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Abstract

Plan recognition is the task of predicting an agent's toy@li@lans based on its
observed actions. It is an abductive reasoning task thatves inferring plans
that bestexplain observed actions. Most existing approaches to plan retogni
and other abductive reasoning tasks either use first-oogge (or subsets of it)
or probabilistic graphical models. While the former canramdie uncertainty in
the data, the latter cannot handle structured represensatiTo overcome these
limitations, we explore the application of statisticabt@nal models that combine
the strengths of both first-order logic and probabilistiagdrical models to plan
recognition. Specifically, we introduce two new approacteeabductive plan
recognition using Bayesian Logic Programs (BLPs) and Markoyit. Networks
(MLNSs). Neither of these formalisms is suited for abductieasoning because of
the deductive nature of the underlying logical inferencethis work, we propose
approaches to adapt both these formalisms for abductiverpleognition. We
present an extensive evaluation of our approaches on teresninark datasets on
plan recognition, comparing them with existing statetw#-airt methods.
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1. Introduction

Plan recognition is the task of predicting an agent’s toellplans based on its ob-
served actions. Itis an abductive reasoning task thatwegahferring cause from
effect (Charniak and McDermott, 1985). Early approachesldao pecognition
were based on first-order logic in which a knowledge-basdarigpand actions
is developed for the domain and then default reasoning &awod Allen, 1986;
Kautz, 1987) or logical abduction (Ng and Mooney, 1992) iscu predict the
best plan based on the observed actions. Kautz and Aller6)1B8&utz (1987)
developed one of the first logical formalizations of planogtion. They used
non-monotonic deductive inference to predict plans usbggoved actions, an ac-
tion taxonomy, and a set of commonsense rules or constrdiath and Etzioni
(1995)’'s approach to goal recognition constructs a grapgoals, actions, and
their schemas and prunes the network until the plans préséné network are
consistent with the observed goals. The approach by Hor@j2flso constructs
a “goal graph” and analyses the graph to identify goals sbesi with observed
actions. However, these approaches are unable to handietainty in the obser-
vations or background knowledge and are incapable of estighthe likelihood
of different plans.

Another approach to plan recognition is to directly use pitwlstic methods. Al-
brecht et al. (1998) developed an approach based on dynampesiaa networks
to predict plans in an adventure game. Horvitz and Paek (188%loped an
approach that uses Bayesian networks to recognize goalsaatamated conver-
sation system. Pynadath and Wellman (2000) extended pitialcontext-free
grammars to plan recognition. Kaminka et al. (2002) dewediopn approach to
multiagent plan recognition using dynamic Bayesian netwdokperform moni-
toring in distributed systems. Bui et al. (2002); Bui (2003gdig\bstract Hidden
Markov Models for hierarchical goal recognition. Saria aidhadevan (2004)
extended the work by Bui (2003) to multiagent plan recogniti®laylock and
Allen (2005) used statisticalgram models for the task of instantiated goal recog-
nition. While these approaches can handle uncertainty amdbedrained effec-
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tively, they can not handle the kind of structured relatlareta that can be rep-
resented in first-order predicate logic. Furthermore, difcult to incorporate
planning domain knowledge in these approaches.

The third category of approaches use aspects of both loggatell as proba-
bilistic reasoning. Hobbs et al. (1988) attach weights @tsto predicates in the
knowledge base and use these weights to guide the seardiefbest explana-
tion. Goldman et al. (1999) use the probabilistic Horn alidac(Poole, 1993)

framework to find the best set of plans that explain the oleskactions. Several
other approaches use Bayesian networks (Charniak and Goldré&8a, 1991,

Huber et al., 1994) to perform abductive inference. Basethewbserved actions
and a knowledge base constructed for planning, Bayesiaronktware automati-
cally constructed using knowledge base model constru¢k&MC) procedures.

However, most of these approaches do not have the capabiiiti learning the
structure or the parameters. Another chapter by Inoue €2@13) appearing in
the current volume explores the use of weighted abductionafge scale dis-
course processing.

The last decade has seen a rapid growth in the aregatiftical Relational
Learning (SRL) (Getoor and Taskar, 2007), which uses well-foundetgivdistic
methods while maintaining the representational power sf-6rder logic. Since
these models combine the strengths of both first-order lagat probabilistic
graphical models, we believe that they are well suited fdrisg problems like
plan recognition. In this paper, we explore the efficacy dfedent SRL mod-
els for the task of plan recognition. We focus on extending specific SRL
models, Markov Logic Networks (MLNs) (Domingos and Lowd02) (based on
undirected probabilistic graphical models) and Bayesiagi¢. 8rograms (BLPS)
(Kersting and De Raedt, 2001) (based on directed probabijsiphical models)
to the task of plan recognition.

MLNSs attach real-valued weights to formulas in first-ord=git in order to rep-
resent their certainty. They effectively use logic as a cachpemplate for repre-
senting large, complex ground Markov networks. Since MLBgehbeen shown
to formally subsume many other SRL models and have been siotespplied
to many problems (Domingos and Lowd, 2009), we chose to expleir appli-
cation to plan recognition. However, the representatiguaver and flexibility
offered by MLNs come at a cost in computational complexityparticular, many
problems result in exponentially large ground Markov nekspmaking learning
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and inference intractable in the general case.

Pearl (1988) argued that causal relationships and abeéuasoning from ef-
fect to cause are best captured using directed graphicaélsz¢Bayesian net-
works). Since plan recognition is abductive in nature, shiggested that we also
explore a formalism based on directed models. Thereforealsgeexplored the
application of BLPs, which combine first-order Horn logic atigected graphical
models, to plan recognition. BLPs use SLD resolution to geeeproof trees,
which are then used to construct a ground Bayesian networ& fpven query.
This approach to network construction is called knowledggelmodel construc
tion (KBMC). Similar to BLPs, prior approaches (Wellman et #B92; Ngo and
Haddawy, 1997) also employ the KBMC technique to construotigd Bayesian
networks for inference. Another approach called probsiliHorn abduction
(PHA) (Poole, 1993) performs adductive reasoning using-dirder knowledge
bases and Bayesian networks. However, since the BLP framempdses fewer
constraints on representation, both with respect to straes well as the parame-
ters (Kersting and De Raedt, 2007) and since it provides agrated framework
for both learning and inference, we decided to use BLPs assggpm PHA or
other similar formalisms.

Logical approaches to plan recognition, e.g. (Kautz an@mll1986; Ng and
Mooney, 1992), typically assume a knowledge base of pladfoamctions ap-
propriate for planning, but not specifically designed faarprecognition. The
advantage of this approach is that a single knowledge basgfisient for both
automated planning and plan recognition. Also, knowledgalans and actions
sufficient for planning is usually easier to develop than evldedge base espe-
cially designed for plan recognition, which requires specules of the form “If
an agent performs action A, they may be executing plan P.’ce&neMLN-based
approach to plan/activity recognition (Sadilek and Ka@t10b,a), requires such
manually-provided plan-recognition rules.

Our goal is to develop general-purpose SRL-based plan-ng#omg systems that
only require the developer to provide a knowledge-base tdrae and plans suf-
ficient for planning, without the need to engineer a knowketgse specifically
designed for plan recognition. Plan recognition using guignning knowledge
generally requireabductive logical inference. BLPs use purely deductive logical
inference as a pre-processing step to the full blow-blovababilistic inference.
Encoding the planning knowledge directly in MLNs does ngimart abductive
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reasoning either. Further, using the standard semantid&.Nifs of grounding the

whole theory leads to a blow-up for plan recognition prolde@onsequently, nei-
ther BLPs or MLNSs can be directly used in their current formdbductive plan

recognition. Therefore, this paper describes re-encaostirgegies (for MLNS) as
well as enhancements to both models that allow them to @fitigical abduction.
Our other goal involves developing systems that are capdb&arning the nec-
essary parameters automatically from data. Since both Bo8@$/M.Ns provide

algorithms for learning both the structure and the pararagtee adapt them in
our work to develop trainable systems for plan recognition.

The main contributions of the paper are as follows:

» Adapt SRL models like BLPs and MLNSs to plan recognition

* Introduce Bayesian Abductive Logic Programs (BALPSs), aapaation of
BLPs that utilizes logical abduction

» Propose re-encoding strategies for facilitating abdeatasoning in MLNs

* Introduce abductive Markov logic, an adaptation of MLNsiethcom-
bines re-encoding strategies with logical abduction tostroiet the ground
Markov network

» Experimentally evaluate the relative performance of BAL&bductive MLNs
(i.e. using re-encoding strategies and abductive modedtoaction), tradi-
tional MLNs, and existing plan-recognition methods on &pn-recognition
benchmarks.

The rest of the paper is organized as follows. First, we pl@gome background
on logical abduction, BLPs, and MLNs. Next, we present oue®sions to both

BLPs and MLNs to include logical abduction. Finally, we pretsan extensive
evaluation of our approaches on three benchmark datagepdaio recognition,

comparing them with the existing state-of-the-art for placognition.



2. Background

2.1. Logical Abduction

In a logical framework, abduction is usually defined as fweHo(Pople, 1973;
Levesque, 1989; Kakas et al., 1993):

» Given: Background knowledg® and observation®, both represented as
sets of formulae in first-order logic, whefgis typically restricted to Horn
clauses and to ground literals.

* Find: A hypothesisH, also a set of logical formulae (typically ground
literals), suchthaB U H (~ 1 andBU H = O.

Here, = represents logical entailment andrepresents false, i.e. find a set of
assumptions that is consistent with the background thewodyexplains the ob-
servations. There are generally many hypothdgebat explain a given set of
observationg). Following Occam’s Razor, the best hypothesis is typicady d
fined as the one that minimizes the number of assumptiéhs, Given a set of
observation®),, O, ....,O,, the set of abductive proof trees is computed by re-
cursively backchaining on each until every literal in the proof is either proven
or assumed. Logical abduction has been applied to tasksasuglan recognition
and diagnosis (Ng and Mooney, 1992; Peng and Reggia, 1990).

2.2. Bayesian Logic Programs

Bayesian logic programs (BLPs) (Kersting and De Raedt, 2001 )beaviewed
as templates for constructirdirected graphical models (Bayes nets). Given a
knowledge base as a special kind of logic program, standackiviard-chaining
logical deduction (SLD resolution) is used to automaticabnstruct a Bayes net
on the same lines as knowledge based model construction (KBME)man
etal., 1992; Breese et al., 1994). More specifically, givegt @ffacts and a query,
all possible Horn-clause proofs of the query are constduated used to build a
Bayes net for answering the query. Standard probabilisteremce techniques
are then used to compute the most probable answer.
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More formally, a BLP consists of a set Bayesian clauses, definite clauses of the
form A|A;, As, As,.....A,, wheren > 0 andA, A, A,, As,...... A, areBayesian
predicates (defined below). A is called the head of the clausked(c)) and
(A1, Ag, As,....,A4,) is the body fody(c)). Whenn = 0, a Bayesian clause is
a fact. Each Bayesian clausés assumed to be universally quantified and range
restricted, i.@ariables{ head} C variables{body}, and has an associateohdi-
tional probability distribution: cpd(c) = P(head(c)|body(c)).

A Bayesian predicateis a predicate with a finite domain, and each ground atom for
a Bayesian predicate represents a random variable. Assdevith each Bayesian
predicate is a combining rule suchm@@sy-or or noisy-and that maps a finite set

of epds into a singlecpd (Pearl, 1988). Le#d be a Bayesian predicate defined by
two Bayesian clauses||A;, As, As, .....A, andA| By, Bs, Bs, .....B,,, wherecpd,;
andcpd, are their cpd’s. Lef be a substitution that satisfies both clauses. Then, in
the constructed Bayes net, directed edges are added fronodes for eact ;0
andB;0 to the node fordd. The combining rule for is used to construct a single
cpd for A6 from cpd; andcpd,. The probability of a joint assignment of truth
values to the final set of ground propositions is then defingtie standard way
for a Bayes net: () = [[, P(X;|Pa(X;)), whereX = X, X,, ..., X,, represents
the set of random variables in the network ah@( X;) represents the parents of
Xi-

Once a ground network is constructed, standard probabiligerence methods
can be used to answer various types of queries (Koller amrdifan, 2009). Typ-
ically, we would like to compute the most probable explamatiMPE), which
finds the joint assignment of values to unobserved node®ingtwork that max-
imizes the posterior probability given the values of a sailiferved nodes. This
type of inference is also called also known as the maximumstepiori (MAP)
assignment and might be used interchangeably in this boekwwvld also like
to compute the marginal probabilities for the unobservedesaiven the values
of observed nodes. The combining-rule parameters and ¢pdsfor a BLP can
be learned automatically from data using techniques pexpbyg Kersting and De
Raedt (2008).



2.3. Markov Logic Networks

Markov logic (Richardson and Domingos, 2006; Domingos andd,®009) is a
framework for combining first-order logic and undirectedlpabilistic graphical
models (Markov networks). A traditional first-order knodtge base can be seen
as a set of hard constraints on the set of possible worldswdréd violates even
one formula, its probability is zero. In order to soften #esnstraints, Markov
logic attaches a weight to each formula in the knowledge.basermula’s weight
reflects how strong a constraint it imposes on the set of plessiorlds. Formally,

an MLN is a set of pairgF;, w;), whereF; is a first-order formula and; is a
real number. Aard clause has an infinite weight and acts as a logical constraint;
otherwise, it is asoft clause. Given a set of constants, an MLN defines a ground
Markov network with a node in the network for each ground asma a feature for
each ground clause. The joint probability distribution rogeset of boolean vari-
ablesX = (X, X,...) corresponding to the nodes in the ground Markov network
(i.e. ground atoms) is defined as:

P(X =x)= %exp(z win;(x)) 1)

wheren;(z) is the number of true groundings 6f in x andZ is a normalization
term obtained by summing(X = x) over all values ofX. Therefore, a possible
world becomes exponentially less likely as the total wetihe ground clauses
it violates increases.

An MLN can be viewed as a set of templates for constructingiiggoMarkov
networks. Different sets of constants produce differentkda networks; how-
ever, there are certain regularities in their structureardmeters determined by
the underlying first-order theory. Like in BLPs, once the grdumetwork is con-
structed, standard probabilistic inference methods (MPEarginal inference)
can be used to answer queries. MLN weights can be learned kymaang the
conditional log-likelihood of training data supplied iretfiorm of a database of
true ground literals. A number of efficient inference andé@ag algorithms that
exploit the structure of the network have also been propd3ethingos and Lowd
(2009) provide details on these and many other aspects of$ViLN



3. Adapting Bayesian L ogic Programs

Bayesian Abductive Logic Programs (BALPSs) are an adaptatid@iPs. In plan
recognition, the known facts are insufficient to supportdégvation of deductive
proof trees for the requisite queries. By usatgluction, missing literals can be
assumed in order to complete the proof trees needed to detethe structure
of the ground network. We first describe the abductive imfeegprocedure used
in BALPs. Next we describe how probabilistic parametersspecified and how
probabilistic inference is performed. Finally, we dischssv parameters can be
automatically learned from data.

3.1. Logical Abduction

Let Oq, O, ...., O, be the set of observations. We derive a set of most-specific
abductive proof trees for these observations using theadeihginally proposed
by Stickel (1988). The abductive proofs for each obserwdtteral are computed
by backchaining on eaah; until every literal in the proof is proven or assumed.
A literal is said to be proven if it unifies with some fact or thead of some
rule in the knowledge base, otherwise it is said to be assurBatte multiple
plans/actions could generate the same observation, amvabea literal could
unify with the head of multiple rules in the knowledge baser. $uch a literal, we
compute alternative abductive proofs for each such rule résulting abductive
proof trees are then used to build the structure of the Baytassimgg the standard
approach for BLPs.

The basic algorithm to construct abductive proofs is giveilgorithm 1. The

algorithm takes as input a knowledge base (KB) in the form afnHauses and
a set of observations as ground facts. It outputs a set ofcéilsdproof trees
by performing logical abduction on the observations. Thasef trees are then
used to construct the Bayesian network. For each observatioAbduction-

BALP searches for rules whose consequents unify withFor each such rule, it
computes the substitution from the unification process abdtgutes variables in
the body of the rule with bindings from the substitution. Titerals in the body
now become new subgoals in the inference process. If thegesuegoals can-
not be proved, i.e. if they cannot unify with existing factaath the consequent
of any rule in the KB, then they are assumed. In order to mirentie number



Algorithm 1 AbductionBALP
Inputs: Background knowledg& B and observation®,, O, Os, ....,O,, both
represented as sets of formulae in first-order logic, whére is typically
restricted to a set of Horn clauses and e@gls a ground literal.
Output: Abductive proofs for allD,.
1: Let ) be a queue of unproven atoms, initialized with
2: while Q) not emptydo
3: A; + Remove atom frond)
4: for eachruleR; in KB do
5 consequent < Head literal ofR;
6: if A; unifies withconsequent then
7.
8

S; < unify A; andconsequent and return substitution
Replace variables in the body & with bindings in.S;. Each literal
in the body ofR; is a new subgoal.

o: for eachliteral; in body of R; do
10: if literal; unifies with head of some rulg; in KB then
11: addliteral; to Q
12: elseif literal; unifies with an existing fadthen
13: Unify and consider the literal to be proved
14: else
15: if literal; unifies with an existing assumptidhen
16: Unify and use the assumption
17: else
18: Assumeliteral; by replacing any unbound variables that are

existentially quantified iriteral; with new Skolem constants.
19: end if

20: end if
21: end for
22: end if

23: end for

24: end while
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(a) Partial knowledge base with two rules for road block:

1. blk rd(Loc)|hvy_snow(Loc),drive hzrd(Loc).
2.blk.rd(Loc)|acdnt(Loc), clr_wrck(Crew, Loc).

(b) Observations:
blk rd(plaza)
(c) Ground Abductive Clauses:

blk rd(plaza)|hvy_snow(plaza),drive hzrd(plaza).
blk rd(plaza)|acdnt(plaza), clr_wrck(al,plaza).

Figure 1: (a) A partial knowledge base from the emergengyaese domain in the Monroe data
set. All variables start with uppercase and constants witleicase. (b) The logical representation
of the observations. (c) The set of ground rules obtained fogical abduction.

of assumptions, the assumed literals are first matched wishireg assumptions.
If no such assumption exists, then any unbound variablekdriteral that are
existentially quantified are replaced by Skolem constants.

In SLD resolution, which is used in BLPs, if any subgoal lite@nnot be proven,
the proof fails. However, in BALPs, we assume such literald allow proofs to
proceed till completion. Note that there could be multipleseng assumptions
that could unify with subgoals in Step 15. However, if we ugkdround assump-
tions that could unify with a literal, then the size of the gnd network would
grow exponentially, making probabilistic inference imti@ble. In order to limit
the size of the ground network, we unify subgoals with asgiong in a greedy
manner, i.e. when multiple assumptions match with a subgaatandomly pick
one of them and do not pursue the others. We found that threappworked well
for our plan-recognition benchmarks. For other tasks, dorspecific heuristics
could potentially be used to reduce the size of the network.

We now illustrate the abductive inference process with gpnexample mo-
tivated by one of our evaluation benchmarks, the emergeesyonse domain
introduced by Blaylock and Allen (2005) in the Monroe datades=icribed in Sec-
tion 5.1. Consider the partial knowledge base and set of vasens given in Fig-
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Figure 2: Bayesian network constructed for example in FEdur The nodes with thick borders
represent observed actions, the nodes with dotted bordpresent intermediate nodes used to
combine the conjuncts in the body of a clause, and the nodistiain borders represent plan
literals.

ure 1a and Figure 1b respectively. The knowledge base ¢smdirules that give
two explanations for a road being blocked at a location: &jdhas been heavy
snow resulting in hazardous driving conditions, and 2)dHheas been an accident
and the crew is clearing the wreck. Given the observatiohahaad is blocked,
the plan recognition task involves abductively inferringeaf these causes as the
explanation. For each observation literal in Figure 1b, @airsively backchain to
generate abductive proof trees. In the given example, werebshat the road is
blocked at the locatioplaza. When we backchain on the literslk rd(plaza)
using Rule 1, we obtain the subgoals;_snow(plaza) anddrive hzrd(plaza).
These subgoals become assumptions since no observatitresads of clauses
unify with them. We then backchain on the literak rd(plaza) using Rule 2 to
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obtain subgoalacdnt(plaza) andclr_wrk(Crew,plaza). Here again, we find
that these subgoals have to be assumed since there aresiorfhetds of clauses
that unify with them. We further notice thalr_wrk(Crew, plaza) is not a fully
ground instance. Sinderew is an existentially quantified variable, we replace it
with a Skolem constantl to get the ground assumptiefr_wrk(al,plaza).

Figure 1c gives the final set of ground rules generated by @aheuinference.
After generating all abductive proofs for all observatiaerkls, we construct

a Bayesian network. Figure 2 shows the Bayesian network cmtstt for the
example in Figure 1. Note that since there are no obsenstamts that unify
with the subgoalshvy snow(plaza), drive hzrd(plaza), acdnt(plaza), and

clr wrk(Crew, plaza)) generated during backchaining on observations, SLD res-
olution will fail to generate proofs. This is typical in plaacognition, and as a
result, we cannot use BLPs for such tasks.

3.2. Probabilistic Modeling, Inference, and Learning

The only difference between BALPs and BLPs lies in the logicrence pro-
cedure used to construct proofs. Once the abductive proefgemerated, BALPs
use the same procedure as BLPs to construct the Bayesian keFuother, tech-
niques developed for BLPs for learning parameters can alssée for BALPS.

We now discuss how parameters are specified in BALPs. We usg/logical-
and and noisy-or models to specify theis in the ground Bayesian network as
these models compactly encode the with fewer parameters, i.e. just one pa-
rameter for each parent node. Depending on the domain, weithe¥ a strict
logical-and or a softemoisy-and model to specify thepd for combining evidence
from the conjuncts in the body of a clause. We use a noisy-ataino specify
the cpd for combining the disjunctive contributions from diffeteground clauses
with the same head. Figure 2 shows the logical-and and raisydes in the
Bayesian network constructed for the example in Figure lethie constructed
Bayesian network and a set of observations, we determinedsieelplanation
using the most probable explanation (MPE) inference (P&888). We compute
multiple alternative explanations using the k-MPE aldorit(Nilsson, 1998) as
implemented in the ELVIRA Elvira-Consortium (2002) package.

Learning can be used to automatically set the noisy-or amsy+and parameters
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in the model. In supervised training data for plan recognitione typically has
evidence for the observed actions and the top-level plamsveier, we usually
do not have evidence for network nodes corresponding tocaibgnoisy-ors,
and noisy/logical-ands. As a result, there are a numberradhas in the ground
networks which are always hidden, and hence EM is apprepiaatiearning the
requisite parameters from the partially observed trairdata. We use the EM
algorithm adapted for BLPs by Kersting and De Raedt (2008). Wiplgy the
problem by learning only noisy-or parameters and using argehistic logical-
and model to combine evidence from the conjuncts in the bddyctause.

4. Adapting Markov Logic

As previously mentioned, encoding the planning knowledgectly in MLNs
does not support abductive reasoning. This is because afdtiective nature
of the rules encoding the planning knowledge. In MLNs, thebability of a
possible world increases with the total weight of the sa&tisflormulae. Since
an implication is satisfied whenever its consequent is @ndylLN is unable to
abductively infer the antecedent of a rule from its consatgué&iven the rule
P = (@ and the observation tha&p is true, we would like to abduc® as a
possible cause fof). Since the consequen®)] is true, the clause is trivially
satisfied, independent of the value of the antecedehtgnd hence does not give
any information about the truth value of the antecedét (

In this section, we describe three key ideas for adapting Bith logical abduc-
tive reasoning, each one building on the previous. Firstjeseribe the Pairwise
Constraint (PC) model proposed by Kate and Mooney (2009).,Mexintroduce
the Hidden Cause (HC) model, which alleviates some of the aieficies of the
PC model. These two models offer strategies for the re-engddLN rules but
do not change the semantics of the traditional MLNs (Richardsd Domingos,
2006). Next, we introduce an abductive model constructimegdure on top of
the HC model that results in even simpler Markov networksis Tives us the
formulation for abductive Markov logic. Our ground Markoetwork construc-
tion strategy is different from the one used in traditiondlMN&, and hence, our
formulation results in a different semantics.

We also describe an alternate approach to plan recognitiaich the structure
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of the MLN is manually encoded to enable deductive inferevicthe top-level
plans from observed actions. This allows us to compare divéudarkov logic
to a manually encoded MLN for plan recognition.

4.1. Pairwise Constraint Model

Kate and Mooney (2009) were the first to develop an approaate-encode
MLNs with logical abductive reasoning, which we call the fdéée Constraint
(PC) model. We describe this approach here since it provitdesontext for
understanding the more sophisticated models introducedbsequent sections.
The key idea is to introduce explicit reversals of the imgdicns appearing in
the original knowledge base. Multiple possible explameagifor the same ob-
servation are supported by having a disjunction of the pateexplanations in
the reverse implication. “Explaining away” (Pearl, 1988)f¢rring one cause
eliminates the need for others) is achieved by introducimgugdual-exclusivity
constraint between every pair of possible causes for annaditgen. Given the
set of Horn clausesP, = Q,P, = Q,--- P, = (@, a reverse implication:
Q= PV PV P, and a set of mutual-exclusivity constraintg:= - P, v
—P,---Q = —P,; VvV —P, for all pairs of explanations are introduced. The
weights on these clauses control the strength of the ab@uictierence and the
typical number of alternate explanations, respectivelye & not need to ex-
plicitly model these constraints in BLPs, since the undagymodel is Bayesian
networks which capture the full conditional probabilitgttibution (CPD) of each
node given its parents and the mutual exclusivity condisane implicitly mod-
eled in the conditional distribution. For first-order Hollauses, all variables not
appearing in the head of the clause become existentiallytdjeal in the reverse
implication. We refer the reader to Kate and Mooney (2008}tie details of the
conversion process.

We now illustrate the PC model with the same example destiib8ection 3. It
is an example from one of our evaluation benchmarks, thegamey response do-
main introduced by Blaylock and Allen (2005) (all variablésrswith uppercase
and constants with lowercase, and by default variablesravensally quantified):

hvy_snow(Loc) A drive_hzrd(Loc) = blk.rd(Loc)
acdnt(Loc) A clr_wrk(Crew,Loc) = blk_rd(Loc)
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These rules give two explanations for a road being blocked@tation: 1) there
has been heavy snow resulting in hazardous driving comditiand 2) there has
been an accident and the crew is clearing the wreck. Giveplikervation that
a road is blocked, the plan recognition task involves abdeigtinferring one of
these causes as the explanation. Using the PC model, weegktahcombined
reverse implication and pairwise constraint clauses asnbel

blk rd(Loc) = (hvy_snow(Loc) A drive_hzrd(Loc))V
(dCrew acdnt(Loc) A clr_wrk(Crew, Loc))

blk rd(Loc) = —(hvy_snow(Loc) A drive hzrd(Loc))V
—(3Crew acdnt(Loc) A clr_wrk(Crew,Loc))

The first rule introduces the two possible explanations &edsecond rule con-
strains them to be mutually exclusive.

The PC model can construct very complex networks since ltudes multiple
clause bodies in the reverse implication, making it veryglot there aren pos-
sible causes for an observation and each of the correspphldim clause has
literals in its body, then the reverse implication li&s:k) literals. This in turn re-
sults in cliques of siz€&(nk) in the ground network. This significantly increases
the computational complexity since probabilistic infexens exponential in the
treewidth of the graph, which in turn is at least the size ef tteximum clique
(Koller and Friedman, 2009). The PC model also introdu2gs?) pairwise con-
straints, which can result in a large number of ground clau&e a result, the PC
model does not generally scale well to large domains.

4.2. Hidden Cause Model

The Hidden Cause (HC) model alleviates some of the inefficgsnof the PC
model by introducing a hidden cause node for each possilgameation. The
joint constraints can then be expressed in terms of theskehidauses, thereby
reducing the size of the reverse implication (and hencecdineesponding clique
size) toO(n). The need for the pairwise constraints is eliminated by i§ygag

a low prior on all hidden causes. A low prior on the hidden easusdicates that
the hidden causes are most likely to be false, unless thesrpiscit evidence
indicating the their presence. Hence, given an obsenvaiinderring one cause
obviates the need for the others. We now describe the HC nmodied formally.
We first consider the propositional case for the ease of eafilan. It is extended
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to first-order Horn clauses in a straightforward manner. @anghe following
set of rules describing the possible explanations for aipaéel):

PaANPoN--- NPy, = Q,Vi, (1 <i<n)

For each rule we introduce a hidden cadseand add the following rules to the
MLN:

1. Pu AP N--- NPy, < C;, Vi, (1 < i < n) (soft)

2. C; = Q, Vi, (1 <i<n)(hard)

3. Q= C,Vv(Cy--C, (reverse implication) (hard)

4. true = (;, Vi, (1 < i < n) (negatively weighted) (soft)

The first set of rules are soft clauses with high positive Wisig This allows
the antecedents to sometimes fail to cause the consequrehtite-versa). The
next two sets of rules are hard clauses, they implement andigiistic-or function
between the consequent and the hidden causes. The last arsdisrule and
implements a low prior (by having a negative MLN weight) oa tlidden causes.
These low priors discourage inferring multiple hidden esu®r the same conse-
guent (“explaining way”), and the strength of the prior detmes the degree to
which multiple explanations are allowed.

Different sets of weights on the biconditional in the firdtafaules implement dif-
ferent ways of combining multiple explanations. For examjal noisy-or model
(Pearl, 1988) can be implemented by modeling the implicafiom antecedents
to the hidden cause as a soft constraint and the reversediaires a hard con-
straint. The weighty; for the soft-constraint is set tog[(1 — py,)/py,], wherepy,

is the failure probability for cause This formulation is related to previous work
on combining functions in Markov logic (Natarajan et al. 18], however, we
focus on the use of such combining functions in the contextofuctive reason-
ing. There has also been prior work on discovering hiddarcsire in a domain
(e.g. (Davis et al., 2007; Kok and Domingos, 2007)). Howgiveour case, since
we know the structure of the hidden predicates in advanegetls no need to
discover them using the methods referenced above.

We now describe how to extend this approach to first-ordenldi@uses. For first-
order Horn clauses, variables present in the antecedent®bim the consequent
become existentially quantified in the reverse implicatasin the PC model. But
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hvy_snow
(plaza)

clr_wrk
(tcrew,plaza)

Figure 3: Ground network constructed by the PC model for dlael blocked example

unlike the PC model, the reverse implication expressionushmsimpler as it only
involves one predicate (the hidden cause) for each ruleyimplthe consequent.
Let us revisit the example from the emergency response doniased on the
HC approach, we introduce two hidden causesZfi§Loc) and rbC2(Loc)) cor-
responding to the two (hard) rules:

hvy_snow(Loc) A drive_hzrd(Loc) < rb_C1(Loc)
acdnt(Loc) A clr_wrk(Crew, Loc) < rb_C2(Crew, Loc)

Note that each hidden cause contains all variables presdheiantecedent of
the rule. These hidden causes are combined with the origoredequent using
the following (soft) rules:

rb_C1(Loc) = blk_rd(Loc)
rb_C2(Crew, Loc) = blk_rd(Loc)
blk rd(Loc) = rb_C1(Loc) V ICrew(rb_C2(Crew, Loc))

In addition, there are (soft) unit clauses specifying lowgaon the hidden causes.

Figures 3 and 4 show the ground networks constructed by trenBEC models
respectively, wheh oc is bound toPl aza andcr ewto Tcr ew. The PC model
results in a fully connected graph (maximum clique size jsw)ereas the HC
model is much sparser (maximum clique size is 3). Conseguénfgrence in the
HC model is significantly more efficient.
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hvy_snow drive_hzrd acdnt clr_wrk
(plaza) (plaza) (plaza) (tcrew,plaza)

OO OO

rb_C1 rb_C2
(plaza) Q (tcrew,plaza)
blk_rd

(plaza)

Figure 4: Ground network constructed by the HC model for daelblocked example

Algorithm 2 presents the pseudocode for constructing trenomded MLN using
the HC approach for a given Horn-clause knowledge base.nés I to 8, hid-
den causes are created for each possible explanation foceasequent (line 5).
A biconditional is introduced between the hidden causesthadorresponding
antecedents (line 6), which is modeled as a soft clause iMttié. Each hidden
cause is also linked to the corresponding consequent viedalause (line 7). The
next part (lines 9 to 24) combines the hidden causes for efitte @onsequents
into a single reverse implication. The rules are partitbaecording to the first-
order predicate appearing in the consequent (line 9). Fair partition (line 10),
each possible instantiation of the consequent predicgtesaimg in the underlying
rules is considered (lines 11 to 13). For instance, givemutes h, (X,Y) = q(Y)
and anotherh,(X, const) = q(const), we need to consider each instantiation of
q(X) andg(const) separately. For each such instantiatiqfine 14), we consider
the rules which could result in the consequebeing true (line 15). Technically,
these are rules whose consequents subsyme. there exists a substitutiah
such that = C(r;)6;, whereC(r;) is the consequent of rule. These rules result
in ¢ when bound by the substitutigh. For each such rule; (line 17), substitu-
tion 6, is applied to the corresponding hidden catigge:;) (line 18). Then, the
set of free variables in the hidden cause (i.e. the varialbbtsappearing irr)
is extracted (line 19). These variables are existentiallgngified in the reverse
implication (next step). We then introduce a reverse ingpien to indicate that
implies at least one of the consequents (amongst thoseubstiser) (line 21).
This reverse implication is made a hard clause and addectdiiN (line 22).
Finally, a low prior is introduced for each hidden causegdi25 to 27).
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Algorithm 2 GenReEncodedMLN(B)
inputs. KB, background knowledge consisting of Horn clauses
output: M, set of rules in the re-encoded MLN
1. M« {}
2: for all r € KB do
3:  A(r) < antecedent im
4:  (C(r) « consequent im
5. H(r) < hidden cause for
6: M+ MU{A(r)< H(r)}
7
8
9

. M+~ MU{H(r)=C(r)}
: end for
: PartKB) < partition of KB into sets or rules with same
(first-order) predicate in the consequent
10: for all set of rulesk € PartKB) do
11: LetR={ri,ro, - -Tm}

12:  C(R) + | J{C(r)}
=1

13: (C(R)is set of unigue consequents appearing)n
14: for all c € C(R) do

15: R. + {’I”i €ER ’ 3460;,¢c = C(’l“z)ez}

16: (R, is set of rules whose consequents subsgme

17: for all r; € R. do

18: H@i (7"1) — H(T'Z)QZ

19: {vi,, vi,, - - - v;, } < variables appearing in

Hy, (r;) but notinc

20: end for .

21: I.(R.) « (c= \/ iy, Vig, - - - Vi, Hy, (1))
=1

22: M+~ MU{I.(R.)}

23:  end for

24: end for

25: for all r € KB do

26 M+ MU {true = H(r) (negatively weighted)
27: end for

28: return M

4.3. Abductive Model Construction

Abductive reasoning using MLNs consists of the followingt&ps: 1) Generate
the re-encoded MLN, 2) Construct the ground Markov networ&deh construc-
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tion), 3) Perform learning/inference over the resultingugrd network. The stan-
dard MLN model construction process uses the set of all plesground atoms
(the Herbrand base) and constructs the set of all possiblengrclauses using
these atoms. Using logical rules to construct a graphicalehis generally re-
ferred to asknowledge-based model construction (KBMC), originally proposed
by Wellman (Wellman et al., 1992; Breese et al., 1994). Treamas further used
by Ngo and Haddawy (1997) for answering queries from prdisticiknowledge
bases. In abductive reasoning, we are looking for explangatior a given set of
observations. In this task, the set of all possible grounthatand ground clauses
may not be needed to explain the observations. Considermdutly ground
network leads to increased time and memory complexity famieg and infer-
ence. For instance, in the road blocked example, if the ghgen of interest is
blk rd(plaza), then we can ignore groundings where the location iphata.

We propose an alternative model-construction procedateutes logical abduc-
tion to determine the set oélevant ground atoms. The procedure first constructs
the set of abductive proof trees for the observations andukes only the ground
atoms in these proofs instead of the full Herbrand base fastcocting the ground
network. The ground Markov network is then constructed yantiating the for-
mulae in the abductive MLN using this reduced set of groumdnat We refer
to the set of ground atoms (Markov network) thus construetethe abductive
ground atoms (Markov network). First, given a set of Horresthnd a set of ob-
servations, the rules for the abductive MLN are construatedg the HC model.
Next, the set of most-specific abductive proof trees for theeovations are com-
puted using the method of Stickel (1988). The abductiverérfee process to get
the set of most-specific abductive proofs is described imAlflgm 1. The atoms in
these proofs form the set of abductive ground atoms. For feawtula in the ab-
ductive MLN, the set of all ground formulae whose atoms appethe abductive
ground atoms are added to the ground Markov network. Whilélhapnexisten-
tials, only those disjuncts which belong to the set of abgaairound atoms are
used. Learning and inference are then performed over th#iresnetwork.

In general, the abductive model construction procedureltseesr a ground net-
work that is substantially different (and usually much dienpfrom that con-
structed using the full Herbrand base. It also differs fromnetwork constructed
by starting KBMC from the query/observations (Domingos aodd, 2009) be-
cause of the use of the backward chaining and unificationrnduiie abduc-
tive model construction. Consequently, the probabilistferiences supported by
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this model can be different from that of the traditional MLNodel. This also
makes the abductive process different from other pre-ging approaches such
as Shavlik and Natarajan (2009), or existing lifted infeemtechniques such as
Singla and Domingos (2008), both of which produce a netwhesk ts proba-
bilistically equivalent to the original. By focusing on thel@vant ground atoms,
abductive model construction significantly improves thégenance of abductive
MLNSs both in terms of time and memory efficiency as well as predictivaiaacy.
Further, lifted inference could still be applied by consting a lifted network over
the nodes/clauses present in the abductive network. Faistency with Singla
and Mooney (2011), we will refer to abductive MLNs (using tHielden Cause
model followed by abductive model construction) as MLN-HCAM

Detailed experiments demonstrating significantly imptbg&an-recognition per-
formance (with respect to both accuracy and efficiency) ier HC model and
abductive model construction are presented by Singla arahiglo(2011). There-
fore, we only compare with the MLN-HCAM approach in the expernts below.

4.4. Plan Recognition using Manually Encoded MLNs

As discussed in the introduction, traditional (non-abt@jtMLNs can be used
for plan recognition if an appropriate set of clauses areuaby provided that
directly infer higher-level plans from primitive actions.g. (Sadilek and Kautz,
2010b,a). In order to compare to this approach, we develapedLN approach
that uses a manually-engineered knowledge base to perfedoctive plan recog-
nition.

The clauses for this manually encoded MLN were constructetbllows. For
each top-level plan predicate, we identified any set of alagiens that uniquely
identifies this plan. This implies that no other plan exdinis set of observa-
tions. We then introduced a rule that infers this plan givessé observations and
we make it a hard clause in the MLN. If no such observationstewie introduced
a soft rule for each observation that could potentially ¢atke this plan. Hard
mutual-exclusivity rules were included for plans when wewronly one of them
can be true. Alternatively, we gave a negative prior to ahpbredicates as de-
scribed in the MLN-HCAM model. Note that this approach doesimclude any
predicates corresponding to sub-goals that are never\aakér the data. As a
result, all variables in this model are fully observed dgriraining, resulting in a
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less complex model for learning and inference. This way ebding the domain
knowledge avoids the automated machinery for introducavgnse implications,
and can potentially lead to a simpler knowledge base, wteshlts in simpler
ground networks. However, it requires a separate knowletggneering process
that develops explicit plan-recognition rules for the domavhile the abductive
approach only requires basic knowledge about plans andnactufficient for
planning. There are several ways in which such explicit p&oognition knowl-
edge bases can be manually engineered, and we have emplisyed¢ possible
approach. Exploring alternative approaches is a diredoorfuture work. Sub-
sequently, we refer to this manually encoded traditionalN\vthodel as “MLN-
manual”.

4.5. Probabilistic Modeling, Inference, and Learning

In MLN-HC and MLN-HCAM, we use the noisy-or model to combine linu
ple explanations. In all MLN models, we use the cutting-plamethod (Riedel,
2008) for MPE inference and MC-SAT (Poon and Domingos, 200@pmpute
marginal probabilities of plan instances. For learningghés of the clauses in
MLN-HCAM, we use a version of gradient-based voted-peragptalgorithm
(Singla and Domingos, 2005) modified for partially obserdada as discussed
in Chapter 20 (Section 3.3.1) of Koller and Friedman (2009y. tRe traditional
MLN model, gradient-based voted-perceptron algorithnsrout of memory due
to the size and complexity of the resulting ground networkeerefore, we learned
weights using the discriminative online learner proposgtibynh and Mooney
(2011a)t More details about various settings used in our experimargsde-
scribed in Section 5.

5. Experimental Evaluation

In this section, we present an extensive experimental atialu of the perfor-
mance of BALPs and MLNs on three plan-recognition data dgt€ortunately,

1This is possible since the training data for this model ilyfabserved (i.e there are no hidden
nodes).
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there have been very few rigorous empirical evaluationdai-pecognition sys-
tems, and there are no widely-used benchmarks. Our expamenploy three
extant data sets and compare to the state-of-the-artsesutder to demonstrate
the advantages of SRL methods. In addition to presentingretcesults for
BALPs and MLNs, we also consider their relationship to ottvebabilistic log-
ics, discussing the relative strengths and weaknesseferfeit SRL models for
plan recognition.

5.1. Datasets

5.1.1. Sory Understanding

We first used a small dataset previously used to evaluatectibelstory under-
standing systems (Ng and Mooney, 1992; Charniak and Goldh®®1,)? In this
task, characters’ higher-level plans must be inferred ftoer actions described
in a narrative text. A logical representation of the litemaaning of the text is
given for each example. A sample story (in English) is: “Biknt to the liquor-
store. He pointed a gun at the owner.” The plans in this daiaskeide shopping,
robbing, restaurant dining, traveling in a vehicle (busj @& plane), partying
and jogging. Most narratives involve more than a single plEms small dataset
consists of 25 development examples and 25 test examplésceataining an
average of 12.6 literals. We used the planning backgroumsviatge initially
constructed for the ACCEL system (Ng and Mooney, 1992), Witiontains a
total of 126 Horn rules.

5.1.2. Monroe

We also used the Monroe dataset, an artificially generatadgcognition dataset
in the emergency response domain by Blaylock and Allen (200&is domain in-
cludes 10 top level plans like setting up a temporary shalkearing a road wreck,
and providing medical attention to victims. The task is ti@ira single instanti-
ated top-level plan based on a set of observed actions atitathagenerated by
a hierarchical transition network (HTN) planner. We used the the logical plan

2Available atht t p: / / ww. cs. ut exas. edu/ users/ ni / accel . ht m
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knowledge base for this domain constructed by Raghavan arah&jo(2011),

which consists of 153 Horn clauses. We used 1,000 artifjcggherated exam-
ples in our experiments. Each example instantiates onesof@top-level plans
and contains an average of 10.19 ground literals descréosample execution of
this plan.

5.1.3. Linux

The Linux dataset is another plan-recognition datasett@tely Blaylock and
Allen (2004). Human users were asked to perform varioustaskinux and their
commands were recorded. The task is to predict the cornetgvel plan from the
sequence of executed commands. For example, one of theinaskees finding
all files with a given extension. The dataset consists of p9dwel plan schemas
and 457 examples, with an average of 6.1 command literalexsenple. Here
again, we used the plan knowledge base constructed by RaghadaMooney
(2011), which consists of 50 Horn clauses.

Each of these data sets evaluates a distinct aspect of plagniéon systems.
Since the Monroe domain is quite large with numerous sulsgmadl entities, it
tests the ability of a plan-recognition system to scale tgdalomains. On the
other hand, the Linux data set is not that large, but sincel&t& comes from real
human users, it is quite noisy. There are several sourcesisd mcluding cases
in which users claim that they have successfully executeghdetvel plan when
actually they have not (Blaylock and Allen, 2005). Therefahes data set tests
the robustness of a plan-recognition system to noisy inManroe and Linux
involve predicting asingle top-level plan; however, in the Story Understanding
domain, most examples have multiple top-level plans. Tbese this data set
tests the ability of a plan-recognition system to identifyltiple top-level plans.

5.2. Comparison of BALPs, MLNs, and Existing Approaches

In this section, we present experimental results compategperformance of
BALPs and MLNs to that of existing plan recognition approaxitike ACCEL
(Ng and Mooney, 1992) and the system developed by BlaylockAled (2005).
ACCEL is a purely logical abductive reasoning system thaswsvariable eval-
uation metric to guide its search for the best explanatiortah use two differ-
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ent evaluation metricssimplicity, which selects the explanation with the fewest
assumptions, andoherence, which selects the explanation that maximally con-
nects the input observations (Charniak and Goldman, 199 Second metric
is specifically geared towards text interpretation by maaguexplanatory coher-
ence (Ng and Mooney, 1990). Currently, this bias has not been parated in
either BALPs or any of the MLN approaches. Blaylock and Akesystem is

a purely probabilistic system that learns statisticajram models to separately
predict plan schemas (i.e. predicates) and their arguments

Section 4 describes several variants of MLNs for plan reitmgm All MLN mod-
els were implemented using Alchemy (Kok et al., 2010), amamirce software
package for learning and inference in Markov logic. We ukeddgical abduction
component developed for BALPs (Algorithm 1) for abductivedal construc-
tion in MLNs. Since this abductive Markov-logic formulatigMLN-HCAM)
performs better than simple re-encodings of the traditidiaN, we restrict our
comparative experiments to this approach. For more deinithe experimental
results comparing the different MLN enhancements, we tbkereader to Singla
and Mooney (2011). For the Monroe and Linux datasets, weaswpare with
the traditional (non-abductive) MLN approach describe&éttion 4.4, referred
to as “MLN-manual.”

For BALPs, we learned the noisy-or parameters using the erghm described
in Section 3.2 whenever possible. Similarly for both MLN-H&Aand MLN,
we learned the parameters using the algorithms describ&skation 4.5. For
datasets that had multiple top plans as the explanation,onguted the most
probable explanation (MPE). For datasets that had a sigteat top-level plan,
we computed the marginal probability of plan instances dokiegl the one with
the highest marginal probability. For both MLNs and BALP®, have used exact
inference whenever feasible. However, when exact inferevas intractable, we
used approximate sampling to perform probabilistic inieee— Sample Search
(Gogate and Dechter, 2011) for BALPs and MC-SAT (Poon and Ibhgos, 2006)
for MLNs. Both these techniques are approximate samplingrittgns designed
for graphical models with deterministic constraints. Whemave deviate from
this standard methodology, we provide the specific details.
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5.2.1. Sory Understanding

This section provides information on the methodology amsdlis for experiments
on the story-understanding data set.

Parameter Learning

For BALPs, we were unable to learn effective parameters fileenmere 25 de-
velopment examples. As a result, we set parameters marinaly attempt to
maximize performance on the development set. A uniformevali0.9 for all
noisy-or parameters seemed to work well for this domain. ihhgtion behind
our choice of noisy-or parameters is as follows: if a paredenis true, then with

a probability 0f0.9, the child node will be true. In other words, if a cause is true
then the effect is true with the probability 69. Using the deterministic logical-
and model to combine evidence from conjuncts in the body daase did not
yield high-quality results. Using noisy-and significantiyproved the results; so
we used noisy-and’s with uniform parameter)¢f. Here again, the intuition is
that if parent node is false or turned off, then the child nedeld also be false or
turned off with a probability).9. To disambiguate between conflicting plans, we
set different priors for high level plans to maximize penfi@nce on the develop-
ment data. For MLN-HCAM, we were able to learn more effectivaghts from
the examples in the development set using the learningitiigodescribed in the
Section 4.5.

Probabilistic Inference

Since multiple plans are possible in this domain, we congptite most probable
explanation (MPE) to infer the best set of plans. Since tlsalteg graphical
models for this domain were not exceptionally large, we vedale to apply exact
(rather than approximate) inference algorithms. For BAMAs used the k-MPE
algorithm (Nilsson, 1998) as implemented in Elvira (ElvZansortium, 2002).
For MLN-HCAM, we used with the cutting-plane method (and tlssaxiated
code) developed by Riedel (2008).

Evaluation Metrics

We compared BALPs and MLN-HCAM with ACCEL-Simplicity and ACCEL-
Coherence. We compared the inferred plans with the grournld toucompute
precision (the percentage of the inferred plans that are correetall (the per-
centage of the correct plans that were properly inferretj Fameasure (the har-
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Precision| Recall| F-measure
ACCEL-Simplicity 66.45 | 52.32 58.54
ACCEL-Coherence 89.39 | 89.39 89.39
BALP 72.07 | 85.57 78.24
MLN-HCAM 69.13 | 75.32 72.10

Table 1: Results for the Story Understanding dataset

monic mean of precision and recall). Partial credit was myifg predicting the

correct plan predicate with some incorrect arguments. Atpwas rewarded for
inferring the correct plan predicate, then, given the adnpeedicate, an additional
point was rewarded for each correct argument. For examipliee icorrect plan

wasplan, (aq, as) and the inferred plan wasgan, (a,, as), the score i$6.67%.

Results

Table 1 shows the results for Story Understanding. Both BABRd MLN-
HCAM perform better than ACCEL-Simplicity, demonstrating thdvantage of
SRL models over standard logical abduction. BALPs perfortteb¢han MLN-
HCAM, demonstrating an advantage of a directed model fortdsk. However,
ACCEL-Coherence still gives the best results. Since the cabermetric incor-
porates extra criteria specific to story understanding, itres would need to be
included in the probabilistic models to make them more cditipe Incorporat-
ing this bias into SRL models is difficult since it uses the giagl structure of the
abductive proof to evaluate an explanation, which is naigttforward to include
in a probabilistic model. It should be noted that the cohesenetric is specific to
narrative interpretation, since it assumes the obsenstoe connected together
into a coherent “story,” and this assumption is not gengratiplicable to other
plan recognition problems.

5.2.2. Monroe and Linux

This section provides information on the methodology asdlis for experiments
on the Monroe and Linux data sets.

Parameter Learning

For BALPs, we learned the noisy-or parameters automafifralin data using the
EM algorithm described in Section 3.2. We initially set adlisy-or parameters
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to 0.9, which gave reasonable performance in both domains. Wegialdefault
value 0f0.9 based on the intuition that if a parent node is true, then ltild aode

is true with a probability.9. We then ran EM with two starting points — random
weights and manual weight8.9). We found that EM initialized with manual
weights generally performed the best for both domains, amté we used this
approach for our comparisons. Even though EM is sensitivs tgtarting point,

it outperformed other approaches even when initializetd vahdom weights. For
Monroe and Linux, initial experiments found no advantageisong noisy-and
instead of logical-and in these domains, so we did not expert with learning
noisy-and parameters.

For MLN-HCAM, we learned the weights automatically from dasing the meth-

ods described in Section 4.5. For MLN-manual, the onlinggveliearner did not

provide any improvement over default manually-encodedytsi (a weight of 1

for all the soft clauses and a weight of -0.5 on unit clausealfilan predicates
to specify a small prior for all plans). Therefore, we repgedults obtained using
these manually-encoded weights.

For Monroe, of the 1,000 examples in our dataset we used 1860 for training,
the next 200 for validation, and the remaining 500 exammetekt. Blaylock and
Allen learned their parameters on 4,500 artificially getest@xamples. However,
we found that using a large number of examples resulted irhrfarger training
times and that 300 examples were sufficient to learn effegarameters for both
BALPs and MLN-HCAM. For BALPs, we ran EM on the training set ilime
saw no further improvement in the performance on the vabdatet. For MLN-
HCAM, the parameter learner was limited to training on at i@ examples,
as learning on larger amounts of data ran out of memory. Thwerewe trained
MLN-HCAM on 3 disjoint subsets of the training data and pickiee best model
using the validation set.

For Linux, we performed 10-fold cross validation. For BAL.Ms ran EM until
convergence on the training set for each fold. For MLN-HCANthw each train-
ing fold, we learned the parameters on disjoint subsetstaf @éach consisting of
around 110 examples. As mentioned before for Monroe, trenpater learner did
not scale to larger data sets. We then used the rest of thepdesim each training
fold for validation, picking the model that best performedtbe validation set.

As discussed in section 4.4, in the traditional MLN modegréhare two ways to
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encode the bias that only a single plan is needed to explaivea gction. The
first approach is to include explicit hard mutual-exclusivconstraints between
competing plans, the second approach involves setting gptaw on all plan

predicates. While the former performed better on MonroeJdtier gave better
results on Linux. We report the results of the best approackdch domain.

As noted, we had to adopt a slightly different training melblogy for BALPs

and MLN-HCAM due to computational limitations of MLN weighg¢drning on
large datasets. However, we used the exact same test sbtgligystems on all
datasets. Developing more scalable online methods foritigaMLNs on partially

observable data, is an important direction for future work.

Probabilistic Inference

Both Monroe and Linux involve inferring a single top-levebpl Therefore, we
computed the marginal probability of each plan instardrmtind picked the most
probable one. For BALPs, since exact inference was trazt@abLinux, we used
the exact inference algorithm implemented in Neficacommercial Bayes-net
software package. For Monroe, the complexity of the grouetsvark made ex-
act inference intractable and we used SampleSearch (Gagdt®echter, 2011),
an approximate sampling algorithm for graphical modelfwigterministic con-
straints. For both MLN approaches, we used MC-SAT (Poon anahibgos,
2006) as implemented in the Alchemy system on both Monrod_andk.

Evaluation Metric

We compared the performance of BALPs, MLN-HCAM and MLN with ftack
and Allen’s system using theonvergence score as defined by Blaylock and Allen
(2005). The convergence score measures the fraction ofgarfor which the
correct plan predicate is inferred (ignoring the argumenwtsen givenall of the
observations. Use of the convergence score allowed foaihest comparison to
the original results on these datasets published by BlaydadkAllen?

Results
Table 2 shows convergence score for both the Monroe and ldatesets. Both

Shtt p: // ww. norsys. conl
“Blaylock and Allen also report results on predicting argntegbut using a methodology that
makes a direct comparison difficult.
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Monroe | Linux
Blaylock 94.20 | 36.10
MLN-manual | 90.80 | 16.19
MLN-HCAM | 97.00 | 38.94
BALP 98.40 | 46.60

Table 2: Convergence scores for Monroe and Linux datasets

BALPs and MLN-HCAM recognize plans in these domains more eately than
Blaylock and Allen’s system. The performance of BALP and MHTAM are
fairly comparable on Monroe; however BALPs are significantbre accurate on
Linux. The traditional MLN performs the worst, and does fatarly poorly on
Linux. This demonstrates the value of the abductive appreadmplemented in
MLN-HCAM.

Partial Observability Results

The convergence score has the following limitations as aiofet evaluating the
performance of plan recognition:

1. It only accounts for predicting the correct plan predicagnoring the ar-
guments. In most domains, it is important for a plan-rectigmisystem to
accurately predict arguments as well. For example, in thedLdomain, if
the user is trying to move “testl.txt” to “test-dir”, it is heufficient to just
predict the move command; it is also important to predictfilee(test.txt)
and the destination directory (test-dir).

2. It only evaluates plan prediction after the system ha®meslall of the
executed actions. However, in most cases, we would like tale to
predict plans after observing as few actions as possible.

In order to evaluate the ability of BALPs and MLNSs to infer plarguments and
to predict plans after observing only a partial executior,a@nducted an addi-
tional set of experiments. Specifically, we performed pkacognition after ob-
serving the first 25%, 50%, 75%, and 100% of the executedractibo measure
performance, we compared the complete inferred plan (wijnraents) to the
gold-standard to compute an overadturacy score. As for Story Understanding,
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25% | 50% | 75% | 100%
MLN-manual | 10.63| 13.23| 37.00| 67.13
MLN-HCAM | 15.93| 19.93| 43.93| 76.30

BALP 07.33| 20.26| 44.63| 79.16

Table 3: Accuracy on Monroe data for varying levels of obability

25% | 50% | 75% | 100%
MLN-manual | 10.61| 10.72| 10.61| 10.61
MLN-HCAM | 16.30| 16.48| 24.36| 28.84

BALPs 19.83| 25.45| 34.06| 36.32

Table 4: Accuracy on Linux data for varying levels of obséility

partial credit was given for predicting the correct plandicate with only a subset
of its correct arguments.

Table 3 shows the results for partial observability for thenvbe data. BALPs per-
forms slightly better than MLN-HCAM on higher levels of obgability, whereas,
MLN-HCAM tends to outperform BALP on lower levels of obserildp. The
MLN-manual performs worst at higher levels of observapilliut at 25% ob-
servability, it out-performs BALPs. Table 4 shows the restr partial observ-
ability on the Linux data. Here, BALPs clearly outperform M{HCAM and
traditional MLNs at all the levels of observability. Thediraonal MLN performs
significantly worse than the other two models, especialljigler levels of ob-
servability. For Story Understanding, since the set of pleseactions is already
incomplete, we did not perform additional experiments fartial observability.

5.2.3. Discussion

We believe several aspects of SRL approaches led to theirisuperformance
over existing approaches like ACCEL and Blaylock and Allenstegn. The abil-
ity of BALPs and MLN-HCAM to perform probabilistic reasoningost likely

resulted in their improved performance over ACCEL-Simplicit standard logi-
cal abduction method. When Blaylock and Allen (2005) perfarstantiated plan
recognition, it is done in a pipeline of two separate stefdse first step predicts
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the plan schema and the second step predicts the argumeetstge schema.
Unlike their approach, BALPs and MLN-HCAM are able to joinfyedict both

the plan schema and its arguments simultaneously. We belay this ability of

these SRL models to perform joint prediction of plans andrthgguments is at
least partially responsible for their superior perform@ana addition, both BALPs
and MLN-HCAM utilize prior planning knowledge encoded in tbgical clauses
given to the system, while Blaylock and Allen’s system has oceas to such
planning knowledge. We believe that the ability of SRL modelsncorporate
such prior domain knowledge also contributes to their Sopeerformance.

MLN-manual, although a joint model, cannot take advantdgdl @f the domain
knowledge in the planning KB available to BALPs and MLN-HCAMIlso, it
does not have the advantages offered by the abductive modstraction pro-
cess used in MLN-HCAM. This also makes it difficult to adeqlatearn the
parameters for this model. We believe these factors leatstovierall inferior
performance compared to the other models. For both the Moand Linux do-
mains, the relative gap in the performance of MLN-manual ehdécreases with
decreasing observability. This is particularly evidentinux, where the perfor-
mance stays almost constant with decreasing observaMlgybelieve this is due
to the model’s ability to capitalize on even a small amounindérmation that
deterministically predicts the top-level plan. Furthermaat lower levels of ob-
servability, the ground networks are smaller and therefmpproximate inference
is more likely to be accurate. Singla and Mooney (2011) regghatt MLN-PC and
MLN-HC models did not scale well enough to make them traetédnl the Monroe
and Linux domains. When compared to these models, MLN-mamask sub-
stantial advantage. But it still does not perform nearly a$asthe MLN-HCAM
model. This re-emphasizes the importance of using a modeidiconstructed by
focusing on both the query and the available evidence. Eurtbre, the MLN-
manual approach requires costly human labor to engineekribeledge base.
This is in contrast to the abductive MLN models that allow slaene knowledge
base to be used for both planniagd plan recognition.

Comparing BALPs and MLN-HCAM, BALPs generally performed betWWe be-
lieve this difference is partly due to the advantages thattied graphical models
have for abductive reasoning, as originally discussed lay|F£988). Note that
MLN-HCAM already incorporates several ideas that origidatéth BALPs. By
using hidden causes and noisy-or to combine evidence frolpteurules, and
by utilizing logical abduction to obtain a focused set cdils for the ground net-
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work, we improved the performance of MLNs by making them micla graph-
ical model that is more similar to the one produced by BALPdth@ugh, in
principle, any directed model can be re-expressed as ameatell model, the
learning of parameters in the corresponding undirectedefrach be significantly
more complex since there is no closed form solution for theimam-likelihood
set of parameters unlike in the case of directed motéi®ller and Friedman,
2009). Inaccurate learning of parameters can lead to patdéoss of accuracy
during final classification. Undirected models do have theaathge of repre-
senting cyclic dependencies (such as transitivity), widglcted models can't
represent explicitly because of the acyclicity constraiBtit we did not find it
particularly useful for plan recognition since the domamowledge is expressed
using rules that have an inherent directional (causal) s&osa In addition, it is
very difficult to develop a general MLN method that constsueiMarkov net that
is formally equivalent to the Bayes net constructed by a BAhRmthe same
initial planning knowledge base.

In general, it took much more engineering time and effortgbMLNSs to perform
well on plan recognition compared to BLPs. Extending BLPs watjical ab-
duction was straightforward. The main problem we encoeatevhile adapting
BLPs to work well on our plan recognition benchmarks was figdam effec-
tive approximate inference algorithm that scaled well t® ldrger Monroe and
Linux datasets. Once we switched to Sample Search, whicésigiged to work
well with the mix of soft and hard constraints present in oetworks, BALPs
produced good results. However, getting competitive tesuith MLNs and scal-
ing them to work with our larger datasets was significantlyrendifficult. First,
we needed to develop a method for properly introducing s&vetauses to allow
MLNs to perform logical abduction. Next, we had to develop etmod for in-
troducing hidden causes in order to prevent the creatioretarks with large
cliques that made inference intractable. Finally, we hadeieelop an abductive
model construction process that used the ground literaistoacted for BALPs
to constrain the size and scope of the ground Markov net. B&ften all these
modifications, the weight-learning algorithm did not sdaléarger training sets,
and the overall results are still not competitive with BALPs

5In directed models, a closed form solution exists for theadgull observability. This corre-
sponds to the M step in EM when dealing with partial obsefitgbi
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Some of the differences in the performance of BALPs and MLGIANM may also
stem from the differences in the probabilistic inference parameter-learning
algorithms employed. For instance, on the Linux datasetcetdd run exact
inference for BALPs, but we had to resort to MC-SAT, an appr@ate sam-
pling algorithm, for MLN-HCAM. On Monroe, even though we usggproximate
sampling algorithms for both BALPs and MLN-HCAM, it is uncteahether
the performance of Sample Search and MC-SAT are comparabiehefmore,
since probabilistic inference is used extensively duriagameter learning, per-
formance of the inference techniques could impact the wuafi the learned
weights/parameters. In our preliminary work, we convettexnoisy-or parame-
ters learned using the EM algorithm for BALPs into weightsMhN-HCAM.
When we performed plan recognition using these weights, wadahat the
performance of MLN-HCAM improved, demonstrating a lack offiy in the
learned MLN weights. This could be due either to poor pertomoe of proba-
bilistic inference, or to poor performance of the weightries itself. Additional
experiments that control for changes in the inference aachieg algorithms are
needed to further understand the effects of these diffeenc

5.3. Comparison of BALPs and MLNs to other SRL models

BLPs, BALPs, and MLNs are all languages for flexibly and contigaepre-
senting large, complex probabilistic graphical models. alernative approach
to SRL is to add a stochastic element to the deductive prodeadagic pro-
gram. ProbLog (Kimmig et al., 2008), is the most recent antl-developed of
these approaches. ProbLog can be seen as extending andhgujpseveral pre-
vious models, such as Poole’s Probabilistic Horn AbductiRidA) (Poole, 1993)
and PRISM (Sato, 1995). Finally, there is publicly-avaiabhplementation of
ProbLog® that exploits the latest inference techniques basebimary decision
diagrams (BDDs) to provide scalability and efficiency.

Therefore, we attempted to also compare the performanag ofiodels to ProbLog.
It was relatively straightforward to develop a ProbLog peoyg for plan-recognition
by appropriately formulating the planning KB used for bothF&Land abductive
MLNs. However, our preliminary explorations with ProbLcgyealed a serious

Shttp://dtai.cs.kul euven. be/ probl og/
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limitation that prevented us from actually performing apestmental comparison
on our plan recognition datasets. In a number of the planakngmns in our KBs,
existentially quantified variables occur in the body of auskawhich do not occur
in the head. Representing these clauses in ProbLog requiréisdp such vari-
ables to all possible type-consistent constants in the dorkimwever, this results
in the ProbLog inference engine attempting to construchtragtable number of
explanations (i.e. proofs) due to the combinatorial nundigrossible combina-
tions of these introduced constants. Therefore, it wagdtable to run ProbLog
on our datasets, preventing an empirical comparison. BAMRSMLN-HCAM
use a greedy abductive-proof construction method destnibgection 3.1 to pre-
vent this combinatorial explosion. Therefore, we believebRog would need a
new approximate inference algorithm for this situation rdey to be practically
useful for plan recognition.

Abductive Stochastic Logic Programs (ASLPs) (Chen et al082@re another
SRL model that uses stochastic deduction and supports lagjchuction and,
therefore, could potentially be applied to plan recognitiblowever, we are un-
aware of a publicly-available implementation of ASLPs tbaiild be easily used
for experimental comparisons.

6. Future Work

The research presented in this paper could be extendedigusaways. First, it
would be good to evaluate the proposed plan-recognitiotesyson additional
domains and applications. Unfortunately, there are veny gablicly-available
datasets for plan recognition.

Second, the existing SRL methods could be improved and extemdseveral
productive directions. Methods for lifted inference (Sangnd Domingos, 2008)
could improve efficiency by allowing probabilistic infer@to be performed with-
out having to explicitly construct complete ground netwgrkn particular, the
latest Probabilistic Theorem Proving (PTP) methods feedifinference in MLNs
(Gogate and Domingos, 2011) could be tried to improve theieffcy and accu-
racy of the MLN models.

Improved on-line weight learning algorithms could be depeld to more effi-
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ciently train on large datasets and increase the accuratye déarned models. In
particular, discriminative rather than generative (i.&1)Barameter learning for
BALPs should be explored. Although discriminative leagnis more difficult for
directed graphical models than for undirected ones, thesdoben recent progress
on this problem (Carvalho et al., 2011). Current discrimirebn-line weight
learners for MLNs (Huynh and Mooney, 2011a) assume comipleteservable
training data. These methods are not applicable to abaubktiNs, which con-
tain unobserved sub-goal and noisy-or nodes. Therefdegtee on-line meth-
ods for partially-observed training data need to be deezlop

With respect to the traditional MLN approach, better methtmt manually en-
gineering effective rules for deductive plan recognitiauld be developed. Al-
ternatively, MLN structure learning (Kok and Domingos, 20Q010; Huynh and
Mooney, 2011b) could be used to automatically induce sulels from supervised
training data. In addition, a similar approach could be tged for applying tra-
ditional (deductive) BLPs to plan recognition.

The current experimental comparisons should be extendettiitional SRL mod-
els. As mentioned in section 5.3, an improved approximderemce method is
needed to make ProbLog tractable for our plan-recognitiablpms. Compar-
isons to other SRL models such as Poole’s Horn Abduction €R4893), PRISM
(Sato, 1995), and Abductive Stochastic Logic Programs (Gtexh., 2008), are
also indicated.

7. Conclusions

This paper has introduced two new SRL approaches to plan mgmy one
based on Bayesian Logic Programs (BLPs), the other on MarkgiclMetworks
(MLNs). Both of these approaches combine the advantagesaflpgical and
probabilistic methods. We presented novel techniquesxXianeing both MLNs
and BLPs with logical abduction in order to allow for plan rgodion given log-
ical definitions of actions and plans as the only prior knalgke Experimental
evaluations on three benchmark data sets have shown thajppuwaches gen-
erally outperform other state-of-the-art methods in pkcognition. We believe
their superior performance is due to the combination ofdalgabduction, joint
probabilistic inference, and incorporation of planningréon knowledge. The

37



results also indicate that the approach based on BLPs isanerore effective
than the one based on MLNSs.
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