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Abstract

This paper describes an approach to performing diagnosis on complex
dynamic systems described by qualitative differential equations. An imple-
mented system QDOCS is described that performs multiple-fault diagnosis
on systems modeled with QSIM. Constraint satisfaction techniques are used
to determine sets of component modes that are inconsistent with observed
qualitative behaviors. Most probable diagnoses are computed from the re-
sulting conflicts sets. The utility of the system is illustrated by accurately
and efficiently diagnosing randomly generated faults in a model of the Re-
action Control System of the space shuttle.

1 Introduction

One class of engineering problems that must be addressed by qualitative reasoning if it is to
be useful in real applications is that of diagnosis. The approach to diagnosis described in this
paper uses QSIM (Kuipers, 1994) as the modelling language and applies a very general di-
agnostic technique to these models. Previous approaches to diagnosing faults in QSIM mod-
els have been limited in scope and have been unable to work with fault modes (Ng, 1990;
Lackinger and Nejdl, 1991) or have made a single-fault assumption (Dvorak, 1992). Most
previous work on model-based diagnosis (Reiter, 1987; de Kleer and Williams, 1987) has
concentrated on static systems and is generally insufficient to diagnose continuous dynamic
systems. Few of the other approaches to diagnosis of continuous systems (Oyeleye et al.,
1990; Dague et al., 1991; Guckenbiehl and Schafer-Richter, 1990) have made use of a gen-
eral modelling language such as that provided by QSIM or used any of the general diagnostic
formalisms introduced in by Reiter or DeKleer.
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(M+ amount level)
(M+ level pressure)
(mode (drain-mode normal) (M+ pressure outflow))
(mode (drain-mode blocked) (ZERO-STD outflow))
(ADD netflow outflow inflow)
(D/DT amount netflow)
(CONSTANT inflow if*)

Figure 1: The Combined Bathtub Model

This work is an attempt to build a general, multiple-fault diagnosis system which uses
behavioral modes with a priori probabilities. The diagnostic architecture is similar to SHER-
LOCK (de Kleer and Williams, 1989) and the algorithm builds on INC-DIAGNOSE (Ng, 1990).
The system uses a general constraint-satisfaction technique to detect faults and trace depen-
dencies in order to generate conflicts and diagnoses. A QSIM-based simulation component
is used to verify hypotheses and detect additional inconsistencies. The implemented system,
QDOCS (Qualitative Diagnosis Of Continuous Systems), is powerful enough to accurately
diagnose a number of different faults in the Space Shuttle’s Reaction Control System.

The rest of this paper is organized as follows. In section 2, a simple example is introduced
to motivate the work. QDOCS’s algorithm is presented in section 3 and its application illus-
trated on this example. Section 4 reports on an experiment used to test QDOCS on a realistic
problem. Section 5 contains a discussion of some of the limitations of the approach and in-
cludes some future research directions. The paper ends with a discussion of related work in
section 6 and our conclusions in section 7.

2 An Example

An example used to illustrate the algorithm consists of a simple bathtub with a drain. It is
assumed that the bathtub is monitored by sensors measuring the amount of water in the tub
and the flow rate of the water through the drain. Some of the faults that can be posited about
this system include a blocked drain, leaks in the tank, and sensors stuck at various levels.

This system is described using a qualitative differential equation or a QDE. A QDE is a
set of constraints, each of which describes the relationship between two or more variables.
For instance, an M+ relation is said to exist between two variables if one is a monotonically
increasing function of the other. So, in our normal bathtub model, there is an M+ relation
between the amount and the level of water in the bathtub and also between the the level and
pressure, and the pressure and outflow rate. However, in a model of a blocked bathtub, the
outflow rate is zero, and it is described by the constraint ZERO-STD.

The use of discrete mode variables in QSIM allows us to combine normal and faulty mod-
els of a system into a single description as shown in Figure 1. 1 Here, the variable drain-mode

1The complete model also has mode variables and fault modes for the level and flow sensors and the inlet

2



(defcomponents bathtub
(drain drain-mode (normal 0.89) (blocked 0.1) (unknown 0.01))
(levelsensor levelsensor-mode (normal 0.79) (stuck-at-0 0.1)

(stuck-at-top 0.1) (unknown 0.01))
(flowsensor flowsensor-mode (normal 0.79) (stuck-high 0.1)

(stuck-at-0 0.1) (unknown 0.01))
(inletvalve inletvalve-mode (normal 0.79) (stuck-closed 0.1)

(unknown 0.01)))

Figure 2: The Bathtub Component Structure

takes on the possible values of normal, blocked, or unknown and the constraints shown above
correspond to the two known modes of the bathtub’s behavior.

For the purposes of diagnosis, these mode variables can then be associated with com-
ponents of the system and their different values with behavioral modes of the component.
Each of these behavioral modes has an a priori probability specified by the model-builder.
The component structure used to represent the bathtub is given in Figure 2. Here, each entry
consists of the component name (e.g., drain), the mode variable (drain-mode) and a list
of behavioral modes with their a priori probabilities ((normal 0.89) (blocked 0.1)
(unknown 0.01)).

The input to the diagnostic algorithm consists of a behavior, which is a sequence of qual-
itative values for a subset of the variables corresponding to sensor readings. The output of
the algorithm is an assignment of values to the mode variables such that the resulting model
is consistent with the observed behavior. A model is considered to be consistent with the be-
havior if the behavior corresponds to a QSIM simulation of the model.

As an example, suppose QDOCS is given the following single set of sensor readings from
a behavior of the bathtub: (level-sensed (0 top)), (outflow-sensed 0) (i.e., the
level sensed is somewhere between 0 and top and the outflow sensed is 0). This is clearly
inconsistent with the normal model of the system which would predict a flow through the
drain. Some of the valid diagnoses for this behavior include [(drain-mode blocked)],
[(flowsensor-mode stuck-at-0)] and [(drain-mode blocked) (flowsensor-mode
stuck-at-0)].

The above example motivates an approach of applying QSIM’s constraint satisfaction tech-
niques to detect inconsistencies between the sensor readings and the model. However, since
the systems under study are dynamic systems that maintain temporal consistency, satisfying
the constraints for a given set of sensor readings does not guarantee that the sequence of read-
ings is consistent. The approach we discuss in the next section includes using the continuity
checking of QSIM to check this temporal consistency.

valve.
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3 QDOCS’s Diagnostic Approach

Using the standard approach of consistency-based diagnosis, we first determine conflict sets,
which are assignments of values to mode variables that are inconsistent with the observed
behavior. These conflicts are then used to construct diagnoses.

3.1 Determining Conflict Sets

Most diagnostic systems like GDE (de Kleer and Williams, 1987) use simple constraint prop-
agation to determine conflict sets. However, QSIM requires a more complete constraint sat-
isfaction algorithm since a qualitative constraint typically does not entail a unique value for a
remaining variable when all its other variables have been assigned. An earlier attempt to use
QSIM to track dependencies for diagnosis (Ng, 1990) only used a simple propagator. Since
the propagator alone is not complete, Ng’s program, INC-DIAGNOSE is not guaranteed to
detect all inconsistencies.

QSIM takes a set of initial qualitative values for some or all of the variables of a model and
produces a representation of all the possible behaviors of the system. The inputs to QSIM are
1) a qualitative differential equation (QDE) represented as a set of variables and constraints
between them, and 2) an initial state represented by qualitative magnitudes and directions of
change for some of these variables. QSIM first completes the state by solving the constraint
satisfaction problem (CSP) defined by the initial set of values and the QDE. For each of the
completed states satisfying the constraints, QSIM finds qualitative states that are possible suc-
cessors and uses constraint satisfaction to determine which of these are consistent. The pro-
cess of finding successors to states and filtering on constraints continues as QSIM builds a tree
of states called a behavior tree.

QSIM’s approach to solving the CSP is to

1. establish node consistency by ensuring that each constraint is satisfied by the possible
values of the variables it acts upon, and

2. using Waltz filtering (Waltz, 1975) to establish arc consistency, by propagating the re-
sults of step 1 to other variables and constraints, and, finally,

3. using backtracking to assign values to variables.

The Waltz filtering step is performed incrementally and at each point selects the most restric-
tive constraint (i.e., the one most likely to fail) to process and propagates its effect on the rest
of the network. These heuristics help discover the inconsistency of states quickly and avoid
unnecessary search.

A model is inconsistent with a given sequence of sensor readings if there is no correspond-
ing behavior in the behavior tree. There are two possible ways an inconsistency can arise: 1)
a particular set of readings may be incompatible with the QDE, or 2) all the sets of readings
may be compatible with the QDE but the sequence may not correspond to any particular be-
havior in a QSIM behavior tree. QDOCS’s approach is to first test for consistency between
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individual sets of readings and the QDE and then, test to see if the model fits the sequence,
i.e., if the sequence of readings corresponds to a behavior generated by QSIM.

QDOCS modifies QSIM’s constraint satisfier to keep track of mode-variables whose val-
ues played a role in reducing the set of possible values for a variable. Each variable and con-
straint is associated with an initially empty dependency set of mode variables. Whenever a
constraint causes a variable’s set of possible values to decrease, the dependency set of the vari-
able is updated with the union of its old dependency set, the dependency set associated with
the constraint, and the mode variable, if any, that is associated with the constraint. When a
variable reduces the set of possible tuples associated with the constraint, the constraint’s de-
pendency set is similarly updated with the union. When a variable is left with no possible
values, its current dependency set is returned as a conflict set.

The heuristic of first filtering on the most restrictive constraints helps reduce the size of
conflict sets but it does not guarantee minimal conflicts. The most restrictive constraints are
those with the least number of initial possible tuples, and therefore are more likely to lead to an
inconsistency. In order to fully keep track of the necessary (as opposed to just sufficient) con-
ditions leading to the inconsistency of the state, the constraint satisfaction algorithm would
have to keep track of dependencies for each value of each variable that was eliminated. This
is clearly combinatorially explosive and therefore, the simpler algorithm is used despite the
fact that the conflict sets obtained are not guaranteed minimal. Of course, the constraint prop-
agation techniques used by most model-based diagnosis systems are also not guaranteed to
generate minimal conflicts (Forbus and de Kleer, 1993).

For the second part of the algorithm, QDOCS must track a QSIM simulation and match all
possible successors at each stage of the simulation with given sensor readings. Whenever the
states corresponding to a set of sensor readings fail to have any successors matching the next
set of sensor readings, an inconsistency is noted. Dependencies for variables are propagated
as above while completing individual successor states and also from states to successor states.
Since continuity limits the set of possible values for a variable which is a successor of another
state, each variable inherits all the dependencies of its parent.

3.2 Constructing Diagnoses

The above process is used to compute a single conflict set for the set of constraints associ-
ated with the current set of behavioral modes. The diagnostic algorithm must then query the
constraint satisfier with different sets of values for mode variables to obtain different conflict
sets. The approach adopted is similar to SHERLOCK in that candidate generation is focussed
on the most probable diagnoses.

Initially, the default candidate (all components initialized to normal) is the one used to
query the constraint satisfier. The algorithm then tries to complete states for each of the sets of
sensor readings in turn, and whenever the constraint satisfier signals a contradiction, a conflict
set is generated. The diagnostic reasoner then uses this conflict set and the current candidate
to generate new candidates by considering all the other behavioral modes of each component
in the conflict set in addition to the behavioral modes of the current candidate. An agenda is
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Figure 3: Constraint Network for the Bathtub

built using these candidates listed in order of decreasing probability. 2 The first item on this
agenda is the next candidate used to query the diagnostic reasoner. The reasoner continues
its best-first search until one or more consistent hypotheses are returned.

As an example, suppose we give the inputs (levelsensed (0 top)), (outflowsensed

0) to QDOCS with the bathtub model shown in figure 1. Figure 3 is a representation of the
constraint network for the model of the bathtub where all components are assumed to be be-
having normally. The first query to the constraint satisfier is with all the mode-variables set to
normal. The constraint satisfier returns a conflict set of ((drain normal) (level-sensor
normal) (outflow-sensor normal)). The mode of the inlet valve could have been
part of the conflict set given an exhaustive tracking of dependencies or a random order of
choosing constraints but with the heuristics from the previous section this gets pruned.

Now, QDOCS places on the agenda all the hypotheses that are derived from changing each
of the above mode variables to a different value. These are then ordered according to decreas-
ing probability. For the example, the three most likely hypotheses are 1) the outflowsensor
is stuck at high, 2) the drain-mode is blocked, and 3) the level-sensor is stuck-at-top,
since individually these faults are the most probable. If the hypothesis that theoutflowsensor
is stuck at high is chosen first, the constraint satisfier returns immediately with the conflict
set (outflow-sensor stuck-high). This is because this mode directly contradicts the
given sensor readings and is thus picked as the most restrictive constraint. The next best item
on the agenda is then checked against all conflicts to ensure that it hits all of them and is then
passed to the constraint satisfier. Suppose this hypothesis is that the drain is blocked. The
constraint satisfier then checks against the observed sensor readings and obtains valid com-
pletions of the state. If the observations are part of a sequence, the simulator must verify that

2QDOCS calculates the probability of a set of behavioral modes assuming that modes for each component
are independent.
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Figure 4: A Part of the Reaction Control System

there is a valid simulation under this hypothesis before declaring the hypothesis consistent.

4 An Experiment

We have described an implemented system that generates conflict sets and diagnoses by us-
ing constraint satisfaction and simulation on qualitative sensor values from the behavior of
a system described using QSIM. This section describes an experiment performed to test the
system on a realistic problem.

Figure 4 shows a portion of the Reaction Control System (RCS) of the Space Shuttle. The
RCS consists of sets of jets mounted at three different points (two in the rear and one near the
nose) on the space shuttle. These jets help provide control of orientation and velocity while
the shuttle is in orbit. Each jet consists of two subsystems that are almost identical – one for
the fuel and one for the oxidizer. These subsystems help deliver the fuel and oxidizer into a
reaction chamber where they ignite to provide thrust. A model of one of these subsystems has
been successfully modelled using QSIM and simulated in various fault modes (Kay, 1992).

We ran two experiments to try and evaluate the usefulness of QDOCS in this domain. In
the first experiment, a part of the pictured subsystem of the RCS was modeled. This model
was originally used to test an earlier version of QDOCS (Subramanian and Mooney, 1994).
The second experiment was on a more complete model of the subsystem modeled by Kay.
The two experiments helped to gauge the relationship between the efficiency of the QDOCS

system and model size.
The system consists of a helium tank, a pair of pressure regulators (one of which acts to

back up the other), a propellant tank containing either the fuel or oxygen, a pair of valves
leading from this tank to a manifold and then to the thruster. When this system is working
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ideally, the two pressure regulators control the pressure of the helium in the fuel tank at a
level that allows for a constant outflow rate of fuel from the tank. When the pressure in the
helium tank gets low enough that the regulators can no longer maintain the right pressure in
the fuel tank, the regulators merely act as pipes and allow the pressure in the fuel tank to drop
with the pressure of the helium tank. The fuel flowing out of the tank then goes through the
two valves to the manifold from where it passes to the thruster.

Our model of the RCS has fault modes for the two pressure regulators (stuck-open and
stuck-closed) and for the helium tank (leaking). Fault modes are also modeled for the two
valves (stuck open/closed), for leaks in the fuel line and in the manifold. The thruster is also
a component that may be stuck closed. Four sensors were assumed – pressure gauges for the
two tanks and the manifold and a fuel gauge in the fuel tank. Fault modes for these sensors
were also modeled. All of these components also have an unknown mode where the variables
acted upon are unconstrained. A reasonable probability distribution was assigned to these
faults. The complete model has 12 components and 80 constraints.

The smaller RCS model used in (Subramanian and Mooney, 1994) consisted of just the
helium tank, the pressure regulators and the fuel tank. This model has 6 components and 42
constraints.

The a priori probabilities were used to randomly generate sets of faults for this model.
After discarding the nearly 50% of cases where the random generator produced a completely
normal set of components, QSIM was used to simulate the sets of faults from a given initial
configuration. Given such an input, QSIM produces all the possible behaviors that are quali-
tatively consistent with the model and the initial configuration. A behavior was chosen (again
at random) from this behavior tree and passed to QDOCS’s diagnostic engine.

QDOCS was run for 100 iterations of the best-first search or until it generated a hypothesis
consistent with all the observations, whichever came first. In some (about a third) of the cases,
the behavior used was completely consistent with the behavior of a normal system. This was
because some faults simply do not make a difference. For instance, the duplication of pressure
regulators is purely for fault tolerance and if the secondary regulator breaks, the behavior of
the system is qualitatively no different from the behavior of a normal system. In other cases,
some faults (like leaks) may produce behaviors that are entirely qualitatively consistent with
normal behavior if the leaks do not cause a qualitative change in the quantities and flow rates
of the fluids in the system. These cases were discarded and the experiment concentrated on
the rest.

QDOCS was compared against a simple generate and test strategy that used QDOCS as a
verifier of hypotheses but otherwise simply tried all possible hypotheses in order of increasing
a priori probability. Note that because of the nature of this problem, where every variable is
potentially dependent on every component, this is the best possible approximation of a struc-
tural dependence strategy of the type used in MIMIC(Dvorak, 1992). Figure 5 gives the re-
sults of running QDOCS and a simpler generate-and-test algorithm on simulated behaviours
from each of the models. The results are averaged over 50 randomly produced faults. The
numbers in the first column show the percentage of cases where the given program produced
the hypothesis originally used to generate the given behavior. The next column shows the
percentage of cases where the diagnosed hypothesis is a subset of the faults in the original
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Correct % Subset % Hypotheses tested
Small RCS - QDOCS 56 80 10
Small RCS - generate and test 56 74 14
Large RCS - QDOCS 62 96 7
Large RCS - generate and test 56 86 18

Figure 5: RCS results

hypothesis while the final column shows the number of hypotheses tested by the algorithm in
getting a hypothesis.

The results show that overall, QDOCS performs well in producing correct hypotheses in
both models. Where it fails to produce the right hypothesis the hypothesis produced is of-
ten a smaller subset that is enough to explain the behavior. It is important to note that since
QDOCS must verify hypotheses with simulation, the hypotheses it produces are always con-
sistent with the observed behaviors. This means that the diagnoses produced by QDOCS are
always “correct” in the sense that they are able to explain the given behavior of the system.

The most significant result is in the improvement shown by QDOCS over the generate
and test method on the two models. This is measured by looking at the average number of
hypotheses tested by each of the methods.3 Notice that the improvement of QDOCS in the
smaller model is significant but not very large. The improvement in the larger model is much
larger as QDOCS tests only 7 hypotheses for 18 tested by the generate and test method. This
confirms our belief that QDOCS will show significant improvements over simpler methods
on diagnosing larger systems. The average run times for QDOCS on a Sparc 5 workstation
for the larger RCS model was 20.2 seconds.

5 Discussion and Future Work

The experiment described in the previous section shows that our diagnostic reasoner does
fairly well in this domain with random sets of faults. The combination of using the constraint
satisfaction algorithm to generate hypotheses and the QSIM simulator to verify and generate
further hypotheses is able to produce consistent diagnoses every time and significantly im-
proves on the generate-and-test strategy.

Since the problems tested contain only a few highly interconnected components, conflict
sets frequently contain all of these components. This limits the advantage of consistency-
based diagnosis compared to the simpler generate and test strategy. However, as we have
shown, as we scale up to larger problems with more components and sensors, the ability of
QDOCS to use constraint satisfaction techniques to zero in on inconsistencies will produce
significant speedup over other techniques. We plan to look at some other large domains to
test our hypothesis.

3Since QDOCS was used to verify hypotheses in the generate and test method, a time comparison would not
be meaningful.
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On the computational side, another area we propose to investigate is that of efficient caching
of possible values of different variables during the constraint satisfaction phase of the algo-
rithm. Traditional truth maintenance systems like the ATMS(de Kleer, 1986) are not useful
for this purpose since the range of possible values for a variable is rarely narrowed to a sin-
gle one. Instead, the reasoner must cache sets of possible values derived under different sets
of assumptions. We intend to explore ways in which to cache this information and test their
utility in improving the efficiency of QDOCS.

6 Related Work

Compared to QDOCS, the previous diagnosis systems for QSIM models all have important
limitations. INC-DIAGNOSE (Ng, 1990) was an application of Reiter’s theory of diagnosis
(Reiter, 1987) to QSIM models. Its main limitations were that first, like Reiter’s theory, it
was restricted to models where no fault mode information was known, and second, it used a
constraint propagator that was not guaranteed to detect all inconsistencies. The propagator
only worked in cases where all the variables that a constraint acted upon were restricted to
just one (or zero) possible values. If this was not the case, the propagator would not detect
some conflicts. QDOCS, on the other hand, uses behavioral-mode information and a complete
constraint-satisfaction algorithm. Another system that used the INC-DIAGNOSE approach in
the context of a monitoring system is DIAMON(Lackinger and Nejdl, 1991). Again, due to its
dependence on the simple constraint propagation in INC-DIAGNOSE, it is only able to detect
a small subset of possible faults which QDOCS can diagnose.

The other previous diagnosis work on QSIM models, MIMIC (Dvorak, 1992), has sev-
eral limitations. First, MIMIC requires the model builder to provide a structural model of
the system in addition to the QSIM constraint model. This structural model was fixed and
could not change under different fault models. QDOCS does not require this since it uses a
constraint-satisfaction algorithm to determine the causes for inconsistencies. Second, MIMIC

uses a very simple dependency tracing algorithm to generate potential single-fault diagnoses.
This algorithm looks at the structural graph from the point at which the fault is detected and
considers all components it finds upstream as possible candidates for failure. QDOCS, on the
other hand, uses actual dependencies of the values assigned to variables to identify multiple
possibly failing components. It thus restricts itself to a smaller set of possible component
failures.

A number of other researchers have looked at diagnosis in the context of monitoring con-
tinuous systems (Oyeleye et al., 1990; Doyle and Fayyad, 1991; Abbott, 1988). Each of
these systems concentrates on different aspects of the monitoring process, but none performs
multiple-fault diagnosis using behavioral modes.

Some recent work by Dressler (Dressler, 1994) performs model-based diagnosis on a dy-
namical system (a ballast tank system) using a variant of GDE. It first reduces the model
to a version suitable for constraint propagation, and then considers only conflicts generated
by constraints acting at a particular time. While this is an efficient technique that apparently
works well for their application, it is not a general method since some systems may have faults

10



which can only be detected using information gathered across time.

7 Conclusion

We have described an architecture for diagnosing systems described by qualitative differen-
tial equations. It performs multiple-fault diagnosis using behavioral modes. An implemented
system, QDOCS, has been shown to be powerful enough to accurately generate diagnoses
from qualitative behaviors of a fairly complex system – the Reaction Control System of the
Space Shuttle. The approach is more powerful than previous methods in that it uses 1) a gen-
eral modelling framework (QSIM), 2) a more complete diagnostic architecture and 3) a pow-
erful constraint-satisfaction algorithm as opposed to simple propagation.
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