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Abstract

This paper describes an approach to di-
agnosis of systems described by quali-
tative differential equations represented
as QsIM models. An implemented sys-
tem QDOCS is described that performs
multiple-fault, fault-model based diag-
nosis, using constraint satisfaction tech-
niques, of qualitative behaviors of sys-
tems described by such models. We
demonstrate the utility of this system
by accurately diagnosing randomly gen-
erated faults using simulated behaviors
of a portion of the Reaction Control Sys-
tem of the space shuttle.

1 Introduction

Qualitative reasoning is well-established as a useful mode
of reasoning for the simulation and monitoring of continu-
ous physical systems. By reasoning in terms of qualitative
ranges of variables as opposed to precise numerical values,
it is possible to compute information about the behavior of
a system with very little information about the system and
without doing expensive numerical simulation. A very gen-
eral language for describing physical systems as qualitative
differential equations is given by Qs (Kuipers, 1994), a
program that simulates systems described in this language.
Previous approaches to diagnosing faults in QsiM models
have either been unable to work with fault models (Ng,
1990) or have made a single-fault assumption (Dvorak,
1992). Most previous work on model-based diagnosis (for
example, (Reiter, 1987) or GDE(de Kleer and Williams,
1987)) has concentrated on static systems and is insuffi-
cient to diagnose continuous systems. Few of the other ap-
proaches to diagnosis of continuous physical systems (for
example (Oyeleye et al., 1990; Dague et al., 1991; Gucken-
biehl and Schafer-Richter, 1990)) have made use of a gen-
eral modelling language such as that provided by QsiM or
used any of the general diagnostic formalisms introduced
in the work of Reiter or DeKleer.

This work i1s an initial attempt at building a gen-
eral, multiple-fault diagnosis system which uses behavioral
mode information with a prior: probabilities. The diag-
nostic architecture is similar to SHERLOCK (de Kleer and
Williams, 1989) and the algorithm builds on the work of
(Ng, 1990) in INC-DIAGNOSE. A general constraint satis-
faction technique is used to detect faults and trace depen-
dencies. The implemented system introduced here, QnoCS
(for Qualitative Diagnosis Of Continuous Systems), is pow-
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erful enough to accurately diagnose a number of different
fault models for a part of the Space Shuttle’s Reaction
Control System - a realistic system, modeled with 42 Qsim
constraints.

The rest of this paper is organized as follows: in section
2, a simple example which will be used throughout the
paper is used to motivate the work. QDocs’s algorithm
is presented in section 3 and its application is illustrated
on the example from section 2. Section 4 then reports
on an experiment done to test QDocs and presents the
results obtained. Section 5 contains a discussion of some
of the limitations of the approach presented and includes
some future research directions. The paper ends with a
discussion of related work in section 6 and our conclusions
in section 7.

2 An Example

An example we use to illustrate our algorithm consists of
a simple bathtub with a drain. It is assumed that this
bathtub is monitored by sensors measuring the amount of
water in the tub and the flow rate of the water through
the drain. Some of the faults that can be posited about
this system include a blocked drain, leaks in the tank, and
sensors stuck at various levels.

This system is described using a qualitative differential
equation or a QDE. A QDE is represented as a set of con-
straints, each of which describes the relationship between
two or more variables. For instance, an M+ relation is said
to exist between two variables if one 1s a monotonically in-
creasing function of the other. So, in our normal bathtub
model, there is an M+ relation between the amount and
the level of water in the bathtub and also between the
the level and pressure, and the pressure and outflow rate.
However, in a model of a blocked bathtub, the outflow rate
is zero, and it is described by the constraint ZERO-STD.

The use of discrete mode variables in QsiM allows us to
combine normal and faulty models of a system into a single
description as shown in Figure 1. Here, the variable
drain-mode takes on the possible values of normal, blocked,
or unknown and the constraints shown above correspond
to the two known modes of the bathtub’s behavior.

For the purposes of diagnosis, these mode variables can
then be associated with components of the system and
their different values with behavioral modes of the com-
ponent. Each of these behavioral modes has an a prior:
probability specified by the model-builder. The compo-
nent structure used to represent the bathtub is given in

!The complete model also has mode variables and fault
modes for the level and flow sensors and the inlet valve.



(M+ amount level)

(M+ level pressure)

(mode (drain-mode normal)
(M+ pressure outflow))

(mode (drain-mode blocked)
(ZERD-STD outflow))

(ADD netflow outflow inflow)

(D/DT amount netflow)

(CONSTANT inflow if*)

Figure 1: The Combined Bathtub Model

(defcomponents bathtub
(drain drain-mode (normal 0.89) (blocked 0.1)
(unknown 0.01))
(levelsensor levelsensor-mode (normal 0.79)
(stuck-at-0 0.1) (stuck-at-top 0.1)
(unknown 0.01))
(flowsensor flowsensor-mode (normal 0.79)
(stuck-high 0.1) (stuck-at-0 0.1)
(unknown 0.01))
(inletvalve inletvalve-mode (normal 0.79)
(stuck-closed 0.1) (unknown 0.01)))

Figure 2: The Bathtub Component Structure

Figure 2. Here, each entry consists of the component name
(e.g., drain), the mode variable (drain-mode) and a list of
behavioral modes with their a priori probabilities ((normal
0.89) (blocked 0.1) (unknown 0.01)).

The input to the diagnostic algorithm consists of a be-
havior, which is a sequence of qualitative values for a sub-
set of the variables corresponding to sensor readings. The
output of the algorithm is an assignment of values to the
mode variables such that the resulting model is consistent
with the observed behavior. A model is considered to be
consistent with the behavior if the behavior corresponds
to a QsIM simulation of the model.

As an example, suppose QDOCS is given the following
single set of sensor readings from a behavior of the bath-
tub: (level-sensed (0 top)), (outflow-sensed 0) (i.e., the level
sensed is somewhere between 0 and top and the outflow
sensed is 0). This is clearly inconsistent with the normal
model of the system which would predict a flow through
the drain. Some of the valid diagnoses for this behavior in-
clude [(drain-mode blocked)], [(flowsensor-mode stuck-at-0)]
and [(drain-mode blocked) (flowsensor-mode stuck-at-0)].

3 (@Qpocs’s Diagnostic Approach

Using the standard approach to consistency-based diagno-
sis, we first determine conflict sets, which are assignments
of values to mode variables that are inconsistent with the
observed behavior. These conflicts are then used to con-
struct diagnoses.

3.1 Determining Conflict Sets

Most diagnostic systems like GDE (de Kleer and Williams,
1987) use simple constraint propagation to determine con-
flict sets. However, QQSIM requires a more complete con-
straint satisfaction algorithm since a qualitative constraint
typically does not entail a unique value for a remaining

variable when all its other variables have been assigned.
An earlier attempt to use QsiM to track dependencies for
diagnosis (Ng, 1990) only used a simple propagator. Since
the propagator alone is not complete, it is not guaranteed
to detect all inconsistencies.

QsiM takes a set of initial qualitative values for some
or all of the variables of a model and produces a repre-
sentation of all the possible behaviors of the system. The
inputs to QsIM are 1) a qualitative differential equation
(QDE) represented as a set of variables and constraints
between them, and 2) an initial state represented by qual-
itative magnitudes and directions of change for some of
these variables. QsiM first completes the state by solving
the constraint satisfaction problem (CSP) defined by the
initial set of values and the QDE. For each of the com-
pleted states satisfying the constraints, QsiM finds quali-
tative states that are possible successors of these and uses
constraint satisfaction to determine which of these are con-
sistent. The process of finding successors to states and fil-
tering on the constraints continues as QsiM builds a tree
of states called an envisionment.

Qs1™ solves the CSP by 1) establishing node consistency,
2) using Waltz filtering (Waltz, 1975) to establish arc con-
sistency, and, finally, 3) using backtracking to assign val-
ues to variables. The Waltz filtering step is performed
incrementally and at each point selects the most restric-
tive constraint (i.e., the one most likely to fail) to process
and propagates its effect on the rest of the network. These
heuristics help discover the inconsistency of states early to
avoid unnecessary search.

A model is inconsistent with a given sequence of sensor
readings if there is no corresponding behavior in the en-
visionment. There are two possible ways an inconsistency
can arise: 1) a particular set of readings may be incom-
patible with the QDE, or 2) all the sets of readings may
be compatible with the QDE but the sequence may not
correspond to any particular behavior in the QsIM envi-
sionment.

The second case is computationally much more expen-
sive to account for. This is because a given set of sensor
readings may have hundreds of possible completions each
of which must be compared with the hundreds of poten-
tial successors in order to determine the causes for the
continuity failure. The algorithm developed in this paper
accounts for the first case listed above while our current
research is aimed at finding ways to obtain diagnostic in-
formation from the second kind of failure. It is shown,
through experiments on an example, that diagnosing static
inconsistency, 1s, by itself, enough to account for some very
realistic faults.

QDocs modifies QSIM’s constraint satisfier to keep track
of mode-variables whose values played a role in reducing
the set of possible values for a variable. Each variable
and constraint is associated with an initially empty de-
pendency set of mode variables. Whenever a constraint’s
tag set of possible values causes a variable’s number of
possible values to decrease, the dependency set of the vari-
able 1s updated with the union of its old dependency set,
the dependency set associated with the constraint, and
the mode variable, if any, that is associated with the con-
straint. When a variable reduces the number of possible
tuples in the constraint’s tag, the constraint’s dependency



set is similarly updated with the union. When a variable
is left with no possible values, the dependency set it 1s left
with is returned as a conflict set.

The heuristic of filtering on the most restrictive con-
straints early helps reduce the size of conflict sets but it
does not guarantee minimal conflicts. The size reduction
comes from the fact that the conflicts chosen initially al-
ready have only a small number of tuples in the cross-
product of the sets of possible values of the variables they
act upon. A constraint with fewer possible tuples to begin
with is more likely to lead to an inconsistency.

In order to fully keep track of the necessary (as opposed
to just sufficient) conditions leading to the inconsistency of
the state, the constraint satisfaction algorithm would have
to keep track of dependencies for each value of each vari-
able that was eliminated. This is clearly combinatorially
explosive and therefore, we’ve chosen to go with the sim-
pler algorithm discussed here despite the fact that the con-
flict sets obtained are not guaranteed minimal. Of course,
no known technique makes such a guarantee.

3.2 Constructing Diagnoses

The above process is used to compute a single conflict set
when the constraints corresponding to a particular set of
values for the mode-variables are activated. The diagnos-
tic algorithm must then query the constraint satisfier with
different sets of values for mode variables to obtain dif-
ferent conflict sets. The approach adopted is similar to
SHERLOCK in that candidate generation is focussed on the
most probable diagnoses.

Initially, the default candidate (all mode-variables ini-
tialized to normal) is the one used to query the constraint
satisfier. The algorithm then tries to complete states for
each of the sets of sensor readings in turn, and whenever
the constraint satisfier signals a contradiction, a conflict set
is generated. The diagnostic reasoner then uses this con-
flict set and the current candidate to generate new can-
didates by considering all the other behavioral modes of
each mode-variable in the conflict set in addition to the
behavioral modes of the current candidate. An agenda
is built using these candidates listed in order of decreas-
ing probability. ? The first item on this agenda is the
next candidate used to query the diagnostic reasoner. The
reasoner continues its best-first search until one or more
consistent hypotheses are returned.

As an example, suppose we give the inputs (levelsensed (0
top)), (outflowsensed 0) to Qpocs with the bathtub model
shown in figure 1. Figure 3 is a representation of the con-
straint network for the model of the bathtub where all
components are assumed to be behaving normally. The
first query to the constraint satisfier 1s with all the mode-
variables set to normal. The constraint satisfier retuns a
conflict set of ((drain normal) (level-sensor normal) (outflow-
sensor normal)). Note that the mode of the inlet valve
could have been part of the conflict set given an exhaus-
tive tracking of dependencies or a random order of choos-
ing constraints but with the heuristics from the previous
section this gets pruned.

2Qpocs calculates the probability of a set of behav-
ioral modes assuming that modes for each component are
independent.
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Figure 3: Constraint Network for the Bathtub
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Figure 4: A Part of the Reaction Control System

Now, QDocs places on the agenda all the hypotheses
that are derived from changing each of the above mode
variables to a different value. These are then ordered ac-
cording to decreasing probability. Suppose the first hy-
pothesis is that the outflowsensor is stuck at high while all
the other components are behaving normally. This is the
first one picked to focus on. However, with this hypothesis,
the constraint satisfier returns immediately with the con-
flict set (outflow-sensor . stuck-high). This is because this
mode directly contradicts the given sensor readings and
is thus the first constraint to be picked by the constraint
satisfier using its restrictive constraint heuristic. The next
best item on the agenda is then checked against all con-
flicts to ensure that it hits all of them and is then passed
to the constraint satisfier. Suppose this hypothesis is that
the drain is blocked. The constraint satisfier then checks
against the observed sensor readings and declares the hy-
pothesis consistent.

4 An Experiment

We have described an implemented system that performs
the task of obtaining conflict sets and generating diagnoses
by using static constraint satisfaction on states from the
behavior of a system described using QsiM. This section
describes an experiment performed to gauge the extent to
which this alone would be a useful tool in a realistic system.

Figure 4 shows a portion of the Reaction Control System

(RCS) of the Space Shuttle. The RCS consists of sets of



jets mounted at three different points (two in the rear and
one near the nose) on the space shuttle. These jets help
provide control of orientation and velocity while the shut-
tle is in orbit. Each jet consists of two subsystems that are
almost identical - one for the fuel and one for the oxidizer.
These subsystems help deliver the fuel and oxidizer into a
reaction chamber where they ignite to provide thrust. A
model of one of these subsystems has been successfully de-
scribed qualitatively using QsiM and simulated in various
fault modes (Kay, 1992).

For this experiment, we further concentrate on about
half of this subsystem consisting of the helium (propellant)
tank, the two pressure regulators and the fuel tank. When
this system is working ideally, the two pressure regulators
control the pressure of the helium in the fuel tank at a
level that allows for a constant outflow rate of fuel from
the tank. When the pressure in the helium tank gets low
enough that the regulators can no longer maintain the right
pressure in the fuel tank, the regulators merely act as pipes
and allow the pressure in the fuel tank to drop with the
pressure of the helium tank.

A model was built which had fault modes for the two
pressure regulators (stuck-open and stuck-closed) and for
the helium tank (leaking). Three sensors were assumed -
pressure gauges for the two tanks and a fuel gauge in the
fuel tank. Fault modes for these sensors were also modeled.
All these components also have an unknown mode where
the variables acted upon are unconstrained. Probabilities
were assigned arbitrarily just for testing purposes since
we did not have information on the actual probabilities of
these faults. The complete model has 42 constraints.

The a prior: probabilities were used to randomly gener-
ate sets of faults in this model. Since four of the compo-
nents have three modes each and two of the components
have four modes each, this made for a space of 1296 pos-
sible behavioral modes altogether. After discarding the
nearly 50% of cases where the random generator produced
a completely normal set of components, QQsiM was used to
simulate the sets of faults with a fixed initial configuration.
Given such an input, QsiM produces all the possible behav-
iors that are qualitatively consistent with the model and
the initial configuration. A behavior was chosen (again
at random) from this envisionment graph and passed to
Qnocs’s diagnostic engine.

Qnocs was run for 100 iterations of the best-first search
or until it generated 5 hypotheses consistent with all the
observations, whichever came first. In some (about a third)
of the cases, the behavior used was completely consistent
with the behavior of a normal system. This was because
some faults simply do not make a difference. For instance,
the duplication of pressure regulators is purely for fault
tolerance and if the secondary regulator breaks, the be-
havior of the system is qualitatively no different from the
behavior of a normal system. These cases were discarded
and we concentrate on the rest.

When this experiment was run on 200 randomly gener-
ated faults, the correct hypothesis was among the top 5
produced by Qnocs in 86% of the cases. In 64%, it was
the top hypothesis. A lot of the cases (64% of the failing
cases, or all but 5% of the total cases) where Qnocs did
not produce the correct hypothesis were ones where a sub-
set of the faults was enough to account for the behavior,

and hence the more likely, smaller, fault set was among
the ones generated. The test runs took approximately a
minute each on a Sparc 2 running Lucid Common Lisp.

5 Discussion and Future Work

The experiment described in the previous section shows
that the diagnostic reasoner described does fairly well in
this domain with random sets of faults. Since QDocCS
is currently unable to use continuity information between
states, what this shows is that in this domain, most behav-
iors derived from different sets of behavioral modes lead to
states that are qualitatively distinct from each other. Our
plan is to study some more complex systems, particularly
in the domain of chemical reactors, and explore the limits
of this mode of diagnostic reasoning.

Certain kinds of faults, however, will lead to states that
are not qualitatively distinct from states consistent with
other behavioral modes. As an example of a system where
faults cannot be detected by static analysis alone, suppose
we had a system consisting of a closed tank containing
some fluid. Suppose also that the level sensor for the fluid
was unable to gauge the direction of change of the fluid’s
level. From a sequence of states with decreasing qualita-
tive magnitudes for the level of fluid, one should be able to
derive a contradiction. The current Qpocs will not detect
such a contradiction because it cannot perform an analy-
sis of behaviors across time steps. The fact that successive
states of the system must be continuous may be used to
derive a contradiction from the behavior. This would in-
volve looking at all possible completions of the state and
deciding what components were responsible for the lack of
continuity between the state and its successors. This 1s an
approach we plan to explore.

On the computational side, another area we propose to
insvestigate 1s that of efficient caching of possible values for
different variables during the constraint satisfaction phase
of the algorithm. Traditional truth maintenance systems
like the ATMS are not useful for this purpose since the
range of possible values for a variable is rarely narrowed to
a single one. Instead, the reasoner must cache sets of possi-
ble values derived under different sets of assumptions. We
intend to explore ways in which to cache this information
and test their utility in improving the efficiency of QDoCS.

6 Related Work

The two previous systems implemented to perform diagno-
sis on systems modeled using QsiM both suffer from a num-
ber of limitations that Qpocs does not. INC-DIAGNOSE
(Ng, 1990) was an implementation of Reiter’s theory of
diagnosis (Reiter, 1987) to QsIM models. Its main limita-
tions were that first, like Reiter’s theory, it was restricted
to models where no fault mode information was known,
and second, it used a very primitive constraint propaga-
tor that was not guaranteed to detect all the faults that
could be detected within a state. The propagator would
only work in cases where all the variables that a constraint
acted upon were restricted to just one (or zero) possible
values after the constraint was applied. If this was not
the case, the propagator would fail and possible conflicts
would not be detected. QDoCS, on the other hand, does



use behavioral mode information to find a model consis-
tent with the behavior and it uses a complete constraint
satisfaction algorithm.

The other previous diagnosis work on QSIM models,
Mmvic (Dvorak, 1992) suffers from a number of different
problems. First, MIMIC requires the model builder to pro-
vide a structural model of the system in addition to the
QsIM constraint model. This structural model was fixed
and could not change under different fault models. QDocCs
does not require this since it uses a constraint satisfac-
tion algorithm to determine the causes for faults. Second,
MiMIC uses a very simple dependency tracing algorithm to
generate potential single-fault diagnoses. This algorithm
looks at the structural graph from the point at which the
fault is detected and considers all components it finds up-
stream as possible candidates for failure. QDocs, on the
other hand, uses actual dependencies of the values assigned
to variables to identify the possibly failing components. It
thus restricts itself to a smaller set of possible component
failures. Third, MiMIiCc makes a single-fault assumption,
while QDocs doesn’t.

A number of other researchers have looked at diagnosis
in the context of monitoring continuous systems (Oyeleye
et al., 1990; Doyle and Fayyad, 1991; Abbott, 1988). Each
of these systems concentrates on different aspects of the
monitoring process, but none performs the multiple-fault
fault-based diagnosis that QDocs performs.

Two other systems that perform diagnosis on dynami-
cal systems include CaTs (Dague et al., 1991) and Sip1a
(Guckenbiehl and Schafer-Richter, 1990). Both are sys-
tems that use numerical methods to obtain conflicts and
perform diagnosis on circuits with state but neither one
can a) handle fault modes, or b) generalize to qualitative
differential equations. Pan’s work on predictive analysis
(Pan, 1984) uses a qualitative model to perform diagnosis
on analog circuits but it requires a complete state transi-
tion diagram for all the states of the circuit - something
that is obviously combinatorially explosive in the kinds of
models that we are considering here.

7 Conclusion

We have described an architecture for the diagnosis of
systems described by qualitative differential equations.
The technique uses a multiple-fault, fault-model based ap-
proach to generating diagnoses. An implemented system
Qnocs has been shown to be powerful enough to accu-
rately generate diagnoses from qualitative behaviors of a
fairly complex system - the Reaction Control System of
the Space Shuttle. The approach is more powerful than
previous approaches to the problem in that it uses 1) a
general modelling framework in QsiM, 2) a more complete
diagnostic architecture and 3) a powerful constraint satis-
faction algorithm as opposed to simple propagation.
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