
Plan Recognition using Statistical Relational Models

Sindhu Raghavana, Parag Singlab, Raymond J. Mooneya

aDepartment of Computer Science
The University of Texas at Austin

2317 Speedway, Stop D9500
Austin, TX 78712, USA

bDepartment of Computer Science and Engineering
Indian Institute of Technology Delhi

Hauz Khas, New Delhi 110016, INDIA

Abstract

Plan recognition is the task of predicting an agent’s top-level plans based on its
observed actions. It is an abductive reasoning task that involves inferring plans
that bestexplain observed actions. Most existing approaches to plan recognition
and other abductive reasoning tasks either use first-order logic (or subsets of it)
or probabilistic graphical models. While the former cannot handle uncertainty in
the data, the latter cannot handle structured representations. To overcome these
limitations, we explore the application of statistical relational models that combine
the strengths of both first-order logic and probabilistic graphical models to plan
recognition. Specifically, we introduce two new approachesto abductive plan
recognition using Bayesian Logic Programs (BLPs) and Markov Logic Networks
(MLNs). Neither of these formalisms is suited for abductivereasoning because of
the deductive nature of the underlying logical inference. In this work, we propose
approaches to adapt both these formalisms for abductive plan recognition. We
present an extensive evaluation of our approaches on three benchmark datasets on
plan recognition, comparing them with existing state-of-the-art methods.

Email addresses: sindhu.vijayaraghavan@gmail.com (Sindhu Raghavan),
parags@cse.iitd.ac.in (Parag Singla),mooney@cs.utexas.edu (Raymond J.
Mooney)

Preprint submitted to Elsevier September 20, 2013

Keywords: Plan Recognition, Abduction, Reasoning about Actions,
Probabilistic Reasoning, Statistical Relational Learning,Bayesian Logic
Programs, Markov Logic Networks, Machine Learning

1. Introduction

Plan recognition is the task of predicting an agent’s top-level plans based on its ob-
served actions. It is an abductive reasoning task that involves inferring cause from
effect (Charniak and McDermott, 1985). Early approaches to plan recognition
were based on first-order logic in which a knowledge-base of plans and actions
is developed for the domain and then default reasoning (Kautz and Allen, 1986;
Kautz, 1987) or logical abduction (Ng and Mooney, 1992) is used to predict the
best plan based on the observed actions. Kautz and Allen (1986); Kautz (1987)
developed one of the first logical formalizations of plan recognition. They used
non-monotonic deductive inference to predict plans using observed actions, an ac-
tion taxonomy, and a set of commonsense rules or constraints. Lesh and Etzioni
(1995)’s approach to goal recognition constructs a graph ofgoals, actions, and
their schemas and prunes the network until the plans presentin the network are
consistent with the observed goals. The approach by Hong (2001) also constructs
a “goal graph” and analyses the graph to identify goals consistent with observed
actions. However, these approaches are unable to handle uncertainty in the obser-
vations or background knowledge and are incapable of estimating the likelihood
of different plans.

Another approach to plan recognition is to directly use probabilistic methods. Al-
brecht et al. (1998) developed an approach based on dynamic Bayesian networks
to predict plans in an adventure game. Horvitz and Paek (1999) developed an
approach that uses Bayesian networks to recognize goals in anautomated conver-
sation system. Pynadath and Wellman (2000) extended probabilistic context-free
grammars to plan recognition. Kaminka et al. (2002) developed an approach to
multiagent plan recognition using dynamic Bayesian networks to perform moni-
toring in distributed systems. Bui et al. (2002); Bui (2003) used Abstract Hidden
Markov Models for hierarchical goal recognition. Saria andMahadevan (2004)
extended the work by Bui (2003) to multiagent plan recognition. Blaylock and
Allen (2005) used statisticaln-gram models for the task of instantiated goal recog-
nition. While these approaches can handle uncertainty and can be trained effec-

2

tively, they can not handle the kind of structured relational data that can be rep-
resented in first-order predicate logic. Furthermore, it isdifficult to incorporate
planning domain knowledge in these approaches.

The third category of approaches use aspects of both logicalas well as proba-
bilistic reasoning. Hobbs et al. (1988) attach weights or costs to predicates in the
knowledge base and use these weights to guide the search for the best explana-
tion. Goldman et al. (1999) use the probabilistic Horn abduction (Poole, 1993)
framework to find the best set of plans that explain the observed actions. Several
other approaches use Bayesian networks (Charniak and Goldman, 1989, 1991;
Huber et al., 1994) to perform abductive inference. Based on the observed actions
and a knowledge base constructed for planning, Bayesian networks are automati-
cally constructed using knowledge base model construction(KBMC) procedures.
However, most of these approaches do not have the capabilities for learning the
structure or the parameters. Another chapter by Inoue et al.(2013) appearing in
the current volume explores the use of weighted abduction for large scale dis-
course processing.

The last decade has seen a rapid growth in the area ofStatistical Relational
Learning (SRL) (Getoor and Taskar, 2007), which uses well-founded probabilistic
methods while maintaining the representational power of first-order logic. Since
these models combine the strengths of both first-order logicand probabilistic
graphical models, we believe that they are well suited for solving problems like
plan recognition. In this paper, we explore the efficacy of different SRL mod-
els for the task of plan recognition. We focus on extending two specific SRL
models, Markov Logic Networks (MLNs) (Domingos and Lowd, 2009) (based on
undirected probabilistic graphical models) and Bayesian Logic Programs (BLPs)
(Kersting and De Raedt, 2001) (based on directed probabilistic graphical models)
to the task of plan recognition.

MLNs attach real-valued weights to formulas in first-order logic in order to rep-
resent their certainty. They effectively use logic as a compact template for repre-
senting large, complex ground Markov networks. Since MLNs have been shown
to formally subsume many other SRL models and have been successfully applied
to many problems (Domingos and Lowd, 2009), we chose to explore their appli-
cation to plan recognition. However, the representationalpower and flexibility
offered by MLNs come at a cost in computational complexity. In particular, many
problems result in exponentially large ground Markov networks, making learning

3

and inference intractable in the general case.

Pearl (1988) argued that causal relationships and abductive reasoning from ef-
fect to cause are best captured using directed graphical models (Bayesian net-
works). Since plan recognition is abductive in nature, thissuggested that we also
explore a formalism based on directed models. Therefore, wealso explored the
application of BLPs, which combine first-order Horn logic anddirected graphical
models, to plan recognition. BLPs use SLD resolution to generate proof trees,
which are then used to construct a ground Bayesian network fora given query.
This approach to network construction is called knowledge base model construc-
tion (KBMC). Similar to BLPs, prior approaches (Wellman et al.,1992; Ngo and
Haddawy, 1997) also employ the KBMC technique to construct ground Bayesian
networks for inference. Another approach called probabilistic Horn abduction
(PHA) (Poole, 1993) performs adductive reasoning using first-order knowledge
bases and Bayesian networks. However, since the BLP frameworkimposes fewer
constraints on representation, both with respect to structure as well as the parame-
ters (Kersting and De Raedt, 2007) and since it provides an integrated framework
for both learning and inference, we decided to use BLPs as opposed to PHA or
other similar formalisms.

Logical approaches to plan recognition, e.g. (Kautz and Allen, 1986; Ng and
Mooney, 1992), typically assume a knowledge base of plans and/or actions ap-
propriate for planning, but not specifically designed for plan recognition. The
advantage of this approach is that a single knowledge base issufficient for both
automated planning and plan recognition. Also, knowledge of plans and actions
sufficient for planning is usually easier to develop than a knowledge base espe-
cially designed for plan recognition, which requires specific rules of the form “If
an agent performs action A, they may be executing plan P.” A recent MLN-based
approach to plan/activity recognition (Sadilek and Kautz,2010b,a), requires such
manually-provided plan-recognition rules.

Our goal is to develop general-purpose SRL-based plan-recognition systems that
only require the developer to provide a knowledge-base of actions and plans suf-
ficient for planning, without the need to engineer a knowledge-base specifically
designed for plan recognition. Plan recognition using onlyplanning knowledge
generally requiresabductive logical inference. BLPs use purely deductive logical
inference as a pre-processing step to the full blow-blown probabilistic inference.
Encoding the planning knowledge directly in MLNs does not support abductive

4

reasoning either. Further, using the standard semantics ofMLNs of grounding the
whole theory leads to a blow-up for plan recognition problems. Consequently, nei-
ther BLPs or MLNs can be directly used in their current form forabductive plan
recognition. Therefore, this paper describes re-encodingstrategies (for MLNs) as
well as enhancements to both models that allow them to utilize logical abduction.
Our other goal involves developing systems that are capableof learning the nec-
essary parameters automatically from data. Since both BLPs and MLNs provide
algorithms for learning both the structure and the parameters, we adapt them in
our work to develop trainable systems for plan recognition.

The main contributions of the paper are as follows:

• Adapt SRL models like BLPs and MLNs to plan recognition

• Introduce Bayesian Abductive Logic Programs (BALPs), an adaptation of
BLPs that utilizes logical abduction

• Propose re-encoding strategies for facilitating abductive reasoning in MLNs

• Introduce abductive Markov logic, an adaptation of MLNs which com-
bines re-encoding strategies with logical abduction to construct the ground
Markov network

• Experimentally evaluate the relative performance of BALPs, abductive MLNs
(i.e. using re-encoding strategies and abductive model construction), tradi-
tional MLNs, and existing plan-recognition methods on three plan-recognition
benchmarks.

The rest of the paper is organized as follows. First, we provide some background
on logical abduction, BLPs, and MLNs. Next, we present our extensions to both
BLPs and MLNs to include logical abduction. Finally, we present an extensive
evaluation of our approaches on three benchmark datasets for plan recognition,
comparing them with the existing state-of-the-art for planrecognition.

5

2. Background

2.1. Logical Abduction

In a logical framework, abduction is usually defined as follows (Pople, 1973;
Levesque, 1989; Kakas et al., 1993):

• Given: Background knowledgeB and observationsO, both represented as
sets of formulae in first-order logic, whereB is typically restricted to Horn
clauses andO to ground literals.

• Find: A hypothesisH, also a set of logical formulae (typically ground
literals), such thatB ∪H 6|= ⊥ andB ∪H |= O.

Here, |= represents logical entailment and⊥ represents false, i.e. find a set of
assumptions that is consistent with the background theory and explains the ob-
servations. There are generally many hypothesesH that explain a given set of
observationsO. Following Occam’s Razor, the best hypothesis is typically de-
fined as the one that minimizes the number of assumptions,|H|. Given a set of
observationsO1, O2,,On, the set of abductive proof trees is computed by re-
cursively backchaining on eachOi until every literal in the proof is either proven
or assumed. Logical abduction has been applied to tasks suchas plan recognition
and diagnosis (Ng and Mooney, 1992; Peng and Reggia, 1990).

2.2. Bayesian Logic Programs

Bayesian logic programs (BLPs) (Kersting and De Raedt, 2001) can be viewed
as templates for constructingdirected graphical models (Bayes nets). Given a
knowledge base as a special kind of logic program, standard backward-chaining
logical deduction (SLD resolution) is used to automatically construct a Bayes net
on the same lines as knowledge based model construction (KBMC)(Wellman
et al., 1992; Breese et al., 1994). More specifically, given a set of facts and a query,
all possible Horn-clause proofs of the query are constructed and used to build a
Bayes net for answering the query. Standard probabilistic inference techniques
are then used to compute the most probable answer.

6

More formally, a BLP consists of a set ofBayesian clauses, definite clauses of the
form A|A1, A2, A3,An, wheren ≥ 0 andA, A1, A2, A3,......,An areBayesian
predicates (defined below). A is called the head of the clause (head(c)) and
(A1, A2, A3,....,An) is the body (body(c)). Whenn = 0, a Bayesian clause is
a fact. Each Bayesian clausec is assumed to be universally quantified and range
restricted, i.evariables{head} ⊆ variables{body}, and has an associatedcondi-
tional probability distribution: cpd(c) = P (head(c)|body(c)).

A Bayesian predicate is a predicate with a finite domain, and each ground atom for
a Bayesian predicate represents a random variable. Associated with each Bayesian
predicate is a combining rule such asnoisy-or or noisy-and that maps a finite set
of cpds into a singlecpd (Pearl, 1988). LetA be a Bayesian predicate defined by
two Bayesian clauses,A|A1, A2, A3,An andA|B1, B2, B3,Bn, wherecpd1
andcpd2 are their cpd’s. Letθ be a substitution that satisfies both clauses. Then, in
the constructed Bayes net, directed edges are added from the nodes for eachAiθ
andBiθ to the node forAθ. The combining rule forA is used to construct a single
cpd forAθ from cpd1 andcpd2. The probability of a joint assignment of truth
values to the final set of ground propositions is then defined in the standard way
for a Bayes net: P(X) =

∏
i P (Xi|Pa(Xi)), whereX = X1, X2, ..., Xn represents

the set of random variables in the network andPa(Xi) represents the parents of
Xi.

Once a ground network is constructed, standard probabilistic inference methods
can be used to answer various types of queries (Koller and Friedman, 2009). Typ-
ically, we would like to compute the most probable explanation (MPE), which
finds the joint assignment of values to unobserved nodes in the network that max-
imizes the posterior probability given the values of a set ofobserved nodes. This
type of inference is also called also known as the maximum a posteriori (MAP)
assignment and might be used interchangeably in this book. We would also like
to compute the marginal probabilities for the unobserved nodes given the values
of observed nodes. The combining-rule parameters and cpd entries for a BLP can
be learned automatically from data using techniques proposed by Kersting and De
Raedt (2008).

7

2.3. Markov Logic Networks

Markov logic (Richardson and Domingos, 2006; Domingos and Lowd, 2009) is a
framework for combining first-order logic and undirected probabilistic graphical
models (Markov networks). A traditional first-order knowledge base can be seen
as a set of hard constraints on the set of possible worlds: if aworld violates even
one formula, its probability is zero. In order to soften these constraints, Markov
logic attaches a weight to each formula in the knowledge base. A formula’s weight
reflects how strong a constraint it imposes on the set of possible worlds. Formally,
an MLN is a set of pairs(Fi, wi), whereFi is a first-order formula andwi is a
real number. Ahard clause has an infinite weight and acts as a logical constraint;
otherwise, it is asoft clause. Given a set of constants, an MLN defines a ground
Markov network with a node in the network for each ground atomand a feature for
each ground clause. The joint probability distribution over a set of boolean vari-
ablesX = (X1, X2...) corresponding to the nodes in the ground Markov network
(i.e. ground atoms) is defined as:

P (X = x) =
1

Z
exp(

∑

i

wini(x)) (1)

whereni(x) is the number of true groundings ofFi in x andZ is a normalization
term obtained by summingP (X = x) over all values ofX. Therefore, a possible
world becomes exponentially less likely as the total weightof the ground clauses
it violates increases.

An MLN can be viewed as a set of templates for constructing ground Markov
networks. Different sets of constants produce different Markov networks; how-
ever, there are certain regularities in their structure andparameters determined by
the underlying first-order theory. Like in BLPs, once the ground network is con-
structed, standard probabilistic inference methods (MPE or marginal inference)
can be used to answer queries. MLN weights can be learned by maximizing the
conditional log-likelihood of training data supplied in the form of a database of
true ground literals. A number of efficient inference and learning algorithms that
exploit the structure of the network have also been proposed. Domingos and Lowd
(2009) provide details on these and many other aspects of MLNs.

8

3. Adapting Bayesian Logic Programs

Bayesian Abductive Logic Programs (BALPs) are an adaptationof BLPs. In plan
recognition, the known facts are insufficient to support thederivation of deductive
proof trees for the requisite queries. By usingabduction, missing literals can be
assumed in order to complete the proof trees needed to determine the structure
of the ground network. We first describe the abductive inference procedure used
in BALPs. Next we describe how probabilistic parameters arespecified and how
probabilistic inference is performed. Finally, we discusshow parameters can be
automatically learned from data.

3.1. Logical Abduction

Let O1, O2,,On be the set of observations. We derive a set of most-specific
abductive proof trees for these observations using the method originally proposed
by Stickel (1988). The abductive proofs for each observation literal are computed
by backchaining on eachOi until every literal in the proof is proven or assumed.
A literal is said to be proven if it unifies with some fact or thehead of some
rule in the knowledge base, otherwise it is said to be assumed. Since multiple
plans/actions could generate the same observation, an observation literal could
unify with the head of multiple rules in the knowledge base. For such a literal, we
compute alternative abductive proofs for each such rule. The resulting abductive
proof trees are then used to build the structure of the Bayes net using the standard
approach for BLPs.

The basic algorithm to construct abductive proofs is given in Algorithm 1. The
algorithm takes as input a knowledge base (KB) in the form of Horn clauses and
a set of observations as ground facts. It outputs a set of abductive proof trees
by performing logical abduction on the observations. Theseproof trees are then
used to construct the Bayesian network. For each observationOi, Abduction-
BALP searches for rules whose consequents unify withOi. For each such rule, it
computes the substitution from the unification process and substitutes variables in
the body of the rule with bindings from the substitution. Theliterals in the body
now become new subgoals in the inference process. If these new subgoals can-
not be proved, i.e. if they cannot unify with existing facts or with the consequent
of any rule in the KB, then they are assumed. In order to minimize the number

9

Algorithm 1 AbductionBALP
Inputs: Background knowledgeKB and observationsO1, O2, O3,,On both

represented as sets of formulae in first-order logic, whereKB is typically
restricted to a set of Horn clauses and eachOi is a ground literal.

Output: Abductive proofs for allOi.
1: LetQ be a queue of unproven atoms, initialized withOi

2: while Q not emptydo
3: Ai← Remove atom fromQ
4: for each ruleRi in KB do
5: consequent← Head literal ofRi

6: if Ai unifies withconsequent then
7: Si← unify Ai andconsequent and return substitution
8: Replace variables in the body ofRi with bindings inSi. Each literal

in the body ofRi is a new subgoal.
9: for eachliterali in body ofRi do

10: if literali unifies with head of some ruleRj in KB then
11: addliterali to Q
12: else if literali unifies with an existing factthen
13: Unify and consider the literal to be proved
14: else
15: if literali unifies with an existing assumptionthen
16: Unify and use the assumption
17: else
18: Assumeliterali by replacing any unbound variables that are

existentially quantified inliterali with new Skolem constants.
19: end if
20: end if
21: end for
22: end if
23: end for
24: end while

10

(a) Partial knowledge base with two rules for road block:

1. blk rd(Loc)|hvy snow(Loc), drive hzrd(Loc).
2. blk rd(Loc)|acdnt(Loc), clr wrck(Crew, Loc).

(b) Observations:

blk rd(plaza)

(c) Ground Abductive Clauses:

blk rd(plaza)|hvy snow(plaza), drive hzrd(plaza).
blk rd(plaza)|acdnt(plaza), clr wrck(a1, plaza).

Figure 1: (a) A partial knowledge base from the emergency response domain in the Monroe data
set. All variables start with uppercase and constants with lowercase. (b) The logical representation
of the observations. (c) The set of ground rules obtained from logical abduction.

of assumptions, the assumed literals are first matched with existing assumptions.
If no such assumption exists, then any unbound variables in the literal that are
existentially quantified are replaced by Skolem constants.

In SLD resolution, which is used in BLPs, if any subgoal literal cannot be proven,
the proof fails. However, in BALPs, we assume such literals and allow proofs to
proceed till completion. Note that there could be multiple existing assumptions
that could unify with subgoals in Step 15. However, if we usedall ground assump-
tions that could unify with a literal, then the size of the ground network would
grow exponentially, making probabilistic inference intractable. In order to limit
the size of the ground network, we unify subgoals with assumptions in a greedy
manner, i.e. when multiple assumptions match with a subgoal, we randomly pick
one of them and do not pursue the others. We found that this approach worked well
for our plan-recognition benchmarks. For other tasks, domain-specific heuristics
could potentially be used to reduce the size of the network.

We now illustrate the abductive inference process with a simple example mo-
tivated by one of our evaluation benchmarks, the emergency response domain
introduced by Blaylock and Allen (2005) in the Monroe data setdescribed in Sec-
tion 5.1. Consider the partial knowledge base and set of observations given in Fig-

11

Figure 2: Bayesian network constructed for example in Figure 1. The nodes with thick borders
represent observed actions, the nodes with dotted borders represent intermediate nodes used to
combine the conjuncts in the body of a clause, and the nodes with thin borders represent plan
literals.

ure 1a and Figure 1b respectively. The knowledge base consists of rules that give
two explanations for a road being blocked at a location: 1) there has been heavy
snow resulting in hazardous driving conditions, and 2) there has been an accident
and the crew is clearing the wreck. Given the observation that a road is blocked,
the plan recognition task involves abductively inferring one of these causes as the
explanation. For each observation literal in Figure 1b, we recursively backchain to
generate abductive proof trees. In the given example, we observe that the road is
blocked at the locationplaza. When we backchain on the literalblk rd(plaza)
using Rule 1, we obtain the subgoalshvy snow(plaza) anddrive hzrd(plaza).
These subgoals become assumptions since no observations orheads of clauses
unify with them. We then backchain on the literalblk rd(plaza) using Rule 2 to

12

obtain subgoalsacdnt(plaza) andclr wrk(Crew, plaza). Here again, we find
that these subgoals have to be assumed since there are no facts or heads of clauses
that unify with them. We further notice thatclr wrk(Crew, plaza) is not a fully
ground instance. SinceCrew is an existentially quantified variable, we replace it
with a Skolem constanta1 to get the ground assumptionclr wrk(a1, plaza).

Figure 1c gives the final set of ground rules generated by abductive inference.
After generating all abductive proofs for all observation literals, we construct
a Bayesian network. Figure 2 shows the Bayesian network constructed for the
example in Figure 1. Note that since there are no observations/facts that unify
with the subgoals (hvy snow(plaza), drive hzrd(plaza), acdnt(plaza), and
clr wrk(Crew, plaza)) generated during backchaining on observations, SLD res-
olution will fail to generate proofs. This is typical in planrecognition, and as a
result, we cannot use BLPs for such tasks.

3.2. Probabilistic Modeling, Inference, and Learning

The only difference between BALPs and BLPs lies in the logicalinference pro-
cedure used to construct proofs. Once the abductive proofs are generated, BALPs
use the same procedure as BLPs to construct the Bayesian network. Further, tech-
niques developed for BLPs for learning parameters can also beused for BALPs.

We now discuss how parameters are specified in BALPs. We use noisy/logical-
and and noisy-or models to specify thecpds in the ground Bayesian network as
these models compactly encode thecpd with fewer parameters, i.e. just one pa-
rameter for each parent node. Depending on the domain, we useeither a strict
logical-and or a softernoisy-and model to specify thecpd for combining evidence
from the conjuncts in the body of a clause. We use a noisy-or model to specify
thecpd for combining the disjunctive contributions from different ground clauses
with the same head. Figure 2 shows the logical-and and noisy-or nodes in the
Bayesian network constructed for the example in Figure 1. Given the constructed
Bayesian network and a set of observations, we determine the best explanation
using the most probable explanation (MPE) inference (Pearl, 1988). We compute
multiple alternative explanations using the k-MPE algorithm (Nilsson, 1998) as
implemented in the ELVIRA Elvira-Consortium (2002) package.

Learning can be used to automatically set the noisy-or and noisy-and parameters

13

in the model. In supervised training data for plan recognition, one typically has
evidence for the observed actions and the top-level plans. However, we usually
do not have evidence for network nodes corresponding to subgoals, noisy-ors,
and noisy/logical-ands. As a result, there are a number of variables in the ground
networks which are always hidden, and hence EM is appropriate for learning the
requisite parameters from the partially observed trainingdata. We use the EM
algorithm adapted for BLPs by Kersting and De Raedt (2008). We simplify the
problem by learning only noisy-or parameters and using a deterministic logical-
and model to combine evidence from the conjuncts in the body of a clause.

4. Adapting Markov Logic

As previously mentioned, encoding the planning knowledge directly in MLNs
does not support abductive reasoning. This is because of thedeductive nature
of the rules encoding the planning knowledge. In MLNs, the probability of a
possible world increases with the total weight of the satisfied formulae. Since
an implication is satisfied whenever its consequent is true,an MLN is unable to
abductively infer the antecedent of a rule from its consequent. Given the rule
P ⇒ Q and the observation thatQ is true, we would like to abduceP as a
possible cause forQ. Since the consequent (Q) is true, the clause is trivially
satisfied, independent of the value of the antecedent (P), and hence does not give
any information about the truth value of the antecedent (P).

In this section, we describe three key ideas for adapting MLNs with logical abduc-
tive reasoning, each one building on the previous. First, wedescribe the Pairwise
Constraint (PC) model proposed by Kate and Mooney (2009). Next, we introduce
the Hidden Cause (HC) model, which alleviates some of the inefficiencies of the
PC model. These two models offer strategies for the re-encoding MLN rules but
do not change the semantics of the traditional MLNs (Richardson and Domingos,
2006). Next, we introduce an abductive model construction procedure on top of
the HC model that results in even simpler Markov networks. This gives us the
formulation for abductive Markov logic. Our ground Markov network construc-
tion strategy is different from the one used in traditional MLNs, and hence, our
formulation results in a different semantics.

We also describe an alternate approach to plan recognition in which the structure

14

of the MLN is manually encoded to enable deductive inferenceof the top-level
plans from observed actions. This allows us to compare abductive Markov logic
to a manually encoded MLN for plan recognition.

4.1. Pairwise Constraint Model

Kate and Mooney (2009) were the first to develop an approach tore-encode
MLNs with logical abductive reasoning, which we call the Pairwise Constraint
(PC) model. We describe this approach here since it provides the context for
understanding the more sophisticated models introduced insubsequent sections.
The key idea is to introduce explicit reversals of the implications appearing in
the original knowledge base. Multiple possible explanations for the same ob-
servation are supported by having a disjunction of the potential explanations in
the reverse implication. “Explaining away” (Pearl, 1988) (inferring one cause
eliminates the need for others) is achieved by introducing amutual-exclusivity
constraint between every pair of possible causes for an observation. Given the
set of Horn clauses:P1 ⇒ Q,P2 ⇒ Q, · · ·Pn ⇒ Q, a reverse implication:
Q ⇒ P1 ∨ P2 · · · ∨ Pn, and a set of mutual-exclusivity constraints:Q ⇒ ¬P1 ∨
¬P2, · · ·Q ⇒ ¬Pn−1 ∨ ¬Pn for all pairs of explanations are introduced. The
weights on these clauses control the strength of the abductive inference and the
typical number of alternate explanations, respectively. We do not need to ex-
plicitly model these constraints in BLPs, since the underlying model is Bayesian
networks which capture the full conditional probability distribution (CPD) of each
node given its parents and the mutual exclusivity constraints are implicitly mod-
eled in the conditional distribution. For first-order Horn clauses, all variables not
appearing in the head of the clause become existentially quantified in the reverse
implication. We refer the reader to Kate and Mooney (2009) for the details of the
conversion process.

We now illustrate the PC model with the same example described in Section 3. It
is an example from one of our evaluation benchmarks, the emergency response do-
main introduced by Blaylock and Allen (2005) (all variables start with uppercase
and constants with lowercase, and by default variables are universally quantified):

hvy snow(Loc) ∧ drive hzrd(Loc)⇒ blk rd(Loc)
acdnt(Loc) ∧ clr wrk(Crew, Loc)⇒ blk rd(Loc)

15

These rules give two explanations for a road being blocked ata location: 1) there
has been heavy snow resulting in hazardous driving conditions, and 2) there has
been an accident and the crew is clearing the wreck. Given theobservation that
a road is blocked, the plan recognition task involves abductively inferring one of
these causes as the explanation. Using the PC model, we get the final combined
reverse implication and pairwise constraint clauses as below:

blk rd(Loc)⇒ (hvy snow(Loc) ∧ drive hzrd(Loc))∨
(∃Crew acdnt(Loc) ∧ clr wrk(Crew, Loc))

blk rd(Loc)⇒ ¬(hvy snow(Loc) ∧ drive hzrd(Loc))∨
¬(∃Crew acdnt(Loc) ∧ clr wrk(Crew, Loc))

The first rule introduces the two possible explanations and the second rule con-
strains them to be mutually exclusive.

The PC model can construct very complex networks since it includes multiple
clause bodies in the reverse implication, making it very long. If there aren pos-
sible causes for an observation and each of the corresponding Horn clause hask
literals in its body, then the reverse implication hasO(nk) literals. This in turn re-
sults in cliques of sizeO(nk) in the ground network. This significantly increases
the computational complexity since probabilistic inference isexponential in the
treewidth of the graph, which in turn is at least the size of the maximum clique
(Koller and Friedman, 2009). The PC model also introducesO(n2) pairwise con-
straints, which can result in a large number of ground clauses. As a result, the PC
model does not generally scale well to large domains.

4.2. Hidden Cause Model

The Hidden Cause (HC) model alleviates some of the inefficiencies of the PC
model by introducing a hidden cause node for each possible explanation. The
joint constraints can then be expressed in terms of these hidden causes, thereby
reducing the size of the reverse implication (and hence, thecorresponding clique
size) toO(n). The need for the pairwise constraints is eliminated by specifying
a low prior on all hidden causes. A low prior on the hidden causes indicates that
the hidden causes are most likely to be false, unless there isexplicit evidence
indicating the their presence. Hence, given an observation, inferring one cause
obviates the need for the others. We now describe the HC modelmore formally.
We first consider the propositional case for the ease of explanation. It is extended

16

to first-order Horn clauses in a straightforward manner. Consider the following
set of rules describing the possible explanations for a predicateQ:

Pi1 ∧ Pi2 ∧ · · · ∧ Piki ⇒ Q, ∀i, (1 ≤ i ≤ n)

For each rule we introduce a hidden causeCi and add the following rules to the
MLN:

1. Pi1 ∧ Pi2 ∧ · · · ∧ Piki ⇔ Ci, ∀i, (1 ≤ i ≤ n) (soft)
2. Ci ⇒ Q, ∀i, (1 ≤ i ≤ n) (hard)
3. Q⇒ C1 ∨ C2 · · ·Cn (reverse implication) (hard)
4. true⇒ Ci, ∀i, (1 ≤ i ≤ n) (negatively weighted) (soft)

The first set of rules are soft clauses with high positive weights. This allows
the antecedents to sometimes fail to cause the consequent (and vice-versa). The
next two sets of rules are hard clauses, they implement a deterministic-or function
between the consequent and the hidden causes. The last one isa soft rule and
implements a low prior (by having a negative MLN weight) on the hidden causes.
These low priors discourage inferring multiple hidden causes for the same conse-
quent (“explaining way”), and the strength of the prior determines the degree to
which multiple explanations are allowed.

Different sets of weights on the biconditional in the first set of rules implement dif-
ferent ways of combining multiple explanations. For example, a noisy-or model
(Pearl, 1988) can be implemented by modeling the implication from antecedents
to the hidden cause as a soft constraint and the reverse direction as a hard con-
straint. The weightwi for the soft-constraint is set tolog[(1− pfi)/pfi], wherepfi
is the failure probability for causei. This formulation is related to previous work
on combining functions in Markov logic (Natarajan et al., 2010); however, we
focus on the use of such combining functions in the context ofabductive reason-
ing. There has also been prior work on discovering hidden structure in a domain
(e.g. (Davis et al., 2007; Kok and Domingos, 2007)). However, in our case, since
we know the structure of the hidden predicates in advance, there is no need to
discover them using the methods referenced above.

We now describe how to extend this approach to first-order Horn clauses. For first-
order Horn clauses, variables present in the antecedents but not in the consequent
become existentially quantified in the reverse implication, as in the PC model. But

17

 hvy_snow
 (plaza)

clr_wrk

 (plaza)
acdntdrive_hzrd

 (plaza)

blk_rd
 (plaza)

(tcrew,plaza)

Figure 3: Ground network constructed by the PC model for the road blocked example

unlike the PC model, the reverse implication expression is much simpler as it only
involves one predicate (the hidden cause) for each rule implying the consequent.
Let us revisit the example from the emergency response domain. Based on the
HC approach, we introduce two hidden causes (rbC1(Loc) and rbC2(Loc)) cor-
responding to the two (hard) rules:

hvy snow(Loc) ∧ drive hzrd(Loc)⇔ rb C1(Loc)
acdnt(Loc) ∧ clr wrk(Crew, Loc)⇔ rb C2(Crew, Loc)

Note that each hidden cause contains all variables present in the antecedent of
the rule. These hidden causes are combined with the originalconsequent using
the following (soft) rules:

rb C1(Loc)⇒ blk rd(Loc)
rb C2(Crew, Loc)⇒ blk rd(Loc)
blk rd(Loc)⇒ rb C1(Loc) ∨ ∃Crew(rb C2(Crew, Loc))

In addition, there are (soft) unit clauses specifying low priors on the hidden causes.

Figures 3 and 4 show the ground networks constructed by the PCand HC models
respectively, whenloc is bound toPlaza andcrew to Tcrew. The PC model
results in a fully connected graph (maximum clique size is 5), whereas the HC
model is much sparser (maximum clique size is 3). Consequently, inference in the
HC model is significantly more efficient.

18

(tcrew,plaza)
blk_rd

 (plaza)

 rb_C1
(plaza)

 (plaza)
hvy_snow drive_hzrd

(plaza)

 rb_C2

 (plaza)
 clr_wrk

(tcrew,plaza)
acdnt

Figure 4: Ground network constructed by the HC model for the road blocked example

Algorithm 2 presents the pseudocode for constructing the re-encoded MLN using
the HC approach for a given Horn-clause knowledge base. In lines 2 to 8, hid-
den causes are created for each possible explanation for each consequent (line 5).
A biconditional is introduced between the hidden causes andthe corresponding
antecedents (line 6), which is modeled as a soft clause in theMLN. Each hidden
cause is also linked to the corresponding consequent via a hard clause (line 7). The
next part (lines 9 to 24) combines the hidden causes for each of the consequents
into a single reverse implication. The rules are partitioned according to the first-
order predicate appearing in the consequent (line 9). For each partition (line 10),
each possible instantiation of the consequent predicate appearing in the underlying
rules is considered (lines 11 to 13). For instance, given therule: h1(X, Y)⇒ q(Y)
and another:h2(X, const)⇒ q(const), we need to consider each instantiation of
q(X) andq(const) separately. For each such instantiationc (line 14), we consider
the rules which could result in the consequentc being true (line 15). Technically,
these are rules whose consequents subsumec, i.e. there exists a substitutionθi
such thatc = C(ri)θi, whereC(ri) is the consequent of ruleri. These rules result
in c when bound by the substitutionθi. For each such ruleri (line 17), substitu-
tion θi is applied to the corresponding hidden causeH(ri) (line 18). Then, the
set of free variables in the hidden cause (i.e. the variablesnot appearing inc)
is extracted (line 19). These variables are existentially quantified in the reverse
implication (next step). We then introduce a reverse implication to indicate thatc
implies at least one of the consequents (amongst those that subsumec) (line 21).
This reverse implication is made a hard clause and added to the MLN (line 22).
Finally, a low prior is introduced for each hidden cause (lines 25 to 27).

19

Algorithm 2 GenReEncodedMLN(KB)
inputs: KB, background knowledge consisting of Horn clauses
output: M, set of rules in the re-encoded MLN
1: M← {}
2: for all r ∈ KB do
3: A(r)← antecedent inr
4: C(r)← consequent inr
5: H(r)← hidden cause forr
6: M←M ∪ {A(r)⇔ H(r)}
7: M←M ∪ {H(r)⇒ C(r)}
8: end for
9: Part(KB)← partition ofKB into sets or rules with same

(first-order) predicate in the consequent
10: for all set of rulesR ∈ Part(KB) do
11: LetR = {r1, r2, · · · rm}

12: C(R)←
m⋃

i=1

{C(ri)}

13: (C(R) is set of unique consequents appearing inR)
14: for all c ∈ C(R) do
15: Rc ← {ri ∈ R | ∃θi, c = C(ri)θi}
16: (Rc is set of rules whose consequents subsumec)
17: for all ri ∈ Rc do
18: Hθi(ri)← H(ri)θi
19: {vi1 , vi2 , · · · vik} ← variables appearing in

Hθi(ri) but not inc
20: end for

21: Ir(Rc)← (c⇒
m∨

i=1

∃vi1 , vi2 , · · · vikHθi(ri))

22: M←M ∪ {Ir(Rc)}
23: end for
24: end for
25: for all r ∈ KB do
26: M←M ∪ {true⇒ H(r) (negatively weighted)}
27: end for
28: return M

4.3. Abductive Model Construction

Abductive reasoning using MLNs consists of the following 3 steps: 1) Generate
the re-encoded MLN, 2) Construct the ground Markov network (model construc-

20

tion), 3) Perform learning/inference over the resulting ground network. The stan-
dard MLN model construction process uses the set of all possible ground atoms
(the Herbrand base) and constructs the set of all possible ground clauses using
these atoms. Using logical rules to construct a graphical model is generally re-
ferred to asknowledge-based model construction (KBMC), originally proposed
by Wellman (Wellman et al., 1992; Breese et al., 1994). This idea was further used
by Ngo and Haddawy (1997) for answering queries from probabilistic knowledge
bases. In abductive reasoning, we are looking for explanations for a given set of
observations. In this task, the set of all possible ground atoms and ground clauses
may not be needed to explain the observations. Considering the fully ground
network leads to increased time and memory complexity for learning and infer-
ence. For instance, in the road blocked example, if the observation of interest is
blk rd(plaza), then we can ignore groundings where the location is notplaza.

We propose an alternative model-construction procedure that uses logical abduc-
tion to determine the set ofrelevant ground atoms. The procedure first constructs
the set of abductive proof trees for the observations and then uses only the ground
atoms in these proofs instead of the full Herbrand base for constructing the ground
network. The ground Markov network is then constructed by instantiating the for-
mulae in the abductive MLN using this reduced set of ground atoms. We refer
to the set of ground atoms (Markov network) thus constructedas the abductive
ground atoms (Markov network). First, given a set of Horn rules and a set of ob-
servations, the rules for the abductive MLN are constructedusing the HC model.
Next, the set of most-specific abductive proof trees for the observations are com-
puted using the method of Stickel (1988). The abductive inference process to get
the set of most-specific abductive proofs is described in Algorithm 1. The atoms in
these proofs form the set of abductive ground atoms. For eachformula in the ab-
ductive MLN, the set of all ground formulae whose atoms appear in the abductive
ground atoms are added to the ground Markov network. While handling existen-
tials, only those disjuncts which belong to the set of abductive ground atoms are
used. Learning and inference are then performed over the resulting network.

In general, the abductive model construction procedure results in a ground net-
work that is substantially different (and usually much simpler) from that con-
structed using the full Herbrand base. It also differs from the network constructed
by starting KBMC from the query/observations (Domingos and Lowd, 2009) be-
cause of the use of the backward chaining and unification during the abduc-
tive model construction. Consequently, the probabilistic inferences supported by

21

this model can be different from that of the traditional MLN model. This also
makes the abductive process different from other pre-processing approaches such
as Shavlik and Natarajan (2009), or existing lifted inference techniques such as
Singla and Domingos (2008), both of which produce a network that is proba-
bilistically equivalent to the original. By focusing on the relevant ground atoms,
abductive model construction significantly improves the performance of abductive
MLNs both in terms of time and memory efficiency as well as predictive accuracy.
Further, lifted inference could still be applied by constructing a lifted network over
the nodes/clauses present in the abductive network. For consistency with Singla
and Mooney (2011), we will refer to abductive MLNs (using theHidden Cause
model followed by abductive model construction) as MLN-HCAM.

Detailed experiments demonstrating significantly improved plan-recognition per-
formance (with respect to both accuracy and efficiency) for the HC model and
abductive model construction are presented by Singla and Mooney (2011). There-
fore, we only compare with the MLN-HCAM approach in the experiments below.

4.4. Plan Recognition using Manually Encoded MLNs

As discussed in the introduction, traditional (non-abductive) MLNs can be used
for plan recognition if an appropriate set of clauses are manually provided that
directly infer higher-level plans from primitive actions,e.g. (Sadilek and Kautz,
2010b,a). In order to compare to this approach, we developedan MLN approach
that uses a manually-engineered knowledge base to perform deductive plan recog-
nition.

The clauses for this manually encoded MLN were constructed as follows. For
each top-level plan predicate, we identified any set of observations that uniquely
identifies this plan. This implies that no other plan explains this set of observa-
tions. We then introduced a rule that infers this plan given these observations and
we make it a hard clause in the MLN. If no such observations exist, we introduced
a soft rule for each observation that could potentially indicate this plan. Hard
mutual-exclusivity rules were included for plans when we know only one of them
can be true. Alternatively, we gave a negative prior to all plan predicates as de-
scribed in the MLN-HCAM model. Note that this approach does not include any
predicates corresponding to sub-goals that are never observed in the data. As a
result, all variables in this model are fully observed during training, resulting in a

22

less complex model for learning and inference. This way of encoding the domain
knowledge avoids the automated machinery for introducing reverse implications,
and can potentially lead to a simpler knowledge base, which results in simpler
ground networks. However, it requires a separate knowledge-engineering process
that develops explicit plan-recognition rules for the domain, while the abductive
approach only requires basic knowledge about plans and actions sufficient for
planning. There are several ways in which such explicit plan-recognition knowl-
edge bases can be manually engineered, and we have employed just one possible
approach. Exploring alternative approaches is a directionfor future work. Sub-
sequently, we refer to this manually encoded traditional MLN model as “MLN-
manual”.

4.5. Probabilistic Modeling, Inference, and Learning

In MLN-HC and MLN-HCAM, we use the noisy-or model to combine multi-
ple explanations. In all MLN models, we use the cutting-plane method (Riedel,
2008) for MPE inference and MC-SAT (Poon and Domingos, 2006) to compute
marginal probabilities of plan instances. For learning weights of the clauses in
MLN-HCAM, we use a version of gradient-based voted-perceptron algorithm
(Singla and Domingos, 2005) modified for partially observeddata as discussed
in Chapter 20 (Section 3.3.1) of Koller and Friedman (2009). For the traditional
MLN model, gradient-based voted-perceptron algorithm runs out of memory due
to the size and complexity of the resulting ground networks.Therefore, we learned
weights using the discriminative online learner proposed by Huynh and Mooney
(2011a).1 More details about various settings used in our experimentsare de-
scribed in Section 5.

5. Experimental Evaluation

In this section, we present an extensive experimental evaluation of the perfor-
mance of BALPs and MLNs on three plan-recognition data sets.Unfortunately,

1This is possible since the training data for this model is fully observed (i.e there are no hidden
nodes).

23

there have been very few rigorous empirical evaluations of plan-recognition sys-
tems, and there are no widely-used benchmarks. Our experiments employ three
extant data sets and compare to the state-of-the-art results in order to demonstrate
the advantages of SRL methods. In addition to presenting concrete results for
BALPs and MLNs, we also consider their relationship to otherprobabilistic log-
ics, discussing the relative strengths and weaknesses of different SRL models for
plan recognition.

5.1. Datasets

5.1.1. Story Understanding

We first used a small dataset previously used to evaluate abductive story under-
standing systems (Ng and Mooney, 1992; Charniak and Goldman,1991).2 In this
task, characters’ higher-level plans must be inferred fromtheir actions described
in a narrative text. A logical representation of the literalmeaning of the text is
given for each example. A sample story (in English) is: “Bill went to the liquor-
store. He pointed a gun at the owner.” The plans in this dataset include shopping,
robbing, restaurant dining, traveling in a vehicle (bus, taxi or plane), partying
and jogging. Most narratives involve more than a single plan. This small dataset
consists of 25 development examples and 25 test examples each containing an
average of 12.6 literals. We used the planning background knowledge initially
constructed for the ACCEL system (Ng and Mooney, 1992), which contains a
total of 126 Horn rules.

5.1.2. Monroe

We also used the Monroe dataset, an artificially generated plan-recognition dataset
in the emergency response domain by Blaylock and Allen (2005). This domain in-
cludes 10 top level plans like setting up a temporary shelter, clearing a road wreck,
and providing medical attention to victims. The task is to infer a single instanti-
ated top-level plan based on a set of observed actions automatically generated by
a hierarchical transition network (HTN) planner. We used the the logical plan

2Available athttp://www.cs.utexas.edu/users/ml/accel.html

24

knowledge base for this domain constructed by Raghavan and Mooney (2011),
which consists of 153 Horn clauses. We used 1,000 artificially generated exam-
ples in our experiments. Each example instantiates one of the 10 top-level plans
and contains an average of 10.19 ground literals describinga sample execution of
this plan.

5.1.3. Linux

The Linux dataset is another plan-recognition dataset created by Blaylock and
Allen (2004). Human users were asked to perform various tasks in Linux and their
commands were recorded. The task is to predict the correct top level plan from the
sequence of executed commands. For example, one of the tasksinvolves finding
all files with a given extension. The dataset consists of 19 top level plan schemas
and 457 examples, with an average of 6.1 command literals perexample. Here
again, we used the plan knowledge base constructed by Raghavan and Mooney
(2011), which consists of 50 Horn clauses.

Each of these data sets evaluates a distinct aspect of plan recognition systems.
Since the Monroe domain is quite large with numerous subgoals and entities, it
tests the ability of a plan-recognition system to scale to large domains. On the
other hand, the Linux data set is not that large, but since thedata comes from real
human users, it is quite noisy. There are several sources of noise including cases
in which users claim that they have successfully executed a top-level plan when
actually they have not (Blaylock and Allen, 2005). Therefore, this data set tests
the robustness of a plan-recognition system to noisy input.Monroe and Linux
involve predicting asingle top-level plan; however, in the Story Understanding
domain, most examples have multiple top-level plans. Therefore, this data set
tests the ability of a plan-recognition system to identify multiple top-level plans.

5.2. Comparison of BALPs, MLNs, and Existing Approaches

In this section, we present experimental results comparingthe performance of
BALPs and MLNs to that of existing plan recognition approaches like ACCEL
(Ng and Mooney, 1992) and the system developed by Blaylock andAllen (2005).
ACCEL is a purely logical abductive reasoning system that uses a variable eval-
uation metric to guide its search for the best explanation. It can use two differ-

25

ent evaluation metrics:simplicity, which selects the explanation with the fewest
assumptions, andcoherence, which selects the explanation that maximally con-
nects the input observations (Charniak and Goldman, 1990). This second metric
is specifically geared towards text interpretation by measuring explanatory coher-
ence (Ng and Mooney, 1990). Currently, this bias has not been incorporated in
either BALPs or any of the MLN approaches. Blaylock and Allen’s system is
a purely probabilistic system that learns statisticaln-gram models to separately
predict plan schemas (i.e. predicates) and their arguments.

Section 4 describes several variants of MLNs for plan recognition. All MLN mod-
els were implemented using Alchemy (Kok et al., 2010), an open source software
package for learning and inference in Markov logic. We used the logical abduction
component developed for BALPs (Algorithm 1) for abductive model construc-
tion in MLNs. Since this abductive Markov-logic formulation (MLN-HCAM)
performs better than simple re-encodings of the traditional MLN, we restrict our
comparative experiments to this approach. For more detailson the experimental
results comparing the different MLN enhancements, we referthe reader to Singla
and Mooney (2011). For the Monroe and Linux datasets, we alsocompare with
the traditional (non-abductive) MLN approach described inSection 4.4, referred
to as “MLN-manual.”

For BALPs, we learned the noisy-or parameters using the EM algorithm described
in Section 3.2 whenever possible. Similarly for both MLN-HCAM and MLN,
we learned the parameters using the algorithms described inSection 4.5. For
datasets that had multiple top plans as the explanation, we computed the most
probable explanation (MPE). For datasets that had a single correct top-level plan,
we computed the marginal probability of plan instances and picked the one with
the highest marginal probability. For both MLNs and BALPs, we have used exact
inference whenever feasible. However, when exact inference was intractable, we
used approximate sampling to perform probabilistic inference – Sample Search
(Gogate and Dechter, 2011) for BALPs and MC-SAT (Poon and Domingos, 2006)
for MLNs. Both these techniques are approximate sampling algorithms designed
for graphical models with deterministic constraints. Whenever we deviate from
this standard methodology, we provide the specific details.

26

5.2.1. Story Understanding

This section provides information on the methodology and results for experiments
on the story-understanding data set.

Parameter Learning
For BALPs, we were unable to learn effective parameters fromthe mere 25 de-
velopment examples. As a result, we set parameters manuallyin an attempt to
maximize performance on the development set. A uniform value of 0.9 for all
noisy-or parameters seemed to work well for this domain. Theintuition behind
our choice of noisy-or parameters is as follows: if a parent node is true, then with
a probability of0.9, the child node will be true. In other words, if a cause is true,
then the effect is true with the probability of0.9. Using the deterministic logical-
and model to combine evidence from conjuncts in the body of a clause did not
yield high-quality results. Using noisy-and significantlyimproved the results; so
we used noisy-and’s with uniform parameters of0.9. Here again, the intuition is
that if parent node is false or turned off, then the child nodewould also be false or
turned off with a probability0.9. To disambiguate between conflicting plans, we
set different priors for high level plans to maximize performance on the develop-
ment data. For MLN-HCAM, we were able to learn more effective weights from
the examples in the development set using the learning algorithm described in the
Section 4.5.

Probabilistic Inference
Since multiple plans are possible in this domain, we computed the most probable
explanation (MPE) to infer the best set of plans. Since the resulting graphical
models for this domain were not exceptionally large, we wereable to apply exact
(rather than approximate) inference algorithms. For BALPs, we used the k-MPE
algorithm (Nilsson, 1998) as implemented in Elvira (Elvira-Consortium, 2002).
For MLN-HCAM, we used with the cutting-plane method (and the associated
code) developed by Riedel (2008).

Evaluation Metrics
We compared BALPs and MLN-HCAM with ACCEL-Simplicity and ACCEL-
Coherence. We compared the inferred plans with the ground truth to compute
precision (the percentage of the inferred plans that are correct),recall (the per-
centage of the correct plans that were properly inferred), and F-measure (the har-

27

Precision Recall F-measure
ACCEL-Simplicity 66.45 52.32 58.54
ACCEL-Coherence 89.39 89.39 89.39
BALP 72.07 85.57 78.24
MLN-HCAM 69.13 75.32 72.10

Table 1: Results for the Story Understanding dataset

monic mean of precision and recall). Partial credit was given for predicting the
correct plan predicate with some incorrect arguments. A point was rewarded for
inferring the correct plan predicate, then, given the correct predicate, an additional
point was rewarded for each correct argument. For example, if the correct plan
wasplan1(a1, a2) and the inferred plan wasplan1(a1, a3), the score is66.67%.

Results
Table 1 shows the results for Story Understanding. Both BALPsand MLN-
HCAM perform better than ACCEL-Simplicity, demonstrating theadvantage of
SRL models over standard logical abduction. BALPs perform better than MLN-
HCAM, demonstrating an advantage of a directed model for thistask. However,
ACCEL-Coherence still gives the best results. Since the coherence metric incor-
porates extra criteria specific to story understanding, this bias would need to be
included in the probabilistic models to make them more competitive. Incorporat-
ing this bias into SRL models is difficult since it uses the graphical structure of the
abductive proof to evaluate an explanation, which is not straightforward to include
in a probabilistic model. It should be noted that the coherence metric is specific to
narrative interpretation, since it assumes the observations are connected together
into a coherent “story,” and this assumption is not generally applicable to other
plan recognition problems.

5.2.2. Monroe and Linux

This section provides information on the methodology and results for experiments
on the Monroe and Linux data sets.

Parameter Learning
For BALPs, we learned the noisy-or parameters automatically from data using the
EM algorithm described in Section 3.2. We initially set all noisy-or parameters

28

to 0.9, which gave reasonable performance in both domains. We picked a default
value of0.9 based on the intuition that if a parent node is true, then the child node
is true with a probability0.9. We then ran EM with two starting points – random
weights and manual weights (0.9). We found that EM initialized with manual
weights generally performed the best for both domains, and hence we used this
approach for our comparisons. Even though EM is sensitive toits starting point,
it outperformed other approaches even when initialized with random weights. For
Monroe and Linux, initial experiments found no advantage tousing noisy-and
instead of logical-and in these domains, so we did not experiment with learning
noisy-and parameters.

For MLN-HCAM, we learned the weights automatically from datausing the meth-
ods described in Section 4.5. For MLN-manual, the online weight learner did not
provide any improvement over default manually-encoded weights (a weight of 1
for all the soft clauses and a weight of -0.5 on unit clauses for all plan predicates
to specify a small prior for all plans). Therefore, we reportresults obtained using
these manually-encoded weights.

For Monroe, of the 1,000 examples in our dataset we used the first 300 for training,
the next 200 for validation, and the remaining 500 examples for test. Blaylock and
Allen learned their parameters on 4,500 artificially generated examples. However,
we found that using a large number of examples resulted in much longer training
times and that 300 examples were sufficient to learn effective parameters for both
BALPs and MLN-HCAM. For BALPs, we ran EM on the training set until we
saw no further improvement in the performance on the validation set. For MLN-
HCAM, the parameter learner was limited to training on at most100 examples,
as learning on larger amounts of data ran out of memory. Therefore, we trained
MLN-HCAM on 3 disjoint subsets of the training data and pickedthe best model
using the validation set.

For Linux, we performed 10-fold cross validation. For BALPs, we ran EM until
convergence on the training set for each fold. For MLN-HCAM, within each train-
ing fold, we learned the parameters on disjoint subsets of data, each consisting of
around 110 examples. As mentioned before for Monroe, the parameter learner did
not scale to larger data sets. We then used the rest of the examples in each training
fold for validation, picking the model that best performed on the validation set.

As discussed in section 4.4, in the traditional MLN model, there are two ways to

29

encode the bias that only a single plan is needed to explain a given action. The
first approach is to include explicit hard mutual-exclusivity constraints between
competing plans, the second approach involves setting a lowprior on all plan
predicates. While the former performed better on Monroe, thelatter gave better
results on Linux. We report the results of the best approach for each domain.

As noted, we had to adopt a slightly different training methodology for BALPs
and MLN-HCAM due to computational limitations of MLN weight learning on
large datasets. However, we used the exact same test sets forboth systems on all
datasets. Developing more scalable online methods for training MLNs on partially
observable data, is an important direction for future work.

Probabilistic Inference
Both Monroe and Linux involve inferring a single top-level plan. Therefore, we
computed the marginal probability of each plan instantiation and picked the most
probable one. For BALPs, since exact inference was tractable on Linux, we used
the exact inference algorithm implemented in Netica,3 a commercial Bayes-net
software package. For Monroe, the complexity of the ground network made ex-
act inference intractable and we used SampleSearch (Gogateand Dechter, 2011),
an approximate sampling algorithm for graphical models with deterministic con-
straints. For both MLN approaches, we used MC-SAT (Poon and Domingos,
2006) as implemented in the Alchemy system on both Monroe andLinux.

Evaluation Metric
We compared the performance of BALPs, MLN-HCAM and MLN with Blaylock
and Allen’s system using theconvergence score as defined by Blaylock and Allen
(2005). The convergence score measures the fraction of examples for which the
correct plan predicate is inferred (ignoring the arguments) when givenall of the
observations. Use of the convergence score allowed for the fairest comparison to
the original results on these datasets published by Blaylockand Allen.4

Results
Table 2 shows convergence score for both the Monroe and Linuxdatasets. Both

3http://www.norsys.com/
4Blaylock and Allen also report results on predicting arguments, but using a methodology that

makes a direct comparison difficult.

30

Monroe Linux
Blaylock 94.20 36.10
MLN-manual 90.80 16.19
MLN-HCAM 97.00 38.94
BALP 98.40 46.60

Table 2: Convergence scores for Monroe and Linux datasets

BALPs and MLN-HCAM recognize plans in these domains more accurately than
Blaylock and Allen’s system. The performance of BALP and MLN-HCAM are
fairly comparable on Monroe; however BALPs are significantly more accurate on
Linux. The traditional MLN performs the worst, and does particularly poorly on
Linux. This demonstrates the value of the abductive approach as implemented in
MLN-HCAM.

Partial Observability Results

The convergence score has the following limitations as a metric for evaluating the
performance of plan recognition:

1. It only accounts for predicting the correct plan predicate, ignoring the ar-
guments. In most domains, it is important for a plan-recognition system to
accurately predict arguments as well. For example, in the Linux domain, if
the user is trying to move “test1.txt” to “test-dir”, it is not sufficient to just
predict the move command; it is also important to predict thefile (test.txt)
and the destination directory (test-dir).

2. It only evaluates plan prediction after the system has observedall of the
executed actions. However, in most cases, we would like to beable to
predict plans after observing as few actions as possible.

In order to evaluate the ability of BALPs and MLNs to infer plan arguments and
to predict plans after observing only a partial execution, we conducted an addi-
tional set of experiments. Specifically, we performed plan recognition after ob-
serving the first 25%, 50%, 75%, and 100% of the executed actions. To measure
performance, we compared the complete inferred plan (with arguments) to the
gold-standard to compute an overallaccuracy score. As for Story Understanding,

31

25% 50% 75% 100%
MLN-manual 10.63 13.23 37.00 67.13
MLN-HCAM 15.93 19.93 43.93 76.30

BALP 07.33 20.26 44.63 79.16

Table 3: Accuracy on Monroe data for varying levels of observability

25% 50% 75% 100%
MLN-manual 10.61 10.72 10.61 10.61
MLN-HCAM 16.30 16.48 24.36 28.84

BALPs 19.83 25.45 34.06 36.32

Table 4: Accuracy on Linux data for varying levels of observability

partial credit was given for predicting the correct plan predicate with only a subset
of its correct arguments.

Table 3 shows the results for partial observability for the Monroe data. BALPs per-
forms slightly better than MLN-HCAM on higher levels of observability, whereas,
MLN-HCAM tends to outperform BALP on lower levels of observability. The
MLN-manual performs worst at higher levels of observability, but at 25% ob-
servability, it out-performs BALPs. Table 4 shows the results for partial observ-
ability on the Linux data. Here, BALPs clearly outperform MLN-HCAM and
traditional MLNs at all the levels of observability. The traditional MLN performs
significantly worse than the other two models, especially athigher levels of ob-
servability. For Story Understanding, since the set of observed actions is already
incomplete, we did not perform additional experiments for partial observability.

5.2.3. Discussion

We believe several aspects of SRL approaches led to their superior performance
over existing approaches like ACCEL and Blaylock and Allen’s system. The abil-
ity of BALPs and MLN-HCAM to perform probabilistic reasoningmost likely
resulted in their improved performance over ACCEL-Simplicity, a standard logi-
cal abduction method. When Blaylock and Allen (2005) perform instantiated plan
recognition, it is done in a pipeline of two separate steps. The first step predicts

32

the plan schema and the second step predicts the arguments given the schema.
Unlike their approach, BALPs and MLN-HCAM are able to jointlypredict both
the plan schema and its arguments simultaneously. We believe that this ability of
these SRL models to perform joint prediction of plans and their arguments is at
least partially responsible for their superior performance. In addition, both BALPs
and MLN-HCAM utilize prior planning knowledge encoded in thelogical clauses
given to the system, while Blaylock and Allen’s system has no access to such
planning knowledge. We believe that the ability of SRL modelsto incorporate
such prior domain knowledge also contributes to their superior performance.

MLN-manual, although a joint model, cannot take advantage of all of the domain
knowledge in the planning KB available to BALPs and MLN-HCAM.Also, it
does not have the advantages offered by the abductive model construction pro-
cess used in MLN-HCAM. This also makes it difficult to adequately learn the
parameters for this model. We believe these factors lead to its overall inferior
performance compared to the other models. For both the Monroe and Linux do-
mains, the relative gap in the performance of MLN-manual model decreases with
decreasing observability. This is particularly evident inLinux, where the perfor-
mance stays almost constant with decreasing observability. We believe this is due
to the model’s ability to capitalize on even a small amount ofinformation that
deterministically predicts the top-level plan. Furthermore, at lower levels of ob-
servability, the ground networks are smaller and therefore, approximate inference
is more likely to be accurate. Singla and Mooney (2011) report that MLN-PC and
MLN-HC models did not scale well enough to make them tractable for the Monroe
and Linux domains. When compared to these models, MLN-manualhas a sub-
stantial advantage. But it still does not perform nearly as well as the MLN-HCAM
model. This re-emphasizes the importance of using a model that is constructed by
focusing on both the query and the available evidence. Furthermore, the MLN-
manual approach requires costly human labor to engineer theknowledge base.
This is in contrast to the abductive MLN models that allow thesame knowledge
base to be used for both planningand plan recognition.

Comparing BALPs and MLN-HCAM, BALPs generally performed better. We be-
lieve this difference is partly due to the advantages that directed graphical models
have for abductive reasoning, as originally discussed by Pearl (1988). Note that
MLN-HCAM already incorporates several ideas that originated with BALPs. By
using hidden causes and noisy-or to combine evidence from multiple rules, and
by utilizing logical abduction to obtain a focused set of literals for the ground net-

33

work, we improved the performance of MLNs by making them produce a graph-
ical model that is more similar to the one produced by BALPs. Although, in
principle, any directed model can be re-expressed as an undirected model, the
learning of parameters in the corresponding undirected model can be significantly
more complex since there is no closed form solution for the maximum-likelihood
set of parameters unlike in the case of directed models5 (Koller and Friedman,
2009). Inaccurate learning of parameters can lead to potential loss of accuracy
during final classification. Undirected models do have the advantage of repre-
senting cyclic dependencies (such as transitivity), whichdirected models can’t
represent explicitly because of the acyclicity constraint. But we did not find it
particularly useful for plan recognition since the domain knowledge is expressed
using rules that have an inherent directional (causal) semantics. In addition, it is
very difficult to develop a general MLN method that constructs a Markov net that
is formally equivalent to the Bayes net constructed by a BALP given the same
initial planning knowledge base.

In general, it took much more engineering time and effort to get MLNs to perform
well on plan recognition compared to BLPs. Extending BLPs withlogical ab-
duction was straightforward. The main problem we encountered while adapting
BLPs to work well on our plan recognition benchmarks was finding an effec-
tive approximate inference algorithm that scaled well to the larger Monroe and
Linux datasets. Once we switched to Sample Search, which is designed to work
well with the mix of soft and hard constraints present in our networks, BALPs
produced good results. However, getting competitive results with MLNs and scal-
ing them to work with our larger datasets was significantly more difficult. First,
we needed to develop a method for properly introducing reverse clauses to allow
MLNs to perform logical abduction. Next, we had to develop a method for in-
troducing hidden causes in order to prevent the creation of networks with large
cliques that made inference intractable. Finally, we had todevelop an abductive
model construction process that used the ground literals constructed for BALPs
to constrain the size and scope of the ground Markov net. Evenafter all these
modifications, the weight-learning algorithm did not scaleto larger training sets,
and the overall results are still not competitive with BALPs.

5In directed models, a closed form solution exists for the case of full observability. This corre-
sponds to the M step in EM when dealing with partial observability.

34

Some of the differences in the performance of BALPs and MLN-HCAM may also
stem from the differences in the probabilistic inference and parameter-learning
algorithms employed. For instance, on the Linux dataset, wecould run exact
inference for BALPs, but we had to resort to MC-SAT, an approximate sam-
pling algorithm, for MLN-HCAM. On Monroe, even though we usedapproximate
sampling algorithms for both BALPs and MLN-HCAM, it is unclear whether
the performance of Sample Search and MC-SAT are comparable. Furthermore,
since probabilistic inference is used extensively during parameter learning, per-
formance of the inference techniques could impact the quality of the learned
weights/parameters. In our preliminary work, we convertedthe noisy-or parame-
ters learned using the EM algorithm for BALPs into weights inMLN-HCAM.
When we performed plan recognition using these weights, we found that the
performance of MLN-HCAM improved, demonstrating a lack of quality in the
learned MLN weights. This could be due either to poor performance of proba-
bilistic inference, or to poor performance of the weight learner itself. Additional
experiments that control for changes in the inference and learning algorithms are
needed to further understand the effects of these differences.

5.3. Comparison of BALPs and MLNs to other SRL models

BLPs, BALPs, and MLNs are all languages for flexibly and compactly repre-
senting large, complex probabilistic graphical models. Analternative approach
to SRL is to add a stochastic element to the deductive process of a logic pro-
gram. ProbLog (Kimmig et al., 2008), is the most recent and well-developed of
these approaches. ProbLog can be seen as extending and subsuming several pre-
vious models, such as Poole’s Probabilistic Horn Abduction(PHA) (Poole, 1993)
and PRISM (Sato, 1995). Finally, there is publicly-available implementation of
ProbLog6 that exploits the latest inference techniques based onbinary decision
diagrams (BDDs) to provide scalability and efficiency.

Therefore, we attempted to also compare the performance of our models to ProbLog.
It was relatively straightforward to develop a ProbLog program for plan-recognition
by appropriately formulating the planning KB used for both BLPs and abductive
MLNs. However, our preliminary explorations with ProbLog revealed a serious

6http://dtai.cs.kuleuven.be/problog/

35

limitation that prevented us from actually performing an experimental comparison
on our plan recognition datasets. In a number of the planningaxioms in our KBs,
existentially quantified variables occur in the body of a clause which do not occur
in the head. Representing these clauses in ProbLog requires binding such vari-
ables to all possible type-consistent constants in the domain. However, this results
in the ProbLog inference engine attempting to construct an intractable number of
explanations (i.e. proofs) due to the combinatorial numberof possible combina-
tions of these introduced constants. Therefore, it was intractable to run ProbLog
on our datasets, preventing an empirical comparison. BALPsand MLN-HCAM
use a greedy abductive-proof construction method described in section 3.1 to pre-
vent this combinatorial explosion. Therefore, we believe ProbLog would need a
new approximate inference algorithm for this situation in order to be practically
useful for plan recognition.

Abductive Stochastic Logic Programs (ASLPs) (Chen et al., 2008) are another
SRL model that uses stochastic deduction and supports logical abduction and,
therefore, could potentially be applied to plan recognition. However, we are un-
aware of a publicly-available implementation of ASLPs thatcould be easily used
for experimental comparisons.

6. Future Work

The research presented in this paper could be extended in various ways. First, it
would be good to evaluate the proposed plan-recognition systems on additional
domains and applications. Unfortunately, there are very few publicly-available
datasets for plan recognition.

Second, the existing SRL methods could be improved and extended in several
productive directions. Methods for lifted inference (Singla and Domingos, 2008)
could improve efficiency by allowing probabilistic inference to be performed with-
out having to explicitly construct complete ground networks. In particular, the
latest Probabilistic Theorem Proving (PTP) methods for lifted inference in MLNs
(Gogate and Domingos, 2011) could be tried to improve the efficiency and accu-
racy of the MLN models.

Improved on-line weight learning algorithms could be developed to more effi-

36

ciently train on large datasets and increase the accuracy ofthe learned models. In
particular, discriminative rather than generative (i.e. EM) parameter learning for
BALPs should be explored. Although discriminative learning is more difficult for
directed graphical models than for undirected ones, there has been recent progress
on this problem (Carvalho et al., 2011). Current discriminative on-line weight
learners for MLNs (Huynh and Mooney, 2011a) assume completely observable
training data. These methods are not applicable to abductive MLNs, which con-
tain unobserved sub-goal and noisy-or nodes. Therefore, effective on-line meth-
ods for partially-observed training data need to be developed.

With respect to the traditional MLN approach, better methods for manually en-
gineering effective rules for deductive plan recognition could be developed. Al-
ternatively, MLN structure learning (Kok and Domingos, 2005, 2010; Huynh and
Mooney, 2011b) could be used to automatically induce such rules from supervised
training data. In addition, a similar approach could be developed for applying tra-
ditional (deductive) BLPs to plan recognition.

The current experimental comparisons should be extended toadditional SRL mod-
els. As mentioned in section 5.3, an improved approximate inference method is
needed to make ProbLog tractable for our plan-recognition problems. Compar-
isons to other SRL models such as Poole’s Horn Abduction (Poole, 1993), PRISM
(Sato, 1995), and Abductive Stochastic Logic Programs (Chenet al., 2008), are
also indicated.

7. Conclusions

This paper has introduced two new SRL approaches to plan recognition, one
based on Bayesian Logic Programs (BLPs), the other on Markov Logic Networks
(MLNs). Both of these approaches combine the advantages of prior logical and
probabilistic methods. We presented novel techniques for extending both MLNs
and BLPs with logical abduction in order to allow for plan recognition given log-
ical definitions of actions and plans as the only prior knowledge. Experimental
evaluations on three benchmark data sets have shown that ourapproaches gen-
erally outperform other state-of-the-art methods in plan recognition. We believe
their superior performance is due to the combination of logical abduction, joint
probabilistic inference, and incorporation of planning domain knowledge. The

37

results also indicate that the approach based on BLPs is generally more effective
than the one based on MLNs.

Acknowledgements

We would like to thank Nate Blaylock for sharing the Linux and Monroe data sets
and Vibhav Gogate for helping us modify SampleSearch for ourexperiments. We
would also like to thank Luc De Raedt and Angelika Kimmig for their help in our
attempt to run ProbLog on our plan recognition datasets. This research was funded
by MURI ARO grant W911NF-08-1-0242 and Air Force Contract FA8750-09-C-
0172 under the DARPA Machine Reading Program. Experiments were run on the
Mastodon Cluster, provided by NSF grant EIA-0303609. All views expressed are
solely those of the authors and do not necessarily reflect theopinions of ARO,
DARPA, NSF or any other government agency.

References

Albrecht DW, Zukerman I, Nicholson AE. Bayesian models for keyhole plan
recognition in an adventure game. In: User Modeling and User-Adapted Inter-
action. 1998. p. 5–47.

Blaylock N, Allen J. Recognizing instantiated goals using statistical methods. In:
G. Kaminka (Ed.), Workshop on Modeling Others from Observations (MOO-
05). 2005. p. 79–86.

Blaylock N, Allen JF. Statistical goal parameter recognition. In: Proceedings of
the Fourteenth International Conference on Automated Planning and Schedul-
ing (ICAPS-04). 2004. p. 297–305.

Breese JS, Goldman RP, Wellman MP, editors. IEEE Transactionson Systems,
Man and Cybernetics (Vol 24, No. 11): Special Issue on Knowledge Based
Construction of Probabilistic and Decision Models. IEEE Society Press, 1994.

Bui HH. A general model for online probabilistic plan recognition. In: Proceed-
ings of the Eighteenth International Joint Conference on Artificial Intelligence
(IJCAI-2003). Acapulco, Mexico; 2003. p. 1309–15.

38

Bui HH, Venkatesh S, West G. Policy recognition in abstract hidden Markov
model. Journal of Artificial Intelligence Research 2002;17:451–99.

Carvalho AM, Roos T, Oliveira AL, Myllym̈aki P. Discriminative learning of
Bayesian networks via factorized conditional log-likelihood. Journal of Ma-
chine Learning Research 2011;12:2181–210.

Charniak E, Goldman R. A probabilistic model of plan recognition. In: Proceed-
ings of the Ninth National Conference on Artificial Intelligence (AAAI-91).
Anaheim, CA; 1991. p. 160–5.

Charniak E, Goldman RP. A semantics for probabilistic quantifier-free first-order
languages, with particular application to story understanding. In: Proceedings
of the Eleventh International Joint Conference on ArtificialIntelligence (IJCAI-
89). Detroit, MI; 1989. p. 1074–9.

Charniak E, Goldman RP. Plan recognition in stories and in life. In: Proceedings
of the Fifth Annual Conference on Uncertainty in Artificial Intelligence. UAI
1989; 1990. p. 343–52.

Charniak E, McDermott D. Introduction to Artificial Intelligence. Reading, MA:
Addison-Wesley, 1985.

Chen J, Muggleton S, Santos J. Learning probabilistic logic models from proba-
bilistic examples. Machine Learning 2008;73(1):55–85.

Davis J, Ong I, Struyf J, Costa VS, Burnside E, Page D. Change of representa-
tion for statistical relational learning. In: Proceedingsof the Twentieth Inter-
national Joint Conference on Artificial Intelligence (IJCAI-2007). Hyderabad,
India; 2007. p. 2719–26.

Domingos P, Lowd D. Markov Logic: An Interface Layer for Artificial Intelli-
gence. San Rafael, CA: Morgan & Claypool, 2009.

Elvira-Consortium . ELVIRA: An environment for probabilistic graphical models.
In: Proceedings of the Workshop on Probabilistic GraphicalModels. Cuenca,
Spain; 2002. p. 222–30.

Getoor L, Taskar B, editors. Introduction to Statistical Relational Learning. Cam-
bridge, MA: MIT Press, 2007.

39

Gogate V, Dechter R. Samplesearch: Importance sampling in presence of deter-
minism. Artificial Intelligence 2011;175:694–729.

Gogate V, Domingos P. Probabilistic theorem proving. In: Proceedings of the
Twenty-Seventh Conference Annual Conference on Uncertaintyin Artificial
Intelligence (UAI-11). Corvallis, Oregon: AUAI Press; 2011. p. 256–65.

Goldman RP, Geib CW, Miller CA. A new model for plan recognition. In: Pro-
ceedings of 15th Conference on Uncertainty in Artificial Intelligence (UAI-99).
1999. p. 245–54.

Hobbs JR, Stickel ME, Martin P, Edwards D. Interpretation as abduction. In:
Proceedings of the 26th Annual Meeting of the Association for Computational
Linguistics (ACL-88). Buffalo, New York; 1988. p. 95–103.

Hong J. Goal recognition through goal graph analysis. Journal of Artificial Intel-
ligence Research 2001;15:1–30.

Horvitz E, Paek T. A computational architecture for conversation. In: Proceedings
of the Seventh International Conference on User Modeling. Springer; 1999. p.
201–10.

Huber MJ, Durfee EH, Wellman MP. The automated mapping of plans for plan
recognition. In: Proceedings of the Tenth Conference on Uncertainty in Artifi-
cial Intelligence. Morgan Kaufmann; 1994. p. 344–51.

Huynh TN, Mooney RJ. Online max-margin weight learning for Markov logic
networks. In: Proceedings of the Eleventh SIAM International Conference on
Data Mining (SDM-11). Mesa, AZ; 2011a. p. 642–51.

Huynh TN, Mooney RJ. Online structure learning for Markov Logic Networks.
In: Proceedings of the European Conference on Machine Learning and Prin-
ciples and Practice of Knowledge Discovery in Databases (ECML/PKDD-11).
Athens, Greece; 2011b. p. 81–96.

Inoue N, Ovchinnikova E, Inui K, Hobbs J. Weighted abductionfor discourse
processing based on integer linear programming. In: Sukthankar G, Goldman
R, Geib C, Pynadath D, Bui H, editors. Plan, Activity, and IntentRecognition:
Theory and Practice. Elsevier; 2013. .

40

Kakas AC, Kowalski RA, Toni F. Abductive logic programming. Journal of Logic
and Computation 1993;2(6):719–70.

Kaminka GA, Pynadath DV, Tambe M. Monitoring teams by overhearing: A
mulit-agent plan-recognition approach. Journal of Artificial Intelligence Re-
search 2002;17:83–135.

Kate RJ, Mooney RJ. Probabilistic abduction using Markov logic networks. In:
Proceedings of the IJCAI-09 Workshop on Plan, Activity, and Intent Recogni-
tion (PAIR-09). Pasadena, CA; 2009. .

Kautz HA. A Formal Theory of Plan Recognition. Ph.D. thesis; Department of
Computer Science, University of Rochester; Rochester, NY; 1987. Technical
Report 215.

Kautz HA, Allen JF. Generalized plan recognition. In: Proceedings of the Fifth
National Conference on Artificial Intelligence (AAAI-86). Philadelphia, PA;
1986. p. 32–7.

Kersting K, De Raedt L. Towards combining inductive logic programming with
Bayesian networks. In: Proceedings of the 11th International Conference on
Inductive Logic Programming (ILP-2001). Strasbourg, France; 2001. p. 118–
31.

Kersting K, De Raedt L. Bayesian logic programming: Theory andtool. In:
Getoor L, Taskar B, editors. Introduction to Statistical Relational Learning.
Cambridge, MA: MIT Press; 2007. .

Kersting K, De Raedt L. Basic principles of learning Bayesian logic programs.
In: Probabilistic Inductive Logic Programming. 2008. p. 189–221.

Kimmig A, Santos Costa V, Rocha R, Demoen B, De Raedt L. On the efficient ex-
ecution of ProbLog programs. In: Proceedings of the 24th International Confer-
ence on Logic Programming (ICLP-08). Berlin, Heidelberg: Springer-Verlag;
2008. p. 175–89.

Kok S, Domingos P. Learning the structure of Markov logic networks. In: Pro-
ceedings of 22nd International Conference on Machine Learning (ICML-2005).
Bonn,Germany; 2005. p. 441–8.

41

Kok S, Domingos P. Statistical predicate invention. In: Proceedings of 24th
International Conference on Machine Learning (ICML-2007). Corvallis,OR;
2007. p. 433–40.

Kok S, Domingos P. Learning Markov logic networks using structural motifs. In:
Proceedings of the 27th International Conference on MachineLearning (ICML-
10). Haifa, Israel; 2010. p. 551–8.

Kok S, Sumner M, Richardson M, Singla P, Poon H, Lowd D, Wang J, Nath
A, Domingos P. The Alchemy System for Statistical RelationalAI. Techni-
cal Report; Department of Computer Science and Engineering, University of
Washington; 2010.

Koller D, Friedman N. Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press, 2009.

Lesh N, Etzioni O. A sound and fast goal recognizer. In: Proceedings of Four-
teenth International Joint Conference on Artificial Intelligence (IJCAI). Morgan
Kaufmann; 1995. p. 1704–10.

Levesque HJ. A knowledge-level account of abduction. In: Proceedings of the
Eleventh International Joint Conference on Artificial Intelligence (IJCAI-89).
Detroit, MI; 1989. p. 1061–7.

Natarajan S, Khot T, Kersting K, Tadepalli P, Shavlik J. Exploiting causal inde-
pendence in Markov logic networks: Combining undirected anddirected mod-
els. In: Proceedings of the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD-
10). Barcelona, Spain; 2010. p. 434–50.

Ng HT, Mooney RJ. The role of coherence in abductive explanation. In: Proceed-
ings of the Eighth National Conference on Artificial Intelligence (AAAI-90).
Detroit, MI; 1990. p. 337–442.

Ng HT, Mooney RJ. Abductive plan recognition and diagnosis: Acomprehensive
empirical evaluation. In: Proceedings of the Third International Conference
on Principles of Knowledge Representation and Reasoning. Cambridge, MA;
1992. p. 499–508.

Ngo L, Haddawy P. Answering queries from context-sensitiveprobabilistic
knowledge bases. Theoretical Computer Science 1997;171:147–77.

42

Nilsson D. An efficient algorithm for finding the M most probable configurations
in probabilistic expert systems. Statistics and Computing 1998;8:159–73.

Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. San Mateo,CA: Morgan Kaufmann, 1988.

Peng Y, Reggia JA. Abductive Inference Models for DiagnosticProblem-Solving.
New York: Springer Verlag, 1990.

Poole D. Probabilistic Horn abduction and Bayesian networks. Artificial Intelli-
gence 1993;64:81–129.

Poon H, Domingos P. Sound and efficient inference with probabilistic and deter-
ministic dependencies. In: Proceedings of the Twenty-First National Confer-
ence on Artificial Intelligence (AAAI-06). Boston, MA; 2006.p. 458–63.

Pople HE. On the mechanization of abductive logic. In: Proceedings of the Third
International Joint Conference on Artificial Intelligence (IJCAI-73). 1973. p.
147–52.

Pynadath DV, Wellman MP. Probabilistic state-dependent grammars for plan
recognition. In: In Proceedings of the Conference on Uncertainty in Artificial
Intelligence, UAI2000. Morgan Kaufmann Publishers; 2000.p. 507–14.

Raghavan S, Mooney RJ. Abductive plan recognition by extending Bayesian
logic programs. In: Proceedings of the European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML/PKDD-11). Athens, Greece; 2011. p. 629–44.

Richardson M, Domingos P. Markov logic networks. Machine Learning
2006;62:107–36.

Riedel S. Improving the accuracy and efficiency of MAP inference for Markov
logic. In: Proceedings of 24th Conference on Uncertainty in Artificial Intelli-
gence (UAI-2008). Helsinki, Findland; 2008. p. 468–75.

Sadilek A, Kautz H. Modeling and reasoning about success, failure, intent of
multi-agent activities. In: Proceedings of the UbiComp 2010Workshop on
Mobile Context-Awareness. Copenhagen, Denmark; 2010a. .

43

Sadilek A, Kautz H. Recognizing multi-agent activities fromGPS data. In: Pro-
ceedings of the 25th AAAI Conference on Artificial Intelligence (AAAI-10).
Atlanta, GA; 2010b. p. 1134–9.

Saria S, Mahadevan S. Probabilistic plan recognition in multiagent systems.
In: International Conference on Automated Planning and Scheduling (ICAPS
2004). 2004. p. 287–96.

Sato T. A statistical learning method for logic programs with distribution se-
mantics. In: Proceedings of the Twelfth International Conference on Logic
Programming (ICLP-95). MIT Press; 1995. p. 715–29.

Shavlik J, Natarajan S. Speeding up inference in Markov logic networks by pre-
processing to reduce the size of the resulting grounded network. In: Proceed-
ings of the Twenty First International Joint Conference on Artificial Intelligence
(IJCAI-2009). Hyederabad, India; 2009. p. 1951–6.

Singla P, Domingos P. Discriminative training of Markov logic networks. In:
Proceedings of the Twentieth National Conference on Artificial Intelligence
(AAAI-05). Pittsburgh, PA; 2005. p. 868–73.

Singla P, Domingos P. Lifted first-order belief propagation. In: Proceedings of
the 23rd AAAI Conference on Artificial Intelligence (AAAI-08). Chicago, IL;
2008. p. 1094–9.

Singla P, Mooney R. Abductive Markov logic for plan recognition. In: Twenty-
fifth National Conference on Artificial Intelligence. 2011. p. 1069–75.

Stickel ME. A Prolog-like Inference System for Computing Minimum-Cost Ab-
ductive Explanations in Natural-Language Interpretation. Technical Report
Technical Note 451; SRI International; Menlo Park, CA; 1988.

Wellman MP, Breese JS, Goldman RP. From knowledge bases to decision models.
The Knowledge Engineering Review 1992;7(01):35–53.

44

