
Review Quality Aware Collaborative Filtering

Sindhu Raghavan
The University of Texas at

Austin
sindhu@cs.utexas.edu

Suriya Gunasekar
∗

The University of Texas at
Austin

suriya@utexas.edu

Joydeep Ghosh
The University of Texas at

Austin
ghosh@ece.utexas.edu

ABSTRACT
Probabilistic matrix factorization (PMF) and other popular
approaches to collaborative filtering assume that the ratings
given by users for products are genuine, and hence they give
equal importance to all available ratings. However, this is
not always true due to several reasons including the pres-
ence of opinion spam in product reviews. In this paper, the
possibility of performing collaborative filtering while attach-
ing weights or quality scores to the ratings is explored. The
quality scores, which are determined from the corresponding
review data are used to “up–weight” or “down–weight” the
importance given to the individual rating while performing
collaborative filtering, thereby improving the accuracy of the
predictions. First, the measure used to capture the quality of
the ratings is described. Different approaches for estimating
the quality score based on the available review information
are examined. Subsequently, a mathematical formulation to
incorporate quality scores as weights for the ratings in the
basic PMF framework is derived. Experimental evaluation
on two product categories of a benchmark data set from
Amazon.com demonstrates the efficacy of our approach.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Applications -
Data Mining; I.2.7 [Computing Methodologies]: Nat-
ural Language Processing - Text Analysis

Keywords
Recommender Systems, Probabilistic Matrix Factorization,
Collaborative Filtering, Review Quality

1. INTRODUCTION
Collaborative filtering (CF), popularly used in recommen-

dation systems, involves the task of predicting the missing
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scores or ratings in a user-item matrix by collecting prefer-
ence information from similar users and/or items. The un-
derlying assumption of the CF approach is that those who
have agreed in the past, tend to agree again in the future.
Such systems are widely deployed in various domains in-
cluding movie/music recommendation (Pandora1, Netflix2)
and product recommendation by several online retailers like
Amazon.com3 and eBay.com4.

Probabilistic matrix factorization (PMF) [25], which is
one of the popular approaches to collaborative filtering in-
fers latent factors of both users and items and estimates
ratings based on the interaction of user and item factors.
PMF assumes that the ratings given by users for products
are genuine, hence it gives equal importance to all available
ratings. However, this assumption does not always hold due
to several reasons. Often, users unhappy with a seller tend
to give a poor rating for the product, which does not nec-
essarily reflect on the quality of the product. Other times,
some sellers might deliberately give superior ratings to pro-
mote their products, or they might give unjust poor ratings
to competitors’ products. The presence of such spurious
ratings could impact the performance of the underlying col-
laborative filtering technique [19].

In this paper, the possibility of performing collaborative
filtering while attaching quality scores to the ratings is ex-
plored. Most online retailers allow users to provide reviews
of products in natural language text. Further, some web-
sites also allow users to provide feedback on how useful the
reviews have been. We believe that it is possible to assess
the quality of a review/rating using this additional informa-
tion. The quality score can then be used to “up–weight” or
“down–weight”the importance given to the individual rating
in the user-item matrix. As a result, ratings with a lower
quality score will have lower impact on the predicted scores,
thereby improving the accuracy of the predictions.

Our approach to collaborative filtering using quality scores
consists of two stages. The first stage involves estimating the
quality scores for individual ratings in the data set. In or-
der to quantify the quality of ratings, we use the “review
helpfulness” score defined by Kim et al. [13], which uses the
feedback information provided by the users for individual re-
views. This measure provides a reasonable indication of the
quality when the amount of feedback is high. However, for
more recent reviews that have less feedback, this score might

1http://www.pandora.com
2https://www.netflix.com
3http://www.amazon.com
4http://www.ebay.com



not necessarily capture the true quality of the rating. For
such reviews, the quality score is estimated using a regres-
sion model trained on reviews that have sufficient feedback.
A variety of features extracted from the review text as well
as user and review metadata information are used to train
the regression model. In the second stage, the quality scores
estimated from the previous stage are used as weights for the
ratings in the probabilistic matrix factorization framework.

The novelty of our approach lies in the integration of qual-
ity scores based on product reviews with collaborative fil-
tering to improve the performance of recommender systems.
On the one hand, there is a large body of work on the anal-
ysis of online product reviews, especially in the area of as-
sessing the helpfulness of online reviews [13, 7, 16] as well
detecting opinion spam [11, 15, 28, 22]. On the other hand,
there is also a fair amount of work in the area of collabora-
tive filtering for recommender systems [14, 30, 27] using vari-
ous approaches including PMF [25] and its Bayesian variant
[26]. To the best of our knowledge, this is the first paper
that tries to combine online product review helpfulness with
collaborative filtering to improve the overall performance
of recommender systems. The efficacy of our approach is
demonstrated on two product categories from a benchmark
data set from Amazon.com.

The rest of the paper is organized as follows. Related work
in the area of opinion spam detection and collaborative fil-
tering is reviewed in Section 2. In Section 3, the mathemat-
ical formulation of our model and the two stage approach
to collaborative filtering using quality scores are described.
The experimental methodology used to evaluate the perfor-
mance of our approach is described in Section 4. Finally,
the results of our experiments are discussed in Section 5.

2. RELATED WORK
Kim et al. [13] proposed a quantitative measure based on

the review feedback information to assess the helpfulness of
reviews. They trained a regression model using various fea-
tures extracted from the review text and predict the help-
fulness score for new reviews. O‘Mahony and Smyth [21]
modeled the same problem as a classification task. Rather
than predicting a score for helpfulness, they trained a clas-
sifier using reputation, content, social, and sentiment based
features derived from user and item metadata to classify a
review as helpful or unhelpful. Danescu-Niculescu-Mizil et
al. [7] studied the correlation of different aspects of review
metadata with review helpfulness. The results of their study
showed that there is a strong correlation between the signed
deviation of the review rating to the average rating of the
product. Ghose and Ipeirotis [8] model the helpfulness of
reviews as a function of the user subjectivity in the reviews.
The user subjectivity is in turn predicted using a classifier
trained on reviews that are subjective and objective.

There are several approaches proposed in the literature for
opinion spam detection [11, 15, 22, 28]. Jindal and Liu [11]
trained a classifier based on user, item, and review meta-
data to identify different categories of spam in online re-
views. Liu et al. [15] proposed a method to detect low
quality reviews in order to improve the quality of opinion
summarization. They used expensive human annotation for
the task of estimating the ground truth. Ott et al. [22] pro-
posed approaches to detect fictitious and imaginative opin-
ions that have been deliberately written to sound authentic.
Deceptive spam is not easily noticeable by human readers

and hence it cannot be identified by user helpfulness votes,
which we consider in our work. Ott et al. acquired 400 sam-
ples of spam reviews using Amazon Mechanical Turk5 and
400 reliable genuine reviews from the Trip Advisor website6

and trained a classifier using n-gram text features and other
linguistic metadata.

There are other approaches in literature that identify spam
reviews from the perspective of recommender systems [19,
20, 29]. O’Mahony et al. [20] examined the robustness of
various collaborative recommendation techniques in the face
of malicious attacks. They derived theoretical results on
recommendation accuracy and stability in the presence of
malicious agents. Mobasher et al. [19] analyzed various new
attack models and their impact on recommendation algo-
rithms through extensive simulation-based evaluation. In a
more recent work, Wu et al. [29] proposed a semi–supervised
learning algorithm to identify spam reviews/ shillings using
user metadata. The spam reviews are then removed from the
training set while performing collaborative filtering. How-
ever, none of these approaches provide a robust methodology
to improve the performance of the recommendation systems
in the presence of opinion spam.

The current approaches to recommendation systems are
usually classified as content-based [2, 3], collaborative [24,
25, 26], and hybrid recommendations [18, 2, 1]. Content
based approaches predict the recommendations from user
and item profiles derived from characteristic features of users
and items, such us demographic data and product descrip-
tions. An alternative approach to recommendation that is
heavily used when rich user and item information is not
available is collaborative filtering (CF). CF makes use of
past user preferences to make predictions for the future.
CF algorithms try to identify similarities between users and
items to predict user preferences. There are several memory
based and model based approaches to collaborative filtering
for recommender systems [27, 14, 25]. The most success-
ful methods for CF are the latent factor models based on
probabilistic matrix factorization (PMF) [25, 26]. The PMF
model is described in more detail in Section 3. Yifan, Koren,
and Volinsky [10] proposed an approach that uses implicit
feedback about users likes and dislikes(as produced in signed
networks), to assign weights for the raw ratings obtained.

3. MODEL
The two–stage model for performing collaborative filtering

with quality scores is proposed here. In Stage 1, the quality
scores of ratings using the review and user data are esti-
mated. In Stage 2, these quality scores are used as weights
assigned to ratings and weighted probabilistic matrix factor-
ization is performed on the ratings to predict new recom-
mendations.

The following notation is used in the rest of the paper.
There are n users and m items in the system. The users are
indexed by i ∈ {1, 2, . . . n} and items by j ∈ {1, 2, . . . ,m}.
The user-item rating matrix is represented as Y ∈ Rn×m,
where yij represents the rating given by the ith user to jth
item. Given the sparsely populated matrix Y , the task of
CF is to estimate the missing entries of Y . To perform CF,
the probabilistic matrix factorization approach is used, in
which the rating matrix Y , is approximated as a product of

5https://www.mturk.com
6http://www.tripadvisor.com
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Figure 1: Graphical model for the two stage approach to
recommender systems

two low rank matrices, U ∈ Rn×d and V T ∈ Rm×d, which
represent the user and item latent factors respectively. The
latent factor vector of user i is denoted as ui and that of item
j as vj. Independent Gaussian priors are used for user and
item latent factors. With each rating, yij , a quality score,
wij is associated, which is estimated from the corresponding
review. The user and item meta data and review based
features, which are used in the estimation of quality scores
are represented by ai, bj and cij respectively. The standard
deviations associated with the user and item latent factors
are given by σU and σV respectively. Finally, The standard
deviation associated with the model for ratings is given by
σY . The graphical model for our approach is given in Figure
1.

3.1 Stage 1: Quality Score Estimation
Stage 1 involves estimating the quality score for individ-

ual ratings. The quality score for a rating is reflective of
the authenticity of the rating. Most websites like Amazon
and Yelp allow users to indicate if reviews were helpful or
not. The amount of positive feedback obtained by a product
review is indicative of the authenticity of the corresponding
rating. As a result, any measure that uses the feedback in-
formation is useful for measuring the quality of the rating.
Kim et al. [13] have proposed the measure below to quantify
helpfulness for online product reviews based on the feedback
information, which we use as the quality score.

helpfulness =
Number of helpful votes

Total number of votes
(1)

The quality score computed as described above is a fair in-
dication of quality if the amount of feedback is sufficiently
high. However, for more recent reviews that have low feed-
back, this score might not necessarily capture the true qual-
ity of the rating. For such reviews, the quality score is es-
timated using a regression model trained on those reviews
that have sufficient feedback.

First, a regression model is trained using features ex-
tracted from those reviews/ratings that have sufficient feed-
back. The quality score computed using the formula de-

scribed above is used as the response variable in the regres-
sion model. For a review/rating that has low user feedback,
the quality score is predicted using the trained regression
model. Several features were examined for training the re-
gression model:

• Text based features
In most online websites, ratings are accompanied by
reviews written by the users in natural language text.
Several different features were extracted from the re-
view text for training the regression model:

1. Unigram counts or bag-of-words features
Kim et al. [13] have demonstrated that the unigram
counts or bag-of-words based features have been very
useful for predicting the helpfulness score. In our ap-
proach also, bag-of-words features were extracted from
the review text to train a regression model.

2. Features from topic modeling
Each review can be seen as being composed of words
from several different latent topics. For instance, words
like amazing, awful, terrible, etc. mainly convey a
user’s subjective opinion about the product. On the
other hand, words that describe technical features of
the product convey a more objective opinion about the
product. Typically, reviews that are less genuine, and
hence less useful are dominated by words from the for-
mer topic, while the more useful reviews have a larger
proportion of words from the latter topic. The overall
quality of the review could be influenced by the dis-
tribution of such latent topics. One approach to dis-
covering these latent topics in natural language text
involves using techniques from topic modeling like La-
tent Dirichlet Allocation (LDA) [5]. In our approach,
LDA was applied to discover latent topics in the review
text. The latent topic probabilities were then used as
features to train the regression model.

• Metadata based features
Along with the natural language text, most reviews
are associated with various other information about
the user as well as the product, which were used as
features to train the regression model. Specifically, the
average rating given to the user, which indicates how
useful his reviews have been, duration for which the re-
view has been around, deviation of the rating from the
mean rating of the product, length of the title of the
review, and length of the review text were used as fea-
tures in our approach. Note that item based metadata
information was not used as features in the regression
model since item related features do not necessarily
impact the quality of the review.

• Text and metadata based features
In our third model, features extracted from both nat-
ural language text and metadata were used to train a
regression model.

3.2 Stage 2: Collaborative Filtering
In Stage 2, the quality scores estimated in Stage 1 are

used to build a recommendation system based on collabo-
rative filtering. Among the methods used for collaborative
filtering, latent factor models have been shown to give the
best performance in most scenarios. Thus for our analysis,



we adapt the probabilistic matrix factorization framework
[25] to incorporate quality scores. This method can be triv-
ially extended to other matrix factorization based models.

The PMF model aims at inferring latent factors of users
and items from the available ratings. The missing ratings are
estimated based on the interaction of user and item latent
factors. These factors represent various hidden dimensions
of users’ tastes and preferences. The n×m matrix of ratings,
Y , is approximated as Y = UV T , where U ∈ Rn×d and
V T ∈ Rm×d. The priors for U and V are assigned as follows:

P (U |σ2
U ) =

n∏
i=1

P (ui|σ2
U ), P (V |σ2

V ) =

m∏
j=1

P (vj|σ2
V ) (2)

where,

P (ui|σ2
U ) = N (ui|0, σ2

UI)

P (vj|σ2
V ) = N (vj|0, σ2

V I)
(3)

N (x|µ, σ2) represents the Gaussian distribution with mean
µ and variance σ2 evaluated at x. For vector valued vari-
ables, N (x|µ,Σ) represents the multivariate Gaussian dis-
tribution with mean µ and variance Σ evaluated at x. Also,
σ2
U and σ2

V are the variances associated with user and item
latent factors respectively.

In a traditional PMF setting, the rating matrix Y is mod-
eled as:

P (Y |U, V ) =

n∏
i=1

m∏
j=1

[
N (yij |ui

Tvj, σ
2
Y )
]Iij

(4)

where Iij is the indicator variable indicating if the rating
yij is available and σ2

Y is the variance associated with the
model for the ratings.

We now modify the existing collaborative filtering frame-
work to weight the ratings using the quality scores estimated
in Stage 1. The quality score is modeled as a factor which in-
versely affects the variance of the prediction from the mean
of the factor model. The intuition is that higher quality rat-
ings are given a prior with lower deviations from the model
and thus their deviations from the model mean are more
heavily penalized. On the other hand, low quality scores are
allowed larger deviations from the model mean. We keep
the same priors for U and V , as in Equation 3. Our new
prior on Y is given by:

P (Y |U, V ) =

n∏
i=1

m∏
j=1

[
N
(
yij |ui

Tvj,
σ2
Y

wij

)]Iij
(5)

where Iij is the indicator variable indicating if the rating yij
is available.

Maximizing log posterior of observed Y in this model leads
to the minimization objective given below, which follows an
intuitive interpretation of minimizing the weighted squared
error of the observed ratings, regularized appropriately:

L(θ) =
∑
i,j

Iij [wij(yij−ui
Tvj)

2]+λ1‖U‖2F +λ2‖V ‖2F (6)

where λ1 = σ2
Y /σ

2
U and λ2 = σ2

Y /σ
2
V are the regularization

parameters and ‖‖̇F is the Frobenius norm of a matrix. In
our experiments we take λ1 = λ2 = λ. The above objective
is a differentiable function in ui and vj and the maximiza-
tion can be performed using the Stochastic Gradient Descent
(SGD) algorithm.

Books Audio CDs
Total Users 772674 46491
Total Items 493991 29477
No. Ratings in Training 1677892 75518
No. Ratings in Validation 41081 902
No. Ratings in Test 105285 2683

Table 1: Various statistics about the data sets used in ex-
perimental evaluation.

4. EXPERIMENTS

4.1 Data set
Amazon.com is an online retailer that sells products like

books, movies, furniture etc. Amazon widely employs rec-
ommender systems to recommend products to users based
on the user’s purchase and rating history. In our work, we
use the open source data set provided by Jindal and Liu
[11]. The categories of Books and Audio CDs were used for
experimental evaluation as they have a reasonable number
of users, products, and reviews. The other categories had a
very small number of reviews, and hence were not used in
our experiments. Each data set consists of three types of
information:

1. Review information consisting of user ID, product ID,
time stamp, text and title of the review text, rating,
and feedback statistics in the form of helpful and un-
helpful votes by users.

2. User information consisting of explicit user metadata
such as name, location, and a few derived statistics
based on the number of reviews written by the user,
rank of user, etc.

3. Product information consisting of product specific de-
tails like category, brand, price, description, etc.

4.2 Data Preprocessing
Our first preprocessing task was to eliminate multiple re-

views for a single user-item pair. This could be due to errors
in data transmission on the internet due to which the same
review might have appeared multiple times, thereby result-
ing in duplicate reviews. Other times, it could just be that
the user’s opinion of a product might have changed over
time. In the event that multiple such reviews were present,
the latest one was retained and the rest were discarded. Sec-
ondly, the entire set of ratings was split into training, vali-
dation, and test sets for the recommendation system based
on time. The reviews in validation appeared after the ones
in training and the reviews in test were posted later than
those in validation. Finally, to avoid cold start scenarios,
those entries from validation and test set for which either
the user or the item was not seen in the training set were
removed. Table 1 gives details about the two data sets used
in experimental evaluation.

4.3 Regression
Regression models were trained for predicting quality scores

using three different sets of features – text, metadata, text
and metadata. For the Books data set, all those reviews
in the training set that had feedback from more than 50
users were used for training the regression model. Since the
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Figure 2: Histogram of words in the reviews in the Books
data set.

training set for Audio CDs had reviews with fewer users pro-
viding feedback, reviews that had feedback from more than
20 users were used for training the regression model. The
methodology used to extract different types of features for
training the regression model is described below:

• Extracting Bag-of-Words features
The SRI Language Modeling Toolkit7 was used to ex-
tract unigram counts for bag-of-words features. Com-
monly occurring stop words were removed while ex-
tracting bag-of-words features. Unigram counts were
normalized to obtain term frequency values, which were
used as features to the regression model. There were
around 760,000 unique words in total in the Books data
set and around 128,000 unique words in the Audio CDs
data set. Following the Zipf’s law, a large number of
these occurred very rarely in the entire corpus. Fig-
ure 2 gives the histogram of words with frequency for
the Books data set. The histogram of words from re-
views in the Audio CDs data set looked similar. Since
a majority of the words occurred very rarely in the cor-
pus and also since quite a few of them were not even
valid English words, words that occurred less than 10
times in our corpus were eliminated from the analy-
sis. This reduced the number of features by almost 10
times.

• Extracting features using LDA
David Blei’s LDA implementation8 was used to iden-
tify latent topics in the review text. With the reduced
set of words, LDA was scalable on the large number of
reviews we dealt with. LDA was run with 5, 10, and
50 latent topics and the latent topic probabilities were
used as features to train the regression model. The re-
sulting models are called LDA5, LDA10, and LDA50

respectively.

• Extracting metadata features
Metadata-based features were extracted as described
in Section 3.1. All metadata features were scaled to a
value between 0 and 1 by the transformation suggested

7http://www.speech.sri.com/projects/srilm
8http://www.cs.princeton.edu/ blei/lda-c/

in [9], f̃ = log(f+1)
1+log(f+1)

, where f is the original value of

the feature.

Regression models were trained using the techniques de-
scribed below:

• Logistic Regression
Since the quality scores lie in the range 0 to 1, logistic
regression was suitable as the predicted values from
the logistic regression model lie between 0 and 1. Lo-
gistic regression requires the response variable in the
training set to be either 0 or 1. An alternate approach
to specifying the response variable in logistic regres-
sion involves specifying the number of successes and
total trials for a given example during training. In our
context, this corresponds to specifying the number of
users that found the review useful and the total num-
ber of users that provided feedback for a given review.
Logistic regression models were trained by specifying
the response variable in terms of the number of users
that provided useful feedbacks and total number of
users that provided feedback using features extracted
from LDA and metadata.

• Support Vector Regression
Support Vector Regression (SVR) [12] was used for
bag-of-words features extracted from natural language
text since it can handle any number of features and
feature vectors of arbitrary size. One issue with SVR
is that it does not guarantee to predict a value between
0 and 1 for the test example. To overcome this, quality
scores of the reviews were mapped to real values using
the inverse logistic function. The mapped scores were
used as response variables to train the SVR model.
The predicted value for a test sample was then passed
through the logistic function to get the quality score.
The linear kernel was used since it performed the best
in our preliminary experiments. Note that SVR was
used only when feature vectors were not of fixed size,
like in bag-of-words, since the implementations of lo-
gistic regression and LASSO used in our experiments
were inefficient for large feature vectors due to the lack
of support for sparse vector representation.

• LASSO Regression
For features extracted from metadata and LDA, a re-
gression model was trained using lasso regression since
it helps identify more useful features from the entire
set. Like in SVR, quality scores of the reviews were
mapped to real values in R using the inverse logistic
function, and the predicted scores were later mapped
back to get a value between 0 and 1. The python in-
terface for LASSO in Sklearn package [23] was used in
our experimental evaluation.

4.4 Collaborative Filtering
For the baseline estimate, the default implementation of

PMF in Graphlab [17], which uses alternating least squares
method to perform factorization was used. The number of
latent factors was set to D = 40. Grid search was performed
to tune the regularization parameter λ using the validation
data set over the range of 0.01 to 0.8. Note that the weighted
PMF approach defined in Section 3.2 has the same objective
as the one formulated in [10], though the latter derives the
model for a system that has implicit feedback about users



Model Books Audio CDs
LR-metadata 0.24 0.25
LR-metadata+LDA5 0.23 0.24
LR-metadata+LDA10 0.23 0.23
LR-metadata+LDA50 - 0.24
LASSO-metadata 0.30 0.25
LASSO-metadata+LDA5 0.26 0.25
LASSO-metadata+LDA10 0.26 0.23
LASSO-metadata+LDA50 - 0.26
SVR-bag-of-words 0.27 0.35
SVR-metadata+bag-of-words 0.24 0.27

Table 2: RMSE for 10-fold cross validation on the train-
ing set for different regression models in Stage 1. “LR”,
“LASSO”, and “SVR” refer to the models in which quality
scores are predicted using logistic regression, LASSO regres-
sion, and support vector regression respectively.

likes and dislikes for certain items. The implementation of
the latter objective in Graphlab was used to build our new
recommendation system. The running time of this imple-
mentation is the same as that of the default implementation
of PMF in Graphlab.

For the first baseline model, which we refer to as “vanilla
PMF”, probabilistic matrix factorization was performed by
setting weights for all reviews to 1. For the second baseline,
which we refer to as “second baseline”, quality scores were
estimated from the feedback votes for those reviews that had
sufficient feedback (50 or more for Books and 20 or more for
Audio CDs). For the remaining reviews, the weights were set
to the average of the scores that were estimated using feed-
back information in the previous step and weighted proba-
bilistic matrix factorization was performed. Initial experi-
ments with these two models showed marginal improvement
in the performance of latter over former. This observation
supported the hypothesis that incorporating quality scores
might improve the performance of the recommender system.

5. RESULTS AND DISCUSSION

5.1 Quality Score Estimation
10-fold cross validation was performed on the training set

and root mean square error (RMSE) was computed to mea-
sure the performance of regression models. Table 2 shows
the cross validation RMSE scores for different regression
models. Note that due to computational complexity, LDA50

did not run till completion on the Books data set. Hence,
results for LDA50 on the Books data set are not reported.
Logistic regression models trained on both LDA and meta-
data based features perform the best on both data sets. In
general, the performance of LASSO and logistic regression
models trained only on LDA features is inferior to that of the
models trained on both metadata and LDA features. Hence,
we do not report results for LASSO and logistic regression
models trained only on LDA features. The performance of
logistic regression models trained only on metadata features
is only slightly inferior to that of the best performing mod-
els, thereby indicating that the improvements obtained by
adding LDA features are not be substantial. For a given set
of features, logistic regression generally performs better than
LASSO regression. SVR models trained on bag-of-words fea-
tures generally perform poorly when compared to the other

models. Here again, the performance of the SVR model
trained only on bag-of-words features is substantially infe-
rior to that of the model trained on both metadata and bag-
of-words features. These results indicate that there might
be a stronger signal in metadata based features for predict-
ing the quality of reviews when compared to the current set
of text features considered.

5.2 Collaborative Filtering
Table 3 shows the RMSE for different models on the test

set for both Books and Audio CDs. On the Books data
set, all models including the second baseline outperform the
vanilla PMF, while on Audio CDs data set, a majority of the
models outperform the vanilla PMF. Lack of sufficient data
in the Audio CDs data set could possibly be the reason for
inferior performance of some models. Due to lack of reviews
with sufficient feedback, less reliable reviews were used to
train the regression models in Stage 1. As a result, the
accuracy of the scores predicted by Stage 1 could be inferior,
thereby impacting the overall quality of the predictions on
the Audio CDs data set.

Logistic regression model trained on metadata features
is the best performing model on the Books data set and
it results in an improvement of 0.0355 (2.49%) over vanilla
PMF and 0.0344 (2.41%) over the second baseline. However,
on the Audio CDs data set, SVR trained on metadata and
bag-words features is the best performing model, with a per-
formance improvement of 0.0175 (1.27%) over vanilla PMF
and 0.0128 (.93%) over the second baseline. In general, mod-
els trained only on metadata based features perform better
than those trained on both LDA and metadata based fea-
tures indicating strong signals from the metadata features
used – time stamp, length of review text, length of review
title, rank of the user and deviation of the rating from the
mean rating of the product. Even though models trained
with text based features are outperformed by the metadata
based models, they still show significant improvement over
the baseline models on both data sets, which warrants fur-
ther investigation into linguistic feature engineering on re-
view text. Overall, our results indicate that incorporating
quality scores as weights for ratings in collaborative filtering
improves the performance of recommender systems.

In our last experiment, the impact of using ratings with
low quality scores in training the PMF was studied. Our
hypothesis was that ratings with poor quality scores could
possibly affect the predictions adversely, and hence elimi-
nating them during training might further improve the per-
formance of recommender systems. Figures 3 shows the dis-
tribution of quality scores from LR-metadata, which is the
best performing model on the Books data set. While most
of ratings have reasonably high quality scores, a small num-
ber of them have fairly poor quality scores. Analysis of the
distribution of quality scores from SVR-metadata+bag-of-
words, the best performing model on the Audio CDs data
set yielded similar results. In our experiment, all ratings
with a quality score less than 0.4 were eliminated and PMF
was performed with the remaining ratings using the best per-
forming model on both data sets. The results from these ex-
periments, which we call “Best-Model-Low-Quality-Scores-
Dropped” are shown in Table 3. Eliminating low quality
scores improved the results on the Audio CDs data set con-
siderably, thereby supporting our original hypothesis. How-
ever, the performance on the Books data set dropped marginally.



Model Books Audio CDs
Vanilla PMF 1.4230 (λ = 0.35) 1.3739 (λ = 0.30)
Second Baseline 1.4219 (λ = 0.35) 1.3692 (λ = 0.20)
LR-metadata 1.3875 (λ = 0.25) 1.3664 (λ = 0.25)
LR-metadata+LDA5 1.3972 (λ = 0.20) 1.3740 (λ = 0.25)
LR-metadata+LDA10 1.3966 (λ = 0.25) 1.3779 (λ = 0.25)
LR-metadata+LDA50 - 1.3731 (λ = 0.25)
LASSO-metadata 1.3910 (λ = 0.30) 1.3662 (λ = 0.30)
LASSO-metadata+LDA5 1.3952 (λ = 0.30) 1.3634 (λ = 0.30)
LASSO-metadata+LDA10 1.3958 (λ = 0.30) 1.3745 (λ = 0.20)
LASSO-metadata+LDA50 - 1.3680 (λ = 0.30)
SVR-metadata+bag-of-words 1.4135 (λ = 0.30) 1.3564 (λ = 0.30)
SVR-bag-of-words 1.4219 (λ = 0.30) 1.3740 (λ = 0.30)
Best-Model-Low-Quality-Scores-Dropped 1.3945 (λ = 0.25) 1.3389 (λ = 0.30)

Table 3: Test RMSE for Books and Audio CDs data sets in Stage 2. “LR”, “LASSO”, and “SVR” refer to the models in which
quality scores are predicted using logistic regression, LASSO regression, and support vector regression respectively.

0 0.2 0.4 0.6 0.8 1
0

10k

20k

30k

40k

50k

60k

70k

80k

Quality Scores

N
um

be
r 

of
 R

ev
ie

w
s

Figure 3: Distribution of quality scores from LR-metadata,
the best performing model on the Books data set.

5.3 Quality Indicators
Regression models were analyzed to identify features that

impacted the quality of the rating. First, coefficients learned
from LASSO and logistic regression on metadata features
were examined on the two data sets. Both the regression
models had learned similar coefficients for individual meta-
data features. On both data sets, the review length had
the highest positive coefficient, while the deviation of the
ratings from the mean rating had the highest negative co-
efficient from both models. These observations can be intu-
itively explained as longer reviews are indicators of a thor-
ough analysis of the product by the reviewer and hence the
reviewer’s rating is highly reliable. On the other hand, a re-
viewer giving a rating that is highly deviant from the mean
rating is likely to be a spammer with a malicious intention
of either boosting or degrading a product popularity and
hence the negative correlation with the quality. The other
features like time stamp and review title length were found
to be not very influential in estimating the quality as both
regression models assigned low or near-zero coefficients to
these features.

Next, regression coefficients learned using LASSO and lo-
gistic regression on the topics induced by LDA were exam-
ined on the Books data set. Logistic regression assigned
more or less the same weights for all topics induced by
LDA. However, LASSO regression was able to assign differ-
ent weights to different topics induced by LDA. There were
two topics induced by LDA5 that had negative coefficients.
Some of the words from the former topic included infor-
mation, good, great, excellent, guide, books, while the words
from the latter topic included history, book, war, world, peo-
ple, american. The remaining topics had low or near zero
coefficients indicating that they did not play a significant
role in determining the quality of the rating. While the
words in the former topic indicate strong opinions which
could be used to mask the real quality of the products, the
words in the latter topic mostly describe different categories
of books, which might not necessarily describe the quality
of the product. In general, we found that LDA was more
inclined to clustering thematic topics together rather than
topics that were indicative of quality. This inability to dis-
tinguish thematic words from quality indicators is possibly
one of the reasons for the modest performance of LDA-based
features in our experiments. Our analysis of topics induced
by LDA10 yielded similar results on the Books data set. Fur-
ther analysis of words induced by LDA on the Audio CDs
data set did not yield any interesting observations. Over-
all, these results emphasize the need for extraction of more
sophisticated features from the review text.

In summary, incorporating quality scores or weights to
ratings improves the performance of collaborative filtering in
recommender systems. Our experiments with different types
of features extracted from both review metadata and text
indicate that some of the metadata-based features are highly
indicative of the quality of the rating. Further, our exper-
iments with text-based features also demonstrate promise,
but also indicate the need for extraction of more sophis-
ticated features from review text. Overall, we find that
our two stage approach to collaborative filtering is a robust
method that is capable of overcoming the negative effects
caused by spurious reviews and ratings in recommender sys-
tems.

6. FUTURE WORK



Future work includes incorporating several additional fea-
tures including bigrams and semantic features as described
in Kim et al. [13] for learning the regression model to pre-
dict quality scores. We would also like to explore measures
proposed by Ghose and Ipeirotis [8] for assessing the qual-
ity of reviews. The other direction of future work involves
exploring feature reduction techniques like PCA to reduce
the number of bag-of-words features, which we believe could
help improve the performance of the regression model. In
our current experiments, LDA could not induce latent word
distributions that were reflective of the quality of reviews.
To help improve the performance, supervised approaches
like supervised LDA [4] can be explored in future. Fur-
ther, to overcome the lack of sufficient reviews in data sets
like the Audio CDs data set, transfer learning approaches
[6] can be incorporated for the estimation of quality scores
in our framework. Finally, experimental evaluation of our
approach on other data sets like the Yelp academic data set
and other product categories available in the Amazon data
set will also be considered in the future.

7. CONCLUSION
In this paper, a two-stage approach to collaborative filter-

ing that incorporates weights or quality scores for ratings is
proposed. Several approaches to estimating quality scores
using product reviews associated with the ratings are ex-
amined. Experimental evaluation of our approach on two
product categories from a large benchmark data set from
Amazon.com demonstrates that the proposed two-stage ap-
proach performs better than the vanilla PMF that assigns
equal importance to the ratings. To the best of our knowl-
edge, this is the first paper that has combined assessing re-
view helpfulness with collaborative filtering to improve the
overall performance of recommender systems.
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