
Copyright

by

Siddarth Subramanian

1995

Qualitative Multiple-Fault Diagnosis of Continuous Dynamic

Systems Using Behavioral Modes

by

Siddarth Subramanian, B. Tech.,M.S.C.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Ful�llment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 1995

Qualitative Multiple-Fault Diagnosis of Continuous Dynamic

Systems Using Behavioral Modes

Approved by
Dissertation Committee:

To my parents

Acknowledgments

I would �rst like to thank my adviser, Ray Mooney, for all his help with my work, the

encouragement he has given me over years of ups and downs in my research, and for his

patience and perseverance in reading through repeated revisions of this dissertation.

The granting agencies which have partially supported this research include the Na-

tional Science Foundation (under grants IRI-9310819 and IRI-9102926), Texas Advanced

Research Projects (grant ARP-003658-114) and the National Aeronautical and Space Ad-

ministration Ames Research Center (grant NCC 2-629). The �nancial help I received from

them was instrumental in enabling me to continue in graduate school and �nish the disser-

tation.

The students and faculty in the department who helped in some way are too numer-

ous to list completely. I am listing the most important ones and hope that any omissions

are forgiven. First, the members of my committee who gave me many helpful comments and

contributed to the revisions were (in no particular order) Peter Clark, Lyle Ungar, and Ben

Kuipers. I thank them all and hope this revised document meets with their approval. A

special thank you goes to Peter Clark for helping provide a new perspective on my results.

The student who perhaps had the most signi�cant impact on my work in these last

two years of graduate school was Bert Kay. I thank him for letting me barge into his o�ce

without warning, for his many helpful suggestions, and in particular, for the detailed help

he provided on the model of the Reaction Control System.

Other students who have helped signi�cantly in recent years include Je� Rickel,

Rich Mallory, Sowmya Ramachandran, and the THREV group consisting of Je� Mahoney,

John Zelle, Cindi Thompson, Tara Estlin, Paul Ba�es, and Mary Elaine Cali�. Others who

deserve special mentions for their friendship and camaraderie over the years include Tim

Collins, Neelakantan Kartha, and James Lester.

My parents continued to believe in me through the years. For this, and for their

continued support, I thank them.

Finally, I would like to thank my future wife Cilla McMillen (whom I intend to marry

on August 25th, just a week after I submit this dissertation). With her love and support I

found the will to keep on working when I would have preferred to give up. I owe her the

v

greatest debt of gratitude.

Siddarth Subramanian

The University of Texas at Austin

December 1995

vi

Qualitative Multiple-Fault Diagnosis of Continuous Dynamic

Systems Using Behavioral Modes

Publication No.

Siddarth Subramanian, Ph.D.

The University of Texas at Austin, 1995

Supervisor: Raymond J. Mooney

As systems like chemical plants, power plants, and automobiles get more complex,

online diagnostic systems are becoming increasingly important. One of the ways to rein in

the complexity of describing and reasoning about large systems such as these is to describe

them using qualitative rather than quantitative models.

Model-based diagnosis is a class of diagnostic techniques that use direct knowledge

about how a system functions instead of expert rules detailing causes for every possible

set of symptoms of a broken system. Our research builds on standard methods for model-

based diagnosis and extends them to the domain of complex dynamic systems described

using qualitative models.

We motivate and describe our algorithm for diagnosing faults in a dynamic system

given a qualitative model and a sequence of qualitative states. The main contributions

in this algorithm include a method for propagating dependencies while solving a general

constraint satisfaction problem, and a method for verifying the compatibility of a behavior

with a model across time. The algorithm can diagnose multiple faults and uses models of

faulty behavior, or behavioral modes.

We then demonstrate these techniques using an implemented program called Qdocs

and test it on some realistic problems. Through our experiments with a model of the reaction

control system (RCS) of the space shuttle and with a level-controller for a reaction tank,

we show that Qdocs demonstrates the best balance of generality, accuracy and e�ciency

among known systems.

vii

Contents

Acknowledgments v

Abstract vii

Chapter 1 Introduction 1

1.1 The Case for Automated Diagnosis . 1

1.2 The Case for Qualitative Reasoning . 2

1.3 Diagnosis for Systems Modeled Qualitatively 2

Chapter 2 Background 4

2.1 Model-Based Diagnosis . 4

2.1.1 Classifying Model-Based Diagnostic Systems 4

2.1.2 Constraint Suspension . 7

2.1.3 Reiter's Theory of Diagnosis and GDE 8

2.2 Qualitative Reasoning . 13

2.2.1 Qsim . 13

2.2.2 Alternative Approaches to Qualitative Reasoning 15

2.3 Qualitative Model-Based Diagnosis of Continuous Systems 16

2.3.1 Monitoring and Mimic . 16

2.3.2 Inc-Diagnose . 19

2.3.3 Motivation for Qdocs . 21

Chapter 3 Basic Diagnosis Algorithm 23

3.1 Representing Knowledge . 23

3.2 General Strategy . 26

3.3 The Hypothesis Checker . 31

3.3.1 Constraint Propagation . 34

3.3.2 Constraint Satisfaction . 37

3.3.3 Across-Time Veri�cation . 42

3.4 Analysis of Qdocs algorithm . 43

viii

Chapter 4 Diagnosis Algorithm Extensions 45

4.1 Handling Region Transitions . 45

4.2 Extending Across-Time Veri�cation . 47

4.3 Caching . 48

Chapter 5 Experimental Evaluation 53

5.1 Experimental Methodology . 53

5.2 Reaction Control System . 55

5.2.1 The RCS Model . 56

5.2.2 RCS Experiments . 61

5.3 Level-Controlled Tank . 64

5.4 The Utility of Caching . 67

Chapter 6 Related Work 70

6.1 Inc-Diagnose and Diamon . 70

6.2 Mimic and Qmimic . 71

6.3 Magellan-MT, Doc, and Ca-en . 72

6.4 Other Approaches . 73

Chapter 7 Future Work 75

7.1 Algorithm Improvements . 75

7.1.1 Across-time Veri�cation . 75

7.1.2 Caching Dependencies . 76

7.2 Implementation Improvements . 77

7.3 Incorporation into Industrial Monitoring Systems 77

Chapter 8 Conclusions 79

Appendix A The Reaction Control System 81

A.1 Qdocs Model of the RCS . 81

Appendix B A Sample Run of Qdocs on an RCS Diagnosis Problem 97

Appendix C The Level-Controlled Tank 117

Bibliography 124

Vita 128

ix

Chapter 1

Introduction

1.1 The Case for Automated Diagnosis

The world is increasingly �lled with complex devices. Although systems like automobiles,

aircraft, chemical plants, and others, have had the same basic design for many decades,

various subsystems have been added to meet the need for increased e�ciency, increased

power, and to meet design criteria such as safety and emission standards.

This trend of complication in devices has also meant that they are more and more

likely to fail in unpredictable ways. When they do, few human users understand enough

about these systems to be able to instantly diagnose the problem. Since unchecked failures in

such devices can sometimes have catastrophic e�ects, it is important to develop automated

monitoring systems that are able to diagnose faults as soon as they are detectable.

Various diagnosis algorithms have been devised, and diagnostic systems have been

built, over the last two decades [Shortli�e & Buchanan, 1975; de Kleer & Williams, 1987;

Reggia, Nau, & Wang, 1983]. These systems have been applied to the problems of medical

diagnosis, as well as to combinational circuit diagnosis and similar domains. However, as

we shall see, none of these diagnosis approaches are suitable for the kinds of continuous

dynamic systems that we are interested in.

The problem of building an e�ective diagnosis system that works in real-time can

be broken up into two subproblems. The �rst, known as monitoring, involves extracting

enough information from the device to determine the state of the device at any given time.

A monitoring system must also be able to detect that the device is in an anomalous state.

The second, which is the task more commonly thought of as diagnosis, is that of determining

what components could have \broken" and in what way they may have broken. It is this

second task that this research seeks to address in the context of complex dynamic systems.

1

1.2 The Case for Qualitative Reasoning

Complex devices have complex dynamics. Di�erential equation models can be built for most

simple devices and these can often be chained together to model many complex devices.

We also have numerical methods for solving almost any di�erential equation. However,

these methods get prohibitively expensive when reasoning about large di�erential equation

models with hundreds of variables.

Furthermore, these di�erential equation models are often too di�cult to formulate

precisely for all systems, as they often depend on knowledge of the exact parameters and

dimensions of the system and thus require precise measurements of all these parameters.

Somehow, humans are able to reason about physical systems without such detailed

knowledge. We are able to imagine what happens when, say, a car's radiator starts slowly

leaking { we are able to reason through the fact that there must be less water passing

through the engine block, to be able to conclude that the car will overheat. Conversely, if

we see the car overheating, we can easily come up with the diagnostic hypothesis that the

radiator is leaking, using the same chain of reasoning backwards.

The reason we are able to arrive at such conclusions is because we have the ability

to reason qualitatively about physical systems. By qualitative reasoning, we mean we can

reason in terms of levels, pressures, ows, etc., as being increasing or decreasing or above

or below some landmark value, without having to know precisely what their values are.

Instead of thinking in terms of di�erential equations, we propagate e�ects of values around

a mental model of the device, by using our knowledge of how di�erent values a�ect others.

Given that the devices we wish to diagnose faults in are complex, dynamic devices,

the above problems with building and simulating di�erential equation models apply. This

research therefore focusses on attempting to use qualitative techniques to solve the diagnosis

problem for complex dynamic systems.

A number of approaches to the problem of modeling systems qualitatively have been

studied in the literature [deKleer & Brown, 1984; Forbus, 1984; Kuipers, 1984]. These mod-

eling techniques, however, have mainly been studied in the context of simulation systems.

While there have been some diagnosis systems to come out of this area of research (e.g.,

[Ng, 1990], [Dvorak, 1992] and others), these solutions to the diagnosis problem are, as we

shall see, limited in nature.

1.3 Diagnosis for Systems Modeled Qualitatively

The research we report on in this dissertation is an exploration of applying automated

diagnosis techniques to dynamic systems modeled qualitatively. In presenting our work, we

will highlight some key distinctions between our approach, and those of previously published

research. Our main contributions can be enumerated as follows.

2

1. We take a very general approach to the problem by combining a multiple-fault, fault-

model based diagnosis algorithm and a general qualitative language to describe con-

tinuous dynamic systems.

2. We develop techniques for propagating dependencies in the context of solving con-

straint satisfaction problems and we use these to extract information useful to our

diagnosis system.

3. We report on empirical tests of our algorithms obtained by applying them to large

continous dynamic systems in two di�erent domains, and show that they o�er practical

bene�ts over competing methods.

We will �rst introduce some of the early research in diagnosis and qualitative reason-

ing, as well as some of the earlier research on the qualitative diagnosis of dynamic systems

(Chapter 2). Next, in Chapter 3, we present the algorithms we use in our system Qdocs

(for Q
�
ualitative D

�
iagnosis O

�
f C
�
ontinuous S

�
ystems). This is followed, in Chapter 4, by a look

at some of the ways in which we have extended our algorithms to attempt to make them

more general or more e�cient. Our empirical testing and evaluation of Qdocs appears in

Chapter 5 where we apply our system to the diagnosis of faults in the Reaction Control

System of the Space Shuttle, as well as to a level-controlled reaction tank.

Chapter 6 then compares Qdocs to some of the other diagnostic methods that have

been applied to dynamic systems. In Chapter 7 we present some suggestions for future

directions for this research, and �nally, in Chapter 8 we give our conclusions.

3

Chapter 2

Background

This chapter provides an introduction to two of the main research areas that are integrated

in this dissertation. These areas, Model-Based Diagnosis and Qualitative Reasoning, have

developed essentially independently even though some of the main researchers in each area

have also done work in the other. We follow this with a discussion of some of the early work

on qualitative diagnosis of dynamic systems. This will set the stage and motivate our own

approach to the problem.

2.1 Model-Based Diagnosis

2.1.1 Classifying Model-Based Diagnostic Systems

The task of diagnosis is loosely de�ned as the reasoning that explains the symptoms ex-

hibited by a particular system, by inferring the causes for those symptoms. In the last two

decades, diagnostic reasoning has been an important focus of AI research. Starting with

Mycin[Shortli�e & Buchanan, 1975], a program to diagnose infectious diseases, a number of

systems have utilized an expert systems approach to diagnosis. The approach in these sys-

tems was to codify expert knowledge as rules that reasoned from symptoms to the suspected

underlying causes.

Figure 2.1 shows a diagram of the full adder circuit that is commonly used to demon-

strate and test diagnosis algorithms. The circuit normally works by adding the two bits in

b1 and b2 and then adding in the carry in c. The two outputs are the output bit bit-out

and the carry bit carry-out.

Suppose, at some point, the inputs are

b1 = 1, b2 = 0, and c = 1.

The expected outputs are

4

X1
X2

A2

A1
O1

b1

b2

c

bit−out

carry−out

x1−out

a2−out

a1−out

Figure 2.1: Full Adder Circuit

bit-out = 0 and carry-out = 1.

If instead carry-out equals 0, while bit-out is also 0 as expected, we know that there is

some fault in the system. Some of the possible faults are that the or-gate o1 is stuck at 0,

or that the and-gate a1 is stuck at 0. Alternatively, x1 and x2 could both be stuck at 0.

The expert systems approach to the problem of diagnosis in this domain would

be for an expert to exhaustively list rules for determining what the faults could be given

particular outputs. So, in this case, there would have to be rules suggesting all of the above

possibilities. Similar rules would exist for each distinct set of anomalous outputs for each

set of inputs.

In the mid-1980's, however, it was recognized by various researchers ([Reggia et al.,

1983],[Davis, 1984], and others) that this approach su�ered from a knowledge acquisition

problem. In other words, it would take a lot of work to distill all of an expert's knowledge

of a device or system and express it in terms of symptom-cause rules.

Such sets of rules are also hard to update to similar devices. If we added another

gate somewhere in the circuit of Figure 2.1, we would have to rebuild the entire set of rules

for the device. Further, to be complete, the rules would have to suggest all single-fault

possibilities for a set of anomalous outputs, as well as all the double-faults, triple-faults,

etc. Because of these problems, most such rule-based systems, like the ones from medical

diagnosis, were limited to heuristic rules that would suggest the most probable diagnoses

given a set of symptoms, and leave out some of the more marginal possibilities.

Researchers such as Reggia and Davis realized that human experts had knowledge

of an underlying causal model of the device that they used to reason from symptoms to

diagnoses. Since the underlying model was what the expert used, these researchers argued

that this model was easier to elicit from the expert than symptom-cause rules. The under-

5

lying models would also be easier to update because, for example, experts have no problem

moving from an analysis of a given circuit to one with one additional gate.

This realization led to the body of work that is known as Model-Based Diagnosis

(MBD) [Hamscher, Console, & deKleer, 1992]. An MBD system is one that starts with

some sort of causal model of how a device operates and uses this model to diagnose causes

when the symptoms are given.

MBD systems are further subdivided into a number of di�erent types. Poole [1989]

categorizes such systems along two axes. The �rst is the distinction between consistency-

based and abductive diagnostic systems. The distinction here is on what the diagnostic

systems are actually trying to achieve. In a consistency-based system, the e�ort is to

�nd some characterization of the device that is consistent with the observed symptoms.

An abductive system, on the other hand, is more concerned with actually explaining the

observed symptoms causally.

The distinction here is subtle but important. In the case of our adder circuit, and

given the inputs and outputs mentioned above, a consistency-based diagnostic system may

diagnose the problem as simply being in the or-gate o1. There need not be an accounting

of why the outputs are what they are in a consistency-based system. Instead, if simply

denying that the or-gate is working correctly makes the inputs and outputs consistent, then

this hypothesis is a consistency-based diagnosis of the observations. Thus the model of the

device would simply need to have information on how the device is supposed to function if

all the components are functioning normally.

However, for an abductive system (e.g., [Reggia et al., 1983]), a satisfactory diagnosis

would be one where the assumptions logically imply the observed behavior. So, given our

inputs and outputs above, we would have to make the assumption that the or-gate o1 is

stuck at zero and have logical rules that would then explain the value of 0 at the or-gate.

An alternative axis along which we can characterize diagnostic systems is according

to whether the hypotheses they generate consist of behavioral modes of components of a

device or if they simply indicate that a component may be broken. Behavioral modes are

known faulty, as well, as normal ways in which a component may be operating. Thus for

an or-gate such as o1, some of the possible modes may include normal and stuck-at-0. A

diagnosis system that gives the behavioral modes of each component of a device under faulty

observations is sometimes called a fault-based diagnosis system, as opposed to a normality-

based system which simply determines which components may be broken.

It may appear at �rst sight that normality-based diagnosis would have to be consistency-

based and fault-based would have to be abductive. In fact, most of the work on abduc-

tive diagnosis ([Reggia et al., 1983],[Ng, 1992], etc.) was also fault-based while most early

consistency-based systems ([Reiter, 1987; de Kleer &Williams, 1987]) were normality based.

However, there is no reason why a system should not be both fault-based and consistency-

6

1. Propagate input values through constraints to make predictions to output values. Using a trace
of the constraint propagation, determine, for each predicted output value, the components that
its value is dependent on. This is the dependency set for this predicted output value.

2. Consider all the output values which are di�erent from their predicted values. Take the
intersection of the dependency sets for each of these values to determine the initial set of
candidates.

3. For each candidate in this set, suspend the constraints associated with the candidate, and use
constraint propagation to determine consistency of the candidate with the observations.

Figure 2.2: Constraint Suspension algorithm

based and, in fact, Poole [1989] shows that these are orthogonal axes of classi�cation.

de Kleer and Williams [1989] and Struss and Dressler [1989] both independently formulated

algorithms for consistency-based diagnosis with behavioral modes.1

A consistency-based system with behavioral modes di�ers from an abductive system

in that it only needs to establish that some assignment of behavioral modes to components

is consistent with the observations. An abductive system using behavioral modes would

actually have to explain the observations.

For reasons that we shall give later, our research follows the consistency-based and

fault-based modes of diagnostic reasoning, and our main diagnostic engine is similar to

Sherlock, the algorithm introduced in [de Kleer & Williams, 1989]. In the following sec-

tions, we introduce and discuss the precursors of this algorithm followed by the Sherlock

algorithm itself.

2.1.2 Constraint Suspension

Constraint Suspension is one of the earlier techniques used for consistency-based diagnosis

[Davis, 1984]. As in many other constraint-based systems we shall be looking at, the

algorithm requires components of the device to be associated with constraints. Predictions

are made using a technique called constraint propagation, where individual constraints are

used to determine values of variables they act upon, based on the values of other variables

they act upon.

The technique of constraint suspension is a simple one and is summarized in Fig-

ure 2.2. Note from step 2 that this method makes a single-fault assumption. This is a fairly

common assumption in diagnosis systems, but one that is often not warranted, since nor-

mally independent components may fail simultaneously, either by coincidence, or because

of the same external factors.

1We shall use the terms fault modes and behavioral modes interchangably. The latter term is used to refer
to all the fault modes as well as the normal modes of the component.

7

Constraint suspension works simply by tracking through the constraint propagation

to determine which components could possibly have a�ected a given output value. It then

takes the intersection of all such dependency sets corresponding to discrepant predictions

and then allows all the constraints associated with one component at a time to be suspended.

For each such suspended set of constraints, the consistency of the device is checked to

determine if the component is a possible diagnosis.

In the example of Figure 2.1, if b1, b2, and c1 had values of 1, 0, and 1, respectively,

and if bit-out and carry-out were 0 and 0 respectively, then the only anomalous output

would be the carry-out value of 0. A dependency trace would reveal that the components

x1, o1, and a2 could have been involved in determining the anomalous value for carry-out.

The procedure would then have to suspend the constraints associated with each of

these and determine if the resulting model was now consistent with the observations. In

this case, all the candidates are consistent and could be considered possible diagnoses.

The main problem with this method is that the single-fault assumption is too restric-

tive and does not account for cases where di�erent components could fail simultaneously.

In fact, in cases which can only be covered using multiple-fault hypotheses, the method

simply fails completely since candidate hypotheses need not be limited to the intersection

of the dependency sets on the anomalous outputs.

2.1.3 Reiter's Theory of Diagnosis and GDE

Reiter [1987] was one of the �rst to propose a formal theory of diagnosis. His work also

includes an algorithm that is the basis for the diagnostic algorithm in Qdocs. Since much of

the terminology he uses is standard in model-based diagnosis and shall be used throughout

this dissertation, we introduce them now.

The following is a de�nition of the diagnostic problem.

De�nition 2.1.1 (Reiter) A diagnosis problem consists of a triple (sd, components,

obs) where sd is a system description, components is a set of components, and obs is a

set of observations.

In Reiter's formulation, the system description is a set of �rst-order formulae, the com-
ponents are a set of constants and the observations are another set of formulae. The full
adder of Figure 2.1 would have a system description that would include formulae like the
following:

(andg(a) ^ (in1(a) = 1) ^ (in2(a) = 1) ^ :ab(a) �! (out(a) = 1)

(andg(a) ^ ((in1(a) = 0) _ (in2(a) = 0)) ^ :ab(a) �! (out(a) = 0)

In other words, if the ab predicate does not have a true value for the and-gate a, then
the value for out(a) is given by the conjunction of in1(a) and in2(a) (where true = 1 and

8

false = 0). The system description also contains similar formulae for each of the types of
components in the system and circuit-speci�c formulae such as andg(a1), andg(a2), etc.
The observations here are all the input and the output values in any given situation,
e.g.,

(b1 = 1) ^ (b2 = 0) ^ (c1 = 1) ^ (bit-out = 0) ^ (carry-out = 0)

ab is thus a predicate that must be de�ned over all the components of the system. Its

intuitive meaning is that if it holds true for any component, that component is believed to

be faulty and thus the constraints normally imposed by that component (or the equivalent

logical formulae) may be suspended. A diagnosis is then a minimal set of components for

which, assuming the ab predicate true, renders the system consistent with the observations.

By the word minimal, we mean that the system will be inconsistent with the observations

if we assumed that ab were only true for any subset of that set of components.

More formally, we can de�ne a diagnosis as follows:

De�nition 2.1.2 (Reiter) A diagnosis for (sd, components, obs) is a minimal set � �

components such that

sd [obs [fab(c) j c ��g [f:ab(c) j c � components��g

is consistent.

In order to compute these diagnoses, Reiter relies on two more de�nitions.

De�nition 2.1.3 (Reiter) A conict set for (sd, components, obs) is a set fc1 : : : ckg �

components such that

sd [obs [f:ab(c1); : : : ;:ab(ck)g

is inconsistent.

Thus, a conict set is a subset of components that cannot all be functioning normally at

the same time, given the observations and the system description. At least one component

in each conict set must be ab. So, for the adder circuit with inputs, as in the last section,

of 1, 0, and 1, and outputs of 0 and 0, a conict occurs at the carry-out bit. Since the

prediction of 1 for this output is computed under the assumption that ab is untrue for x1,

a2, and o1, a conict set for this system, with this set of observations, is fx1, a2, o1g.

De�nition 2.1.4 (Reiter) A hitting set for a collection of sets C is a set H �
S
S�C S

such that H \ S 6= fg for each S�C. A hitting set for C is minimal if no proper subset is

also a hitting set.

9

{x1, o1, a2}

{a1, o1}

x1 o1 a2

a1 o1 a1 o1

= possible diagnoses

= pruned nodes

{a1, o1}

Figure 2.3: Hitting Set Tree for the Full Adder example

A hitting set is therefore a set that consists of at least one element of each of the conict

sets. Reiter proves that a diagnosis satisfying De�nition 2.1.2 above is a minimal hitting

set for the set of conict sets for the system.

In the full-adder example, if we test the circuit again with all the inputs at 1, we

predict values of 1 for both bit-out and carry-out. However, if we observe a value of 0

for carry-out, we obtain a conict set of fa1, o1g since the output of a1 is predicted to be

1, and that alone would imply an output of 1 for o1 if it is not ab. We must thus �nd a

minimal hitting set that hits both this conict and the one derived above { fx1, a2, o1g.

The set fo1g is one such set and is thus a diagnosis for this circuit.

These de�nitions suggest an algorithm for computing diagnoses. Reiter assumes that

there is some theorem prover that is able to generate conict sets. Given the set of conict

sets, his algorithm computes all the diagnoses by computing a hitting set tree (HS-tree)

where each node contains a conict set and each link is labelled with a component. An

HS-tree is expanded at each leaf by labelling it with a conict set that has not yet been hit

by the set of components corresponding to the path from the root to that leaf. This enables

the creation of new links corresponding to hitting each component in the conict. When a

leaf node is reached where the set of components on the path from the root to the leaf hits

all the conict sets, this set is a minimal hitting set.

Figure 2.3 is an HS-tree for the full adder example with conict sets of fx1, o1, a2g

10

and fa1, o1g. The conict at the root node is fx1, o1, a2g and each of these components

is a label on a child link from the root node. The link labelled o1 hits both conict sets,

and thus represents a diagnosis. The other child nodes still need to hit the conict fa1,

o1g. Thus each of these has child nodes created by hitting each of the members of this

conict. However, the ones that hit o1 are pruned because the diagnoses they represent are

not minimal (since fo1g is already a diagnosis). The other two do represent diagnoses. The

complete list of minimal diagnoses for this set of conicts is [fo1g, fx1, a1g, fa2, a1g].

Reiter left the computing of the conict sets to be a problem-dependent task. A

resolution theorem prover would be a general solution to the conict set generation problem,

but Reiter suggests that a more problem-speci�c method would be more appropriate in most

cases because general theorem provers are not very e�cient.

The General Diagnostic Engine (GDE) of de Kleer and Williams [1987] was an in-

dependent body of research that yielded very similar algorithms but without the same

explicit logical framework. DeKleer's algorithm, like Reiter's, computes conict sets of

components that are inconsistent with the observations. However, unlike Reiter, who char-

acterized systems as sets of formulae, deKleer characterized them as sets of constraints

acting on variables. In order to compute conicts, GDE makes assumptions about the state

of components in the system and then uses constraint propagation to determine if these as-

sumptions are consistent with the observations. An Assumption-Based Truth Maintenance

system (ATMS) [de Kleer, 1986] was used to cache these computations and make conict

and test generation e�cient.

An ATMS maintains justi�cations which are sets of beliefs that in conjunction, sup-

port a particular belief. These supporting beliefs may, in turn, be supported by other

justi�cations, or they may be assumptions. An assumption here is a belief that supports

itself. The ATMS can be used to compute environments for beliefs, which are underlying

sets of assumptions, which, in conjunction, support these beliefs.

In its application to diagnosis, the assertions that are cached away in the ATMS

are values for variables and the underlying assumptions are the components (or behavioral

modes) that support the computation of that value. If some environment is a contradiction,

it is said to support ? (which is the contradiction node) and is a conict set. The ATMS has

been found to be e�ective at saving on computational e�ort in GDE and similar diagnosis

systems.

DeKleer's algorithm for building diagnoses is similar to Reiter's. It involves incre-

mentally growing them by attempting to hit each conict set. This is equivalent to Reiter's

approach of building an HS-Tree. Again, the candidate diagnoses are limited to minimal

sets of components.

This early work on GDE was followed by a number of extensions. DeKleer's [1991]

paper is a detailed study of using probabilities of component failures for diagnosis, an idea

11

that was briey introduced in [de Kleer & Williams, 1989]. In the latter paper, behavioral

modes were also introduced into the GDE framework. The resulting system, Sherlock, is

of particular interest to us since it most closely resembles the Qdocs algorithm.

Sherlock handles behavioral modes by having assumptions in the ATMS be as-

signments of modes to di�erent components rather than simply whether a component is

functioning correctly or not. Each mode is either a faulty or normal mode of behavior

for the component. In the case of our full adder, Sherlock, when given the inputs and

outputs from our example of the previous section, is able to come up with more detailed

hypotheses, such as, for example, that the or-gate o1 is stuck at zero and not just that it is

faulty.
So, for an and-gate, the axioms would now look as follows:

andg(a) ^ (in1(a) = 1) ^ (in2(a) = 1) ^ normal(a) �! (out(a) = 1)

andg(a) ^ ((in1(a) = 0) _ (in2(a) = 0)) ^ normal(a) �! (out(a) = 0)

andg(a) ^ stuck-at-0(a) �! (out(a) = 0)

andg(a) ^ stuck-at-1(a) �! (out(a) = 1)

In other words, there would be axioms detailing an and-gate's behavior under each of its
many modes. In addition to these, we must have a constraint that says that an and-gate
must be in one of its three possible modes:

:andg(a) _ normal(a) _ stuck-at-0(a) _ stuck-at-1(a)

With the inputs and outputs for this circuit as given on page 9, one of the possible diagnoses

would be fstuck-at-0(o1)g, i.e., that the or-gate o1, is stuck at 0.

The many possible modes for each component increases the search space of possible

diagnoses signi�cantly.. In order to control the combinatorics, Sherlock uses a priori

probabilities for each behavioral mode and a best-�rst search algorithm through the space

of possible candidates in order to test the most likely new hypotheses �rst. Figure 2.4 is

a slightly simpli�ed version of Sherlock's algorithm from [de Kleer & Williams, 1989].2

The predictor mentioned in step 4 of the algorithm is a constraint propagator that uses

an ATMS and predicts values for other variables given observations and rules describing

behavior of components under di�erent modes. As we shall see, redesigning this step to

work with dynamic systems and qualitative models is the main thrust of this thesis.

In our adder circuit example, the exact sequences of conicts and candidate diagnoses

that Sherlock would generate depends on the probabilities assigned to all the modes of the

components. Since this algorithm forms the basis for Qdocs's algorithm, we shall examine

the algorithm in more detail and consider an example later, in Chapter 3.

2In addition to the algorithm shown in Figure 2.4, Sherlock also uses Bayesian methods to predict
the posterior probability of a candidate given the predictions made. Since we do not have such detailed
probabilistic information for the problems to which we apply Qdocs, we omit this part of the Sherlock
algorithm.

12

1. Initialize the set of consistent candidates and the set of conicts to the empty set.

2. If there are enough candidates, stop.

3. Push the best-�rst search forward by �nding the next highest probability candidate that hits
all the minimal conicts.

4. Focus the predictor on this candidate and use constraint propagation to determine if the
candidate is consistent with the observations. If it is not, a new conict will be generated.

5. If a conict was generated, add it to the list of conicts and go to step 3, else...

6. Add the current candidate to the list of consistent candidates and go to step 2.

Figure 2.4: Sherlock Algorithm

2.2 Qualitative Reasoning

The research on Qualitative Reasoning (QR) arose from a desire to capture human abilities

to reason about physical systems without detailed numerical models. We are usually able

to state, for example, that a bathtub that starts �lling with water coming in at a steady

rate will continue �lling until it either reaches a point where its drain rate is equal to the

inow rate or it will reach the top and overow. We do not need the dimensions of the tub

or the exact ow rates to be able to predict that.

In order to make such predictions, a number of researchers [deKleer & Brown, 1984;

Forbus, 1984; Kuipers, 1984] have proposed various methods for describing and simulating

systems qualitatively. We shall concentrate on the last of these because it is the one that is

most relevant to this research. The next subsection summarizes the Qsim algorithm which

is the primary research product of the Kuipers group, while the subsection that follows

discusses some of the achievements of the Qsim approach and summarizes some of the

other approaches.

2.2.1 Qsim

A model in the Qsim framework is represented using a qualitative di�erential equation

(QDE). A QDE consists of a set of variables (also known as quantities), their quantity

spaces, and a set of qualitative constraints between them.

A quantity space for a variable consists of a sequence of landmark values. These

are values that can be qualitatively distinguished from the rest of the quantity space. For

example, in a bathtub, the landmark values for the level of water in the tub are empty and

full. A level between these two values can be described as being in the interval (empty

full).

Qualitative constraints describe how variables relate to each other. Qsim de�nes a

13

1. Complete the initial state by solving the CSP for the given model. Put the resulting
states on an agenda.

2. If agenda is empty, exit. Otherwise, pop a state o� the agenda.

3. Generate all successor states that can immediately follow the given state by continuity.

4. Solve the CSP for the given model for these states { put all states that are consistent
with the constraints of the model on the agenda. Go to step 2.

Figure 2.5: Simpli�ed Qsim algorithm

number of possible constraint types. For example if one variable monotonically increases as

another variable increases, it is described using an M+ constraint. In our bathtub example,

this is the constraint that holds between the level of water and the pressure of water at the

drain (which in turn is related by an M+ constraint with the outow rate). Some of the

other possible constraint types would include d/dt for derivative constraints, M{ for inverse

monotonic constraints, Add to describe variables which are the sum of two other variables,

etc.

Qualitative constraints can also have corresponding values. If we know that when

some particular variable is at a particular value, then other variables in the constraint are

at some other given values, then we can establish a correspondence between them. For

example, in the aforementioned constraint beween level and pressure, we know that when

the level of the water is at empty, the pressure is at 0. The M+ constraint between the two

therefore has a corresponding value pair of (empty 0).

Given this information in a QDE and a partially speci�ed initial state (assignment

of values to a subset of variables), Qsim produces a tree giving all the possible qualitative

behaviors of the device (known as a behavior tree). So if we say that the bathtub has an

initial state of being empty, and the inow is a given constant value, Qsim will predict that

the level will rise continuously until it either overows or it reaches an equilibrium level

where the outow through the drain equals the given inow.

A simpli�ed version of the Qsim algorithm is shown in Figure 2.5. Since a Qsim

model is simply a set of constraints, completing a partially speci�ed state (assigning consis-

tent values to all unspeci�ed variables) is a constraint satisfaction problem (or CSP). Qsim

completes the initial state by solving the CSP using, �rst, a constraint propagator, and

second, a combination of the techniques of Waltz-�ltering [Waltz, 1975] and backtracking.

Given a set of possible states on its agenda, it picks one state and then generates successors

that are continuous with it and are consistent with the constraints of the model. Continu-

ity between two states in Qsim means that each variable in the model varies continuously

14

from one state to the next i.e., it does not make any discontinous jumps in magnitude or

direction of change. By continuing this process of generating successor states, Qsim builds

a behavior tree where each branch is a sequence of qualitative states representing a possible

behavior of the system. We shall discuss the actual algorithms Qsim uses to solve the CSP

later as part of our discussion of the Qdocs algorithm.

2.2.2 Alternative Approaches to Qualitative Reasoning

The Qsim algorithm has been used extensively as a research tool to perform a number of

di�erent tasks. These include modeling and simulation of various chemical plants ([Catino,

1993; Dalle Molle, 1989]), monitoring and diagnosis ([Dvorak, 1992; Lackinger & Nejdl,

1991]), compiling and simulating qualitative processes [Farquhar, 1993], and query answer-

ing in a large-scale knowledge bases [Rickel, 1995]. Qsim, however, has not been the only

approach to qualitative reasoning. Some of the other approaches to QR include deKleer and

Brown's Theory of Conuences [deKleer & Brown, 1984] and Forbus's Qualitative Process

Theory [Forbus, 1984].

The Theory of Conuences models systems qualitatively in terms of the signs of

quantities and the possible ways in which these quantities (or variables) can inuence each

other. There is no speci�c information, however, on how variables are related. For example,

in the bathtub example mentioned in the previous section, the Qsim model had an M+

constraint between the level of water and the pressure at the drain. In Conuence theory,

the best statement we can make about these quantities is that the sign of the level is the

same as the sign of the pressure and that the sign of the derivative of level is the same as the

sign of the derivative of the pressure. Unlike the M+ constraint, it does not say anything

about the relationship between these quantities at any time following a given state of the

system. Kuipers [1994] argues that Qsim is thus a more powerful representation for QR.

Forbus's Qualitative Process Theory (QPT) and the Qualitative Process Engine

(QPE) o�er another approach to the problem of QR. The di�erence between this approach

and the Qsim approach is primarily in terms of the initial speci�cation of the model. In

QPT, the model is presented as a set of idealized views and processes. These correspond to

di�erent kinds of sets of objects, and of inuencing processes respectively. For our bathtub

example, we can describe a liquid container as a view and the inow and outow as processes

that act on liquid containers. Given idealized model fragments of these objects and an initial

layout of the system, the reasoning task is to construct the composite model and to perform

a qualitative simulation. Farquhar [1993] has built a system called the Qualitative Process

Compiler (QPC) that takes such a speci�cation and builds a Qsim model which then gets

simulated by Qsim.

QPT is thus a useful tool for model-building where there are well-de�ned processes

and views that can be modeled conveniently but the composite model changes dynamically.

15

Since our research does not address the model-building problem per se, the models we use

are built from scratch.

2.3 Qualitative Model-Based Diagnosis of Continuous Sys-

tems

In the previous sections, we have introduced some of the foundational work in Model-Based

Diagnosis and Qualitative Reasoning that have inuenced our research. Unfortunately,

most of the work on model-based diagnosis has been in the area of static systems such as

combinational circuits, and not the continuous dynamic systems of interest to us.

In this section we will look at some of the few exceptions to this that our research is

built upon. In the �rst subsection we will look at the concept of monitoring in general and

speci�cally at theMimic system [Dvorak, 1992], while in the second subsection we will look

at Inc-Diagnose [Ng, 1991]. In the �nal subsection we will motivate our own approach.

2.3.1 Monitoring and Mimic

The problem of diagnosis as applied to continuous dynamic systems needs to be looked

at in the larger context of monitoring systems. A monitoring system is generally de�ned

in the literature ([Dvorak, 1992], [Doyle, Sellers, & Atkinson, 1989] and others) as an on-

line system that receives numerical values from sensors placed appropriately on a device

and tracks the behavior of the device in real-time. Traditionally, a monitoring system will

use the information from the sensors as input to a program that sets o� alarms when the

device is behaving abnormally. These systems, which are currently installed in most modern

industrial plants, usually trigger alarms only when certain sensor inputs fall above or below

predetermined threshold levels.

Modern monitoring systems as envisioned by AI researchers (e.g.,[Dvorak, 1992;

Doyle et al., 1989; Lackinger & Nejdl, 1991]), go beyond this and try to simulate a model

of the device in order to predict its behaviour and to use these predicted values to detect

faults. This is a more sophisticated technique than the traditional threshold alarm and is a

necessity if the monitoring system is for devices that do not normally operate in equilibrium.

The relationship between monitoring and diagnosis is as follows: the monitoring

system detects that there are faults, while the diagnosis system isolates them. Both Mimic

[Dvorak, 1992] and Diamon [Lackinger & Nejdl, 1991], consider the diagnostic system to

be an essentially distinct adjunct to the monitoring system.

Our research focusses exclusively on the problem of diagnosis in such systems. There

are a number of issues within the monitoring domain which are important research problems

and have partial solutions in the literature, but which we shall not address as part of this

16

research. Among these are the issues of how often to sample the sensors in order to ensure

that the monitoring system does not miss any qualitatively signi�cant states; how the

numerical values obtained from the sensors are mapped to landmarks from the qualitative

model; how discrepancies between the predicted and sensed values are detected in the face

of the ambiguity of the quantitative-qualitative mapping, etc.

For the purposes of this research, we assume that some monitoring system is tracking

the behavior of the device using qualitative models, and when a discrepancy is detected, it

takes a sequence of qualitative sensor readings, and passes it along to the diagnosis system.

Thus the input to the Qdocs system is simply a sequence of qualitative values from a given

set of sensors. The output is one or more diagnoses.

Mimic uses a technique known as dependency tracing in its diagnostic module. Since

Mimic set the standard as the main model-based diagnostic system to come out of the Qsim

research project, we think it is worthwhile to explain this technique and our motivation for

moving away from the dependency tracing algorithm.

In addition to a Qsim model of the device where constraints are linked with compo-

nents, Mimic requires a model of the component structure of the device with information

on which components can inuence which other components. For example, if we have a

tank with an outlet through which water ows out into another tank (the classic cascaded

tanks example that is used in [Dvorak, 1992]), it is impossible for a fault, such as a leak or

a clogged drain, in the tank below, to have any e�ect on the tank above. This information

is encoded in a dependency graph. Mimic uses this dependency graph to suggest candidate

hypotheses in the following manner: given that a particular sensor shows a value that is

inconsistent with the Qsim predictions of the model of the device, the dependency tracer

looks upstream in the dependency graph of possible components that could have an e�ect

on the reading of the sensor. All fault modes of all these components are considered as

possible candidates for faults. However, for e�ciency reasons, Mimic makes a single-fault

assumption.

This technique is a fairly e�cient one for producing hypotheses given the right

inuence model. However, it su�ers from a number of drawbacks which we shall list here.

First, it requires the model-builder to come up with a whole separate component-

connection model for the device. Such models are not obvious and may take some e�ort to

generate. For example, consider a model for two tanks connected through a pipe. One may

be tempted to assert that faults in the pipe only a�ect the tank that the pipe drains into.

However, if the pipe becomes clogged or if the uid backs up through the pipe, it may also

a�ect the amount of water in the draining tank. Thus the e�ects of components have to be

considered under all possible fault scenarios before one can assert the directionality of the

e�ects of a component.

The second drawback to the dependency tracing algorithm is that in large devices

17

Overflow alarm
Inflow

Level Sensor

Tank A

Tank B

Outflow Sensor

Figure 2.6: Cascaded Tanks

with many complex parts there are just too many dependencies going in all directions. Neat

divisions in the dependency graph, as in the cascaded tanks, are rare. This means that most

anomalous behaviors will result in a large number of possible components that could have

been responsible, and a large number of candidate hypotheses will have to be considered.

The third, and perhaps most important, reason for abandoning the dependency

tracing approach of Mimic is that a given fault may not even be causally upstream from

the sensor that gave the anomalous reading. A simple example will illustrate this. Consider

the structure of the cascaded tanks shown in Figure 2.6. The model has a break in the

causal dependency graph since nothing in Tank B can a�ect anything in Tank A.

We assume that there is a level (or amount) sensor and an outow sensor in Tank

B, but only an overow sensor in Tank A. Now suppose we start simulating the model and

match sensor readings to qualitative states asMimic does. Furthermore, suppose we gauge

over a certain period of time that the level of Tank B is falling but that the ow rate out

of Tank B is apparently not high enough to account for the ow. Given some information

in the model on the relationship between level and ow rates in Tank B, we may be able to

deduce that the level in Tank A must be falling.

Now suppose that the overow alarm in Tank A is triggered. This contradicts our

prediction that the level in Tank A was falling. Given this information, Mimic would use

18

causal dependency tracing to look upstream in the dependency graph from the sensor where

the contradiction was detected to �nd all possible single faults.

Since this fault was located at the overow sensor, the only places where Mimic

might detect faults are within Tank A and in the input stream. This ignores the possibility

that there are faults in one or both of the sensors in Tank B which were responsible for our

computation of a falling value for the level in Tank A.

The basic problem with this mode of reasoning is that if predictions are to be made in

acausal directions, then the predictions are dependent on components that are not causally

upstream from them. Since Qsim propagates values without regard to causality, dependen-

cies must be propagated in all directions, not simply causally upstream.

If these causal dependencies are not used, Mimic's diagnosis algorithm simply be-

comes a generate-and-test algorithm. A generate-and-test algorithm would simply generate

faults in a predetermined order and test them by attempting to simulate the given behavior.

The actual order in which faults are generated can vary { in a domain where probabilities of

faults are known, the most reasonable order would be a most-probable �rst ordering. Such

an ordering would allow the generator to produce single as well as multiple faults. We use

such a generate-and-test algorithm as a baseline system to compare Qdocs against in our

experiments in Chapter 5.

2.3.2 Inc-Diagnose

The Qdocs algorithm is based on some of the ideas proposed by Ng [1990, 1991]. Ng's

algorithm Inc-Diagnose was an early attempt at solving the same problem as Qdocs and

is modeled after Reiter's algorithm which we introduced in Section 2.1.3.

Ng extended Reiter's algorithm by using Qsim's constraint propagator in place of

the theorem prover that Reiter assumes. It incrementally uses constraint propagation on

each of the input qualitative states to build conict sets and then uses these conicts to

build a Hitting Set Tree (HS-Tree) just as in Reiter's algorithm. In order to explain this

algorithm, we will need to go into some detail intoQsim's constraint propagation algorithm.

As we discussed in the previous chapter, Qsim must solve a constraint satisfaction

problem (CSP) as its �rst step towards producing a qualitative simulation. Qsim combines

a variety of approaches to this problem. The three main steps of its algorithm are:

1. Constraint Propagation,

2. Waltz-�ltering, and

3. Backtracking.

We shall look at the Waltz-�ltering and Backtracking algorithms in the next chapter as

they form important parts of the Qdocs algorithm. Qsim's Constraint Propagation is an

19

Variable Values

A 0 a0 a1
B 0 b0 b1
C 0 c0 c1
D 0 d0 d1
E 0 e0 e1 e2

Constraint Corresponding Values

(M+ A B) (0 0) (a0 b0) (a1 b1)
(Mult B C E) (0 0 0) (0 c0 0) : : : (b0 c0 e1) : : :

(Add C D E) (0 0 0) (0 d0 e0) (c0 0 e0) (c0 d0 e1) : : :

: : : : : :

Figure 2.7: A simple Qsim Model

important part of both Inc-Diagnose and Qdocs and hence we shall discuss it here.

Figure 2.7 is a representation of a simpli�ed Qsim model we will use to illustrate

Qsim's constraint propagation algorithm. The �rst of these constraints, (M+ A B), is one

where the value of either variable is completely determined by the value of the other. So,

for example, if we know that A has value a0, a simple constraint propagator can conclude

that B must have the value b0. As we shall see, however, it will not always be possible to

determine a value for a variable given values for other variables in the constraint network

using propagation alone. In such cases, we say that constraint propagation is blocked.

Simple propagation is obviously a very e�cient way of solving the CSP for a given

network. The algorithm is O(n2) in the number of constraints in the network. Inc-

Diagnose, like most other algorithms in the literature [de Kleer &Williams, 1987; Lackinger

& Nejdl, 1991] is based on the assumption that propagation through the constraint network

will always be possible. Given a Qsim model and a set of initial values for some variables,

Inc-Diagnose propagates the e�ects of these initial values to complete the state while

checking consistency with each of the constraints. While propagating values, the system

also keeps track of which constraints are responsible for producing which values. Since these

constraints are due to particular components of the device, this is equivalent to tracking

the e�ects of the components of the device. If any of the constraints is inconsistent with

the values of the variables it acts upon, Inc-Diagnose returns, as a conict, the set of

20

all the components responsible for these values. Inc-Diagnose computes conict sets for

di�erent qualitative states of the given behavior and uses these conicts as input to Reiter's

algorithm to compute all the possible minimal diagnoses.

Unfortunately, a general constraint network will not always allow simple propagation.

We can easily see this in the constraint model shown in Figure 2.7. Suppose we know that B

has the value b0 and D has the value d0. Consider the constraints (Mult B C E) (i.e., that B

� C = E) and (Add C D E) (or C + D = E). An analysis of the corresponding values listed for

these constraints would reveal that the only consistent values for C and E, given the above

values for B and D, are c0 and e1 respectively. However, when we attempt to propagate

values through these constraints we discover that since we only have values for one variable

of each of these constraints, we cannot get any more information from propagation.

The fact that propagation here failed to �nd values for these variables does not

imply that the network is consistent. Suppose we had yet another constraint (M+ C E) with

corresponding values including the pair (c0 e0). Since in our example the only values for

C and E are c0 and e1 respectively, this constraint causes the state to be contradictory.

However, with this new set of constraints, we would still not be able to get values for C or

E, and thus would not be able to detect the contradiction.

This incompleteness of Inc-Diagnose's propagation algorithm, due to its reliance

on Qsim's propagator as its only means of generating conicts, is a major limitation on its

diagnostic capability. The e�ect of using an incomplete propagation procedure to compute

conict sets is that Inc-Diagnose may produce unsound diagnoses. This is because when

a contradictory hypothesis is tested, it may well be found consistent and thus presented as

a diagnosis even though it contradicts the observations.

2.3.3 Motivation for Qdocs

The goal of our research has been to attempt to correct the aws associated with the

precursor algorithms we have discussed in the previous sections. We do this in a number of

ways.

First, because Qsim uses a general constraint-based language and has been proven

to be a useful tool in describing and simulating dynamic systems qualitatively, it is the ideal

language for a general qualitative diagnostic system.

Second, Qsim produces a disjunction of possible behaviors for any given model.

This means that while we may be able to show that a particular sequence of observations

is consistent with a particular model, we cannot show that the model logically implies the

observations as we would need to in an abductive system. This is why, a Qsim-based

diagnostic system would have to use a consistency-based diagnosis algorithm, rather than

an abductive one.

Third, since components of dynamic systems often fail in predictable ways, a diag-

21

nosis algorithm for such systems should have the ability to make use of behavioral-mode

information in doing diagnosis.

These considerations all prompted us to choose to build a Sherlock-based diagno-

sis system with Qsim providing a constraint language. Furthermore, we wanted to avoid

the speci�c problems with acausal predictions that Mimic exhibits and the incompleteness

problem of Inc-Diagnose. We avoid the acausal prediction problem by using dependencies

computed from the actual prediction process rather than a post-prediction causal analysis.

The incompleteness problem of Inc-Diagnose is overcome by incorporating more general

constraint satisfaction and across-time veri�cation algorithms adapted from Qsim, and in-

corporating dependency propagation into these procedures.

22

Chapter 3

Basic Diagnosis Algorithm

This chapter presents the knowledge representation and algorithms that Qdocs uses to

generate diagnoses from a sequence of qualitative states representing a behavior that is

inconsistent with the normal model of a given system. There are many distinct procedures

in Qdocs which we look at in turn. The �rst section discusses the knowledge representation

that Qdocs uses, while the remaining sections all look at parts of the Qdocs algorithm.

3.1 Representing Knowledge

Most of the information that Qdocs needs comes from the Qsim model of the system.

However, there is some information that Qsim models do not provide that is essential to

the diagnosis task. In order to illustrate the knowledge representation we use and our

algorithm, we introduce a simple diagnosis problem as an example.

Consider the bathtub shown in in Figure 3.1 It is assumed that this bathtub is mon-

itored by sensors measuring the amount of water in the tub and the ow rate of the water

through the drain. Some of the faults that can be posited about this system include a

blocked drain, and sensors stuck at various levels. The bathtub is �rst represented using

a Qsim model as shown in Figure 3.2. Qsim allows the model builder to de�ne discrete

variables that can be used to de�ne conditions on constraints and thus allows the combi-

nation of distinct models into one description. The description is thus a constraint model

with the mode variables acting as parameters that turn constraints on and o� depending

on the active faults of the system. So, in the parameterized constraints for the drain shown

in Figure 3.2, if the variable drain-mode has the value blocked, the model speci�es that the

outflow must have value zero and be steady. If, on the other hand, the drain is in a normal

mode, the outow is related to the pressure through an m+ (monotonically increasing)

constraint. Finally, we also allow the drain to be in an unknown mode where the quantity

that the drain controls, i.e., the outflow remains unconstrained. This facility is included to

23

Level sensor

Outflow sensor

Inlet valve

Figure 3.1: The Bathtub Example

allow for unanticipated faults in the device.

In general, the conditions for activating a constraint may be any logical expres-

sion built using conditions on mode variables (e.g., (and (comp1-mode mode1) (comp2-mode

mode2)). We shall refer to these expressions as mode expressions.

In order to do diagnosis, we will also need to provide a method for associating

the mode variables of the Qsim model with components. To achieve this, an additional

structure must be provided. Qdocs provides the defComponents facility for this purpose.

A defComponents description consists of a number of clauses corresponding to each of the

components in the system. The defComponents description for the bathtub example is

shown in Figure 3.3. The �rst element of each clause is the name of the component (e.g.,

drain). The second element is the mode variable in the Qsim model associated with it,

e.g., drain-mode. The remaining elements are the actual values that these mode variables

can have as well as their a priori probabilities. These probabilities are used by Qdocs

to rank candidate diagnoses and select the most probable ones. We make the simplifying

assumption that the components are independent. This means that the a priori probability

of two components being in two given modes is simply the product of their individual mode

probabilities.

The input to Qdocs consists of one or more consecutive qualitative states of the

24

Quantity Spaces

(amount (0 FULL))

(level-sensed (0 FULL))

(level (0 FULL inf))

(pressure (0 inf))

(outflow (0 inf))

(outflow-sensed (0 inf))

(inflow (0 if* inf))

(netflow (minf 0 inf))

Discrete Variables

(flowsensor-mode (normal stuck-at-0 unknown))

(levelsensor-mode (normal stuck-at-0 stuck-at-full unknown))

(inletvalve-mode (normal stuck-closed unknown))

(drain-mode (normal blocked unknown))

Constraints

((M+ amount level) (0 0) (full full))

((M+ level pressure) (0 0) (inf inf))

(mode (drain-mode normal)

((M+ pressure outflow) (0 0) (inf inf)))

(mode (drain-mode blocked)

((zero-std outflow)))

(mode (flowsensor-mode normal)

((equal outflow outflow-sensed) (0 0) (inf inf)))

(mode (flowsensor-mode stuck-at-0)

((zero-std outflow-sensed)))

(mode (levelsensor-mode normal)

((equal level level-sensed) (0 0) (full full)))

(mode (levelsensor-mode stuck-at-0)

((zero-std level-sensed)))

(mode (levelsensor-mode stuck-at-full)

((constant level-sensed full)))

(mode (inletvalve-mode normal)

((constant inflow if*)))

(mode (inletvalve-mode stuck-closed)

((zero-std inflow)))

((ADD netflow outflow inflow))

((d/dt amount netflow))

Figure 3.2: The Combined Bathtub Model

25

(defComponents bathtub

(drain drain-mode (normal 0.89) (blocked 0.1) (unknown 0.01))

(levelsensor levelsensor-mode (normal 0.79) (stuck-at-0 0.1)

(stuck-at-full 0.1) (unknown 0.01))

(flowsensor flowsensor-mode (normal 0.89) (stuck-at-0 0.1)

(unknown 0.01))

(inletvalve inletvalve-mode (normal 0.89) (stuck-closed 0.1)

(unknown 0.01)))

Figure 3.3: The Bathtub Component Structure

sensors of the device. In the case of the bathtub, these would be the sensed versions of the

level and the outow. A typical pair of qualitative states might be:

State 1: (level-sensed (0 full)) (outflow-sensed 0)

State 2: (level-sensed full) (outflow-sensed 0)

This means that in the �rst observation, the level is sensed at somewhere between the

landmarks 0 and full and the outow is sensed at 0, while in the next observation, the

level sensed is full while the outow sensed is still 0. The output of Qdocs is a set of

assignments to all the mode variables. For example, one of the diagnoses for the above

observations is

(drain-mode blocked) (levelsensor-mode normal) (flowsensor-mode normal)

(inletvalve-mode normal)

In other words, the drain is blocked and the other three components are behaving normally.

We will sometimes omit normal components while describing diagnoses. Thus the above

hypothesis would be (drain-mode blocked).

In the following sections we shall look at how such diagnoses are computed. We

begin with a discussion of the general strategy that Qdocs uses and follow it with sections

on the component parts of the algorithm.

3.2 General Strategy

The diagnostic approach of Qdocs is similar to that of Sherlock [de Kleer & Williams,

1989] as introduced in the previous chapter. Like Sherlock, Qdocs uses a best-�rst

search mechanism and focusses its search on the leading candidate diagnoses as determined

by their a priori probabilities. Figure 3.4 lists the steps of the algorithm. Qdocs maintains

an agenda of hypotheses to be tested and a list of conict sets. The former is initialized to

26

Diagnose (BEH)

1. Initially, set agenda to the singleton set consisting of the hypothesis that all compo-
nents are behaving normally. Set conicts to the empty set.

2. Choose the diagnosis, D, on the agenda that has the highest a priori probability.

3. If there is a conict C in conicts that is not hit by D, then expand agenda by
considering all hypotheses generated by changing the mode value of a single component
from its value in D in order to hit C, and only keeping those that hit all the conict
sets generated thus far. Go to Step 2.

4. Test the hypothesis D by calling check-hypothesis with BEH as the behavior to be
checked. Let C be the return value of check-hypothesis.

� If C is nil, then D is a viable hypothesis that would explain the given behaviour.
Add D to the list of �nal hypotheses. If we have enough hypotheses, then return
this list and exit.

� C is a new conict set. Add it to the set conicts and expand agenda by
considering all hypotheses generated by changing the mode value of a single
component from its value in D in order to hit C, and only keeping those that hit
all the conict sets generated thus far. Go to Step 2.

Figure 3.4: Qdocs's Top Level Algorithm

27

the single hypothesis that everything is functioning normally while the latter is initialized

to the null set.

The hypothesis checker, which is described in the next section, is �rst called with the

initial hypothesis of all the components being normal. If it returns a null value, the given

behavior is consistent with the hypothesis; in other words, the given behavior is a possible

result of running Qsim on the model assuming all component mode variables are in the

normal mode. If there is no Qsim simulation that results in the given behavior, the checker

returns a conict set of component mode variable values. This conict set is then added to

the set of conict sets, and the agenda is expanded by adding all hypotheses generated by

changing the mode value of a single component in such a way that it hits all the conict

sets. An example will help illustrate this process.

Suppose we are given the behavior

State 1: (level-sensed (0 full)) (outflow-sensed 0)

State 2: (level-sensed full) (outflow-sensed 0)

for our bathtub example of Figure 3.1. Qdocs will initially query the hypothesis checker

with the hypothesis that all component mode variables are in the normal mode. Since there

is no Qsim simulation corresponding to this behavior under that hypothesis, Qdocs will re-

turn some conict. If the conict returned is, say, f(drain-mode normal), (levelsensor-mode

normal), (flowsensor-mode normal)g,

what is known about the system is that the drain, the level sensor and the ow sensor,

cannot all be normal at the same time. This means that the possible hypotheses that could

be tested now include

� that the drain is blocked,

� the drain is in some unknown state,

� the level sensor is stuck at zero,

� the owsensor is stuck high,

� and so on. . .

Each of these is a slight perturbation of the initial normal hypothesis that accounts for the

conict set. These hypotheses are ranked in order of decreasing a priori probability and

they are placed on the agenda. Qdocs then chooses the hypothesis on this agenda with

the highest probability and repeats the process with this as the new current hypothesis.

At each point, when a new hypothesis is chosen from the agenda, it needs to be

checked against the set of existing conicts to ensure that no hypothesis is tested that does

not hit all the known conict sets. This is because a conict set may have been detected

28

since the time when the hypothesis was placed on the agenda. If a conict set is found that

is not hit by the hypothesis, the agenda is immediately expanded with hypotheses generated

by changing the mode value of a single component in such a way that it hits all the conict

sets. If no such conict is found, the hypothesis checker is called and the resulting conict

set is used to expand the agenda.

This process continues until one or more hypotheses is found that is consistent with

the given behaviour. We may choose to look at some n number of possible explanatory

hypotheses or limit ourselves to one.

We can state and prove a theorem that this procedure is always guaranteed to

compute the most probable hypothesis that is consistent with the given observations. The

proof relies on the fact that we start with the most probable hypothesis (all components

behaving normally) and every component faulted in any way reduces the probability of

the resulting hypothesis. In other words, the result holds in situations where the normal

mode of a component is always more probable than any faulty mode. It also relies on the

correctness of the Check-Hypothesis procedure. Correctness for this procedure means

that if Check-Hypothesis is called with a hypothesis for which the given observations are

a possible behavior, then it signals this to Diagnose, otherwise it returns a correct conict

set, i.e., a set of component mode values whose conjunction is true under the hypothesis

but is inconsistent with the given observations.

The proof of the theorem will be analogous to the proof of the admissibility of

the A* algorithm given by, among others, Nilsson [1980]. However, when we look at the

space of hypotheses that Diagnose considers as a graph search problem, we do not know

immediately that the most probable consistent hypothesis is actually in the graph. This is

because the successors generated by this algorithm are dependent on the conicts returned

by Check-Hypothesis and while there are constraints on what this function can return,

there is still a range of possibilities.

Theorem 3.2.1 If the normal mode of every component has the highest a priori probability

of all the modes of that component, assuming all the components fail independently, and

assuming the correctness of the Check-Hypothesis procedure, the Diagnose procedure,

given a sequence of observations, will produce the most probable hypothesis that is consistent

with the observations.

Proof: Let D be the most probable hypothesis consistent with the observations. D consists

of an assignment of mode values to all the components of the device. Of these, let FD be the

set of all mode assignments in D that are not normal. Finally, let I be the initial hypothesis

that says that all the components are normal.

Let H be any hypothesis which has FH � FD , as its only faulty mode assignments

(i.e., all the other components are normal). Note that I is one such hypothesis. Because of

29

the independence of components and the higher probability of normal, the overall probability

of H must be higher than that of D. Given this, and our assumption that D is the most

probable hypothesis that is consistent with the observations, H must be inconsistent with

the observations.

If H is the most probable hypothesis on the agenda, the Diagnose algorithm will

�nd some conict C that is not hit by H , either by calling Check-Hypothesis or by

looking in the Conicts list if such a conict already exists. Since D is consistent with the

observations and thus hits all the conict sets, it must also hit C. If D hits C and H does

not, there must be some component mode value in D�H that is di�erent from its value in

C. However, the only di�erences between D and H are in the set of components that are

normal in H , but faulty in D. Thus C must contain the normal mode value for some such

component (call it c).

In the agenda-expanding steps of Diagnose, the procedure always generates all

hypotheses that hit the conict set by changing the mode value of one component from its

value in C to any di�erent value. Thus one new hypothesis that will be generated will be

the hypothesis derived from H by changing the mode value of component c from normal to

its value in D.

We have thus shown that when any hypothesis H is considered whose set of faults

is a subset of the set of faults in D, one of the hypotheses that will be generated and

placed on the agenda will be one whose set of faults simply adds another of the faults in

D. Therefore, by induction, starting with the hypothesis I , we can see that expanding the

right hypotheses will always result in a sequence of hypotheses that will terminate in D.

It must also be true that at any time before hypothesis D is tested, some hypothesis

that is on this sequence from I to D must be on the agenda. This follows from the fact

that I is on the path and is on the initial agenda. and the expansion of any hypothesis on

this sequence produces another hypothesis on the sequence.

The remaining work is to prove that Diagnose will generate such a sequence of

hypotheses and test the hypothesis D before testing any other hypothesis consistent with

the observations. Suppose that there is some consistent hypothesis D� which is tested before

D. By our initial assumption, D has a higher probability than D�. Since we showed that all

of the states on the sequence from I toD inclusive have higher probability than D, it follows

that all of these hypotheses have higher probability than D�. This means that whenever D�

is expanded, some hypothesis in the sequence from I to D will be on the agenda and have

higher probability than D�. Since Diagnose always chooses the hypothesis on the agenda

with the highest probability to expand, this contradicts our premise that D� is expanded

before D.

2

The part of the algorithm that we have not yet discussed and this proof is dependent

30

on, is the hypothesis checker. In the following section, we will discuss this module and see

how Qdocs computes a conict set given a hypothesis and a behavior.

3.3 The Hypothesis Checker

The approach that Qdocs takes to check hypotheses and to generate conict sets is to

attempt to perform a Qsim simulation that matches the given qualitative behavior. By

keeping track of dependencies during this process, Qdocs is able to generate conict sets

if it fails to produce the observed behavior.

The hypothesis checker can again be broken up into two distinct phases correspond-

ing to the parts of the Qsim algorithm. In the �rst phase, we attempt to complete states

for each of the given qualitative states to check if the set of sensor values itself is consistent

with the given hypothesis. If any of the states is inconsistent, the conict set generated

by attempting to complete the state is returned. If all the states are consistent by them-

selves, the hypothesis checker enters the second phase where it must attempt a simulation

across time to check if a continuous chain of states can be made corresponding to the given

behavior. Such a chain of states would constitute a Qsim simulation of the behavior.

We will look at each of these phases in turn in separate subsections. In particular,

since the �rst phase is actually carried out with two separate procedures, we look at these

separately and the third part discusses the second phase of the hypothesis checker.

A key idea that will be used throughout the discussion of the hypothesis checker

is the association of dependencies with variables. The following de�nitions will clarify the

meaning of this term as we will use it here.

First, we need to clarify what it means for a component to be associated with a

constraint.

De�nition 3.3.1 A component Comp is associated with a constraint Con in the model M

if the mode variable corresponding to Comp in the defComponents de�nition for M appears

somewhere in the mode expression for Con.

Note that since mode expressions may be arbitrary logical formulae built with conditions

on mode variables, there may be many components associated with a given constraint.

During the constraint satisfaction and propagation process, constraints have possible

tuples associated with them. These are sets of assignments to each of the variables the

constraint acts upon that are considered possible given the application of the constraints

applied thus far. Variables have possible values associated with them that are, similarly, the

values considered possible for that variable given the application of constraints tried thus

far. During the propagation process, these values are implicit because only single values for

qualitative magnitudes and directions are associated with each variable, where it is possible

31

to compute such values. In both cases, however, we will de�ne dependency sets as the set

of mode variable assignments to components that were used to determine the computed

values.

Dependencies are de�ned recursively as follows:

De�nition 3.3.2 When no constraints have yet been applied on the constraint net, all

constraints have empty dependency sets. If the application of constraint Con reduces its

set of possible tuples, Con is said to be dependent on the mode values of the components

associated with it, and these mode values must be in its dependency set. If the number of

possible tuples for Con is reduced because one of the variables it acts upon, var has had its

set of possible values reduced, Con is dependent on all the component mode values that var

is dependent on, and all of these mode values must be in Con's dependency set.

Similarly, for variables,

De�nition 3.3.3 When no constraints have yet been applied on the constraint net, all

variables have empty dependency sets. If a reduction of the set of possible tuples for a

constraint Con reduces the set of possible values of a variable var it acts upon, var is said to

be dependent on all the component mode values that Con is dependent on, and these mode

values must be in its dependency set.

Given these de�nitions, it is easy to see that the following is true.

Lemma 3.3.1 During a constraint satisfaction or propagation process, if a variable V has

possible values fv1; : : : ; vng and dependencies fA1; : : : ; Amg, then

T ^ A1 ^ : : :^Am �! (V = v1) _ : : :_ (V = vn)

where T represents the model of the system including the initial values speci�ed in the

constraint satisfaction or propagation process.

Proof: The proof follows from a simple induction on the number of reduction actions

carried out over the constraint network. The base case is after zero applications and follows

trivially from the de�nitions of dependencies above. In the inductive case, if the assertion is

true after n reduction actions, the (n+1)th action will either reduce the number of possible

values for a variable due to a constraint or the number of possible tuples for a constraint,

because of a variable. In each case, the de�nitions of dependencies above ensure that the

condition will hold after the (n+1)th action. We shall show this in one case; the other kinds

of constraint-based reductions have analogous proofs.

Suppose the (n+1)th action is one where V , which previously had fv1; : : : ; vng as

its set of possible values, loses values vi+1; : : : ; vn because of constraint C that acts upon

V . Suppose also that the V , prior to this application of C, has dependencies fA1; : : : ; Amg,

32

while C has a dependency set of fB1; : : : ; Bkg. According to De�nition 3.3.3, the depen-

dency set of V must now be updated to be fA1; : : : ; Am; B1; : : : ; Bkg. By our inductive

assumption,

T ^ A1 ^ : : :^Am �! (V = v1) _ : : :_ (V = vn)

Since the constraint C and its remaining tuples are inconsistent with (V = vi+1)_ : : :_(V =

vn), we have

T ^ B1 ^ : : :^ Bk �! :((V = vi+1) _ : : :_ (V = vn))

Resolving these we get

T ^A1 ^ : : :^ Am ^ B1 ^ : : :^Bk �! (V = v1) _ : : :_ (V = vi)

Since the dependency set of V according to De�nition 3.3.3 must now be updated to be

fA1; : : : ; Am; B1; : : : ; Bkg and V 's possible values are now fv1; : : : ; vig, and since nothing else

in the constraint network has changed, the above equation proves our inductive hypothesis.

2

This result leads us to the following conclusion.

Theorem 3.3.1 When some variable var has no possible values, its dependency set is a

conict set. Alternatively, if constraint con has no possible tuples, its dependency set is a

conict set.

Proof: Considering each part of the theorem separately,

� Since each variable in a Qsim model corresponds to a physical quantity in the device,

it must have a value in every state. If our application of the constraints of the model

reveals that the variable cannot have a value in a particular state, and its dependency

set is fA1; : : : ; Amg, then by Lemma 3.3.1, the conjunction of these assumptions im-

plies the null disjunction (or empty clause) which, by de�nition, is a contradiction.

Hence fA1; : : : ; Amg is a conict.

� If a constraint has no possible tuples, each of the variables it acts upon has no possible

values. Thus the same argument as above holds.

2

This theorem points to the approach we use throughout the constraint propagation

and satisfaction algorithms in Qdocs to yield conict sets. Dependency sets are always

maintained for all variables and constraints in the model, and whenever a variable has

no possible values, or a constraint has no possible tuples, its dependencies are returned

immediately as a conict set.

33

3.3.1 Constraint Propagation

As mentioned in the previous section, the �rst phase of the hypothesis checker involves

checking if each individual set of sensor readings is consistent with the hypothesis. The �rst

part of this phase is very similar to the constraint propagation algorithm of Inc-Diagnose

and is based on Qsim's constraint propagation algorithm. For the reasons outlined in

Chapter 2 this algorithm cannot always �nd inconsistencies between a given set of sensor

values and the model when they exist. However, the algorithm is still useful because it is

more e�cient than the constraint satisfaction algorithm we will outline in the next section

and can be used to reduce work during the constraint satisfaction phase.

Figure 3.5 is a listing of theQsim Propagation algorithm updated to maintain depen-

dencies. Each constraint is �rst checked for consistency with the known values of variables

it acts upon and if it is consistent, any information that can be directly concluded regarding

the qualitative magnitude or direction of change of the variable, is asserted. Whenever a

variable is changed all other constraints acting on it are again considered for propagation.

This continues until all the constraints have been considered for propagation and there are

no more new values for variables which could cause others to change.

Dependency maintenance occurs simultaneously with constraint propagation. We

follow the de�nitions given in the previous section - whenever a constraint causes some

variables to change, the dependency set on the constraint is updated to include the depen-

dencies of all the variables that have values, and the dependencies of the changed values are

updated to include the dependencies of the constraint. Whenever some constraint reveals

a contradiction, its dependencies are returned as a conict.

If we run out of active constraints, the propagator simply exits. However, the values

of the variables computed as well as the dependency sets are preserved for use in the

constraint satisfaction algorithm discussed in the next section.

To illustrate this algorithm, consider the constraint network for the bathtub model

shown in Figure 3.6. These constraints are the ones that are active if all the components

are assumed to be normal. Figure 3.6 also shows the qualitative magnitudes (qmags) for

the �rst set of sensor values from the example introduced in Section 3.2. Initially, since the

qmags of the sensed variables are known, these are initialized to their respective values. The

propagation algorithm of Figure 3.5 initially chooses a constraint and attempts to propagate

the values.

Most of the possible initial choices for constraints in the network will actually have

no e�ect since most of the variables do not have initial values. However, when the constraint

(EQUAL Level Levelsensed) is chosen, the propagation function for EQUAL is called which sets

Level to the interval (0 full). This causes the constraints (M+ Amount Level) and (M+ Level

Pressure) to get put back into the variable Constraints (unless they are already members

of this list) since there is new information in the variable Level that can be propagated. It

34

Propagate

1. Initialize stack of active constraints (constraints) to all the constraints in the model.
Initialize the magnitudes and directions of all unknown variables to NIL while initial-
izing values of known variables as given.

2. Pop constraints to get con.

3. Depending on the type of con, call a function to check if the values of the variables
that con acts upon are consistent with con. If they are inconsistent, exit immediately,
returning the dependency set of con as a conict.

4. Depending on the type of con, call a function to propagate values across con. These
functions will assert as much as is possible to assert about the values of the unknown
variables given the values of the other variables that con applies to.

5. If any variables have changed in Step 4, update the dependency sets of these variables
to include the dependencies of the other variables and con.

6. For all constraints that act on variables changed by the above operation, if these
constraints are not in constraints add them back to that list.

7. If constraints is empty, exit, else go to Step 2.

Figure 3.5: Constraint Propagation Algorithm

35

Amount Level

Pressure

Outflow

netflow

Levelsensed

Outflowsensed

drain

inlet valve

level sensor

flow sensor qmag 0

qmag (0 full)

M+

M+

M+

equal

equal

+

inflow

d/dt

constant

Figure 3.6: Bathtub Constraint Network

also causes the dependencies on the variable Level to get set to the singleton set containing

the component mode value (levelsensor-mode normal).

In this way, propagation continues from Levelsensed and from Outflowsensed until

the contradiction between the two values is detected at some constraint. The exact point

at which the contradiction is detected is dependent on the ordering of the constraints.

As an example, consider that the propagation process has determined that pressure must

be in the interval (0 high) (where high is the pressure corresponding to a full value for

Level) and its dependency set is f(levelsensor-mode normal)g. The Outflow, getting its

value from Outflowsensed is 0 with a dependency set of f(flowsensor-mode normal)g. Now

the constraint (M+ Pressure Outflow), which is associated with the drain is checked and

found to be inconsistent because Outflow's value, 0, must correspond, according to the

constraint's corresponding values, to a 0 value to a pressure of 0, instead of the (0 high)

that we computed. This causes the dependencies of this constraint to be updated and the

resulting dependency set to be returned as a conict. The dependency set in this case is

the union of the dependency sets of the variables involved in the contradiction along with

the component mode value associated with the constraint. Thus the conict set would be

f(levelsensor-mode normal), (drain-mode normal), (flowsensor-mode normal)g.

36

3.3.2 Constraint Satisfaction

If the propagation procedure described above concludes with a conict set, Qdocs exits

from the hypothesis checker and returns the computed conict. On the other hand if

the propagation procedure completes the state by assigning a value to every variable in

the system, again, the hypothesis checker concludes that the state is consistent and exits.

However, as is often the case, if the propagator computes a partial set of values for some of

the variables of the system and is blocked in its attempts to propagate values any further,

as we discussed in Chapter 2, Qdocs needs to use a more general constraint satisfaction

algorithm to complete states. As with propagation, we borrow the outline of the main

algorithm from Qsim, but we incorporate dependency maintenance into the algorithm.

The constraint satisfaction algorithm can further be divided into two parts: the �rst

is a Waltz-�ltering algorithm [Waltz, 1975], while the second is an exhaustive backtracking

over the space of possibilities. Figure 3.7 is the top level description of Qsim's version of the

Waltz �ltering algorithm, with our modi�cations. The basic loop consists of going through

the list of constraints and �ltering out the tuples that violate the constraints. Whenever one

or more tuples is eliminated from a constraint, the propagation algorithm of Figure 3.8 is

used to transmit the e�ects of the �ltering out to the other variables and constraints of the

constraint network. As with the propagation algorithm, dependency maintenance occurs

during the course of the propagation of e�ects of constraints and follows the de�nitions at

the beginning of this section.

If the Waltz-�ltering completes successfully and does not �nd a contradiction, there

is still a possibility that there is a contradiction. This possibility arises because Waltz-

�ltering merely establishes that there is at least one possible value for each variable that

is compatible with the other neighbouring constraints in the constraint network. However,

there may not be any single, consistent, global assignment of values to all the variables.

Thus we still need to revert to a backtracking procedure to complete the constraint

satisfaction process. The algorithm Qdocs inherits from Qsim for this follows the standard

backtracking methodology - values are �rst assigned to each variable that has only one

possible value, and then one of the set of possible tuples is assigned to each constraint and

the corresponding variable values are assigned to the relevant variables. Whenever a variable

has no possible value, that branch of assignments fails and the procedure backtracks. A

complete failure occurs when all branches have been exhausted and no consistent assignment

of values to variables is found.

In order to return a valid conict set in case of this kind of failure, Qdocs needs to

maintain temporary dependency sets for each branch of the backtracking. These dependency

sets are compiled by taking the union of all the dependency sets for each variable along

the branch of the search computed during Waltz-�ltering. Every time a branch fails, it

records that failure as being due to all the components in the dependency sets of all the

37

Qsim-Waltz-�lter

1. Initially set list constraints to all the constraints in the model.

2. Set the pvals of each variable to be all the possible values given the result of propa-
gation.

3. Set the tuples of each constraint to be the cross product of all the possible values of
the variables it acts upon.

4. Choose the most restrictive constraint, or the one with the smallest number of possible
tuples, from constraints and remove it from the list.

5. Apply the constraint to remove all tuples that are inconsistent with the constraint.
Update its dependencies set to include the component mode values associated with
the constraint as well as the dependencies of all the variables the constraint acts upon.

6. Starting from this constraint, propagate its e�ects out by calling Propagate-Out

(constraint). If the value returned is a conict, exit, returning this conict.

7. If some constraint has no possible tuples, or if some variable has no possible values,
return its dependency set as a conict, otherwise go to Step 4.

Figure 3.7: The top level of the Waltz Filtering algorithm

38

Propagate-Out (Constraint)
For each variable var that Constraint acts on, if the number of possible values for this
variable has been reduced,

1. Update the dependencies of this variable to include all the dependencies of Con-
straint. If the variable has no possible values, exit, returning these dependencies as
a conict from the top level call to Propagate-Out.

2. For all other constraints acting on var if the number of tuples associated with the
constraint must be reduced because of var, update their dependencies to include those
of var and call Propagate-Out on all the other constraints acting upon var.

Figure 3.8: Propagating e�ects out in the Waltz-�ltering algorithm

constraints and variables assigned thus far. The conict set would then be the union of all

the dependency sets of all the failed branches of the backtracking. Failures in this part of

the constraint satisfaction process are rare but when they do occur, the fact that we need

to do an exhaustive accounting of all the dependencies of all constraints involved in every

failed branch means that the conict sets generated will usually be large.

To illustrate the constraint satisfaction algorithm, consider the set of constraints

shown in Figure 3.9. The quantity spaces and constraints shown are intended to be a part

of a larger overall system. The part of the constraint network shown has �ve variables,

each with quantity spaces consisting of three landmarks { 0, var0 and var1, where var

must be substituted by the name of the variable. There are three relevant constraints on

these variables, with the �rst two being addition constraints stating that A + B = C and

C + D = E. The last constraint shown says that B increases monotonically with E. The

constraints listed also show the relevant corresponding values for the constraints. For the

�rst constraint 0+ b0 = c0, a0+0 = c0, and so on. Similar corresponding values hold for all

the other constraints. Each of the constraints given is also assumed to be associated with

a di�erent component - Comp1, Comp2, and Comp3 respectively.1

In the particular example we will consider, A is known to have the value a0 and D is

known to be d0.2 The top diagram in Figure 3.10 shows the network corresponding to these

1As we have seen Qdocs actually maintains the mode values of these components in its dependency sets,
but in this example, for simplicity, we show just the components in the dependency sets.

2Qdocs will also consider qualitative directions in doing constraint satisfaction, but we omit these in this
example for simplicity.

39

Quantity Spaces:

A: f0 a0 a1g
B: f0 b0 b1g
C: f0 c0 c1g
D: f0 d0 d1g
E: f0 e0 e1g
. . .

Constraints:

((+ A B C) (0 0 0) (0 b0 c0) (a0 0 c0) (a0 b0 c1))
((+ C E D) (0 0 0) (0 e0 d0) (c0 0 d0) (c0 e0 d1))
((M+ B E) (0 e0) (b0 e1))
. . .

Figure 3.9: Constraints for Waltz-�ltering example

constraints. Since propagation cannot transmit much information across a + constraint

given a value for only one of the variables, none of the possible values for the variables B,

C, and E, are ruled out. Each of the constraints initially has possible tuples corresponding

to the entire cross-product of the possible values of each of the variables. This amounts to

25 tuples for each of the three constraints given.

The Waltz-�ltering algorithm now applies each of these constraints to keep only

those that satisfy the constraints, and then propagates the e�ects out to all the other

variables and constraints in the system. Since each of the constraints currently has the

same number of possible tuples, any of them may be selected for this step. Suppose the

constraint A + B = C is selected next. The second diagram in Figure 3.10 demonstrates

the e�ects of this. Only three tuples survive the application of this constraint and the

Waltz-�lter will propagate this e�ect to other variables and constraints in the network. The

only values of variable B that survive are the values less than b0 while the only values of

variable C that survive are the values greater than c0. These in turn a�ect the possible

tuples of the other constraints acting on them and thus the other two constraints are down

to 15 tuples each. The component Comp1 gets added to the dependency sets of each of these

variables and constraints as shown in the Figure.

In the next step, the Waltz-�ltering algorithm may apply the other + constraint.

Since C is now down to values equal to or higher than c0 and since D is known to be d0,

the only tuple that survives has C being c0 and E being 0. The e�ects of this are again

propagated. The �rst + constraint now has just one remaining tuple, B has 0 as its only

value and the M+ constraint has the tuple [0,0] as its only possible tuple. All of these

have Comp2 added to their dependency sets. The �nal step of the algorithm (not shown)

40

A

B

C+

M+

D

E

+

M− d/dt

COMP1 COMP2

COMP3

{a0}

{0 (0 b0) b0 (b0 b1) b1}

{d0}

{0 (0 c0) c0 (c0 c1) c1}

{0 (0 e0) e0 (e0 e1) e1}

25 tuples

25 tuples

25 tuples

A

B

C+

M+

D

E

+

M− d/dt

COMP1 COMP2

COMP3

{a0}

{d0}

{c0 (c0 c1) c1}
[a0 0 c0]
[a0 b0 c1]
[a0 (0 b0) (c0 c1)]

{0 (0 b0) b0}

15 tuples

{0 (0 e0) e0 (e0 e1) e1}
15 tuples

Dep:{comp1}

Dep:{comp1}
Dep:{comp1,comp3}

Dep:{comp1,comp2}
Dep:{comp1}

A

B

C+

M+

D

E

+

M− d/dt

COMP1 COMP2

COMP3

{a0}

{d0}

[c0 0 d0]

{0}

Dep:{comp1,comp2}
{c0}

[a0 0 c0]

Dep:{comp1,comp2}

Dep:{comp1,comp2,comp3}

{0}

Dep:{comp1,comp2} 1 tuple Dep:{comp1,comp2}

Figure 3.10: Waltz-�ltering example

41

attempts to satisfy the M+ constraint. Since the only remaining tuple [0,0] does not satisfy

the constraint, there is a contradiction. The conict returned is fComp1, Comp2, Comp3g

since the dependency set for this constraint includes all of these components.

Note that this procedure does not guarantee minimal conict sets. If for example,

the algorithm had applied the M{ constraint on B and that had reduced the number of

possible values for B, B may well have had some other dependencies that would have been

a part of the conict set even though the three constraints we used are contradictory.

Minimality of conict sets can only be achieved through some sort of exhaustive

analysis of the constraint network. When an inconsistency is detected, the analysis would

have to determine exactly why each possible value for the variable was ruled out. This

would be a far more computationally explosive process than our current algorithm.

The e�ect of non-minimality of conict sets is simply to slow down the diagnostic

process. Since each conict may have component mode values that are not necessarily part

of a minimal conict set, the Diagnose algorithm of Figure 3.4 will generate and test many

more inconsistent hypotheses than a procedure that guaranteed minimal conicts would.

However, the soundness of the diagnostic procedure is not a�ected since any superset of a

conict set is still a conict set and any correct diagnosis will still hit that larger conict

set.

3.3.3 Across-Time Veri�cation

The �rst phase of the hypothesis checking process is veri�cation that each of the individual

states of the given behavior is consistent with the hypothesis. If this phase succeeds in its

veri�cation task (and thus fails in the conict generation task), the second phase involves

veri�cation that there is a simulation of the model corresponding to the hypothesis which

matches the observed behavior.

The key concept involved in determining if there is a simulation corresponding to a

given behavior is continuity. The sequence of states must be continuous and at each step the

states must have qualitative values for sensor values that match the sensor values given in

the behavior. Qdocs tackles this problem in the following manner. Starting with the �rst

state, it uses the completions generated by the constraint satisfaction procedures above and

proceeds to generate successors using Qsim, keeping only the ones that match the sensor

values in the given behavior. This continues until either the last state is reached or there

are no possible states matching a particular sensor reading.

There is one problem, however, that makes this matching much harder than it might

seem. For any given set of sensor readings, there can be an arbitrarily long chain of possible

states that will match the given set while being di�erent in qualitative values of quantities

that are not among the sensor values. This fact causes the search space of possible states

to combinatorially explode and makes the search intractable.

42

It is important to note, however, that this is due to a basic problem with the in-

tractability of some Qsim simulations. Since the models of some systems are inherently

underconstrained under certain fault modes, Qsim can sometimes produce a large number

of very similar successors, di�ering only in that certain underconstrained variables take on

various di�erent values. When Qsim has a large branching factor on a particular model,

Qdocs can also have a large number of possible successor states that it must try and match.

In order to keep computation times under control, Qdocs uses two techniques to

speed up search. First, the search is carried out in a depth-�rst manner, i.e., whenever

a successor of a previous state matches the next set of sensor readings in the behavior,

it is chosen to be expanded before the ones matching the current set of sensor readings.

The second simpli�cation used is that the number of states allowed to match a single set

of sensor readings is limited.3 This has the e�ect of making Qdocs unsound in principle

since the correct hypothesis may not be matched, but our experiments never revealed a case

where this was a problem { as we shall see in Chapter 5, in all our experiments, a model

containing the correct set of faults (or a subset of these faults) was always able to match

the given behavior.

The problem of determining conict sets if the simulation fails to match the read-

ings is a tricky one. In Chapter 4 we report on our techniques for doing this. However,

as we report there, the extensions used to determine conict sets in these problems tended

to include all or most of the component mode values, and it was thus usually much more

e�cient to simply return a default overly-general conict set consisting of all the compo-

nent mode values of the hypothesis being tested. As we discussed in the previous section,

an overly-general (or non-minimal) conict set simply has the e�ect of slowing down the

diagnostic process without a�ecting the soundness of the diagnoses.

3.4 Analysis of Qdocs algorithm

We have shown in Theorem 3.2.1, that the top level search algorithm of Qdocs always gives

the most probable consistent hypothesis given a sequence of observations. However this re-

sult was dependent on the correctness of the Check-Hypothesis procedure. We have also

shown (Theorem 3.3.1) that any procedure that maintains the de�nitions of dependency

(De�nitions 3.3.2 and 3.3.3) is guaranteed to produce correct conict sets. Since our con-

straint propagation and constraint satisfaction algorithms update dependencies according

to these de�nitions, Theorem 3.3.1 guarantees that if Check-Hypothesis returns with a

conict generated by these procedures, the conict set is a correct one.

The last step in Check-Hypothesis is the across-time veri�cation algorithm. If

the veri�er successfully matches the given behavior, it is guaranteed that the behavior

3The limit is 3 in all the experiments reported on in Chapter 5.

43

corresponds to a Qsim simulation of the given hypothesis. If there is no Qsim simulation

corresponding to the given behavior, the across-time veri�er will fail and return an overly-

general or non-minimal conict set as we mentioned previously.

The only reason we cannot guarantee the soundness of Qdocs, however, is because

our limit of 3 consecutive states per set of sensor readings means that the across-time veri�er

can fail to match behaviors that may be valid Qsim simulations of the given model, and

thus produce incorrect conict sets. As we mentioned before, however, this limitation was

only inserted for e�ciency reasons.

Without this limitation, if we allow the across-time veri�er to generate consecutive

sequences of states of arbitrary length, it is true that any Qsim generated behavior of the

given model will be veri�ed by Qdocs as a correct simulation of the model. This is because

the across-time veri�er works by attempting to match the given states in the observed

behavior with Qsim states generated by considering all valid successors of the initial state.

Since by de�nition, the observed sequence must correspond to a branch in the behavior tree

generated by simulating the model corresponding to the best diagnosis, Qdocs will succeed

in matching the behavior.

As we mentioned before, in all our experiments, a hypothesis with a subset of the

\correct" set of faults was always able to match the given sequence of observations. When

this happens, Qdocs does not even attempt to match the superset or correct set of faults. If

this correct set were not matched because of the 3-state limitation, Qdocs would generate

hypotheses with lower probability than the correct set of faults. Since, as we shall see, this

never happened in our experiments, we may conclude that the limitation on consecutive

matches has no practical e�ect on the soundness of Qdocs in our particular domains. In

Chapter 7, we suggest alternative approaches to the across-time veri�cation problem that

may avoid this limitation while preserving soundness.

Thus we have shown that given a sequence of observed sensor values corresponding

to a behavior of the modeled system, Qdocs will �nd the most probable hypothesis that

has a Qsim behavior corresponding to the given observations. What we have not shown is

that this method is practical to implement and use, or that all of its parts are needed to

be able to diagnose faults in any realistic applications. In Chapter 5, we will empirically

test Qdocs on these criteria. We have implemented a prototype of the Qdocs system as

described here in Common Lisp. It runs on top of an implementation of the Qsim system

[Kuipers, 1994]. All of our experiments were performed on a Sun Sparcstation 5 running

Lucid Common Lisp.

44

Chapter 4

Diagnosis Algorithm Extensions

In Chapter 3 we outlined the basic procedures that constitute the Qdocs system. In this

chapter, we will outline some of the extensions we have implemented to either speed up the

Qdocs implementation, or to extend its capabilities. As we report later, these e�orts have

achieved mixed success, and we will discuss the failures as well as the successes of these

e�orts.

4.1 Handling Region Transitions

A device will often have a number of di�erent modes in which it can operate even under

normal conditions. For example, if we added an overow drain to the bathtub example in

Chapter 3, as shown in Figure 4.1, we would have two di�erent regions of normal behavior

for the device. If the water level was below the level of the overow drain, there would only

be one drain for the bathtub. On the other hand, if the water level were above the point of

the overow drain, there would be two points from which the water would drain.

In simulating such a device, Qsim handles having multiple models by establishing

conditions under which region transitions take place and by positing a new set of constraints

that go into e�ect after the transition. In Qdocs we use the same functions, but we also

require the modeler to declare the possible regions that a component can be in under

di�erent possible modes. For instance, with a bathtub that has an overow drain, we

might have a component called overflow-drain that would have two di�erent regions. The

following would be the associated constraints:

(mode (and (overflow-drain-mode normal)

(overflow-drain-region overflowing))

((M+ level overflow-rate)))

(mode (and (overflow-drain-mode normal)

45

Level sensor

Outflow sensor

Inlet valve

Overflow drainOverflow−level

Figure 4.1: A Bathtub with an Overow Drain

(overflow-drain-region inactive))

((ZERO-STD overflow-rate)))

In these constraints, the �rst mode variable in the condition, overflow-drain-mode, is the

component mode variable for the overow drain component. Under its normal operation, it

can be in one of two regions { overflowing or inactive. When it is overflowing, the drain

rate through the overow channel monotonically increases with the level, while when it is

in the inactive region, there is no ow through this channel.

Qdocs needs a couple of extensions to be able to diagnose faults in devices with

multiple operating regions. First, it needs an exhaustive declaration of which operating

regions are available within which modes. This declaration looks like the following:

(defOperatingRegions extended-bathtub-model

((overflow-drain-mode . normal)

(overflow-drain-region . overflowing)

(overflow-drain-region . inactive)))

The declaration tellsQdocs that when the overflow-drain-mode is normal, the overflow-drain-region

must either be overflowing or inactive, but not both. Qdocs will thus be able to test

hypotheses in which this mode variable is normal under each of these assumptions to see if

the observations are compatible with either mode.

There is, however, one other extension required for the Qdocs model to be able

to diagnose models with operating regions. Under particular operating regions, certain

assumptions regarding the values of other variables are implicit in the Qsim model. For

46

example, in the overowing bathtub model, it is not possible for the overow drain to

be in overowing mode when the level of water is lower than the overow level. This is

unimportant for simulation in Qsim because the conditions on region transitions ensure

that there will never be a situation where the level is lower than the overow level with the

region variable in overowing mode. However, when we are testing hypotheses in Qdocs

these conditions need to be made explicit so that we can test individual states without

information about which region the state is supposed to be in.

Qdocs allows this by extending Qsim's constraint language to include integrity

constraints. These are constraints such as the following:

(mode (and (overflow-drain-mode normal)

(overflow-drain-region overflowing))

((greater-than-or-equal level overflow-level)))

(mode (and (overflow-drain-mode normal)

(overflow-drain-region inactive))

((less-than level overflow-level)))

These constraints require that the level be higher than the landmark overflow-levelwhen

the overflow-drain-region is in the overflowing region and be lower than the landmark

otherwise. Integrity constraints work like any other Qsim constraints and have been inte-

grated into the version of the Qsim system we use for our experiments.

The approach taken by the hypothesis checker when the model has multiple operating

regions is simply to generate all the possible combinations of operating regions and try each

of them in turn for each of the sets of sensor readings. If any of the combinations of

operating regions has consistent completions, the hypothesis is considered to be consistent

with that set. If, on the other hand, they all fail, the union of all the conict sets returned

is returned as a conict set.

In Chapter 5 we will look at two di�erent domains in which Qdocs has been tested

which have multiple operating regions. The results on these domains demonstrate the

workability of these techniques.

4.2 Extending Across-Time Veri�cation

As we mentioned in Section 3.3.3, the present version of the across-time veri�cation algo-

rithm as implemented in Qdocs simply attempts to simulate the given behavior using Qsim

and if it fails, returns the entire hypothesis as a conict set. This would seem to not quite

be an ideal approach and conicts with the general approach to the diagnosis problem we

espoused in Chapter 2.

The general approach taken in Qdocs is to attempt to explain the failure of Qsim to

produce the given behavior as a simulation by analyzing which constraints are responsible

47

for blocking such a simulation. Following this approach, our algorithm for across-time

veri�cation was to track variable dependencies as we were simulating across time and to

have successors inherit these dependencies from predecessor states. When some branch of

the behavior tree fails to have any consistent successor, it is tagged as a failing branch

and the conict set returned by the constraint satisfaction algorithm for that branch is

computed.

The �nal conict set returned was the union of all the conict sets associated with

the failing branches at the deepest level of sensor readings that could be matched. The

argument behind returning this as a conict set was that the reason it is impossible to

simulate the entire behaviour is because it is impossible to extend any simulation that goes

through to the previous set of sensor values, to the following set of sensor values.

This approach was abandoned for a number of reasons:

� First, the space and time requirements for tracking all these dependencies were pro-

hibitive for some of the domains studied.

� Second, because the typical branching of Qsim behaviors is quite high, the conicts

produced typically contained a lot of components anyway, thus making the conict

sets less useful.

� Third, the argument above supporting the computation of conict sets is not entirely

correct. Suppose that a certain model is able to simulate a behaviour up till the

third set of sensor readings but no farther. The above algorithm would only look at

components that caused the model to fail to reach the fourth set of readings from the

third set. However, the constraints due to some component may have prevented the

simulation from establishing certain values for certain variables in a state matching,

say, the third set of sensor readings, that would then have made it possible to simulate

to the fourth set and beyond. In other words, every failing branch is a source from

which we must derive a conict set whose combined union is the conict set to be

returned. This process would get prohibitively expensive.

These issues are discussed again in Chapter 7 where we propose alternative ap-

proaches that may result in e�cient ways to derive conict sets from the failure to simulate

a model across time.

4.3 Caching

One of the bigger sources of ine�ciency in the Qdocs algorithms is the repeated application

of the same constraints to the same variable values as a number of slightly di�erent hypothe-

ses are checked. This prompted us to consider using some form of dependency caching in

48

order to try to reuse computation from the testing of previous hypotheses while checking

later ones.

We were inspired in devising a dependency caching scheme by the research on Truth

Maintenance Systems(TMS) [Doyle, 1979; de Kleer, 1986]. The TMS system that is most

relevant to our problem is the Clause Management System (CMS) of Reiter and de Kleer

[1987]. The CMS in turn was a generalization of the more popular Assumption-based TMS

(or ATMS) of de Kleer [1986]. As we mentioned in Chapter 2, the ATMS maintains justi�-

cations which are supporting sets of beliefs that support a belief. Some of these supporting

beliefs are assumptions that by de�nition justify themselves. The ATMS compiles these

into labels for each belief where a label is a set of minimal environments. An environment in

the label of a belief is simply a set of assumptions whose conjunction supports that belief.

The ATMS, however, makes the assumption that justi�cations are always Horn-

clauses. In other words, they always have a conjunction of assumptions implying a single

proposition. The CMS, on the other hand, is a generalization of this scheme that is designed

to maintain dependencies for clauses or disjunctions of propositions. The ATMS is useful

in systems like GDE [de Kleer & Williams, 1987] which use constraint propagation, since

each propagation step has a conjunction of values implying a single consequence. However,

since Qdocs's hypothesis checker maintains disjunctions of variable values associated with

sets of assumptions, the CMS scheme would be the one to use. Qdocs's dependencies look

like the following:

A1 ^ A2 ^ : : :^ An �! (V =v1) _ (V =v2) _ : : :(V =vm)

where each Ai is either a mode variable value or a sensor value from the state on which the

hypothesis is being tested, and each vj is a possible value for variable V .

The CMS is required to always compute minimal labels for any clause for which it is

maintaining supports (i.e., ones for which any subset of assumptions in the label would not

be su�cient to imply the clause). The minimality is modulo the information it has at any

given time. This means that new justi�cations may have the e�ect of turning a minimal

label into a non-minimal one.

The most general way to maintain such labels is by using resolution among the

support clauses to determine the minimal label. Qdocs, however, has certain regularities

that make the computation of such minimal labels much more tractable than it would be

with a general resolution theorem prover. In order to make this clear, we shall start with

the following lemma that follows from the monotonicity of constraint application.

Lemma 4.3.1 If A = fA1; A2; : : : ; Ang and B = fB1; B2; : : : ; Bmg are sets of assump-

tions (mode values as well as sensor values), and P1 = f(V =x1); (V =x2); : : : ; (V =xk)g

and P2 = f(V =y1); (V =y2); : : : ; (V =yl)g are sets of possible values for variable V , then

49

if
V
A �!

W
P1

1 and P2 is the smallest set such that
V
B �!

W
P2 and A � B, then

P2 � P1.

In other words, for any variable, a larger set of assumptions necessarily means a fewer set

of possible values. The assumptions here are simply the dependency sets as de�ned in

Section 3.3, extended to include sensor values.

Since Qdocs computations often do not produce the smallest set of possible values

for a given dependency set, the dependency caching scheme will attempt to use an e�cient

representation to determine if, given a set of possible values and a dependency set derived

from the constraint satisfaction algorithm, whether the dependency set is minimal at the

time for that set of possible values. If it is minimal, it will add information to the cache,

and would thus be worthy of caching. In general, if the computed set of values P for some

variable has a dependency set S, it adds information if every existing cache entry with a

dependency set that is a subset of S (possibly improper), has a set of possible values that is

not a subset of P . In other words, the cache does not already have information that would

allow Qdocs to restrict the set of possible values to a set smaller than P with a smaller set

of assumptions.

Typical accesses into the proposed cache are upon initialization of the constraint

network, prior to constraint propagation and satisfaction. Given a hypothesis, we look

for the most restrictive set of values that we can determine for the variable, given the

assumptions in the hypothesis and the sensor values. These values and their dependencies

are installed in the constraint network and the hypothesis checking algorithms proceed as

before.

The mechanism we provided for caching with accesses as given above is a directed

acyclic graph (DAG) for each variable. Each node in the DAG, n has an associated de-

pendency set n:dep and an associated set of possible values, n:pv. The root node of the

DAG has the empty dependency set and its set of possible values has all the landmarks and

ranges in the quantity space for the variable with all possible qualitative directions.

Anywhere, in the DAG, if there is a link from node n1 to node n2 (i.e., if n2 is a

child of n1), the following conditions must be satis�ed:

n1:dep � n2:dep

n1:pv � n2:pv

Thus as one goes down the dependency graph, the nodes have dependency sets that are

supersets of their parent's dependency sets, and sets of possible values that are subsets of

their parent's pv sets. Figure 4.2 is a simple example of what such a cache might look like.

1
V
X refers to the conjunction of all the elements of set X while

W
Y refers to the disjunction of all the

elements of set Y .

50

Dep:{}
PV:{(0 inc) (0 std) (0 dec)
 ((0 a) inc) ((0 a) std) ((0 a) dec)
 (a inc) (a std)}

Dep:{(C1 = mode1) (C2 = mode2)}

PV:{(0 inc) ((0 a) inc) (a inc) ((a b) inc) (b inc)}

PV:{(0 inc) ((0 a) inc)}

Dep:{(C1 = mode1) (Sensor1 = value2)}

PV:{(a inc) ((a b) inc) (b inc)
 (a std) ((a b) std) (b std)}

Dep:{(C1 = mode1) (C2 = mode2)
 (Sensor1= value1)}

n0

n1

n2

n3

Figure 4.2: An Example Cache

51

The access algorithm examines the cache for each variable and install a set of values

and a corresponding dependency set. Given the hypothesis (augmented with sensor values)

the algorithm goes down each branch with dependency sets that are subsets of the hypothesis

and retrieves the deepest nodes with such dependency sets. The installed values are the

intersection of the pv sets for these nodes and the dependencies are their union.

As an example, suppose we have the cache shown in Figure 4.2 for a particular

variable and we are given a hypothesis consisting of the component values (C1 = mode1) and

(C2 = mode2) and the particular state we are testing has the sensor (Sensor1 = value2).

First, node n0 is considered. The root node has an empty dependency set and thus is

always matched. Next each of the children is considered and each child with a dependency

set that is a subset of the current set is considered for traversal. Since n1 is matched, it

is traversed next. Next the procedure looks at each of n1's children and discovers that the

only child, n2 has a dependency set that is not a subset of the hypothesis. Thus n1 is the

deepest node on this path.

Next, the node on the other branch, n3, is examined. It, too, has a dependency set

that is a subset of our hypothesis. Assuming then that none of its children satis�es this

condition, the nodes n1 and n3 are returned as the deepest nodes whose dependency sets

are subsets of the hypothesis.

Now since we know that

n1:dep �! n1:pv

and

n3:dep �! n3:pv

then we also know that

n1:dep [n3:dep �! n1:pv \ n3:pv

since the dependency sets are a conjunction of literals and the pv sets are a disjunction of

possible values. Now since both n1:dep and n3:dep are subsets of our hypothesis, n1:dep [

n3:dep must also be a subset of the hypothesis. Thus we can restrict our set of possible

values to n1:pv \ n3:pv and give it the dependency set of n1:dep [n3:dep.

The algorithm for maintaining the given properties of the cache while adding new

elements is a little more complex but still fairly e�cient. Given a dependency set and a set

of possible values, the caching procedure must �nd all points on the DAG where the new

entry can be inserted and check that the new entry does, in fact, add information to the

graph. If it does, a node is added or changed, and the e�ects are propagated downwards to

ensure that the conditions on the edges in the graph are maintained.

This approach to caching dependencies met with limited success in our experiments

as we shall see in Chapter 5. A discussion of this scheme follows the presentation of the

results.

52

Chapter 5

Experimental Evaluation

In previous chapters we have described the algorithm, and its implementation in Qdocs,

for the diagnosis of dynamic systems modeled qualitatively using Qsim. We have made

some claims about the approach that we will attempt to verify empirically. Among these

are:

1. Qdocs, because of its ability to detect inconsistencies and generate conicts in situ-

ations where constraint propagation is blocked, is more accurate than a pure propa-

gation approach like Inc-Diagnose,

2. Because of Qdocs's ability to focus in on diagnoses through the use of conict sets,

it is a faster approach than the baseline generate-and-test method mentioned in Sec-

tion 2.3, and

3. Each of the distinct phases of Qdocs's hypothesis checking algorithm contributes

either to improve the accuracy or the e�ciency of the Qdocs algorithm.

The following section introduces the methodology we use to test Qdocs and verify

these claims. In the two sections following this, we introduce two domains in which we have

tested the Qdocs system. We present the problems studied, a description of our models of

these systems, and then follow these by the results of our experiments. Finally, we report

on the results of an experiment to test the utility of the caching scheme we introduced in

Chapter 4.

5.1 Experimental Methodology

In this section, we will look at the methodology we used in our experiments on our two test

domains { the Reaction Control System of the space shuttle, and a level-controller for a

reaction tank. Since we were unable to obtain real data to test our methods, we relied on

53

data that was generated by simulating the actual models. Faults were randomly generated

using the probabilities given in the component model to determine their distribution. The

result is a number of di�erent sets of faults, some where all components are normal, some

single faults and some multiple faults.

In order to further limit our search to those problems that would be hardest to diag-

nose, i.e., multiple fault scenarios, we further picked out only those sets of faults which had

at least two components faulty.1 The models corresponding to these faults were simulated

using Qsim from a consistent initial state with other variables all set to reasonable initial

ranges. The system is then simulated until some prede�ned state limit is reached.

The result of the Qsim simulation is a behavior tree out of which the experiment

generator chooses a path at random. A path in the tree is a sequence of states corresponding

to a qualitative behavior of this faulty system. The experiment generator then extracts the

sensor readings from each of these states and merges consecutive states which have identical

sensor values. The resulting sequence is then the sequence of sensor readings as seen by the

monitoring system.

These resulting behaviors may still not be very interesting from a diagnostic stand-

point. Very often, a faulty system will still produce a behavior that is indistinguishable from

a normal one. For example, if there is a leak somewhere in the system, it is still possible

for the leak to be small enough that it makes no qualitative di�erence in the behavior of

the system. Also, some parts of these systems we study are built just for fault-tolerance.

Therefore, to narrow our experimentation to the interesting problems, we chose to restrict

our experiments to those behaviors which can only be produced by a Qsim simulation of a

model of the given system containing at least two faults.

Some of these eliminated behaviors may correspond to system behaviors that are

actually faulty but where the multiple faults could not be detected using qualitative rea-

soning alone. A more complete accuracy test of our system would include a simulation

of a numerical model to check if there is actually a numerical deviation from the normal

model (or a single-fault model). Such a test would allow us to gauge the overall accuracy

of our methods. However, because numerical models were di�cult to build for these sys-

tems, we restricted ourselves to the qualitative model and only used behaviors that showed

qualitatively distinguishable failures.

We contend that the behaviors that we eliminate in this process are simply uninter-

esting from the standpoint of multiple-fault diagnosis. Since they are behaviors that could

have been produced by a no-fault model or a single-fault model, any qualitative diagnostic

system should come up with a no-fault or single-fault hypothesis to explain them as these

are usually more probable than a multiple-fault scenario.

1We also ran experiments on single-fault problems. While Qdocs performed well in those problems and
was better than the generate-and-test approach, the advantage of Qdocs was not as pronounced as with
the more computationally expensive multiple-fault problems.

54

Qdocs is compared to various di�erent techniques and for each of these we collect

data on the e�ciency and accuracy of the methods. First, a generate-and-test method is

used as a baseline comparison. This technique uses the same hypothesis checker as Qdocs

without all the bookkeeping required to generate conict sets, but simply tests hypotheses

generated in most-probable-�rst order. Note that given the fact that Qsim (and hence

Qdocs) makes acausal inferences, a generate-and-test procedure is the best we can do

without using Qdocs-style dependency propagation.

We then also compared Qdocs with a number of ablated versions in order to justify

all the di�erent parts of the hypothesis checker. First, it was compared against a system

that simply used Qdocs's constraint propagation procedure. This version is equivalent to

Inc-Diagnose, enhanced to be able to diagnose with behavioral modes.

Another ablated version of Qdocs we test against is one with both the propagation

and constraint satisfaction parts of the code but without the across-time veri�cation code.

This test is to determine if the across-time veri�er (which is one of the most computationally

expensive parts of Qdocs) is worthwhile in improving the accuracy of the system.

Finally, we test a version of Qdocs that used the constraint satisfaction and across-

time veri�cation portions of the hypothesis checker but skipped the constraint propagation

portion. This comparison was run to verify that that the constraint propagation algorithm

speeds up the constraint satisfaction process even though the constraint satisfaction and

across-time veri�cation algorithms together are just as powerful (in terms of accuracy of

diagnoses) as the complete Qdocs hypothesis checker.

An assumption we made regarding the overall framework in which Qdocs is to be

used, is that the user or monitoring system that calls our diagnostic program is interested

in a range of the most probable hypotheses consistent with the observations. It would then

use this information to implement recovery methods such as making further measurements

or replacing certain components. Therefore on each problem, Qdocs was run until the best

remaining hypothesis had a probability of less than a tenth of the probability of the best

(i.e., most probable) hypothesis that was found to be consistent with the observations thus

far. This would give us a range of all the consistent hypotheses that were within an order of

magnitude of each other in a priori probability and would provide a termination condition

for the top-level procedure of Qdocs. In each of our domains, we �rst generated a test

suite of 100 examples and ran the above experiments on all of them.

5.2 Reaction Control System

The �rst problem we look at is that of diagnosing faults in the Reaction Control System

(RCS) of the Space Shuttle. The RCS is a collection of jets that provides motion control for

the orbiter when it is in space. These jets are �red appropriately whenever changes need

55

to be made to the orientation or position of the craft. The main tasks of the RCS include

separation from the external fuel tank after launch and reorienting the shuttle for reentry

into the earth's atmosphere. We will �rst describe the RCS system itself and how we have

modeled it and then summarize the results we obtained.

5.2.1 The RCS Model

The entire RCS system consists of three separate subsystems, two with 14 jets each and

one with 16. The two with 14 jets are located in the rear of the craft to the left and the

right, while the subsystem with 16 jets is located in the nose of the craft. Their positions

are shown in Figure 5.1. Each subsystem contains a fuel tank and an oxidizer tank. The

fuel and oxidizer are mixed and combustion takes place in the thruster which then feeds

the jets.

Figure 5.2 shows the complete layout of an RCS subsystem. As shown in the diagram,

there are two nearly identical but independent parts of the subsystem, meeting only at

the thrusters. These parts deliver, respectively, the fuel and the oxidizer, to the thruster

chamber.

Each of these parts works by using helium to pressurize the propellant.2 The helium

feeds through a system of pressure regulators, into the propellant tank where it maintains

a steady pressure so that the propellant exits the tank at a steady rate. The propellant

then gets channeled into one of many manifolds from which it exits into the corresponding

thruster.

Figure 5.2 shows two di�erent paths between the helium and the propellant tank.

These are provided to make the system recon�gurable. At any point, only one of these

paths is kept open. Each of the paths has two pressure regulators, one being redundant and

used for fault-tolerance. Also, the lines between the propellant tank and the manifolds are

also linked to crossfeeds that allow sharing of propellant with the other subsystems of the

RCS.

A Qsim model for this system was �rst built by Kay [1992]. This model has been

extended and modi�ed by us for the purposes of diagnosis. Still, the modeled system is

a somewhat simpli�ed version of the actual RCS subsystem, as shown in Figure 5.3. One

simpli�cation we make is to consider only a single path between the helium and propellant

tank, since only one is active at any one time. We also abstract away the multiple manifolds

into a single component with one value for pressure. Since the manifolds are interconnected

and maintain one pressure anyway, this is a reasonable abstraction. Finally, we assume the

presence of eight sensors to monitor the system - pressure sensors in the Helium tank, the

propellant tank and the manifold, as well as propellant volume sensors in the propellant

tanks.

2The word propellant here refers generically to the fuel or the oxidizer.

56

Figure 5.1: Position of RCS subsystems

57

Figure 5.2: Layout of an RCS Subsystem

58

Manifold

Thruster

Manifold

Fuel Tank

Helium Tank

Fuel

Primary Pressure Regulator

Ullage (Helium)

Fuel gauge

Secondary Pressure Regulator

Tank Valve

Manifold Valve

Helium Tank

Ullage (Helium)

Oxidizer

Manifold Pressure gauges

Ullage Pressure gauges

Helium Pressure gauges

Oxidizer gauge

Figure 5.3: A Simpli�ed RCS Subsystem

59

The Qsim model and associated Qdocs component structure for this system are

given in Appendix A. The complete model contains 135 constraints and 23 components,

each with multiple behavioral modes. Some of the kinds of faults modeled include pressure

regulators stuck open and closed, leaks in the helium tank, the fuel tank, or the fuel line,

and sensors being stuck low or high.

The pressure regulators are modeled as ideal regulators. In other words, if the input

side of the regulator is at a higher pressure than a certain setpoint, we assume that a

normally functioning regulator will maintain the setpoint on the output side. The regulator

also operates in multiple regions within the normal mode { when the input pressure is above

the setpoint, it behaves ideally, while when it is below the setpoint, it acts like a pipe, so

that the same pressure is maintained on both sides of the regulator.

Thus the RCS model also requires a listing of operating regions within modes and

these are also listed in Appendix A. Since we have four pressure regulators with 2 regions

each, there are a total of 16 di�erent region combinations that are possible if all the regu-

lators are functioning normally. If they are functioning abnormally, they are either stuck

open or stuck closed and hence their behavior is completely determined.

The di�erence between the pressure of Helium in the propellant tank3 and the pres-

sure of propellant in the manifold determines the rate of ow of the propellant. The pro-

pellant enters the manifold, which is simply treated as a container of pressurized uid, and

then from there ows out into the thruster. The higher the pressure in the manifold, the

faster the ow out into the thruster.

The di�erent leaks a�ect the system di�erently in terms of where the e�ects are felt.

Leaks in the helium tank are felt in the helium system as well as in the propellant tank,

where the propellant is at a lower pressure, and thus ows out very slowly. This would in

turn, imply a lower pressure in the manifold. Leaks in the fuel line, on the other hand,

are only felt in the manifold and in a faster drain rate from the propellant tank. Lastly,

manifold leaks a�ect only the manifold pressure (and are a�ected by the manifold pressure)

and again increase the drain rate from the propellant tank.

The two pressure regulators can break in open or closed positions. Since they are

placed in sequence, it is often impossible to distinguish between faults in them. For example

if the primary regulator is working normally and the secondary regulator is stuck closed,

the the model is identical to that obtained when the primary regulator is stuck closed but

the secondary regulator is normal.

Other possible faults mainly involve problems with the sensors used to gauge the

system. Each of the sensors could either be stuck low or high. These faults obviously only

a�ect the readings from the particular sensors, and they are detected when the other sensors

show normal behavior while the faulty sensor is constant and either low or high.

3The Helium in the propellant tank is also known as the ullage.

60

Avg. Most Most Run
Prob. Prob. Member Member Time Hyps.

Method Hyps. Correct % Subset % Correct % Subset % (sec) Tested
Gen & Test 1.39 77.00 95.00 82.00 100.00 1288.77 456.55
Prop. only 2.91 29.00 82.00 32.00 85.00 44.39 19.71

No Across 1.71 42.00 84.00 42.00 84.00 85.68 25.29
No Prop. 1.39 77.00 95.00 82.00 100.00 647.95 52.62
Qdocs 1.39 77.00 95.00 82.00 100.00 454.02 52.70

Figure 5.4: Results in the RCS domain

Since the actual probabilities of the faults were unknown, they were assigned by us

with normal modes being much more common than the fault modes. As with all Qdocs

models, we make the assumption that the faults are independent of each other. A sample

run of Qdocs on a problem in this domain is shown in Appendix B.

5.2.2 RCS Experiments

We ran the series of experiments described in Section 5.1 on the RCS system. The results

are summarized in Figure 5.4. As mentioned in Section 5.1, each method was run on the 100

generated test cases and all consistent hypotheses were maintained until the next possible

hypothesis (or the most probable remaining hypothesis) is less than 0.1 times as probable

as the hypothesis computed thus far with the highest probability. The �rst column reports

the average number of hypotheses generated per diagnosis problem for each of the tests.

The second through �fth columns show di�erent measures of accuracy for each method,

while the last two columns show di�erent measures of e�ciency.

For each method we separated out the most probable hypotheses (often more than

one if there were a few equally probable hypotheses) and compared these to the correct

hypothesis. The percentage of cases where the correct hypothesis was among these is

reported in the second column. In many cases, a subset of the correct faults is su�cient

to model the given behavior. The percentage of cases where a hypothesis which is one of

the most probable is a subset of the correct set of faults is shown in the third column. The

fourth column shows the percentage of cases for which the right hypothesis occurs anywhere

in the set of hypotheses generated while the �fth shows the percentage of cases in which

some hypothesis is a subset of the faults of the correct hypothesis.

The sixth column shows the average time taken for each problem on a Sparc 5

workstation running Lucid Common Lisp. Finally, the last column has the number of

hypotheses the hypothesis checker actually had to test.

The �rst line shows the results obtained using the generate and test method. When

we compare this to the complete Qdocs algorithm on the last line, we see that they both

61

have identical accuracies { 82% of problems are accurately diagnosed in both cases, with 77%

of the correct solutions also being among the most probable. In all the cases a hypothesis

had at least a subset of the faults of the correct hypothesis. This result is as expected since

a systematic elimination of hypotheses as in the generate and test method is guaranteed to

reach the right hypotheses eventually. The big di�erence appears in the average number

of hypotheses tested { the generate and test method tests 8.7 times more hypotheses than

Qdocs.

What this shows is that Qdocs is able to narrow the hypotheses considerably using

its dependency propagation algorithms. However, the run times show that there is a cost

that Qdocs pays for this advantage. The ratio of run times is 2.8 to 1 in favor of Qdocs.

The di�erence between the ratios for hypotheses tested and for time is explained by the

di�erence in the amount of bookkeeping that Qdocs must perform to keep track of all the

dependencies. This is still a substantial advantage for Qdocs over the simpler generate and

test method and clearly demonstrates its superiority. As we discuss in Chapter 7, there is

scope for improvement in e�ciency in the area of dependency updating, and thus the ratio

of run times could improve further.

Figure 5.4 also shows that the di�erent parts of the Qdocs hypothesis checker con-

tribute either to the accuracy or the e�ciency ofQdocs. The second line of the table shows

the results obtained by running the same problems using just the constraint propagator as

the hypothesis checker. As expected, the accuracy results are low compared to Qdocs

since there are many conicts which simply cannot be detected by the propagator alone.

However, since propagation is a very e�cient procedure, the average times are only about

44 seconds instead of the 454 seconds that the full Qdocs uses.

When constraint satisfaction was added to the propagation procedure (line 3 or

\No Across"), the accuracy improved, but the method is still not quite as accurate as the

complete Qdocs algorithm (42 % vs. 82 % for Qdocs). This shows that the across-

time consistency checking is useful in pruning incorrect hypotheses. Again, however, the

technique took much less time on average than the Qdocs algorithm. The di�erence here

(86 secs. vs. 454 secs.) is explained �rst by the di�erence in the average number of

hypotheses tested (25.29 vs. 52.70) as well as by the fact that the across-time veri�cation

process is computationally expensive.

Another measure of the accuracy of these methods comes from comparing the hy-

potheses they generate with the best hypotheses that can be generated to explain the

behavior. Since Qdocs is guaranteed to return the most probable hypothesis consistent

with the observations (from the results of Chapter 3), it scores 100% on this measure. The

comparison on this measure between Qdocs and the two ablation tests from Figure 5.4 that

have lower accuracies than Qdocs is shown in Figure 5.5. Note that \Propagation only"

now has an accuracy rate of just 38% (i.e., in 38% of the cases, the most probable consistent

62

\Best"
Method Hypothesis %

Prop. only 38.00

No Across 55.00
Qdocs 100.00

Figure 5.5: Comparison to best hypothesis

Avg. Most Most Run
Prob. Prob. Member Member Time Hyps.

Method Hyps. Correct % Subset % Correct % Subset % (sec) Tested
Small RCS/
Gen &Test 1.76 86.00 98.00 88.00 100.00 263.87 145.60
Small RCS/
Qdocs 1.76 86.00 98.00 88.00 100.00 220.76 33.12
Full RCS/
Gen & Test 1.39 78.00 93.00 82.00 100.00 1288.77 456.55
Full RCS/
Qdocs 1.39 78.00 93.00 82.00 100.00 454.02 52.70

Figure 5.6: Results on RCS subproblem compared with full RCS

hypothesis was also among the most probable hypotheses selected by the method) while

Qdocs scores a full 100% on this measure. On this same measure, \No Across" scores

55%, thus showing that both constraint satisfaction and across-time veri�cation improve

the accuracy of the Qdocs procedure signi�cantly.

Finally, when we ranQdocs without the constraint propagator (line 4 of Figure 5.4),

we found that the system was just as accurate as the whole Qdocs. This is because the

Waltz-�ltering algorithm of Qsim can make all the inferences that the propagator can.

However, this method was also considerably slower, showing that the propagator was indeed

useful in increasing the e�ciency of Qdocs.

Another interesting experiment we conducted regarding run time comparisons be-

tweenQdocs and the generate and test method was a study of a part of the RCS subsystem

consisting of a single propellant ow path to the thruster. The model for this system is

almost exactly half the size of the full RCS subsystem model. We generated problems in the

same way as for the experiments reported on in Figure 5.4, and ran 100 problems through

the generate and test and Qdocs algorithms. Figure 5.6 shows a comparison between the

results on this subproblem with the result of the RCS problem considered above. Again, the

accuracies were identical (88% correct, 100% subset) between the two methods. However,

the run times averaged 264 seconds for the generate and test and 221 for Qdocs. This

63

is a ratio of only 1.2 to 1 even though the ratio of hypotheses tested was 4.4 to 1. The

corresponding ratios for the complete system are 2.9 to 1 and 8.7 to 1. This suggests that

for similar problems, the larger the problem size, the greater the advantage of using a de-

pendency propagation algorithm like Qdocs to generate conict sets. We therefore expect

the advantages of Qdocs to be greater for even larger problem sizes.

These experiments show that for multiple fault diagnosis on the RCS, Qdocs is

clearly superior to the methods listed. In the following section, we shall apply the methods

to a very di�erent problem to determine if the Qdocs method is applicable and gets similar

results on an unrelated domain.

5.3 Level-Controlled Tank

One very common system in chemical engineering applications is a reaction tank with an

outow and some system to control the level to keep it constant. Various versions of con-

trolled tanks have been studied for simulation and monitoring using Qsim (e.g., [Catino,

1993]). Most such studies have concentrated on how to simulate particular controlling func-

tions for the level controller. Our study, on the other hand, will concentrate on diagnosing

faults in such a feedback system. To do this, we model the level-controller in greater detail

and assume monitoring sensors in the electrical circuitry.

Figure 5.7 shows our representation of an implementation of a level controller for a

tank. The controller works as follows. As the level of the water in the tank (h(t)) rises, the

oat also rises, causing the contact point on the resistor to rise. This higher setting on the

resistor will set up a higher potential di�erence across the ampli�er which in turn multiplies

the di�erence with a �xed gain value. The resulting potential is then applied to a motor

which in turn controls the valve. Water owing through the valve ows directly into the

tank. For higher values of the error (h(t)� setting), the angular velocity (!m)of the valve

becomes higher, except that !m becomes 0 when the angle of opening of the valves (�m)

reaches either 0 or thetammax.

This system is taken from a standard control systems textbook, [Kuo, 1991], and is

known to be an unstable system that can display wildly oscillating behaviors. However, the

instability plays little role in the ability to diagnose faults in this domain. The main reason

this system is of interest is to show that the Qdocs mode of dependency propagation is

useful even for feedback systems. Some researchers (e.g., [Dvorak & Kuipers, 1992]) have

held that such an algorithm would not be useful in dynamic systems with feedback loops

because variable values are usually dependent on all constraints. However, if we have the

ability to monitor particular values in the feedback loop, we break the loop into parts in

such a way that everything is not dependent on everything else.

The level-controlled tank is modeled as shown in Appendix C using a Qsim model

64

A

V

Motor
Inlet Valve

Float

Amplifier

Reservoir

Tank

Setting

h(t)

m
m

h(t)

Outflow

e

Height sensor

Figure 5.7: A level controller for a tank

65

Avg. Most Most Run
Prob. Prob. Member Member Time Hyps.

Method Hyps. Correct % Subset % Correct % Subset % (sec) Tested
Gen & Test 4.96 50.00 58.00 88.00 98.00 59.21 215.14
Prop. only 4.63 39.00 68.00 65.00 99.00 6.63 26.60

No Across 4.65 39.00 67.00 65.00 99.00 7.69 26.83
No Prop. 4.96 50.00 58.00 88.00 98.00 31.50 24.31
Qdocs 4.96 50.00 58.00 88.00 98.00 27.39 33.95

Figure 5.8: Results in the Level-Controller domain

\Best"
Method Hypothesis %

Prop. only 78.00
No Across 78.00

Qdocs 100.00

Figure 5.9: Comparison to best hypothesis

with 45 constraints and a component structure with 14 components. The various possible

faults include leaks in the tank, a clogged drain, breaks in the electrical circuitry, a dead

battery, a stuck voltmeter or ammeter, a stuck motor, and valves that are either stuck open

or closed.

We ran all the experiments described in Section 5.1 on this model of the controlled

tank. Again the focus was on multiple faults, and we restricted ourselves to those problems

that required a multiple-fault diagnosis. As before, the experiments were produced by ran-

domly generating and simulating 100 faults in the Qsim model. The results are summarized

in Figure 5.8.

As in the equivalent experiments with the RCS, Qdocs does better than the other

techniques. It is about 2.2 times faster and tests 6.3 times fewer hypotheses than the

generate and test method. Qdocs is also more accurate than either propagation alone or

propagation and constraint satisfaction (no across-time). The results of comparing these

methods in terms of the most likely consistent hypotheses is shown in Figure 5.9. This,

as for the RCS, shows that both \Prop Only" and \No Across" are signi�cantly less likely

than Qdocs to �nd the most probable hypothesis that is consistent with the observations.

Another interesting result in Figure 5.8 is that the less accurate methods actually

had marginally higher percentages in the Member Subset column. This demonstrates the

limitations of subset percentages. Given that the correctness accuracies of these methods

were lower, the only conclusion we can make about them is that certain subset hypotheses

66

were matched by these methods which failed on across-time veri�cation in Qdocs. This

shows that the subset results may actually reward methods that match incorrect hypotheses,

and is thus not an entirely reliable measure of accuracy.

Another major di�erence with the RCS results was hat the Qdocs version without

the propagator had an accuracy that was almost equal to Qdocs (as expected), but was

only a little slower. We believe this is because the smaller constraint network of the level-

controlled tank means that propagation does not provide as much of a speedup over the

exhaustive constraint satisfaction system as it did on the RCS problem. A related result was

that propagation and constraint satisfaction performed almost identically as propagation

alone. This is probably again because propagation is not much more e�cient than constraint

satisfaction on this smaller set of constraints.

5.4 The Utility of Caching

In this section, we study the utility of the preliminary work on caching of dependencies

that we introduced in Chapter 4. One of the main problems with any caching scheme is

the possibility that the overhead associated with the caching scheme may be higher than

the speedups that it makes possible. This is often referred to as the utility problem (a

detailed study of the problem has been undertaken by Minton [1988]) and it was to study

this phenomenon that we performed an experiment to break up the costs associated with

the hypothesis checking and the cache updating.

Unfortunately, the caching scheme, as currently implemented in Qdocs, does seem

to exhibit characteristics of the utility problem, although it does show enough promise to

be considered worthy of continued study. In the best cases, caching did marginally speed

up the operation of Qdocs, while in the worst ones, the slowdown was fairly signi�cant.

The caching scheme is designed to speed up the operation of the constraint propa-

gator and the constraint satisfaction algorithms, during the phase when Qdocs is checking

consistency within a single qualitative state (as opposed to during the across-time veri�-

cation stage). Because the same constraint satisfaction functions are called from both the

single-state completion phase and the across-time veri�er, the experiments we used to test

the caching scheme were all conducted with the across-time veri�er turned o�. This was

necessary to truly gauge the time the program was spending doing constraint satisfaction

in the phase in which caching is supposed to reduce the amount of computation to be

peformed.

We make the assumption that diagnostic episodes occur frequently and thus it would

make sense to keep a cache over a number of runs of the diagnosis system. However, one

problem with caching across a number of episodes is that caches can grow exceedingly large

as each call to the constraint satisfaction algorithm can yield a slightly di�erent set of

67

Method Prop. Time CSP Time Update Time Access Time Calls Avg. Time
(per call) (per call) (per call) (per call) per prob. per prob.

sec sec sec sec sec
No Caching
Prop+CSP 0.056 0.23 na 0.045 45.70 21.22
Caching
Prop+CSP 0.020 0.17 0.043 0.160 61.00 31.17
No Caching
CSP only na 0.34 na 0.046 63.60 32.65
Caching
CSP only na 0.20 0.026 0.140 63.35 30.76

Figure 5.10: Results of Caching experiments

possible values for each variable. This set, as long as it meets the criteria for caching given

in Chapter 4, will add to the cache size even if the speci�c case is not particularly useful. In

Chapter 7, we will suggest some ways to minimize cache size, but for these experiments, we

simply use a numeric limit on the number of nodes in the cache (set to 30 in all these cases)

and stop caching inferences for a given variable when this limit is reached in the cache for

that variable.

The experiments were run with the smaller RCS model (i.e., half of the RCS subsys-

tem) over 20 problems each. The results are summarized in Figure 5.10. All the problems

were run on the same set of randomly generated double faults. We used Lucid Common

Lisp's Monitor facility to record the times spent in each of the routines of interest as

well as to count the number of calls to these routines. The �rst and second lines of Fig-

ure 5.10 show the results of running the propagation and constraint satisfaction algorithms,

while the third and fourth lines show the results of running only the constraint satisfaction

algorithm.

The �rst four columns display the average time that Qdocs spends in each call

of each of the particular functions shown. The �rst column shows the amount of time

spent on average per call to the propagator, while the second shows the time spent per call

to the constraint satisfaction algorithm. The third and fourth columns show the average

times spent in each call of the cache updating and cache accessing functions respectively.4

While using both the propagation and constraint satisfaction algorithms (rows 1 and 2),

the propagation time per call fell by more than half (from 0.056 secs. to 0.020 secs.) while

the constraint satisfaction (CSP) time fell by a signi�cant amount (from 0.23 secs. to 0.17

secs). However the cache access time is somewhat higher for the caching scheme than the

4In the case of the non-caching algorithms, access times are actually the times it takes to compute the
space of possible values for each variable given an initial partially speci�ed value. This operation is performed
in the caching schemes as part of the cache access.

68

non-caching scheme by a factor of 3.5.

An unexpected result was that there was a large di�erence in the number of calls to

the constraint propagation and satisfaction functions between the di�erent problem solving

methods. The number of calls was signi�cantly higher with caching than without. We

believe that caching has the e�ect of inating the size of dependency sets.

The reason for this is as follows: suppose some variable v is where a contradiction is

detected for a particular hypothesis. In cases where we are not using a cache, the variable

would be initialized with no dependencies and all possible values. During the process of

constraint propagation and constraint satisfaction, it gets component mode values added on

to its dependency set, while the number of possible values decreases to zero. The dependency

set that remains at that time is a conict set.

On the other hand, when we are using a cache, the variable may start o� with

a dependency set from a previously cached computation with elements that may not be

necessary to cause a conict at that variable. The constraint satisfaction algorithm would,

however, include those component mode values as part of the conict. While the process of

constraint satisfaction may be speeded up because the set of initial possible values would

be smaller due to the cache, the result is a conict set with more component mode values.

As we have pointed out before, larger conict set sizes usually mean slower diagnosis. This

problem, along with the high costs of updating and access seem to be the major factors in

explaining the poor performance of caching.

Signi�cantly, when we ran the constraint satisfaction algorithm alone without the

propagator, there was a small speedup with the caching algorithm, when compared to the

algorithm without caching. In this case, the number of calls to the CSP actually drops (but

not signi�cantly), while the cache access and cache update times are low enough that the

faster CSP times still give caching an advantage. The problem with inated caches is not as

pronounced here. This is because most of the gain in terms of small conict sizes tends to

be in the constraint propagation algorithm and while that advantage was lost when moving

to constraint satisfaction alone, the disadvantage of initializing variables with dependencies

from the cache becomes less signi�cant since dependency set sizes tend to be large in any

case.

Thus in conclusion, caching seems to speed up the actual time taken per call to the

constraint satisfaction algorithm, but the costs of that speedup outweigh the bene�ts in

the system as currently implemented. In Chapter 7 we will look at ways in which we can

overcome these problems in the future.

69

Chapter 6

Related Work

In the preceding chapters, we have outlined the Qdocs approach to addressing the problem

of qualitative model-based diagnosis of continuous dynamic systems. As we saw in Chap-

ter 2, our particular approach was motivated by some of the shortcomings of some of the

precursors to Qdocs. Some of the main distinctive features of the system we built include:

1. It diagnoses with a qualitative description of a dynamic system, whereas most previous

e�orts at model-based diagnosis have been with static systems.

2. It incorporates a general multiple-fault diagnostic system using behavioral modes.

3. It computes conict sets for use in diagnosis using a constraint satisfaction algorithm

that works for cases where the more commonly used constraint propagation algorithms

fail.

In this chapter, we will study the relationship between the Qdocs approach to

diagnosis and a number of other approaches that have been studied in the literature. We

begin by reviewing the approaches that have already been introduced in Chapter 2 and

then move on to some of the other related systems. We collected related work into groups

of systems that use roughly the same approach.

6.1 Inc-Diagnose and Diamon

Ng's Inc-Diagnose system [1991] has already been discussed in some detail in Chapter 2.

It's main limitation is the fact that it is restricted to a subset of Qsim constraint networks

where variable values can always be propagated across constraints unless there is a con-

tradiction. Since this is only true of a small subset of possible constraint networks, this

is a severe limitation. In contrast, as discussed earlier, Qdocs is able to work with any

70

model that can be simulated using Qsim. Thus it is more generally applicable than Inc-

Diagnose. Furthermore, as we pointed out in Chapter 2, a constraint propagation system

that is incomplete is likely to produce diagnoses that are incorrect, since inconsistencies in

hypotheses tested may simply not be detected.

Another limitation of Inc-Diagnose is that, as implemented by Ng, it is unable to

take advantage of known failure modes (or behavioral modes) of a device. However, as has

been shown by various researchers [Struss & Dressler, 1989; de Kleer & Williams, 1989],

extending Reiter's basic formulation of the diagnosis problem to include fault modes is not

di�cult.

Inc-Diagnose was only tested on one very small system (a proportionally-controlled

thermostat) and for only a small set of behaviors of that system. The limitations mentioned

would have prevented its application to most realistic systems.

Another system that uses an Inc-Diagnose style diagnosis system is Diamon

[Lackinger & Nejdl, 1991]. The diagnosis subsystem in Diamon,1 like Inc-Diagnose,

performs constraint propagation using Qsim constraints, but it also adds a hierarchical fo-

cussing system on top of the propagation layer. The hierarchical focussing system allows

the propagator to zoom in on speci�c parts of the constraint network that may be faulty by

analyzing coarser descriptions �rst and identifying broad areas that may be faulty. This use

of hierarchies in diagnosis is actually an older idea dating back to [Genesereth, 1984]. How-

ever, like Inc-Diagnose, Diamon is limited to domains in which constraint propagation

is su�cient to determine all the conict sets.

6.2 Mimic and Qmimic

As we saw in Chapter 2,Mimic [Dvorak, 1992] is primarily a monitoring system that uses a

simple dependency tracing algorithm on a causal inuence graph to determine the possible

fault hypotheses when an error is detected. We pointed out two main problems with the

Mimic approach. They are:

1. Since reasoning in Qsim can occur in an acausal manner, the policy of looking only at

faults that are upstream from the sensor where the fault is detected is unsound, and

2. Mimicmakes a single-fault assumption, and is thus unable to diagnose multiple faults.

One feature that Mimic has, and that Qdocs does not, is its ability to make use

of semi-quantitative information. Qualitative landmark values for variables are described

using ranges of possible numeric values that allow for more precise discrepancy detection.

However, these semi-quantitative values do not play a role in the actual fault generation

1Diamon integrates such a diagnosis system into a monitoring framework.

71

process because Mimic essentially discards this information and looks solely at the causal

dependency graph to generate hypotheses. As we discuss in Chapter 7, for a Qdocs-like

diagnosis system to be able to work with a semi-quantitative monitoring system likeMimic,

we will need to adapt it to use this information to generate hypotheses.

Mimic was applied to a number of fairly simple examples. A very similar system

that was used on some more complex problems is Qmimic [Vinson & Ungar, 1995]. This

system is an enhancement to Mimic that allows for better handling of sensor noise. This

capability along with other enhancements in the monitoring system allow it to be used

in complex applications like the monitoring and diagnosis of a propylene glycol reactor.

However, it uses essentially the same diagnosis algorithm as Mimic and thus su�ers from

the limitations enumerated above.

6.3 Magellan-MT, Doc, and Ca-en

In this section we consider three of the more recent systems that address the problem

of diagnosis of continuous physical systems. All of these, as we shall see, use di�erent

techniques to test hypotheses and construct conicts. However, they must make restrictive

assumptions about the nature of their diagnosis problems in order to be able to model them

in such a manner as to make such computation possible and e�cient.

The �rst of these systems isMagellan-MT [Dressler, 1994]. This system tackles the

diagnosis of continuous dynamic systems by using an e�cient default-logic based formulation

which was introduced in [Dressler & Struss, 1992] and extended in [Dressler & Struss,

1994]. The basic diagnosis engine of Magellan-MT uses a focussing mechanism based

on applying default logic to a partial ordering of hypotheses to generate new candidate

hypotheses. Hypotheses are then tested in a focussed manner only on portions of the device

where the faults are likely to predict values which are di�erent from previously computed

default values.

On the problem of consistency across time, Dressler claims that most conicts can

be detected using single time slices alone without doing any across time conict generation.

This claim agrees with our experience in Qdocs and the systems on which we tested. Like

Qdocs, Magellan-MT uses the across-time simulator mainly to verify hypotheses rather

than generate conicts. Since, as we have seen with Qdocs, across-time simulation is

clearly more expensive than single-state conict detection, this shows that our approach of

checking hypotheses on individual states �rst and verifying across time only if necessary, is

the most e�cient way of testing hypotheses and generating conicts.

At the basic level, however, Magellan-MT uses a simple ATMS to keep track of

dependencies. Since the ATMS is unable to reason with disjunctions of propositions, this

means that there is an implicit assumption that constraints or logical rules in the system

72

will lead to speci�c values for variables. Thus this system su�ers from the same limitations

as Inc-Diagnose and other constraint propagation systems we have discussed. However,

the alternative diagnostic formalism and the focussing heuristics employed are worthy of

further study and may be applicable to a more general constraint satisfaction system such

as the one used in Qdocs. The authors claim high accuracies and speeds in diagnosing

faults in real-time in a ballast tank system for a large ship.

Another recent system that tackles the problem of diagnosis in continuous dynamic

systems, is Doc [Kapadia, Biswas, & Robertson, 1994]. Doc makes two assumptions

regarding the problem it is solving. First, it assumes that the system to be studied normally

operates at an equilibrium where all variables stay at approximately the same values, and

second, that the constraint model can be written as a set of equations where an output

value is some simple function of the input values.

This latter assumption is what allows Doc to use a simple constraint propagation

algorithm to compute diagnoses. The contributions of Doc are in the ability to merge

quantitative data from measurements into a qualitative model, and a theory of diagnosis

based on partial explanation models. The latter constructs are the converse of conict sets in

that they are disjunctions of possible parameter value changes that could a�ect the observed

faulty sensor values in the given manner. These partial explanations are apparently very

useful in the steady-state systems in which Doc was tested, but it is not clear if they are

applicable in more general diagnostic contexts.

Finally, a system that is currently being built as part of the European Esprit Project,

TIGER, to diagnose faults in gas turbines, is the Ca-en algorithm [Bousson, Zimmer, &

Trav�e-Massuy�es, 1994]. This system works like a hybrid between Mimic and GDE. As

in Mimic, dependency tracing is carried out on a causal model after the fault has been

discovered. The di�erence here is that conicts are generated by looking at the possible

combinations of components that could have resulted in the particular variable having the

given value. This approach avoids the problems with acausal predictions, discussed in

Chapter 2, by ensuring that predictive inferences are propagated only in a causal manner.

Qdocs, on the other hand, allows acausal predictions, and simply uses the dependencies

from the actual computation of the predictions. The causal engine that Ca-en uses requires

models where all predictions can be made in a causal manner, while Qdocs can use general

constraint-based models with acausal predictions.

6.4 Other Approaches

In this section, we will summarize some of the earlier approaches to diagnosing continuous

systems and show how they di�er from Qdocs.

73

Midas [Oyeleye, Finch, & Kramer, 1990] was a model-based diagnosis system applied

to dynamic systems that used a particular modeling scheme called a signed directed graph

or SDG. An SDG is a pre-computed inuence diagram on the system that has information

on how particular variables a�ect others. When a fault was detected, Midas would track

through the SDG looking for parameters that could have caused the observed result. An

SDG, while being a computationally e�cient diagnostic tool, is inadequate for expressing

the complex constraints of a Qsim model. The diagnostic power of a Midas model is thus

correspondingly reduced when compared with a model in Qdocs.

One system that was used for the diagnosis of analog circuits was Cats [Dague,

Jehl, Deves, Luciani, & Taillibert, 1991]. Cats relies on a very specialized propagation

mechanism called interval propagation that allows for uncertainties in numerical values to

get propagated through constraints. Like some of the other systems mentioned, Cats relies

on being able to propagate these values through constraints without having to resort to

more general constraint satisfaction algorithms like Qdocs.

Finally, another model-based system that has found practical use in the diagnosis

of aircraft engines is Draphys [Abbott, 1988]. However, this system while using locality

information from the point of fault discovery to isolate sets of components where the faults

may have occurred, uses a very basic generate-and-test algorithm to actually compute the

diagnoses. It therefore does not have the more e�cient conict-based diagnosis strategy of

Qdocs.

74

Chapter 7

Future Work

In the preceding chapters, we have described our algorithms, introduced our implemented

system,Qdocs, described the results of some of our experiments, and related our algorithms

to some of the other approaches to the diagnosis problem. In this chapter, we will propose

a number of di�erent extensions of our research that we believe show promise and would

allow the Qdocs approach to be used in actual industrial applications.

These extensions can be divided into three separate categories. In the �rst section,

we will describe improvements to our algorithms that would allow the system to become

more accurate and e�cient. The second section will describe implementation improvements

that we believe would improve the e�ciency of Qdocs. Finally, the third section will

introduce some ideas about where this research may go in the future and what it would

take to get Qdocs situated in actual applications.

7.1 Algorithm Improvements

7.1.1 Across-time Veri�cation

Currently, as we pointed out in Chapter 4, the algorithm for across-time veri�cation, as

implemented in Qdocs, is unable to produce useful conict sets from failures to verify

hypotheses across time. The methods we propose in that chapter are not robust and cost

too much in computation time for very little gain in terms of useful conict sets. This is

why Qdocs resorts to the practice of returning the entire hypothesis as the conict set

when it fails to verify a behavior across time.

In most cases, however, there actually is enough information in the model and the

states to obtain a better accounting of the failure. Across-time failures are usually the result

of some particular variable failing to have a consistent value between states. An improved

veri�er might work by attempting to explain the failure in terms of speci�c variables that

75

have no consistent sequences of values. The veri�er could then �nd dependencies for that

particular variable in each of the states in which the variable failed to have a successor and

explain the failure as being due to the union of these.

Isolating the particular variable or variables that caused the discontinuity is, how-

ever, a di�cult task in itself, and this is open to further study. Some kind of exhaustive

accounting of variables to see which ones fail to have consistent values across time could be

peformed, but that may be more computationally expensive than it is worth.

7.1.2 Caching Dependencies

We have shown that the essential ideas of our caching techniques presented in Chapter 4

are sound and we believe they need to be explored in some detail. Since we know that the

Waltz-�ltering algorithm computes the same values over and over again, having a cache

with commonly computed values stored should be advantageous.

Since cache access times need to be low compared to the times for computing these

sets, limiting the size of the cache is a key idea that will need to be explored. The currently

implemented technique is to simply limit the cache to a �xed number of entries. This

unfortunately means that several possibly useful cache entries may be left out, and large

numbers of similar ones may provide little speedup bene�t. In order to better manage the

cache, we will need some sort of utility criterion to determine which entries to discard and

which ones to keep. This could be based on the number of accesses to that particular cache

entry, or on some kind of similarity metric that would allow the system to discard entries

that make similar assumptions resulting in similar possible values as other nodes.

As we saw in Chapter 5, one of the problems with the caching scheme was that

caches tended to inate the size of dependency sets. This was because dependency sets from

previously cached computations had more elements than absolutely necessary to obtain the

computed reductions in possible values for variables, and these larger sets were being used

to initialize the network every time. Since constraint satisfaction can only add dependencies

and not remove unnecessary ones, this caused cache sizes to grow to larger sizes than if we

had not used the cache to initialize these variables.

To curb this ination of dependency set sizes, one possibility would be to simply not

initialize variables using the cache during some sort of training phase and to cache away

the values and dependencies during this period. During this phase, dependency sets in the

cache would become smaller and smaller as each run of the constraint satis�er would use

di�erent sequences of constraint applications to reduce the number of variable values. This

would allow for the computation of the dependency sets without the problem of dependency

ination and would make it less likely that unnecessary dependencies would enter into

dependency sets during initialization of variable values.

76

7.2 Implementation Improvements

The implementation of Qdocs we currently have is a prototype and, as such, not every

aspect of the system is fully optimized. There are a few improvements that could be made

to the prototype for it to be able to perform diagnosis more e�ciently.

First, the current representation of dependencies and the updating peformed on

them is quite ine�cient. We essentialy store entire assumption sets away as linked lists

rather than converting them to a more space-saving representation. This unfortunately

results in more than just space ine�ciencies. Every dependency update results in recursive

scans of these large list structures, and often, the creation of new list structures, resulting

in time ine�ciencies as well. To avoid these problems, we believe a much more e�cient

representation might be some sort of array with simple iterative operations to perform

updates.

The caching scheme could also be improved using similar modi�cations. As we saw

in Chapter 5, the caching scheme su�ers from the utility problem in that cache update

and access times may outweigh the bene�ts. Using some kind of bit-array encoding for

assumptions in that scenario could also improve access and update times of the cache which

would in turn help to speed up Qdocs and show some real bene�ts over using it without

caching.

Finally, since the across-time veri�cation is the most computationally expensive

part of Qdocs, there must be improvements made in this segment of the code. Possible

improvements include search heuristics that would suggest which successor states for any

given state are more likely to lead to successors that match the next set of sensor values,

as opposed to a blind depth-�rst search that we carry out now. These heuristics might

possibly include an analysis of the trends in the values of variables and a comparison with

values in completions of states matching the next set of sensor values.

7.3 Incorporation into Industrial Monitoring Systems

The real test of the usefulness of the techniques we have presented here must take place in

the real world. Before a Qdocs-like system actually gets situated in an industrial appli-

cation, however, several problems will need to be solved. There are three broad areas in

which improvements will have to be made. The �rst is the problem of actually automating

the modeling of realistic problems, the second is that of setting up a useful monitoring

system and integrating it with a Qdocs-like diagnosis system and the third is improving

the diagnosis system so that it can make use of the kinds of information that an actual

monitoring system can provide.

There has been signi�cant progress in recent years on the �rst front. In particular,

the Qualitative Process Compiler [Farquhar, 1993] which composes qualitative models from

77

model fragments and a description of a scenario, holds promise as a technique that will

allow large models to be built automatically from simpler ones stored in model libraries.

The question of how exactly this technique could be used to build models in real-world

diagnostic applications is an issue that is open to further research.

The second area that must be further explored in order to make Qdocs a viable

on-site diagnosis system is to merge it with a monitoring system. This is likely to not

be a very di�cult task, however, since Qdocs was designed with monitoring systems in

mind. Mimic and Diamon, two of the most prominent qualitative model-based monitoring

systems that have been published in the literature, both use a diagnostic module that takes

an anomalous behavior of the system and proposes candidate hypotheses to be consistent

with this anomaly. This is essentially what Qdocs does.

The �nal area in which Qdocs will have to improve is in actually being able to use

the kinds of information that these monitoring systems can provide the diagnosis system.

For the purposes of this prototype we have used purely qualitative models and thus we

assume purely qualitative inputs from the sensors. However, actual sensor values received

by monitoring systems are usually numerical values. The numerical information from the

sensors could help a monitoring and diagnosis system choose between di�erent qualitative

states and determine more precisely the numerical values of landmark values for variables

that may initially be unknown or known only very imprecisely.

Because of this, a number of systems have been built [Kuipers & Berleant, 1988;

Kay & Kuipers, 1993] that use Qsim as the main simulation engine but allow for more of

an integration of numerical values into the simulation to make the behaviors more precise.

A diagnosis system using a semi-quantitative model such as those used by these simulation

systems would need to, in addition to propagating dependencies during constraint appli-

cation, also propagate them during interval updating. The techniques for doing this and

the e�ects in being able to improve diagnoses is an issue that must be addressed in future

research.

78

Chapter 8

Conclusions

As systems get more and more complex, automatic monitoring and diagnosis systems will

become more important for keeping track of what these systems are doing in real time,

and to determine in what ways they may be broken. Since computational complexity, and

the lack of the right kinds of available knowledge, preclude the option of building precise

numerical models, qualitative modeling for diagnosis will become especially important.

Our research has made important contributions to the �eld of model-based diagnosis

in continuous dynamic systems using qualitative modeling. Most of the previous work on

model-based diagnosis has been on static systems like combinational circuits, while most

of the work on the diagnosis of continuous dynamic systems has su�ered from various

limitations in its domain of applicability.

We have designed and implemented an algorithm for the diagnosis of behaviors of

dynamic systems which is able to diagnose multiple faults in the context of behavioral

modes. It adds a technique for propagating dependencies while using a general constraint

satisfaction algorithm, and also veri�es the correctness of hypotheses by checking that

the entire behavior is a valid simulation of the underlying model corresponding to the

hypothesis.

We have demonstrated the usefulness of the algorithm in diagnosing simulated be-

haviors on two realistic systems - the reaction control system of the space shuttle, and a

level-controlled reaction tank. We have shown that Qdocs outperforms a simpler generate-

and-test algorithm in these domains, and, through ablation tests, we have demonstrated

the utility of all the components of our system.

In comparisons with related systems, we have shown that Qdocs is unique in that

it uses a general constraint language for modeling dynamic systems, and it is able to use

a constraint satisfaction algorithm to test the consistency of hypotheses and to compute

conict sets and thus it is not limited to systems for which constraint propagation is not

blocked. We have also shown that unlike some of these systems, it avoids making simplifying

79

assumptions that limit the range of hypotheses to single faults alone.

Finally, we have suggested future research directions which will improve the accuracy,

e�ciency, and applicability of our techniques. Our research leads us to believe that online

diagnosis of complex dynamic systems is, indeed, viable, and holds great promise for the

future.

80

Appendix A

The Reaction Control System

A.1 Qdocs Model of the RCS

Given below is the Qsim model, followed by the defComponents and defOperatingRegions

descriptions of the RCS. The Qsimmodel is a modi�ed and extended version of Kay's model

[1992]. All variables that are duplicated in the two propellant subsystems have identical

names in the two subsystems except that they end in either a 0 or 1 depending on the

subsystem. The propellant is referred to as fuel in the variables, even though it may refer

to the oxidizer.

(define-QDE rcs-double-model

(text "RCS helium and fuel tanks")

(quantity-spaces

(AmtHe0 (0 AmtHeMin AmtHeLow AmtHePreg AmtHeSreg

AmtHeInit))

; Amt of Helium in He Tank

(PHe0 (0 PHeMin PHeLow PHePreg PHeSreg PHeInit))

; Pressure in He tank

(dAmtHe0 (minf 0 inf))

; Change in amt of He

(PHeSensed0 (0 PHeMin PHeLow PHePreg PHeSreg PHeInit))

; Sensed pressure in He tank

(He->UllFlow0 (0 inf)) ; Flow from He tank to He line

(HeLeakflow0 (0 inf)) ; Helium leak flow

(HeOutFlow0 (0 inf)) ; Total flow out of the He tank

(PSReg0 (0 PUllMin PullPreg PullSreg PUllMax))

; pressure past the secondary reg

(AmtUll0 (0 AmtUllInit AmtUllNom AmtUllHigh AmtUllMax))

; Amt ullage in prop Tank

81

(nrt[AmtUll]0 (0 nRTInit nRTNom nRTHigh nRTMax))

; Amt in correct units

(PUll0 (0 PUllMin PUllPreg PUllSreg PUllMax))

; Pressure in Propellant tank

(PUllSensed0 (0 PUllMin PUllPreg PUllSreg PUllMax))

; Sensed version of PUll0

(AmtFuel0 (0 AmtFNom AmtFInit AmtFMax))

; Amount of fuel in prop tank

(VolFuel0 (0 VFLow VFNom VFInit VolTotal))

; Volume of fuel

(VolFuelSensed0 (0 VFLow VFNom VFInit VolTotal))

; Fuel gauge reading

(VolUll0 (0 VUInit VUNom VUHigh VolTotal))

; Volume of Ullage

(VolTotal0 (0 VolTotal)) ; Total vol of prop tank

(DenFuel0 (0 DFPreg DFMax))

; fuel density (a function of pressure)

(dAmtFuel0 (minf 0 inf)) ; change in fuel in tank

(Fuel->ManFlow0 (minf 0 inf))

; flow proptank -> manifold

(PDiffFuel0 (minf 0 inf)) ; PUll-PMan

(TIValve0 (0 Max))

; combined tank & man vlve conductance

(AmtMan0 (0 AmtPreg AmtMax))

; Amount of fuel in manifold

(dAmtMan0 (minf 0 inf)) ; change in manifold quantity

(PMan0 (0 PManPreg PManMax))

; Manifold pressure

(PManSensed0 (0 PManPreg PManMax))

; Manifold pressure sensed

(Man->ThFlow0 (minf 0 inf)) ; flow Manifold -> Thruster

(PDiffMan0 (minf 0 PD* inf))

; PMan-PVac

(DenFuelMan0 (0 inf)) ; Density of fuel in manifold

(DPFuel0 (0 inf)) ; Density*PDiffMan

(f[DPFuel]0 (0 inf)) ; CDa*f[DPFuel] = flow in lbs/sec

(PVac0 (0 inf)) ; Pressure of space

(LineLeakS0 (0 max)) ; line leak condctnce

(Man->Leakflow0 (0 inf)) ; total leak flow (From man and line)

(ManLeak0 (0 inf)) ; manifold leak flow

(Man->LineLeak0 (0 inf)) ; leak flow from line

(ManLeakS0 (0 max)) ; manifold leak conductance

(PDiffManAndVac0 (0 inf)) ; pressure diff between man and vac

82

(ManOutflow0 (minf 0 inf))

; total flow out of manifold

(MManOutflow0 (minf 0 inf))

; -ManOutflow

(TotalHe0 (0 TotalHeNorm))

; Total Helium - add landmarks

(dTotHe0 (minf 0))

; Derivative of Total Helium

;; The other propellant tank...

(AmtHe1 (0 AmtHeMin AmtHeLow AmtHePreg AmtHeSreg

AmtHeInit))

; Amt of Helium in He Tank

(PHe1 (0 PHeMin PHeLow PHePreg PHeSreg PHeInit))

; Pressure in He tank

(dAmtHe1 (minf 0 inf))

; Change in amt of He

(PHeSensed1 (0 PHeMin PHeLow PHePreg PHeSreg PHeInit))

; Sensed pressure in He tank

(He->UllFlow1 (0 inf)) ; Flow from He tank to He line

(HeLeakflow1 (0 inf)) ; Helium leak flow

(HeOutFlow1 (0 inf)) ; Total flow out of the He tank

(PSReg1 (0 PUllMin PullPreg PullSreg PUllMax))

; pressure past the secondary reg

(AmtUll1 (0 AmtUllInit AmtUllNom AmtUllHigh AmtUllMax))

; Amt ullage in prop Tank

(nrt[AmtUll]1 (0 nRTInit nRTNom nRTHigh nRTMax))

; Amt in correct units

(PUll1 (0 PUllMin PUllPreg PUllSreg PUllMax))

; Pressure in Propellant tank

(PUllSensed1 (0 PUllMin PUllPreg PUllSreg PUllMax))

; Sensed version of PUll1

(AmtFuel1 (0 AmtFNom AmtFInit AmtFMax))

; Amount of fuel in prop tank

(VolFuel1 (0 VFLow VFNom VFInit VolTotal))

; Volume of fuel

(VolFuelSensed1 (0 VFLow VFNom VFInit VolTotal))

; Fuel gauge reading

(VolUll1 (0 VUInit VUNom VUHigh VolTotal))

; Volume of Ullage

(VolTotal1 (0 VolTotal)) ; Total vol of prop tank

(DenFuel1 (0 DFPreg DFMax))

; fuel density (a function of pressure)

83

(dAmtFuel1 (minf 0 inf)) ; change in fuel in tank

(Fuel->ManFlow1 (minf 0 inf))

; flow proptank -> manifold

(PDiffFuel1 (minf 0 inf)) ; PUll-PMan

(TIValve1 (0 Max))

; combined tank & man vlve conductance

(AmtMan1 (0 AmtPreg AmtMax))

; Amount of fuel in manifold

(dAmtMan1 (minf 0 inf)) ; change in manifold quantity

(PMan1 (0 PManPreg PManMax))

; Manifold pressure

(PManSensed1 (0 PManPreg PManMax))

; Manifold pressure sensed

(Man->ThFlow1 (minf 0 inf)) ; flow Manifold -> Thruster

(PDiffMan1 (minf 0 PD* inf))

; PMan-PVac

(DenFuelMan1 (0 inf)) ; Density of fuel in manifold

(DPFuel1 (0 inf)) ; Density*PDiffMan

(f[DPFuel]1 (0 inf)) ; CDa*f[DPFuel] = flow in lbs/sec

(PVac1 (0 inf)) ; Pressure of space

(LineLeakS1 (0 max)) ; line leak condctnce

(Man->Leakflow1 (0 inf)) ; total leak flow (From man and line)

(ManLeak1 (0 inf)) ; manifold leak flow

(Man->LineLeak1 (0 inf)) ; leak flow from line

(ManLeakS1 (0 max)) ; manifold leak conductance

(PDiffManAndVac1 (0 inf)) ; pressure diff between man and vac

(ManOutflow1 (minf 0 inf))

; total flow out of manifold

(MManOutflow1 (minf 0 inf))

; -ManOutflow

(TotalHe1 (0 TotalHeNorm))

; Total Helium - add landmarks

(dTotHe1 (minf 0))

; Derivative of Total Helium

(Thruster (0 Max)) ; Mode of the Thruster - common between

propellant tanks

)

(discrete-variables

(preg-mode0 (normal stuck-open stuck-closed unknown))

; Mode of the primary regulator

(sreg-mode0 (normal stuck-open stuck-closed unknown))

84

; Mode of the secondary regulator

(preg-region0 (ideal pipe))

; Operating region of primary regulator

(sreg-region0 (ideal pipe))

; Operating region of secondary regulator

(helium-system-mode0 (normal leaking unknown))

; Mode of helium tank and line

(he-tank-p-sensor-mode0 (normal stuck-at-0 unknown))

; Mode of Helium tank pressure sensor

(ullage-pressure-sensor-mode0 (normal stuck-at-0 unknown))

; Mode of Ullage pressure sensor

(fuel-volume-sensor-mode0 (normal stuck-at-0 unknown))

; Mode of propellant volume sensor

(manifold-pressure-sensor-mode0 (normal stuck-at-0 unknown))

; Mode of manifold pressure sensor

(tankvalve0 (open closed))

; State of tank valve

(manvalve0 (open closed))

; State of manifold valve

(manvalve-mode0 (normal stuck-open stuck-closed unknown))

; Mode of manifold valve

(tankvalve-mode0 (normal stuck-open stuck-closed unknown))

; Mode of tank valve

(manifold-mode0 (normal leaking unknown))

; Mode of manifold

(fuelline-mode0 (normal leaking unknown))

; Mode of the fuel line

;; The other propellant tank...

(preg-mode1 (normal stuck-open stuck-closed unknown))

(sreg-mode1 (normal stuck-open stuck-closed unknown))

(preg-region1 (ideal pipe))

(sreg-region1 (ideal pipe))

(helium-system-mode1 (normal leaking unknown))

(he-tank-p-sensor-mode1 (normal stuck-at-0 unknown))

(ullage-pressure-sensor-mode1 (normal stuck-at-0 unknown))

(fuel-volume-sensor-mode1 (normal stuck-at-0 unknown))

(manifold-pressure-sensor-mode1 (normal stuck-at-0 unknown))

(tankvalve1 (open closed))

(manvalve1 (open closed))

(manvalve-mode1 (normal stuck-open stuck-closed unknown))

(tankvalve-mode1 (normal stuck-open stuck-closed unknown))

(manifold-mode1 (normal leaking unknown))

(fuelline-mode1 (normal leaking unknown))

85

(thruster-mode (normal stuck-open stuck-closed unknown))

; Mode of the thruster

)

(constraints

;; Helium tank

((d/dt AmtHe0 dAmtHe0))

((minus dAmtHe0 HeOutflow0))

((M+ AmtHe0 PHe0) (0 0) (AmtHeLow PHeLow) (AmtHeMin PHeMin)

(AmtHePreg PHePreg) (AmtHeSreg PHeSreg) (AmtHeInit PHeInit))

;; Helium Leaks

(mode (helium-system-mode0 normal)

((zero-std HeLeakFlow0)))

((add HeLeakFlow0 He->UllFlow0 HeOutFlow0) (0 0 0)

(inf inf inf))

(mode (helium-system-mode0 leaking)

((M+ PHe0 HeLeakFlow0) (0 0)))

;; Integrity constraints on pressure regulator regions.

(mode (and (sreg-mode0 normal) (sreg-region0 ideal))

((greater-than-or-equal PHe0 PHeSreg)))

(mode (and (preg-mode0 normal) (preg-region0 ideal))

((greater-than-or-equal PSReg0 PUllPreg)))

(mode (and (sreg-mode0 normal) (sreg-region0 pipe))

((less-than-or-equal PHe0 PHeSreg)))

(mode (and (preg-mode0 normal) (preg-region0 pipe))

((less-than-or-equal PSReg0 PUllPreg)))

;; Effects of Pressure Regulators

(mode (and (sreg-mode0 normal) (sreg-region0 ideal))

((constant PSReg0 PUllSreg)))

(mode (or (and (sreg-mode0 normal) (sreg-region0 pipe))

(sreg-mode0 stuck-open))

((equal PSReg0 PHe0) (0 0) (PUllPreg PHePreg)

(PUllSreg PHeSreg)))

(mode (and (preg-mode0 normal) (preg-region0 ideal))

((constant PUll0 PUllPreg)))

(mode (or (and (preg-mode0 normal) (preg-region0 pipe))

(preg-mode0 stuck-open))

((equal PUll0 PSReg0) (0 0) (PullMin PUllMin) (PUllPreg PUllPreg)

86

(PUllSreg PUllSreg) (PUllMax PUllMax)))

;; Flow from HeTank to Ullage tank

(mode (and (or (preg-mode0 normal) (preg-mode0 stuck-open))

(or (sreg-mode0 normal) (sreg-mode0 stuck-open)))

((equal Fuel->Manflow0 He->UllFlow0) (0 0) (inf inf)))

(mode (or (preg-mode0 stuck-closed) (sreg-mode0 stuck-closed))

((zero-std He->UllFlow0)))

((d/dt AmtUll0 He->UllFlow0))

;; Propellant tank - propellant flow

((d/dt AmtFuel0 dAmtFuel0))

((minus Fuel->Manflow0 dAmtFuel0))

;; Density, amount and volume of propellant

((M+ PUll0 DenFuel0) (0 0) (PUllPreg DFPreg) (PUllMax DFMax))

((mult DenFuel0 VolFuel0 AmtFuel0) (DFPreg VFInit AmtFInit)

(DFPreg VFNom AmtFNom))

((M+ AmtUll0 nRT[AmtUll]0) (0 0) (AmtUllInit nRTInit)

(AmtUllNom nRTNom) (AmtUllHigh nRTHigh)

(AmtUllMax nRTMax))

((mult PUll0 VolUll0 nRT[AmtUll]0) (0 0 0) (PUllPReg VUInit nRTInit)

(PUllPReg VUNom nRTNom)

(PUllPReg VUHigh nRTHigh)

(PUllMax VolTotal nRTMax))

((add VolFuel0 VolUll0 VolTotal0) (VolTotal 0 VolTotal)

(0 VolTotal VolTotal)

(VFNom VUNom VolTotal)

(VFLow VUHigh VolTotal)

(VFInit VUInit VolTotal))

;; Total Helium in the system normally remains constant.

((add AmtUll0 AmtHe0 TotalHe0) (0 0 0)

(AmtUllNom AmtHeInit TotalHeNorm)

(AmtUllHigh AmtHeLow TotalHeNorm))

((minus dTotHe0 HeLeakflow0))

((d/dt TotalHe0 dTotHe0))

(mode (helium-system-mode0 normal)

((constant TotalHe0 TotalHeNorm)))

((constant VolTotal0 VolTotal))

;; Sensor modes

87

(mode (he-tank-p-sensor-mode0 normal)

((equal PHeSensed0 PHe0) (0 0) (PHeMin PHeMin) (PHeLow PHeLow)

(PHePreg PHePreg) (PHeSreg PHeSreg) (PHeInit PHeInit)))

(mode (ullage-pressure-sensor-mode0 normal)

((equal PUllSensed0 PUll0) (0 0) (PUllMin PUllMin)

(PUllPreg PUllPreg) (PUllSreg PUllSreg) (PUllMax PUllMax)))

(mode (fuel-volume-sensor-mode0 normal)

((equal VolFuelSensed0 VolFuel0) (0 0) (VFLow VFLow)

(VFNom VFNom) (VFInit VFInit) (VolTotal VolTotal)))

(mode (he-tank-p-sensor-mode0 stuck-at-0)

((zero-std PHeSensed0)))

(mode (ullage-pressure-sensor-mode0 stuck-at-0)

((zero-std PUllSensed0)))

(mode (fuel-volume-sensor-mode0 stuck-at-0)

((zero-std VolFuelSensed0)))

(mode (manifold-pressure-sensor-mode0 normal)

((equal PMan0 PManSensed0)

(0 0) (PManPreg PManPreg) (PManMax PManMax)))

(mode (manifold-pressure-sensor-mode0 stuck-at-0)

((zero-std PManSensed0)))

;; Manifold pressures and flows

((add PDiffFuel0 PMan0 PUll0) (0 PManPreg PUllPreg))

((mult PDiffFuel0 TIValve0 Fuel->ManFlow0))

(mode (and (or (and (tankvalve-mode0 normal) (TankValve0 open))

(tankvalve-mode0 stuck-open))

(or (and (manvalve-mode0 normal) (ManValve0 open))

(manvalve-mode0 stuck-open)))

((constant TIValve0 max)))

(mode (or (and (tankvalve-mode0 normal)

(TankValve0 closed))

(and (manvalve-mode0 normal)

(ManValve0 closed))

(tankvalve-mode0 stuck-closed))

((zero-std TIValve0)))

((constant tankvalve0))

((constant manvalve0))

((constant PVac0 0))

((d/dt AmtMan0 dAmtMan0))

((M+ AmtMan0 PMan0) (0 0) (AmtPreg PManPreg) (AmtMax PManMax))

((add PDiffMan0 PVac0 PMan0) (PD* 0 PManPreg))

((mult PDiffMan0 DenFuelMan0 DPFuel0))

((M+ PMan0 DenFuelMan0) (0 0) (PManMax inf))

88

((M+ DPFuel0 f[DPFuel]0) (0 0) (inf inf))

;; Manifold -> Thruster flow

((mult Thruster f[DPFuel]0 Man->ThFlow0))

((add Fuel->ManFlow0 MManOutflow0 dAmtMan0))

((W+ PDiffMan0 DPFuel0))

;; Leaks in the Manifold

((add Man->Leakflow0 Man->ThFlow0 ManOutflow0))

((minus MManOutflow0 ManOutflow0))

((add ManLeak0 Man->LineLeak0 Man->Leakflow0))

((add PDiffManAndVac0 PVac0 PMan0))

((mult ManLeakS0 PDiffManAndVac0 ManLeak0))

(mode (fuelline-mode0 leaking)

((mult LineLeaks0 PDiffManAndVac0 Man->LineLeak0)))

(mode (fuelline-mode0 normal)

((zero-std Man->LineLeak0)))

(mode (manifold-mode0 leaking)

((constant ManLeakS0)))

(mode (manifold-mode0 normal)

((zero-std ManLeakS0)))

(mode (fuelline-mode0 leaking)

((constant lineleaks0)))

(mode (fuelline-mode0 normal)

((zero-std lineleaks0)))

;; Thruster modes

(mode (thruster-mode normal)

((constant thruster max)))

(mode (thruster-mode stuck-closed)

((constant thruster 0)))

;; The other propellant tank...

;; Helium tank

((d/dt AmtHe1 dAmtHe1))

((minus dAmtHe1 HeOutflow1))

((M+ AmtHe1 PHe1) (0 0) (AmtHeLow PHeLow) (AmtHeMin PHeMin)

(AmtHePreg PHePreg) (AmtHeSreg PHeSreg) (AmtHeInit PHeInit))

;; Helium Leaks

(mode (helium-system-mode1 normal)

((zero-std HeLeakFlow1)))

89

((add HeLeakFlow1 He->UllFlow1 HeOutFlow1) (0 0 0)

(inf inf inf))

(mode (helium-system-mode1 leaking)

((M+ PHe1 HeLeakFlow1) (0 0)))

;; Integrity constraints on pressure regulator regions.

(mode (and (sreg-mode1 normal) (sreg-region1 ideal))

((greater-than-or-equal PHe1 PHeSreg)))

(mode (and (preg-mode1 normal) (preg-region1 ideal))

((greater-than-or-equal PSReg1 PUllPreg)))

(mode (and (sreg-mode1 normal) (sreg-region1 pipe))

((less-than-or-equal PHe1 PHeSreg)))

(mode (and (preg-mode1 normal) (preg-region1 pipe))

((less-than-or-equal PSReg1 PUllPreg)))

;; Effects of Pressure Regulators

(mode (and (sreg-mode1 normal) (sreg-region1 ideal))

((constant PSReg1 PUllSreg)))

(mode (or (and (sreg-mode1 normal) (sreg-region1 pipe))

(sreg-mode1 stuck-open))

((equal PSReg1 PHe1) (0 0) (PUllPreg PHePreg)

(PUllSreg PHeSreg)))

(mode (and (preg-mode1 normal) (preg-region1 ideal))

((constant PUll1 PUllPreg)))

(mode (or (and (preg-mode1 normal) (preg-region1 pipe))

(preg-mode1 stuck-open))

((equal PUll1 PSReg1) (0 0) (PullMin PUllMin) (PUllPreg PUllPreg)

(PUllSreg PUllSreg) (PUllMax PUllMax)))

;; Flow from HeTank to Ullage tank

(mode (and (or (preg-mode1 normal) (preg-mode1 stuck-open))

(or (sreg-mode1 normal) (sreg-mode1 stuck-open)))

((equal Fuel->Manflow1 He->UllFlow1) (0 0) (inf inf)))

(mode (or (preg-mode1 stuck-closed) (sreg-mode1 stuck-closed))

((zero-std He->UllFlow1)))

((d/dt AmtUll1 He->UllFlow1))

;; Propellant tank - propellant flow

((d/dt AmtFuel1 dAmtFuel1))

((minus Fuel->Manflow1 dAmtFuel1))

;; Density, amount and volume of propellant

90

((M+ PUll1 DenFuel1) (0 0) (PUllPreg DFPreg) (PUllMax DFMax))

((mult DenFuel1 VolFuel1 AmtFuel1) (DFPreg VFInit AmtFInit)

(DFPreg VFNom AmtFNom))

((M+ AmtUll1 nRT[AmtUll]1) (0 0) (AmtUllInit nRTInit)

(AmtUllNom nRTNom) (AmtUllHigh nRTHigh)

(AmtUllMax nRTMax))

((mult PUll1 VolUll1 nRT[AmtUll]1) (0 0 0) (PUllPReg VUInit nRTInit)

(PUllPReg VUNom nRTNom)

(PUllPReg VUHigh nRTHigh)

(PUllMax VolTotal nRTMax))

((add VolFuel1 VolUll1 VolTotal1) (VolTotal 0 VolTotal)

(0 VolTotal VolTotal)

(VFNom VUNom VolTotal)

(VFLow VUHigh VolTotal)

(VFInit VUInit VolTotal))

;; Total Helium in the system normally remains constant.

((add AmtUll1 AmtHe1 TotalHe1) (0 0 0)

(AmtUllNom AmtHeInit TotalHeNorm)

(AmtUllHigh AmtHeLow TotalHeNorm))

((minus dTotHe1 HeLeakflow1))

((d/dt TotalHe1 dTotHe1))

(mode (helium-system-mode1 normal)

((constant TotalHe1 TotalHeNorm)))

((constant VolTotal1 VolTotal))

;; Sensor modes

(mode (he-tank-p-sensor-mode1 normal)

((equal PHeSensed1 PHe1) (0 0) (PHeMin PHeMin) (PHeLow PHeLow)

(PHePreg PHePreg) (PHeSreg PHeSreg) (PHeInit PHeInit)))

(mode (ullage-pressure-sensor-mode1 normal)

((equal PUllSensed1 PUll1) (0 0) (PUllMin PUllMin)

(PUllPreg PUllPreg) (PUllSreg PUllSreg) (PUllMax PUllMax)))

(mode (fuel-volume-sensor-mode1 normal)

((equal VolFuelSensed1 VolFuel1) (0 0) (VFLow VFLow)

(VFNom VFNom) (VFInit VFInit) (VolTotal VolTotal)))

(mode (he-tank-p-sensor-mode1 stuck-at-0)

((zero-std PHeSensed1)))

(mode (ullage-pressure-sensor-mode1 stuck-at-0)

((zero-std PUllSensed1)))

(mode (fuel-volume-sensor-mode1 stuck-at-0)

((zero-std VolFuelSensed1)))

(mode (manifold-pressure-sensor-mode1 normal)

91

((equal PMan1 PManSensed1)

(0 0) (PManPreg PManPreg) (PManMax PManMax)))

(mode (manifold-pressure-sensor-mode1 stuck-at-0)

((zero-std PManSensed1)))

;; Manifold pressures and flows

((add PDiffFuel1 PMan1 PUll1) (0 PManPreg PUllPreg))

((mult PDiffFuel1 TIValve1 Fuel->ManFlow1))

(mode (and (or (and (tankvalve-mode1 normal) (TankValve1 open))

(tankvalve-mode1 stuck-open))

(or (and (manvalve-mode1 normal) (ManValve1 open))

(manvalve-mode1 stuck-open)))

((constant TIValve1 max)))

(mode (or (and (tankvalve-mode1 normal)

(TankValve1 closed))

(and (manvalve-mode1 normal)

(ManValve1 closed))

(tankvalve-mode1 stuck-closed))

((zero-std TIValve1)))

((constant tankvalve1))

((constant manvalve1))

((constant PVac1 0))

((d/dt AmtMan1 dAmtMan1))

((M+ AmtMan1 PMan1) (0 0) (AmtPreg PManPreg) (AmtMax PManMax))

((add PDiffMan1 PVac1 PMan1) (PD* 0 PManPreg))

((mult PDiffMan1 DenFuelMan1 DPFuel1))

((M+ PMan1 DenFuelMan1) (0 0) (PManMax inf))

((M+ DPFuel1 f[DPFuel]1) (0 0) (inf inf))

;; Manifold -> Thruster flow

((mult Thruster f[DPFuel]1 Man->ThFlow1))

((add Fuel->ManFlow1 MManOutflow1 dAmtMan1))

((W+ PDiffMan1 DPFuel1))

;; Leaks in the Manifold

((add Man->Leakflow1 Man->ThFlow1 ManOutflow1))

((minus MManOutflow1 ManOutflow1))

((add ManLeak1 Man->LineLeak1 Man->Leakflow1))

((add PDiffManAndVac1 PVac1 PMan1))

((mult ManLeakS1 PDiffManAndVac1 ManLeak1))

(mode (fuelline-mode1 leaking)

((mult LineLeaks1 PDiffManAndVac1 Man->LineLeak1)))

(mode (fuelline-mode1 normal)

92

((zero-std Man->LineLeak1)))

(mode (manifold-mode1 leaking)

((constant ManLeakS1)))

(mode (manifold-mode1 normal)

((zero-std ManLeakS1)))

(mode (fuelline-mode1 leaking)

((constant lineleaks1)))

(mode (fuelline-mode1 normal)

((zero-std lineleaks1)))

)

;; Region Transitions

(transitions ((and (sreg-mode0 (normal std)) (sreg-region0 (ideal std))

(PHe0 (PHeSreg nil)))

-> sreg-pipe0)

((and (preg-mode0 (normal std)) (preg-region0 (ideal std))

(PSReg0 (PUllPreg nil)))

-> preg-pipe0)

((and (sreg-mode1 (normal std)) (sreg-region1 (ideal std))

(PHe1 (PHeSreg nil)))

-> sreg-pipe1)

((and (preg-mode1 (normal std)) (preg-region1 (ideal std))

(PSReg1 (PUllPreg nil)))

-> preg-pipe1)

)

))

;;; These are the actual region transition functions.

(defun sreg-pipe0 (state)

;;(format t "~%-> sreg-pipe0")

(create-transition-state

:from-state state

:to-qde rcs-double-model

:assert '((sreg-region0 (pipe std)))

:inherit-qmag #'all-except-helium-flow

:inherit-qdir nil))

(defun preg-pipe0 (state)

;;(format t "~%-> preg-pipe0")

93

(create-transition-state

:from-state state

:to-qde rcs-double-model

:assert '((preg-region0 (pipe std)))

:inherit-qmag #'all-except-helium-flow

:inherit-qdir nil))

(defun sreg-pipe1 (state)

;;(format t "~%-> sreg-pipe1")

(create-transition-state

:from-state state

:to-qde rcs-double-model

:assert '((sreg-region1 (pipe std)))

:inherit-qmag #'all-except-helium-flow

:inherit-qdir nil))

(defun preg-pipe1 (state)

;;(format t "~%-> preg-pipe1")

(create-transition-state

:from-state state

:to-qde rcs-double-model

:assert '((preg-region1 (pipe std)))

:inherit-qmag #'all-except-helium-flow

:inherit-qdir nil))

;;; A function used by the region transition functions

(defun all-except-helium-flow (varname)

(not (member varname '(He->UllFlow0 HeOutFlow0 He->UllFlow1

HeOutFlow1))))

;;; The components specification for the RCS system.

(defComponents rcs-double-model

(primary-regulator0 preg-mode0 (normal . 0.98) (stuck-open . 0.01)

(stuck-closed . 0.01))

(secondary-regulator0 sreg-mode0 (normal . 0.98) (stuck-open . 0.01)

(stuck-closed . 0.01))

(helium-system0 helium-system-mode0 (normal . 0.98) (leaking . 0.02))

(he-tank-sensor0 he-tank-p-sensor-mode0

(normal . 0.98) (stuck-at-0 . 0.02))

(ullage-pressure-sensor0 ullage-pressure-sensor-mode0

94

(normal . 0.98) (stuck-at-0 . 0.02))

(fuel-volume-sensor0 fuel-volume-sensor-mode0

(normal . 0.98) (stuck-at-0 . 0.02))

(tankvalve0 tankvalve-mode0 (normal . 0.99) (stuck-open . 0.005)

(stuck-closed . 0.005))

(manvalve0 manvalve-mode0 (normal . 0.99) (stuck-open . 0.005)

(stuck-closed . 0.005))

(fuelline0 fuelline-mode0 (normal . 0.995) (leaking . 0.005))

(manifold0 manifold-mode0 (normal . 0.995) (leaking . 0.005))

(manifold-pressure-sensor0 manifold-pressure-sensor-mode0

(normal . 0.995) (stuck-at-0 . 0.005))

(primary-regulator1 preg-mode1 (normal . 0.98) (stuck-open . 0.01)

(stuck-closed . 0.01))

(secondary-regulator1 sreg-mode1 (normal . 0.98) (stuck-open . 0.01)

(stuck-closed . 0.01))

(helium-system1 helium-system-mode1 (normal . 0.98) (leaking . 0.02))

(he-tank-sensor1 he-tank-p-sensor-mode1

(normal . 0.98) (stuck-at-0 . 0.02))

(ullage-pressure-sensor1 ullage-pressure-sensor-mode1

(normal . 0.98) (stuck-at-0 . 0.02))

(fuel-volume-sensor1 fuel-volume-sensor-mode1

(normal . 0.98) (stuck-at-0 . 0.02))

(tankvalve1 tankvalve-mode1 (normal . 0.99) (stuck-open . 0.005)

(stuck-closed . 0.005))

(manvalve1 manvalve-mode1 (normal . 0.99) (stuck-open . 0.005)

(stuck-closed . 0.005))

(fuelline1 fuelline-mode1 (normal . 0.995) (leaking . 0.005))

(manifold1 manifold-mode1 (normal . 0.995) (leaking . 0.005))

(manifold-pressure-sensor1 manifold-pressure-sensor-mode1

(normal . 0.995) (stuck-at-0 . 0.005))

(thruster thruster-mode (normal . 0.995) (stuck-closed . 0.005))

)

;;; The Operating regions for the RCS model. Note that there are

;;; regions specified for every mode. This is necessary so Qdocs

;;; can determine a value for the region variable.

(defOperatingRegions rcs-double-model

((preg-mode0 . normal) (preg-region0 . ideal) (preg-region0 . pipe))

95

((sreg-mode0 . normal) (sreg-region0 . ideal) (sreg-region0 . pipe))

((preg-mode0 . stuck-open) (preg-region0 . ideal))

((preg-mode0 . stuck-closed) (preg-region0 . ideal))

((preg-mode0 . unknown) (preg-region0 . ideal))

((sreg-mode0 . stuck-open) (sreg-region0 . ideal))

((sreg-mode0 . stuck-closed) (sreg-region0 . ideal))

((sreg-mode0 . unknown) (sreg-region0 . ideal))

((preg-mode1 . normal) (preg-region1 . ideal) (preg-region1 . pipe))

((sreg-mode1 . normal) (sreg-region1 . ideal) (sreg-region1 . pipe))

((preg-mode1 . stuck-open) (preg-region1 . ideal))

((preg-mode1 . stuck-closed) (preg-region1 . ideal))

((preg-mode1 . unknown) (preg-region1 . ideal))

((sreg-mode1 . stuck-open) (sreg-region1 . ideal))

((sreg-mode1 . stuck-closed) (sreg-region1 . ideal))

((sreg-mode1 . unknown) (sreg-region1 . ideal)))

96

Appendix B

A Sample Run of Qdocs on an

RCS Diagnosis Problem

This is one of the actual problems from the test suite reported on in Chapter 5. The

following is the actual sequence of observations. It is followed by an output trace. The NIL

values below represent the fact that we do not know the direction of change of these sensor

values. If that information is easily obtainable from the sensors, Qdocs will be able to use

it.

(((PHESENSED0 (PHEINIT NIL)) (PULLSENSED0 (PULLSREG NIL))

(VOLFUELSENSED0 ((VFNOM VFINIT) NIL)) (PMANSENSED0 (0 NIL))

(PHESENSED1 (PHEINIT NIL)) (PULLSENSED1 (0 NIL))

(VOLFUELSENSED1 (VFNOM NIL)) (PMANSENSED1 (0 NIL))

(TANKVALVE0 (OPEN NIL)) (MANVALVE0 (OPEN NIL))

(TANKVALVE1 (OPEN NIL)) (MANVALVE1 (OPEN NIL)))

((PHESENSED0 (PHEINIT NIL)) (PULLSENSED0 ((PULLPREG PULLSREG) NIL))

(VOLFUELSENSED0 ((VFNOM VFINIT) NIL)) (PMANSENSED0 ((0 PMANPREG) NIL))

(PHESENSED1 ((PHESREG PHEINIT) NIL)) (PULLSENSED1 (0 NIL))

(VOLFUELSENSED1 ((VFLOW VFNOM) NIL)) (PMANSENSED1 ((0 PMANPREG) NIL))

(TANKVALVE0 (OPEN NIL)) (MANVALVE0 (OPEN NIL)) (TANKVALVE1 (OPEN NIL))

(MANVALVE1 (OPEN NIL)))

((PHESENSED0 (PHEINIT NIL)) (PULLSENSED0 ((PULLPREG PULLSREG) NIL))

(VOLFUELSENSED0 ((VFNOM VFINIT) NIL)) (PMANSENSED0 (PMANPREG NIL))

(PHESENSED1 ((PHESREG PHEINIT) NIL)) (PULLSENSED1 (0 NIL))

(VOLFUELSENSED1 ((VFLOW VFNOM) NIL)) (PMANSENSED1 ((0 PMANPREG) NIL))

(TANKVALVE0 (OPEN NIL)) (MANVALVE0 (OPEN NIL)) (TANKVALVE1 (OPEN NIL))

(MANVALVE1 (OPEN NIL)))

((PHESENSED0 (PHEINIT NIL)) (PULLSENSED0 ((PULLPREG PULLSREG) NIL))

(VOLFUELSENSED0 ((VFNOM VFINIT) NIL))

97

(PMANSENSED0 ((PMANPREG PMANMAX) NIL))

(PHESENSED1 ((PHESREG PHEINIT) NIL)) (PULLSENSED1 (0 NIL))

(VOLFUELSENSED1 ((VFLOW VFNOM) NIL)) (PMANSENSED1 ((0 PMANPREG) NIL))

(TANKVALVE0 (OPEN NIL)) (MANVALVE0 (OPEN NIL)) (TANKVALVE1 (OPEN NIL))

(MANVALVE1 (OPEN NIL)))

((PHESENSED0 (PHEINIT NIL)) (PULLSENSED0 ((PULLPREG PULLSREG) NIL))

(VOLFUELSENSED0 ((VFNOM VFINIT) NIL))

(PMANSENSED0 ((PMANPREG PMANMAX) NIL))

(PHESENSED1 (PHESREG NIL)) (PULLSENSED1 (0 NIL))

(VOLFUELSENSED1 ((VFLOW VFNOM) NIL)) (PMANSENSED1 ((0 PMANPREG) NIL))

(TANKVALVE0 (OPEN NIL)) (MANVALVE0 (OPEN NIL)) (TANKVALVE1 (OPEN NIL))

(MANVALVE1 (OPEN NIL)))

((PHESENSED0 (PHEINIT NIL)) (PULLSENSED0 ((PULLPREG PULLSREG) NIL))

(VOLFUELSENSED0 ((VFNOM VFINIT) NIL))

(PMANSENSED0 ((PMANPREG PMANMAX) NIL))

(PHESENSED1 ((PHEPREG PHESREG) NIL)) (PULLSENSED1 (0 NIL))

(VOLFUELSENSED1 ((VFLOW VFNOM) NIL)) (PMANSENSED1 ((0 PMANPREG) NIL))

(TANKVALVE0 (OPEN NIL)) (MANVALVE0 (OPEN NIL)) (TANKVALVE1 (OPEN NIL))

(MANVALVE1 (OPEN NIL)))

((PHESENSED0 (PHEINIT NIL)) (PULLSENSED0 ((PULLPREG PULLSREG) NIL))

(VOLFUELSENSED0 ((VFNOM VFINIT) NIL))

(PMANSENSED0 ((PMANPREG PMANMAX) NIL))

(PHESENSED1 (PHEPREG NIL)) (PULLSENSED1 (0 NIL))

(VOLFUELSENSED1 ((VFLOW VFNOM) NIL)) (PMANSENSED1 ((0 PMANPREG) NIL))

(TANKVALVE0 (OPEN NIL)) (MANVALVE0 (OPEN NIL)) (TANKVALVE1 (OPEN NIL))

(MANVALVE1 (OPEN NIL)))

((PHESENSED0 (PHEINIT NIL)) (PULLSENSED0 ((PULLPREG PULLSREG) NIL))

(VOLFUELSENSED0 ((VFNOM VFINIT) NIL))

(PMANSENSED0 ((PMANPREG PMANMAX) NIL))

(PHESENSED1 ((PHELOW PHEPREG) NIL)) (PULLSENSED1 (0 NIL))

(VOLFUELSENSED1 ((VFLOW VFNOM) NIL)) (PMANSENSED1 ((0 PMANPREG) NIL))

(TANKVALVE0 (OPEN NIL)) (MANVALVE0 (OPEN NIL)) (TANKVALVE1 (OPEN NIL))

(MANVALVE1 (OPEN NIL)))

((PHESENSED0 (PHEINIT NIL)) (PULLSENSED0 ((PULLPREG PULLSREG) NIL))

(VOLFUELSENSED0 ((VFNOM VFINIT) NIL))

(PMANSENSED0 ((PMANPREG PMANMAX) NIL))

(PHESENSED1 ((PHELOW PHEPREG) NIL)) (PULLSENSED1 (0 NIL))

(VOLFUELSENSED1 (VFLOW NIL)) (PMANSENSED1 ((0 PMANPREG) NIL))

(TANKVALVE0 (OPEN NIL)) (MANVALVE0 (OPEN NIL)) (TANKVALVE1 (OPEN NIL))

(MANVALVE1 (OPEN NIL)))

((PHESENSED0 (PHEINIT NIL)) (PULLSENSED0 ((PULLPREG PULLSREG) NIL))

(VOLFUELSENSED0 ((VFNOM VFINIT) NIL))

(PMANSENSED0 ((PMANPREG PMANMAX) NIL))

98

(PHESENSED1 ((PHELOW PHEPREG) NIL)) (PULLSENSED1 (0 NIL))

(VOLFUELSENSED1 ((0 VFLOW) NIL)) (PMANSENSED1 ((0 PMANPREG) NIL))

(TANKVALVE0 (OPEN NIL)) (MANVALVE0 (OPEN NIL)) (TANKVALVE1 (OPEN NIL))

(MANVALVE1 (OPEN NIL)))

((PHESENSED0 (PHEINIT NIL)) (PULLSENSED0 ((PULLPREG PULLSREG) NIL))

(VOLFUELSENSED0 ((VFNOM VFINIT) NIL))

(PMANSENSED0 ((PMANPREG PMANMAX) NIL))

(PHESENSED1 ((PHELOW PHEPREG) NIL)) (PULLSENSED1 (0 NIL))

(VOLFUELSENSED1 (0 NIL)) (PMANSENSED1 ((0 PMANPREG) NIL))

(TANKVALVE0 (OPEN NIL)) (MANVALVE0 (OPEN NIL)) (TANKVALVE1 (OPEN NIL))

(MANVALVE1 (OPEN NIL))))

Here is the actual Qdocs trace resulting from running Qdocs on the above sequence

of sensor values and the model from Appendix A. At each loop iteration, the following

information is listed:

� The iteration number.

� The current agenda item (hypothesis) to be considered.

� Whether Check-Hypothesis was called, or if an existing conict was found that is unhit

by the hypothesis.

� The conict returned, or to be used.

� The agenda of hypotheses to be considered next. For brevity, this is reduced to the

�rst ten hypotheses on the agenda.

� The �nal hypotheses that have been discovered to be consistent with the observations.

Loop number 1

Current Item is: #S(AGENDA-ITEM HYPOTHESIS NIL

PROBABILITY 0.7278053637711427)

Calling Check-Hypothesis

The conflict returned is: ((HE-TANK-P-SENSOR-MODE0 (NORMAL STD))

(SREG-MODE0 (NORMAL STD))

(PREG-MODE0 (NORMAL STD))

(ULLAGE-PRESSURE-SENSOR-MODE0 (NORMAL STD)))

99

New Agenda:

(#S(AGENDA-ITEM HYPOTHESIS ((ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 0.014853170689206998)

#S(AGENDA-ITEM HYPOTHESIS ((HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 0.014853170689206995)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-OPEN))

PROBABILITY 0.007426585344603497)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-CLOSED))

PROBABILITY 0.007426585344603497)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-OPEN))

PROBABILITY 0.007426585344603497)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 0.007426585344603497))

Final hypotheses now:

NIL

Loop number 2

Current Item is: #S(AGENDA-ITEM HYPOTHESIS ((ULLAGE-PRESSURE-SENSOR-MODE0

. STUCK-AT-0))

PROBABILITY 0.014853170689206998)

Calling Check-Hypothesis

The conflict returned is: ((SREG-MODE0 (NORMAL STD))

(HELIUM-SYSTEM-MODE0 (NORMAL STD))

(HE-TANK-P-SENSOR-MODE0 (NORMAL STD))

(PREG-MODE0 (NORMAL STD))

(FUEL-VOLUME-SENSOR-MODE0 (NORMAL STD)))

New Agenda:

(#S(AGENDA-ITEM HYPOTHESIS ((HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 0.014853170689206995)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-OPEN))

PROBABILITY 0.007426585344603497)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-CLOSED))

PROBABILITY 0.007426585344603497)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-OPEN))

PROBABILITY 0.007426585344603497)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 0.007426585344603497)

#S(AGENDA-ITEM HYPOTHESIS ((HELIUM-SYSTEM-MODE0 . LEAKING)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 3.031259324327958E-4)

#S(AGENDA-ITEM HYPOTHESIS ((HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 3.0312593243279575E-4)

#S(AGENDA-ITEM HYPOTHESIS ((FUEL-VOLUME-SENSOR-MODE0 . STUCK-AT-0)

100

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 3.0312593243279575E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-OPEN)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.5156296621639793E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-CLOSED)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.5156296621639793E-4)

...)

Final hypotheses now:

NIL

Loop number 3

Current Item is: #S(AGENDA-ITEM HYPOTHESIS ((HE-TANK-P-SENSOR-MODE0

. STUCK-AT-0))

PROBABILITY 0.014853170689206995)

Calling Check-Hypothesis

The conflict returned is: ((SREG-MODE0 (NORMAL STD))

(PREG-MODE0 (NORMAL STD))

(ULLAGE-PRESSURE-SENSOR-MODE0 (NORMAL STD)))

New Agenda:

(#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-OPEN))

PROBABILITY 0.007426585344603497)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-CLOSED))

PROBABILITY 0.007426585344603497)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-OPEN))

PROBABILITY 0.007426585344603497)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 0.007426585344603497)

#S(AGENDA-ITEM HYPOTHESIS ((HELIUM-SYSTEM-MODE0 . LEAKING)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 3.031259324327958E-4)

#S(AGENDA-ITEM HYPOTHESIS ((HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 3.0312593243279575E-4)

#S(AGENDA-ITEM HYPOTHESIS ((FUEL-VOLUME-SENSOR-MODE0 . STUCK-AT-0)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 3.0312593243279575E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-OPEN)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.5156296621639793E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-CLOSED)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.5156296621639793E-4)

101

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-OPEN)

(HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

...)

Final hypotheses now:

NIL

Loop number 4

Current Item is: #S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-OPEN))

PROBABILITY 0.007426585344603497)

Calling Check-Hypothesis

The conflict returned is: ((HE-TANK-P-SENSOR-MODE0 (NORMAL STD))

(SREG-MODE0 (STUCK-OPEN STD))

(PREG-MODE0 (NORMAL STD))

(ULLAGE-PRESSURE-SENSOR-MODE0 (NORMAL STD)))

New Agenda:

(#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-CLOSED))

PROBABILITY 0.007426585344603497)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-OPEN))

PROBABILITY 0.007426585344603497)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 0.007426585344603497)

#S(AGENDA-ITEM HYPOTHESIS ((HELIUM-SYSTEM-MODE0 . LEAKING)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 3.031259324327958E-4)

#S(AGENDA-ITEM HYPOTHESIS ((HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 3.0312593243279575E-4)

#S(AGENDA-ITEM HYPOTHESIS ((FUEL-VOLUME-SENSOR-MODE0 . STUCK-AT-0)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 3.0312593243279575E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-OPEN)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.5156296621639793E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-CLOSED)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.5156296621639793E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-OPEN)

(HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-CLOSED)

(HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

...)

102

Final hypotheses now:

NIL

Loop number 5

Current Item is: #S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-CLOSED))

PROBABILITY 0.007426585344603497)

Calling Check-Hypothesis

The conflict returned is: ((PREG-MODE0 (NORMAL STD))

(ULLAGE-PRESSURE-SENSOR-MODE0 (NORMAL STD)))

New Agenda:

(#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-OPEN))

PROBABILITY 0.007426585344603497)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 0.007426585344603497)

#S(AGENDA-ITEM HYPOTHESIS ((HELIUM-SYSTEM-MODE0 . LEAKING)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 3.031259324327958E-4)

#S(AGENDA-ITEM HYPOTHESIS ((HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 3.0312593243279575E-4)

#S(AGENDA-ITEM HYPOTHESIS ((FUEL-VOLUME-SENSOR-MODE0 . STUCK-AT-0)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 3.0312593243279575E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-OPEN)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.5156296621639793E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-CLOSED)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.5156296621639793E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-OPEN)

(HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-CLOSED)

(HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-OPEN)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

...)

Final hypotheses now:

NIL

Loop number 6

Current Item is: #S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-OPEN))

PROBABILITY 0.007426585344603497)

103

Calling Check-Hypothesis

The conflict returned is: ((HE-TANK-P-SENSOR-MODE1 (NORMAL STD))

(SREG-MODE1 (NORMAL STD))

(HE-TANK-P-SENSOR-MODE0 (NORMAL STD))

(SREG-MODE0 (NORMAL STD))

(PREG-MODE1 (NORMAL STD))

(ULLAGE-PRESSURE-SENSOR-MODE1 (NORMAL STD)))

New Agenda:

(#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 0.007426585344603497)

#S(AGENDA-ITEM HYPOTHESIS ((HELIUM-SYSTEM-MODE0 . LEAKING)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 3.031259324327958E-4)

#S(AGENDA-ITEM HYPOTHESIS ((HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 3.0312593243279575E-4)

#S(AGENDA-ITEM HYPOTHESIS ((FUEL-VOLUME-SENSOR-MODE0 . STUCK-AT-0)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 3.0312593243279575E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-OPEN)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.5156296621639793E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-CLOSED)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.5156296621639793E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-OPEN)

(HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-CLOSED)

(HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-OPEN)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-CLOSED)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

...)

Final hypotheses now:

NIL

Loop number 7

Current Item is: #S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 0.007426585344603497)

104

Using conflict: ((HE-TANK-P-SENSOR-MODE1 (NORMAL STD))

(SREG-MODE1 (NORMAL STD))

(HE-TANK-P-SENSOR-MODE0 (NORMAL STD))

(SREG-MODE0 (NORMAL STD))

(PREG-MODE1 (NORMAL STD))

(ULLAGE-PRESSURE-SENSOR-MODE1 (NORMAL STD)))

New Agenda:

(#S(AGENDA-ITEM HYPOTHESIS ((HELIUM-SYSTEM-MODE0 . LEAKING)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 3.031259324327958E-4)

#S(AGENDA-ITEM HYPOTHESIS ((HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 3.0312593243279575E-4)

#S(AGENDA-ITEM HYPOTHESIS ((FUEL-VOLUME-SENSOR-MODE0 . STUCK-AT-0)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 3.0312593243279575E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-OPEN)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.5156296621639793E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-CLOSED)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.5156296621639793E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-OPEN)

(HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-CLOSED)

(HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-OPEN)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-CLOSED)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((HE-TANK-P-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 1.5156296621639788E-4)

...)

Final hypotheses now:

NIL

Loop number 8

Current Item is: #S(AGENDA-ITEM HYPOTHESIS ((HELIUM-SYSTEM-MODE0 . LEAKING)

(ULLAGE-PRESSURE-SENSOR-MODE0

105

. STUCK-AT-0))

PROBABILITY 3.031259324327958E-4)

Using conflict: ((HE-TANK-P-SENSOR-MODE1 (NORMAL STD))

(SREG-MODE1 (NORMAL STD))

(HE-TANK-P-SENSOR-MODE0 (NORMAL STD))

(SREG-MODE0 (NORMAL STD))

(PREG-MODE1 (NORMAL STD))

(ULLAGE-PRESSURE-SENSOR-MODE1 (NORMAL STD)))

New Agenda:

(#S(AGENDA-ITEM HYPOTHESIS ((HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 3.0312593243279575E-4)

#S(AGENDA-ITEM HYPOTHESIS ((FUEL-VOLUME-SENSOR-MODE0 . STUCK-AT-0)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 3.0312593243279575E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-OPEN)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.5156296621639793E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-CLOSED)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.5156296621639793E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-OPEN)

(HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-CLOSED)

(HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-OPEN)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-CLOSED)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((HE-TANK-P-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((ULLAGE-PRESSURE-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 1.5156296621639788E-4)

...)

Final hypotheses now:

NIL

Loop number 9

106

Current Item is: #S(AGENDA-ITEM HYPOTHESIS ((HE-TANK-P-SENSOR-MODE0

. STUCK-AT-0)

(ULLAGE-PRESSURE-SENSOR-MODE0

. STUCK-AT-0))

PROBABILITY 3.0312593243279575E-4)

Calling Check-Hypothesis

The conflict returned is: ((SREG-MODE0 (NORMAL STD))

(PREG-MODE0 (NORMAL STD))

(HE-TANK-P-SENSOR-MODE0 (STUCK-AT-0 STD)))

New Agenda:

(#S(AGENDA-ITEM HYPOTHESIS ((FUEL-VOLUME-SENSOR-MODE0 . STUCK-AT-0)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 3.0312593243279575E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-OPEN)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.5156296621639793E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-CLOSED)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.5156296621639793E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-OPEN)

(HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-CLOSED)

(HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-OPEN)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-CLOSED)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((HE-TANK-P-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((ULLAGE-PRESSURE-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((HE-TANK-P-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-OPEN))

PROBABILITY 1.5156296621639788E-4)

...)

Final hypotheses now:

NIL

107

Loop number 10

Current Item is: #S(AGENDA-ITEM HYPOTHESIS ((FUEL-VOLUME-SENSOR-MODE0

. STUCK-AT-0)

(ULLAGE-PRESSURE-SENSOR-MODE0

. STUCK-AT-0))

PROBABILITY 3.0312593243279575E-4)

Using conflict: ((HE-TANK-P-SENSOR-MODE1 (NORMAL STD))

(SREG-MODE1 (NORMAL STD))

(HE-TANK-P-SENSOR-MODE0 (NORMAL STD))

(SREG-MODE0 (NORMAL STD))

(PREG-MODE1 (NORMAL STD))

(ULLAGE-PRESSURE-SENSOR-MODE1 (NORMAL STD)))

New Agenda:

(#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-OPEN)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.5156296621639793E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-CLOSED)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.5156296621639793E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-OPEN)

(HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-CLOSED)

(HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-OPEN)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-CLOSED)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((HE-TANK-P-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((ULLAGE-PRESSURE-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((HE-TANK-P-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-OPEN))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((ULLAGE-PRESSURE-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-OPEN))

PROBABILITY 1.5156296621639788E-4)

108

...)

Final hypotheses now:

NIL

Loop number 11

Current Item is: #S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-OPEN)

(ULLAGE-PRESSURE-SENSOR-MODE0

. STUCK-AT-0))

PROBABILITY 1.5156296621639793E-4)

Using conflict: ((HE-TANK-P-SENSOR-MODE1 (NORMAL STD))

(SREG-MODE1 (NORMAL STD))

(HE-TANK-P-SENSOR-MODE0 (NORMAL STD))

(SREG-MODE0 (NORMAL STD))

(PREG-MODE1 (NORMAL STD))

(ULLAGE-PRESSURE-SENSOR-MODE1 (NORMAL STD)))

New Agenda:

(#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-CLOSED)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.5156296621639793E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-OPEN)

(HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-CLOSED)

(HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-OPEN)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-CLOSED)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((HE-TANK-P-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((ULLAGE-PRESSURE-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((HE-TANK-P-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-OPEN))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((ULLAGE-PRESSURE-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-OPEN))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-OPEN)

109

(HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.5156296621639788E-4)

...)

Final hypotheses now:

NIL

Loop number 12

Current Item is: #S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-CLOSED)

(ULLAGE-PRESSURE-SENSOR-MODE0

. STUCK-AT-0))

PROBABILITY 1.5156296621639793E-4)

Using conflict: ((HE-TANK-P-SENSOR-MODE1 (NORMAL STD))

(SREG-MODE1 (NORMAL STD))

(HE-TANK-P-SENSOR-MODE0 (NORMAL STD))

(SREG-MODE0 (NORMAL STD))

(PREG-MODE1 (NORMAL STD))

(ULLAGE-PRESSURE-SENSOR-MODE1 (NORMAL STD)))

New Agenda:

(#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-OPEN)

(HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-CLOSED)

(HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-OPEN)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-CLOSED)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((HE-TANK-P-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((ULLAGE-PRESSURE-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((HE-TANK-P-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-OPEN))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((ULLAGE-PRESSURE-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-OPEN))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-OPEN)

(HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

110

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-CLOSED)

(HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.5156296621639788E-4)

...)

Final hypotheses now:

NIL

Loop number 13

Current Item is: #S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-OPEN)

(HE-TANK-P-SENSOR-MODE0

. STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

Calling Check-Hypothesis

The conflict returned is: ((HE-TANK-P-SENSOR-MODE0 (STUCK-AT-0 STD)))

New Agenda:

(#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-CLOSED)

(HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-OPEN)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-CLOSED)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((HE-TANK-P-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((ULLAGE-PRESSURE-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((HE-TANK-P-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-OPEN))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((ULLAGE-PRESSURE-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-OPEN))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-OPEN)

(HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-CLOSED)

(HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE1 . STUCK-OPEN)

111

(PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 7.578148310819897E-5)

...)

Final hypotheses now:

NIL

Loop number 14

Current Item is: #S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE0 . STUCK-CLOSED)

(HE-TANK-P-SENSOR-MODE0

. STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

Using conflict: ((HE-TANK-P-SENSOR-MODE0 (STUCK-AT-0 STD)))

New Agenda:

(#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-OPEN)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-CLOSED)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((HE-TANK-P-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((ULLAGE-PRESSURE-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((HE-TANK-P-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-OPEN))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((ULLAGE-PRESSURE-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-OPEN))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-OPEN)

(HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-CLOSED)

(HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE1 . STUCK-OPEN)

(PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 7.578148310819897E-5)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE1 . STUCK-CLOSED)

(PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 7.578148310819897E-5)

...)

112

Final hypotheses now:

NIL

Loop number 15

Current Item is: #S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-OPEN)

(ULLAGE-PRESSURE-SENSOR-MODE0

. STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

Calling Check-Hypothesis

The conflict returned is: ((ULLAGE-PRESSURE-SENSOR-MODE0 (STUCK-AT-0 STD))

(HELIUM-SYSTEM-MODE0 (NORMAL STD))

(HE-TANK-P-SENSOR-MODE0 (NORMAL STD))

(PREG-MODE0 (NORMAL STD))

(FUEL-VOLUME-SENSOR-MODE0 (NORMAL STD)))

New Agenda:

(#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-CLOSED)

(ULLAGE-PRESSURE-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

#S(AGENDA-ITEM HYPOTHESIS ((HE-TANK-P-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((ULLAGE-PRESSURE-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((HE-TANK-P-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-OPEN))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((ULLAGE-PRESSURE-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-OPEN))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-OPEN)

(HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-CLOSED)

(HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE1 . STUCK-OPEN)

(PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 7.578148310819897E-5)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE1 . STUCK-CLOSED)

(PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 7.578148310819897E-5)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE1 . STUCK-OPEN)

(PREG-MODE0 . STUCK-OPEN))

113

PROBABILITY 7.578148310819897E-5)

...)

Final hypotheses now:

NIL

Loop number 16

Current Item is: #S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-CLOSED)

(ULLAGE-PRESSURE-SENSOR-MODE0

. STUCK-AT-0))

PROBABILITY 1.515629662163979E-4)

Using conflict: ((ULLAGE-PRESSURE-SENSOR-MODE0 (STUCK-AT-0 STD))

(HELIUM-SYSTEM-MODE0 (NORMAL STD))

(HE-TANK-P-SENSOR-MODE0 (NORMAL STD))

(PREG-MODE0 (NORMAL STD))

(FUEL-VOLUME-SENSOR-MODE0 (NORMAL STD)))

New Agenda:

(#S(AGENDA-ITEM HYPOTHESIS ((HE-TANK-P-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((ULLAGE-PRESSURE-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((HE-TANK-P-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-OPEN))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((ULLAGE-PRESSURE-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-OPEN))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-OPEN)

(HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-CLOSED)

(HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE1 . STUCK-OPEN)

(PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 7.578148310819897E-5)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE1 . STUCK-CLOSED)

(PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 7.578148310819897E-5)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE1 . STUCK-OPEN)

(PREG-MODE0 . STUCK-OPEN))

PROBABILITY 7.578148310819897E-5)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE1 . STUCK-CLOSED)

114

(PREG-MODE0 . STUCK-OPEN))

PROBABILITY 7.578148310819897E-5)

...)

Final hypotheses now:

NIL

Loop number 17

Current Item is: #S(AGENDA-ITEM HYPOTHESIS ((HE-TANK-P-SENSOR-MODE1

. STUCK-AT-0)

(PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 1.5156296621639788E-4)

Calling Check-Hypothesis

The conflict returned is: ((HELIUM-SYSTEM-MODE1 (NORMAL STD))

(FUEL-VOLUME-SENSOR-MODE1 (NORMAL STD))

(SREG-MODE1 (NORMAL STD))

(PREG-MODE0 (STUCK-CLOSED STD))

(HELIUM-SYSTEM-MODE0 (NORMAL STD))

(HE-TANK-P-SENSOR-MODE0 (NORMAL STD))

(SREG-MODE0 (NORMAL STD))

(PREG-MODE1 (NORMAL STD))

(ULLAGE-PRESSURE-SENSOR-MODE1 (NORMAL STD)))

New Agenda:

(#S(AGENDA-ITEM HYPOTHESIS ((ULLAGE-PRESSURE-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((HE-TANK-P-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-OPEN))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((ULLAGE-PRESSURE-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-OPEN))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-OPEN)

(HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE0 . STUCK-CLOSED)

(HE-TANK-P-SENSOR-MODE0 . STUCK-AT-0))

PROBABILITY 1.5156296621639788E-4)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE1 . STUCK-OPEN)

(PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 7.578148310819897E-5)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE1 . STUCK-CLOSED)

(PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 7.578148310819897E-5)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE1 . STUCK-OPEN)

115

(PREG-MODE0 . STUCK-OPEN))

PROBABILITY 7.578148310819897E-5)

#S(AGENDA-ITEM HYPOTHESIS ((PREG-MODE1 . STUCK-CLOSED)

(PREG-MODE0 . STUCK-OPEN))

PROBABILITY 7.578148310819897E-5)

#S(AGENDA-ITEM HYPOTHESIS ((SREG-MODE1 . STUCK-OPEN)

(PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 7.578148310819895E-5)

...)

Final hypotheses now:

NIL

Loop number 18

Current Item is: #S(AGENDA-ITEM HYPOTHESIS ((ULLAGE-PRESSURE-SENSOR-MODE1

. STUCK-AT-0)

(PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 1.5156296621639788E-4)

Calling Check-Hypothesis

The conflict returned is: NIL

Final hypotheses now:

(#S(AGENDA-ITEM HYPOTHESIS ((ULLAGE-PRESSURE-SENSOR-MODE1 . STUCK-AT-0)

(PREG-MODE0 . STUCK-CLOSED))

PROBABILITY 1.5156296621639788E-4))

116

Appendix C

The Level-Controlled Tank

This is theQsimmodel followed by the defComponents and defOperatingRegions descriptions

of the Level-Controlled Tank model.

(define-qde controlled-tank-model

(text "tank with controller")

(quantity-spaces

(height (0 low norm max)) ; height of water

(height-sensed (0 low norm max)) ; sensed height of water

(float-contact-voltage (0 low norm max))

; voltage at contact with float

(float-contact (0 low norm max)) ; point of contact of float

(setting (0 low norm max)) ; desired level setting

(setting-contact (0 low norm max)) ; point of contact at setting

(setting-contact-voltage (0 low norm max))

; voltage at setting contact

(battery-voltage (0 high)) ; battery voltage

(hvoltage (0 low norm max)) ; voltage due to float level

(rvoltage (0 low norm max)) ; voltage due to setting

(error (mhigh 0 high)) ; difference in voltage between

; float and setting.

(measured-volts (mhigh 0 high)) ; voltmeter's measurement

(ampl-gain (0 Ka max)) ; Gain factor of amplifier

(Voltout (mhigh 0 high)) ; Output of amplifier

(Motorvolts (mhigh 0 high)) ; Voltage at motor

(Omegam (mhigh 0 high)) ; Rotational speed of motor

(Thetam (0 thetammax)) ; Rotational position of motor

(current (mhigh 0 high)) ; Current through the motor

(current-sensed (mhigh 0 high)) ; Current sensed at ammeter

(inflowrate (0 flowmax)) ; Inflow into the tank

117

(outflowrate (0 low norm high outflowmax))

; Outflow from the tank

(netflow (mhigh 0 high))) ; Net flow rate from the tank

(discrete-variables

(float-sensor-mode (normal stuck-low stuck-high))

; Mode of float sensor

(float-contact-mode (normal stuck-low stuck-high))

; Mode of float contact

(battery (normal dead))

; Mode of battery

(setting-amplifier-connection (normal broken))

; Mode of setting->amplifier

; connection

(setting-contact-mode (normal stuck-low stuck-high))

; Mode of setting contact

(float-amplifier-connection (normal broken))

; Mode of float-contact->amp

; connection

(amplifier-mode (normal no-connection))

; Mode of amplifier

(amplifier-motor-connection (normal broken))

; Mode of amp-motor conn.

(ammeter-mode (normal stuck-at-0 broken))

; Mode of ammeter

(voltmeter (normal stuck-at-0)) ; Mode of voltmeter

(motor-mode (normal stuck)) ; Mode of motor

(valve-mode (normal stuck-open stuck-closed))

; Mode of reservoir outlet valve

(water-outflow-mode (normal stuck-closed))

; Mode of outflow from tank

(level-sensor-mode (normal stuck-at-0 stuck-at-full))

; Mode of level sensor

;; operating regions for motor

(motor-region (zero moving saturated)))

(constraints

;; Float and contact constraints

(mode (float-contact-mode normal)

((m+ height float-contact)

(0 0) (low low) (norm norm) (max max)))

118

(mode (float-contact-mode stuck-low)

((zero-std float-contact)))

(mode (float-contact-mode stuck-high)

((constant float-contact max)))

(mode (float-sensor-mode normal)

((m+ height height-sensed)

(0 0) (low low) (norm norm) (max max)))

(mode (float-sensor-mode stuck-low)

((zero-std height-sensed)))

(mode (float-sensor-mode stuck-high)

((constant height-sensed max)))

;; Electrical constraints at battery and contacts

(mode (battery normal)

((constant battery-voltage high)))

(mode (battery dead)

((zero-std battery-voltage)))

((mult battery-voltage float-contact float-contact-voltage)

(0 0 0) (high 0 0) (high low low) (high norm norm) (high max max))

(mode (float-amplifier-connection normal)

((equal float-contact-voltage hvoltage)

(0 0) (low low) (norm norm) (max max)))

(mode (float-amplifier-connection broken)

((zero-std hvoltage)))

((constant setting)) ;; shouldn't this be in some fault mode?

(mode (setting-contact-mode normal)

((equal setting setting-contact)

(0 0) (low low) (norm norm) (max max)))

(mode (setting-contact-mode stuck-low)

((zero-std setting-contact)))

(mode (setting-contact-mode stuck-high)

((constant setting-contact max)))

((mult battery-voltage setting-contact setting-contact-voltage)

(0 0 0) (high 0 0) (high low low) (high norm norm) (high max max))

;; Contacts to Amplifier and Voltmeter related constraints

(mode (setting-amplifier-connection normal)

((equal setting-contact-voltage rvoltage)

(0 0) (low low) (norm norm) (max max)))

(mode (setting-amplifier-connection broken)

((zero-std rvoltage)))

((add error hvoltage rvoltage)

(mhigh max 0) (0 0 0) (0 max max) (0 low low) (0 norm norm)

119

(high 0 max))

(mode (voltmeter normal)

((equal error measured-volts)

(mhigh mhigh) (0 0) (high high)))

(mode (voltmeter stuck-at-0)

((zero-std measured-volts)))

(mode (amplifier-mode normal)

((constant ampl-gain Ka)))

(mode (amplifier-mode no-connection)

((zero-std ampl-gain)))

;; Output of amplifier and operation of motor

((mult ampl-gain error Voltout)

(Ka 0 0) (Ka mhigh mhigh) (Ka high high))

(mode (and (amplifier-motor-connection normal)

(or (ammeter-mode normal) (ammeter-mode stuck-at-0)))

((equal Voltout Motorvolts)

(mhigh mhigh) (0 0) (high high)))

(mode (or (amplifier-motor-connection broken)

(ammeter-mode broken))

((zero-std motorvolts)))

(mode (and (motor-mode normal) (motor-region zero))

((less-than-or-equal Motorvolts 0)))

(mode (and (motor-mode normal) (motor-region saturated))

((greater-than-or-equal Motorvolts 0)))

(mode (or (motor-mode stuck)

(and (motor-mode normal)

(or (motor-region zero)

(motor-region saturated))))

((zero-std Omegam)))

(mode (and (motor-mode normal) (motor-region moving))

((m+ motorvolts omegam)

(mhigh mhigh) (0 0) (high high)))

(mode (and (motor-mode normal) (motor-region zero))

((zero-std Thetam)))

(mode (and (motor-mode normal) (motor-region saturated))

((constant Thetam thetammax)))

((d/dt Thetam Omegam))

;; Operation of ammeter

(mode (and (amplifier-motor-connection normal)

(or (ammeter-mode normal)

(ammeter-mode stuck-at-0)))

120

((m+ motorvolts current)

(mhigh mhigh) (0 0) (high high)))

(mode (or (amplifier-motor-connection broken)

(ammeter-mode broken))

((zero-std current)))

(mode (ammeter-mode normal)

((equal current current-sensed)

(mhigh mhigh) (0 0) (high high)))

(mode (or (ammeter-mode stuck-at-0)

(ammeter-mode broken))

((zero-std current-sensed)))

;; Operation of outlet valves from reservoir

(mode (valve-mode normal)

((m+ thetam inflowrate)

(0 0) (thetammax flowmax)))

(mode (valve-mode stuck-open)

((constant inflowrate flowmax)))

(mode (valve-mode stuck-closed)

((zero-std inflowrate)))

;; Tank inflow and outflow

(mode (water-outflow-mode normal)

((m+ height outflowrate)

(max outflowmax)

(norm norm)

(low low)

(0 0)))

(mode (water-outflow-mode stuck-closed)

((zero-std outflowrate)))

((add netflow outflowrate inflowrate)

(0 0 0) (mhigh outflowmax 0) (high 0 flowmax)

(0 outflowmax flowmax))

((d/dt height netflow)))

;; Region transitions of motor.

(transitions

((and (motor-mode (normal nil)) (motor-region (zero nil))

(motorvolts (0 inc)))

-> start-open)

((and (motor-mode (normal nil)) (motor-region (moving nil))

(thetam (thetammax nil))

(or (motorvolts ((0 high) nil))

121

(motorvolts (high nil))))

-> saturate)

((and (motor-mode (normal nil)) (motor-region (saturated nil))

(motorvolts (0 dec)))

-> start-close)

((and (motor-mode (normal nil)) (motor-region (moving nil))

(thetam (0 nil))

(or (motorvolts (mhigh nil))

(motorvolts ((mhigh 0) nil))))

-> stop-motor)))

;;; Region Transition functions

(defun start-open (state)

(create-transition-state

:from-state state

:to-qde controlled-tank-model

:assert '((motor-region (moving std)))

:inherit-qmag #'all-except-omegam

:inherit-qdir nil)) ;; should this really be nil??

(defun saturate (state)

(create-transition-state

:from-state state

:to-qde controlled-tank-model

:assert '((motor-region (saturated std)))

:inherit-qmag #'all-except-omegam

:inherit-qdir nil)) ;; should this really be nil??

(defun start-close (state)

(create-transition-state

:from-state state

:to-qde controlled-tank-model

:assert '((motor-region (moving std)))

:inherit-qmag #'all-except-omegam

:inherit-qdir nil)) ;; should this really be nil??

(defun stop-motor (state)

(create-transition-state

:from-state state

122

:to-qde controlled-tank-model

:assert '((motor-region (zero std)))

:inherit-qmag #'all-except-omegam

:inherit-qdir nil)) ;; should this really be nil??

(defun all-except-omegam (varname)

(not (eq varname 'omegam)))

;;; Component structure for Controlled Tank model

(defComponents controlled-tank-model

(float-sensor float-sensor-mode (normal . 0.98) (stuck-low . 0.01)

(stuck-high . 0.01))

(float-contact float-contact-mode (normal . 0.98) (stuck-low . 0.01)

(stuck-high . 0.01))

(setting-contact setting-contact-mode (normal . 0.98)

(stuck-low . 0.01) (stuck-high . 0.01))

(battery battery (normal . 0.98) (dead . 0.02))

(setting-amplifier-connection setting-amplifier-connection

(normal . 0.98) (broken . 0.02))

(float-amplifier-connection float-amplifier-connection

(normal . 0.98) (broken . 0.02))

(amplifier amplifier-mode (normal . 0.98) (no-connection . 0.02))

(amplifier-motor-connection amplifier-motor-connection

(normal . 0.98) (broken . 0.02))

(motor motor-mode (normal . 0.98) (stuck . 0.02))

(water-outflow water-outflow-mode (normal . 0.98) (stuck-closed . 0.02))

(voltmeter voltmeter (normal . 0.99) (stuck-at-0 . 0.01))

(ammeter ammeter-mode (normal . 0.99) (stuck-at-0 . 0.005)

(broken . 0.005))

(valve valve-mode (normal . 0.98) (stuck-open . 0.01)

(stuck-closed . 0.01))

(level-sensor level-sensor-mode (normal . 0.99) (stuck-at-0 . 0.005)

(stuck-at-full . 0.005)))

(defOperatingRegions controlled-tank-model

((motor-mode . normal) (motor-region . zero) (motor-region . saturated)

(motor-region . moving))

((motor-mode . stuck) (motor-region . moving)))

123

Bibliography

Abbott, K. H. [1988]. Robust operative diagnosis as problem solving in a hypothesis space.

In Proceedings of the Seventh National Conference on Arti�cial Intelligence, pp. 369{

374 Minneapolis, MN.

Bousson, K., Zimmer, L., & Trav�e-Massuy�es, L. [1994]. Causal model-based diagnosis of

dynamic systems. In Fifth International Workshop on Principles of Diagnosis, pp.

34{41 New Paltz, NY.

Catino, C. A. [1993]. Automated Modeling of Chemical Plants with Application to Hazard

and Operability Studies. Ph.D. thesis, Department of Chemical Engineering, Univer-

sity of Pennsylvania.

Dague, P., Jehl, O., Deves, P., Luciani, P., & Taillibert, P. [1991]. When oscillators stop

oscillating. In Proceedings of the Twelfth International Joint Conference on Arti�cial

Intelligence, pp. 1109{1115 Sydney, Australia.

Dalle Molle, D. [1989]. Qualitative simulation of dynamic chemical processes. Tech. rep.

AI89{107, Arti�cial Intelligence Laboratory, University of Texas at Austin, Austin,

Texas 78712.

Davis, R. [1984]. Diagnostic reasoning based on structure and behavior. Arti�cial Intelli-

gence, 24, 347{410.

de Kleer, J. [1986]. An assumption-based TMS. Arti�cial Intelligence, 28, 127{162.

de Kleer, J., & Williams, B. C. [1987]. Diagnosing multiple faults. Arti�cial Intelligence,

32, 97{130.

de Kleer, J., & Williams, B. C. [1989]. Diagnosis with behavioral modes. In Proceedings of

the Eleventh International Joint Conference on Arti�cial Intelligence, pp. 1324{1330

Detroit, MI.

deKleer, J., & Brown, J. [1984]. A qualitative physics based on conuences. Arti�cial

Intelligence, 24, 7{83.

124

deKleer, J. [1991]. Focusing on probable diagnoses. In Proceedings of the Ninth National

Conference on Arti�cial Intelligence, pp. 842{848 Anaheim, CA.

Doyle, J. [1979]. A truth maintenance system. Arti�cial Intelligence, 12, 231{272.

Doyle, R. J., Sellers, S. M., & Atkinson, D. J. [1989]. A focused, context-sensitive ap-

proach to monitoring. In Proceedings of the Eleventh International Joint Conference

on Arti�cial Intelligence, pp. 1231{1237 Detroit, MI.

Dressler, O. [1994]. Model-based diagnosis on board: Magellan-MT inside. In Fifth Inter-

national Workshop on Principles of Diagnosis, pp. 87{92 New Paltz, NY.

Dressler, O., & Struss, P. [1992]. Back to defaults: Characterizing and computing diagnoses

as coherent assumption sets. In Proceedings of the European Conference on Arti�cial

Intelligence (ECAI), pp. 719{723.

Dressler, O., & Struss, P. [1994]. Model-based diagnosis with the default-based diagno-

sis engine: E�ective control strategies that work in practice. In Fifth International

Workshop on Principles of Diagnosis, pp. 93{97 New Paltz, NY.

Dvorak, D. [1992]. Monitoring and Diagnosis of Continuous Dynamic Systems Using Semi-

quantitative Simulation. Ph.D. thesis, University of Texas, Austin, TX.

Dvorak, D., & Kuipers, B. [1992]. Model-based monitoring of dynamic systems. In Ham-

scher, W., Console, L., & de Kleer, J. (Eds.), Readings in Model-Based Diagnosis, pp.

249{254. Morgan Kaufmann, San Mateo, CA.

Farquhar, A. [1993]. Automated Modeling of Physical Systems in the Presence of Incom-

plete Knowledge. Ph.D. thesis, Arti�cial Intelligence Laboratory, University of Texas.

Technical Report AI93-207.

Forbus, K. D. [1984]. Qualitative process theory. Arti�cial Intelligence, 24, 85{168.

Genesereth, M. [1984]. The use of design descriptions in automated diagnosis. Arti�cial

Intelligence, 24, 411{436.

Hamscher, W., Console, L., & deKleer, J. (Eds.). [1992]. Readings in Model-Based Diagno-

sis. Morgan Kaufmann, San Mateo, CA.

Kapadia, R., Biswas, G., & Robertson, C. [1994]. Doc: A framework for monitoring and

diagnosis of continuous-valued systems. In Fifth International Workshop on Principles

of Diagnosis, pp. 140{147 New Paltz, NY.

Kay, H. [1992]. A qualitative model of the space shuttle reaction control system. Tech. rep.

AI92-188, Arti�cial Intelligence Laboratory, University of Texas, Austin, TX.

125

Kay, H., & Kuipers, B. J. [1993]. Numerical behavior envelopes for qualitative models. In

Proceedings of the Eleventh National Conference on Arti�cial Intelligence, pp. 606{613

Washington, D.C.

Kuipers, B. J., & Berleant, D. [1988]. Using incomplete quantitative knowledge in qualitative

reasoning. In Proceedings of the Seventh National Conference on Arti�cial Intelligence,

pp. 324{329 St. Paul, MN.

Kuipers, B. J. [1984]. Commonsense reasoning about causality: Deriving behavior from

structure. Arti�cial Intelligence, 24, 169{203.

Kuipers, B. J. [1994]. Qualitative Reasoning: Modeling and Simulation with Incomplete

Knowledge. MIT Press, Cambridge, MA.

Kuo, B. C. [1991]. Automatic Control Systems. Prentice Hall, Engelwood Cli�s, New Jersey.

Lackinger, F., & Nejdl, W. [1991]. Integrating model-based monitoring and diagnosis of

complex dynamic systems. In Proceedings of the Twelfth International Joint Confer-

ence on Arti�cial intelligence, pp. 1123{1128 Sydney, Australia.

Minton, S. N. [1988]. Learning E�ective Search Control Knowledge: An Explanantion-Based

Approach. Ph.D. thesis, Carnegie-Mellon University, Pittsburgh, PA.

Ng, H. T. [1990]. Model-based, multiple fault diagnosis of time-varying, continuous phys-

ical devices. In Proceedings of the Sixth IEEE Conference on Arti�cial Intelligence

Applications, pp. 9{15 Santa Barbara, CA. Reprinted in Readings in Model-based

Diagnosis, W. Hamscher, L. Console, and J. de Kleer (eds.), Morgan Kaufman, San

Mateo, CA, 1992.

Ng, H. T. [1991]. Model-based, multiple-fault diagnosis of dynamic, continuous physical

devices. IEEE Expert, 6 [6], 38{43.

Ng, H. T. [1992]. A General Abductive System with Applications to Plan Recognition and

Diagnosis. Ph.D. thesis, University of Texas, Austin, TX. Also appears as Arti�cial

Intelligence Laboratory Technical Report AI 92-177.

Nilsson, N. [1980]. Principles of Arti�cial Intelligence. Tioga, Palo Alto, CA.

Oyeleye, O. O., Finch, F. E., & Kramer, M. A. [1990]. Qualitative modeling and fault

diagnosis of dynamic processes by midas. Chemical Engineering Communications, 96,

205{228.

126

Poole, D. [1989]. Normality and faults in logic-based diagnosis. In Proceedings of the

Eleventh International Joint Conference on Arti�cial Intelligence, pp. 1304{1310 De-

troit, MI.

Reggia, J. A., Nau, D. S., & Wang, P. Y. [1983]. Diagnostic expert systems based on a set

covering model. International Journal of Man-Machine Studies, 19, 437{460.

Reiter, R. [1987]. A theory of diagnosis from �rst principles. Arti�cial Intelligence, 32,

57{95.

Reiter, R., & de Kleer, J. [1987]. Foundations of assumption-based truth maintenance

systems. In Proceedings of the Sixth National Conference on Arti�cial Intelligence,

pp. 183{188.

Rickel, J. [1995]. Automated Modeling of Complex Systems to Answer Prediction Questions.

Ph.D. thesis, Department of Computer Science, University of Texas at Austin.

Shortli�e, E., & Buchanan, B. [1975]. A model of inexact reasoning in medicine. Mathe-

matical Biosciences, 23, 351{379.

Struss, P., & Dressler, O. [1989]. Physical negation | integrating fault models into the gen-

eral diagnostic engine. In Proceedings of the Eleventh International Joint Conference

on Arti�cial Intelligence, pp. 1318{1323 Detroit, MI.

Subramanian, S., & Mooney, R. J. [1994]. Multiple-fault diagnosis using general qualitative

models with fault modes. In Fifth International Workshop on Principles of Diagnosis,

pp. 321{325 New Paltz, NY.

Subramanian, S., & Mooney, R. J. [1995]. Multiple-fault diagnosis using qualitative models

and fault modes. In IJCAI-95 Workshop on Engineering Problems in Qualitative

Reasoning Montreal, Quebec, Canada.

Vinson, J. M., & Ungar, L. H. [1995]. Dynamic process monitoring and fault diagnosis with

qualitative models. IEEE Transactions on Systems, Man, and Cybernetics, 25 [1].

Waltz, D. [1975]. Understanding line drawings of scenes with shadows. In Winston, P. H.

(Ed.), The Psychology of Computer Vision, pp. 19{91. McGraw Hill, Cambridge,

Mass.

127

Vita

Siddarth Subramanian was born in Beijing, China in 1965, the son of Gita Subramanian and

Chalakudi Narayaniyer Subramanian. In 1983, he graduated from the International School

of Islamabad in Islamabad, Pakistan. He then pursued a degree in Computer Sciences

at the Indian Institute of Technology, in Kanpur, India. He graduated with a Bachelor

of Technology in 1987 and was awarded a Microelectronics and Computer Development

Fellowship at the University of Texas at Austin for graduate work in Computer Sciences.

In 1989, he was awarded a Master of Science in Computer Science from the University.

Permanent Address: 1507 Ruth Ave.

Austin, TX 78757

United States of America

This dissertation was typeset with LATEX2"
1 by the author.

1LATEX2" is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of the
American Mathematical Society. The macros used in formatting this dissertation were written by Dinesh
Das, Department of Computer Sciences, The University of Texas at Austin.

128

