3: (build, ., airport, ., .) The airport was built

Event 2 (open, airport1, ., 1940, in) The airport opened in 1940
Inference 1: (rename, ., airport, ., .) The airport was renamed
Inference 2: (know, ., ., airport, as) . . . known as airport
Inference 3: (use, ., airport, ., .) The airport was used

Figure 5: Sample Narrative Cloze inferences. The right column gives possible English descriptions
of the structured events on the left.
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((pass, route, creek, north, in); The route passes the creek in the North
(traverse, it, river, south, to)) It traverses the river to the South
((issue, ., recommendation, government, from); A recommendation was issued from the government
(guarantee, ., regulation, ., .); Regulations were guaranteed
(administer, agency, program, ., .); The Agency administered the program
(post, ., correction, website, through); A correction was posted through a website
(ensure, standard, ., ., .); Standards were ensured
(assess, ., transparency, ., .)) Transparency was assessed.
((establish, ., ., citizen, by) Established by citizens, . . .
(end, ., liberation, ., .) . . . the liberation was ended
(kill, ., man, ., .) A man was killed
(rebuild, ., camp, initiative, on) The camp was rebuilt on an initiative
(capture, squad, villager, ., .) A squad captured a villager . . .
(give, inhabitant, group, ., .)) . . . [which] the inhabitants had given the group

Figure 6: Probabilistically generated event sequences. The right column gives possible English
descriptions of the structured events on the left.

Figure 5 shows, for two short two-event test sequences, the top 3 inferences the LSTM-both-
noun system makes at each position (the inferences following an event are the system’s top pre-
dictions of immediately subsequent events). Subscripts are entity IDs (singleton entities are un-
subscripted). We do not display bigram inferences, because in these examples they are exactly the
most-common unigram events, as no observed events are in the event vocabulary. These examples
clearly illustrate the importance of incorporating argument noun information: for example, with-
out nouns, (obtain, OOV1, phd, dissertation, with) would be represented as, roughly, “someone
obtained something with something,” from which few reasonable inferences can be made. Note
that since the learning objective does not directly encourage diversity of inferences, the LSTM
makes a number of roughly synonymous inferences.

To get further intuitions for what these models learn, we can seed a model with a <s> beginning-
of-sequence event and generate events by probabilistically sampling from its output predictions
until it generates </s> (“ask it to generate a story”). That is, the first event component (a verb) is
sampled from the model’s learned distribution of first components, the hidden state is updated with
this sample, the next component is sampled from the model’s predictions, and so on, until a </s>
is sampled. Figure 6 gives three probabilistically generated sequences from the LSTM-noun-noun
model. These sequences, generated totally from scratch one component at a time, are reasonably
coherent, and exhibit clear thematic dependencies across events.

5 Proposed Research
We now describe four general threads of investigation we propose undertaking, ordered by increas-
ing scope and difficulty. First, we propose investigating a number of ways of changing the neural
architecture used. Next, we propose a number of ways of adding more information to event rep-
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resentations. Next, we propose incorporating discourse relations into script learning. Finally, we
propose incorporating learned scripts into coreference resolution systems.

5.1 Improved Probabilistic Models
The LSTM model presented in Section 4 provides clear quantitative and qualitative improvements
over the co-occurrence based system presented in Section 3. We propose a number of other models
to apply to statistical script learning.

First, there are a number of alternative approaches to RNN sequences models besides LSTM.
Gated Recurrent Units (GRUs, Cho et al. (2014)) adaptively “remember” and “forget” using dy-
namics similar to the LSTM unit, but with fewer parameters. GRUs have been shown to be com-
petitive with LSTMs on a number of tasks (Chung et al., 2014; Jozefowicz et al., 2015). Modulo
software engineering efforts, this is straightforward: GRU units can be neatly substituted for LSTM
units, and may provide a small incremental improvement. Similarly, Grid LSTM networks (Kalch-
brenner et al., 2015) and Gated Feedback Recurrent Neural Networks (Chung et al., 2015) can be
substituted into the LSTM framework above conceptually straightforwardly. These units extend
LSTM and GRU units, respectively, to have stacked hidden units capable of learning hierarchical
representations with gates modulating the communication between the hidden unit layers. These
units may provide marginal performance improvements.

Convolutional Neural Networks (CNNs), which convolve a set of learned kernels with input
data, have, in recent years, been shown to be successful at a wide variety of image processing tasks
(LeCun et al., 1998; Krizhevsky et al., 2012). In this setup, a series of layers consisting of of 2-
dimensional convolution kernels (learned linear transformations) are repeatedly swept across a 2D
input image, with some elementwise nonlinearities and pooling operations, resulting ultimately
in a set of representations invariant under some transformations. CNNs have also found recent
applications, with one-dimensional kernels, to a number of Natural Language Processing tasks
(Kalchbrenner and Blunsom, 2013a; Kalchbrenner et al., 2014; Kim, 2014; Le and Mikolov, 2014;
Zhang et al., 2015). Convolutional architectures provide an alternative for RNN sequence models
for the script learning task which may bear investigation, in addition to improved sequence models.

There is also a recent body of work using so-called attention-based models for Natural Lan-
guage Processing (Hermann et al., 2015; Bahdanau et al., 2015). These models incorporate some
explicit learned notion of which portions of the input are most useful for making predictions. In
the script learning setting, this will mean learning a distribution of explicit weights over observed
events (with the weights depending on the exact identity of the events) such that more predictively
important observed events have higher weights. The intuition behind this is that the extent to which
distant events are predictive of new events will vary based on the exact identify of the events com-
prising the sequence, and incorporating this directly into a script model could prove empirically
beneficial.

5.2 Improved Event Representations
The event representation presented above, in which an event is a fixed-arity tuple of the form
(v, es, eo, ep), has a number of serious limitations. We propose investigating the effectiveness of
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different event representations for addressing these limitations.
First, the fixed arity of the relational events presented in Section 3, which are always 5-tuples,

is a clear shortcoming. For example, the travel event in the sentence

(6) In 1697, Peter the Great traveled incognito to Europe on an 18-month journey with a large
Russian delegation to seek the aid of the European monarchs.

cannot be represented, as there are multiple prepositional phrases modifying the verb travel. Using
the relational events presented in Section 3, at most one prepositional phrase will be represented.
We will therefore extend the relational event structure to variadic events, representing the event
in (6) as, for example, (travel, Peter, ·, (in 1697), (to Europe), (on journey), (with delegation)).
Using the co-occurrence-based approach of Section 3, this is highly nontrivial, as it would cause a
combinatorial increase in the event vocabulary size; however, the RNN-based approach presented
in Section 4 straightforwardly admits this extension without increasing the vocabulary size. While
the RNN-based systems presented in Section 4 used fixed-arity relational events so as to be directly
comparable to the approach presented in Section 3, future work will relax this limitation.

Second, many non-prepositional modifiers crucially affect the meaning of verb phrases: in (6),
for example, incognito is an important component of the travel event which changes which events
may be inferred from the text; however, it is not represented in the multi-argument events presented
above. For a stronger example, consider the following:

(7) King Frederick William I nearly executed his son for desertion.

The adverb nearly is crucial to modeling this event for the purposes of event inference. Incorpo-
rating adverbs into events is straightforward in our RNN-based framework.

Next, head nouns of noun phrases are often insufficient to represent the relevant semantics of
entities. Consider the following examples:

(8) Frederick helped transform Prussia from a European backwater to an economically strong
and politically reformed state.

(9) Martin Luther wrote to his bishop protesting the sale of indulgences.

From (8), we would like to be able to infer, for example, that Frederick reformed Prussia, which
will not be possible if the noun phrase an economically strong and politically reformed state is
represented only with its grammatical head state. Similarly, from (9), we would like to be able
to infer that Martin Luther disapproved of indulgences; this inference cannot be made if the noun
phrase sale of indulgences is represented simply as sale. Implicit event inference is affected not
only by the nouns heading observed events’ arguments, but also frequently by other modifiers in the
argument noun phrases. We will investigate the extent to which this helps empirical performance
of event inference.

Third, the tense and aspect of events are not modeled. Whether verbs are in the past, present, or
future tense may be useful signals, as well as whether they are in progressive or perfect construc-
tions, or under modal operators. These issues are crucial to formal theories of natural language
semantics, and the extent to which they are important to event inferences in the general framework
presented here is an empirical one.
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Fourth, nominal events (states or events expressed not as verbs but instead as nouns) are ig-
nored. Consider the following examples, each of which contains some (bolded) stative or eventive
nouns which are crucial for making inferences:

(10) One means of achieving modernization was the introduction of taxes for long beards and
robes in September 1698.

(11) After a period of imprisonment in Pavia for what was deemed a treasonable offense,
Boethius was executed in 524.

(12) In the years following his death, a series of civil wars tore Alexander’s empire apart.

Nominal events are very common, and incorporating them into event inference systems will likely
prove beneficial.

The extent to which implicit event inferences benefit from extending the events in these ways
is clearly an empirical matter. So too is the question of whether events should be augmented
only when observed, or whether models should be trained to predict this more complex structure
as well. Eliciting human judgments about automatically inferred implicit events, as described in
Section 4.2, is a handy way of settling these questions empirically.

Further, insofar as event inference systems may be improved by augmenting events with ad-
ditional textual information, the extent to which pre-existing linguistic knowledge is required de-
serves investigation. For example, suppose that augmenting events with knowledge of adverbial
modifiers and other adjunct information (which is most directly derived from dependency parses)
ends up improving system performance. It may be the case that most of this improvement, or
perhaps even more, could be accounted for by simply adding as input, say, a five-word context
window surrounding the verb, allowing the RNN to learn which types of verbal modifications are
predictive for the task of held-out event inference. An approach like the Skip-thought vectors of
Kiros et al. (2015), which are trained to predict the sequence of words in one sentence from the
sequence of words in its preceding sentence, is in a sense the limiting case of the latter approach.
We will investigate comparing more unstructured events with structured events for implicit event
inference.

We thus propose two general non-exclusive approaches to improving event representations:
on the one hand, adding more explicit structure to events will capture more of the linguistically
important structure needed to represent event semantics. On the other hand, adding more raw data
to events will hopefully help disambiguate polysemous words and will provide more information
to condition predictions on. A neural net model can be easily modified to take the sorts of events
we propose as input; we may also wish to train models to predict more complex events as output.

5.3 Script Learning and Discourse Relations
Statistical Scripts are models of events co-occurring in text, and so are intimately related to more
general notions of discourse structure which have been previously studied computationally. Con-
sider the following examples, each of which expresses discursively important relationships be-
tween different clauses:

(13) After the war, Hannibal successfully ran for the office of suffete.
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(14) The Roman cavalry won an early victory by swiftly routing the Carthaginian horses.

(15) Because the local authorities had forbidden students from forming organizations and clubs,
Princip and other members of Young Bosnia met in secret.

The discourse connectives after, by and because in (13), (14), and (15), respectively, express im-
portant relationships between nearby events. The methods presented above ignore any explicit
or implicit discourse connectives such as these. That is, in the above methods, there is only one
type of relationship between events; however, differentiating between different types of event co-
occurrence by incorporating more fine-grained information (e.g. by noting that two events are
related by the words after or by) may be a fruitful way of improving statistical script performance.
We propose two general approaches to incorporating this type of discourse information into statis-
tical script systems: incorporating off-the-shelf discourse parsers, or learning unsupervised repre-
sentations of discourse connectives.

5.3.1 Incorporating Discourse Parsers

There are a number of freely-available discourse parsers, trained on different manually annotated
discourse treebanks with different annotation conventions. These discourse parsers take arbitrary
spans of text and automatically annotate them according to learned models of discourse structure.
The RST Discourse Treebank (Carlson et al., 2001) is a corpus of text annotated in the style of
Rhetorical Structure Theory (RST, (Mann and Thompson, 1988)). In this corpus, each document
is annotated with a single tree describing the structure of the discourse, with spans of text at the
leaves and labels from a closed set of types labeling edges. For example, in the following example
(from the RST Discourse Treebank), the two marked spans of text are annotated as being related
by a condition relation, indicating that the second marked span’s truth entails the truth of the first:

(16) [S.A. brewing would make a takeover offer for all of Bell Resources] [if it exercises the
option.]

The corpus has, for each document, a single tree of such annotations, with the root node repre-
senting the entire document, each leaf node representing a span of text, and intermediate nodes
representing relations between sections of the document. There are a number of automatic parsers
trained on this treebank which provide noisy automatic annotations according to these conventions,
of which the currently best-performing is that of Ji and Eisenstein (2014), to the best of our knowl-
edge. This parser’s output was shown to be empirically useful for Sentiment Analysis by Bhatia
et al. (2015).

In addition to the RST Discourse Treebank, there is one other large corpus of discourse anno-
tations on which parsers have been trained, the Penn Discourse Treebank (PDTB) (Prasad et al.,
2008). This corpus has more shallow annotations than the RST Discourse Treebank: relations
between some spans of text are labeled according to a fixed set of relations, as between two leaf
nodes in the RST discourse treebank, but documents do not have tree structure. The best current
PDTB parser is, to the best of our knowledge, that of Wang and Lan (2015). There is also a third
annotated discourse corpus, the Discourse Graphbank (Wolf et al., 2005) but, at 135 newswire
documents, it is too small to realistically train a broad-coverage discourse parser.
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We propose two general approaches to integrating the input of an off-the-shelf discourse parser
into statistical script learning systems. First, shallow annotations (pairwise labels between spans of
text, such as condition in the above example) can be straightforwardly incorporated into the RNN
framework presented above: an event’s representation can be augmented to indicate that it bears
a certain labeled discourse relation with another event, similar to how coreference information
between entities was encoded in section 4. Second, the deeper tree-structured discourse structures
output by an RST parser can be used to define the topology of a neural net. That is, instead of
a chain-structured LSTM modeling the discourse, a tree-structured LSTM (Tai et al., 2015; Zhu
et al., 2015) could be used, with the network’s tree structure dictated by the RST parser’s output.
This is similar to the approach used by Bhatia et al. (2015) for sentiment analysis, but they use a
simpler RNN and propagated a single scalar latent variable, instead of a vector-valued latent state.

5.3.2 Incorporating Learned Discourse Structure

Off-the-shelf discourse parsers capture one notion of discourse structure, namely, the discourse
structure which the designers of the treebank annotation conventions decided was generally im-
portant, without a particular end task in mind. However, this is not necessarily the discourse
information which is most useful for the task of predicting implicit events from text. Further, the
RST Discourse Treebank and the PDTB are both annotations of Wall Street Journal news articles
from the Penn Treebank (Marcus et al., 1999), which have a distinct formal register and are largely
about finance. It is therefore unclear to what extent these discourse parsers transfer successfully
to different domains, and it is unclear to what extent the discourse structure annotated in these
treebanks is the most useful structure for this task.

To address these concerns, we propose, as an alternative approach to using off-the-shelf dis-
course parsers, incorporating raw discourse cues explicitly into the model and learning relevant
latent features of these discourse cues in addition to the event representations. One simple ap-
proach is to note when a member of a closed set of discourse connectives (e.g. before, after,
because) relate events to each other syntactically, and add this additional structure to the input
event sequence. One interesting consequence of such an approach is that we would have the ability
to make queries of the form “what events can we infer as likely from a sequence of events and,
additionally, are related to a particular event via the connective because?” This could provide an
unsupervised way to infer a limited notion of, e.g., causality in event inference. This is similar in
spirit to the approach taken by Narasimhan and Barzilay (2015) to answer short multiple-choice
questions about passages. This could form an interesting alternative automated evaluation to the
Narrative Cloze.

Alternately, a set of discourse cues could be discovered automatically from a corpus using
some number of methods. For example, we could select as our set of discourse connectives the
most common prepositions and subordinating conjunctions relating verbs to each other and input
the presence of these discourse connectives between events in documents as proposed above.

We propose adding these automatically learned discourse cues as labels relating contiguous
events to each other, under the assumption that basic discourse structure (as expressed in the syn-
tactic relations between events in text) is crucial for understanding the semantics of how events
relate to each other, and therefore predictively useful for inferring additional events.
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5.4 Script Learning and Coreference
Finally, we propose using statistical models of events in sequence to empirically improve corefer-
ence resolution, the well-studied task of determining which noun phrases refer to the same entity.
To motivate this, consider this example, with noun phrases coreferring to Voltaire bolded:

(17) Voltaire, pretending to work in Paris as an assistant to a notary, spent much of his time
writing poetry. When his father found out, he sent Voltaire to study law, this time in Caen,
Normandy. Nevertheless, he continued to write, producing essays and historical studies.

The final occurrence of the pronoun he is, in the coreference system we use, misclassified as
coreferent with his father rather than Voltaire. This is likely because the main clause in the previous
sentence also has as subject the pronoun he which does, indeed, corefer with his father, and this is
a very strong cue for coreference. In this example, it is actually quite difficult to correctly resolve
the final pronoun without a reasoning step concluding that the person mentioned as continuing to
write in the last sentence is probably the same person mentioned writing in the first.

Information of this sort is ideally present in the script systems presented above: assuming
events are extracted properly, the RNN script model will ideally encode the fact that it’s quite
probable that an entity will engage in a “continue to write” activity after engaging in a “write”
activity. Conceivably, a statistical script system could be incorporated into a coreference resolu-
tion system to help make these sorts of inferences requiring event co-occurrence world knowledge.
There are many conceivable methods for this integration; the exact means of incorporating scripts
into coreference systems which is the most empirically beneficial is unclear. If the coreference sys-
tem is a feature-based machine learning classifier, script system probabilities could be integrated
directly as features. The Berkeley Coreference system (Durrett and Klein, 2013), for example, is
a State-of-the-Art ML-based system which admits the introduction of additional mention features.
One way to incorporate an RNN-based script model into this system is to include, as a feature of
noun mention pairs, the probabilities which a coreference-aware script model assigns to the se-
quence of events with the nouns made coreferent and, on the other hand, the probability assigned
to the sequence where the nouns do not corefer. There are also a number of conceivable ways of
incorporating noun-only RNN model probabilities as features to coreference systems. We propose
investigating the issue further.

6 Conclusion
The sorts of inferences made by statistical script systems are a prerequisite for robust Question-
Answering systems. Other tasks, for example coreference resolution, semantic role labeling, and,
potentially, syntactic parsing, could benefit from mature statistical script systems. We have pre-
sented a number of improvements of statistical script systems and have proposed a number of
topics for further investigation.

We first gave results indicating that incorporating interactions between entities involved in
events can help provide improved implicit event inferences from documents and, second, results
indicating that LSTM Recurrent Neural Nets handily outperform simple co-occurrence based sys-
tems on the task. We proposed four extensions of further work, ordered in increasing scope. First,

32



we proposed investigating different probabilistic Neural Net models. Second, we proposed further
improvements to event representations to incorporate more textual information. Third, we pro-
posed incorporating discourse connectives, either from an off-the-shelf discourse parser or with
simpler formulations, perhaps learned automatically. Finally, we proposed integrating script infor-
mation with coreference systems.

Ultimately, the utility of statistical script systems will come from their integration into other
systems of more interest as NLP end-tasks, for example Question Answering systems. Demon-
strating utility for Question Answering would likely require a large corpus of questions and an-
swers about implicit events in text, which would be a complex resource whose creation is beyond
the scope of the proposed work. Nonetheless, improving statistical script inferences per se is an
important first step.
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