
CAPE: Corrective Actions from Precondition Errors
using Large Language Models

Shreyas Sundara Raman1∗, Vanya Cohen2, Ifrah Idrees1, Eric Rosen1,
Raymond Mooney2, Stefanie Tellex1, and David Paulius1

Abstract— Extracting knowledge and reasoning from large
language models (LLMs) offers a path to designing intelligent
robots. Common approaches that leverage LLMs for planning
are unable to recover when actions fail and resort to retrying
failed actions without resolving the underlying cause. We pro-
pose a novel approach (CAPE) that generates corrective actions
to resolve precondition errors during planning. CAPE improves
the quality of generated plans through few-shot reasoning on
action preconditions. Our approach enables embodied agents
to execute more tasks than baseline methods while maintaining
semantic correctness and minimizing re-prompting. In Virtu-
alHome, CAPE improves a human-annotated plan correctness
metric from 28.89% to 49.63% over SayCan, whilst achieving
competitive executability. Our improvements transfer to a
Boston Dynamics Spot robot initialized with a set of skills
(specified in language) and associated preconditions, where
CAPE improves correctness by 76.49% with higher executabil-
ity compared to SayCan. Our approach enables embodied
agents to follow natural language commands and robustly
recover from failures.

I. INTRODUCTION

Generalized robots can assist humans by accomplishing
a diverse set of goals in varying environments. Many such
agents are equipped with a library of skills for primitive
action execution. Here, natural language can enable more
seamless human-robot interaction by leveraging these skill
libraries [1]. Given a task description or command from a
human, a robot must be able to autonomously propose a
sequence of actions (from its skill repertoire) that realizes the
given task. Critical to such an application is the agent’s abil-
ity to ground skills specified in language to their environment
and reason about state changes from skill execution or the
relevance of proposed actions towards a task’s objective. For
instance, if a robot is commanded to “put away groceries”,
it must ground the concept of “groceries” to objects in its
environment and decompose the task of “putting away” to
meaningful constituent skills from its repertoire.

Thus, extracting actionable knowledge from a large lan-
guage model (LLM) requires context about the agent’s
embodiment and environment state. Related works that ex-
tract plans from LLMs using prompting strategies assume
access to extra information such as: 1) predefined skills
with preconditions [2], 2) visual-language models that de-
termine affordance from observations like SayCan [2], 3)
descriptions of the agent’s goal [3, 4], or 4) descriptions

Project Website: https://shreyas-s-raman.github.io/CAPE/
∗Corresponding Author (Email: shreyas_sundara_raman@brown.edu)
1Brown University, Providence, RI, USA.
2The University of Texas at Austin, Austin, TX, USA.

of observation and action spaces for reasoning in text-based
video games [5, 6]. These approaches do not efficiently
nor explicitly resolve failure modes during planning: they
either propose actions that are not afforded execution in
the environment (i.e., violate preconditions, such as walking
through a closed door), or resort to exploring the entirety of
an agent’s action library to identify executable actions [2].

We use precondition errors to resolve action failure, mo-
tivated by the vast body of research on planning algorithms
and definitions like PDDL [7]. In these settings, robots
are equipped with a repertoire of skills, each requiring
certain preconditions to be satisfied to afford their execution.
Our method targets the failure mode of executing skills
without satisfying their preconditions in this setting. An
LLM generates/translates natural language into parametrized
skills, producing a sequence of actions for execution towards
completing a task. When a robot or agent fails to execute
an action due to precondition violations, CAPE (Correc-
tive Actions from Precondition Errors) adopts a templated-
prompting strategy to query the LLM for corrective actions
(Figure 1). Our prompts either specify the action failed
or provide explanatory details about the cause of action
failure, flexible to the extent of knowledge accessible to the
robot about its skills or environment. This paper builds on
our previous work [8] with more rigorous analysis, scaled
human evaluation, additional (more competitive) baselines,
and experiments in both simulation and real-world settings.

Our contributions are as follows: we introduce CAPE as
a novel approach for LLM planning that can recover from
failures by proposing corrective actions, using prompts based
on precondition errors. We detail how different ablations
of our re-prompting strategy can be deployed on embodied
systems with large and small skill repertoires. We also
evaluate against several baselines [3, 2] to show that CAPE
achieves near-perfect executability and more semantically
correct plans for various tasks executed on a Boston Dynam-
ics Spot robot and a simulated agent in VirtualHome [9].

II. BACKGROUND

In-Context Learning: Brown et al. [10] introduced GPT-
3: a 175 billion parameter LLM capable of few-shot learning
novel tasks (including Q&A, arithmetic, and comprehension)
by prompting the LLM with in-context task examples used
for structural and syntactic guidance. This approach offers
much greater sample efficiency and task generalization over
learning tasks with fine-tuned pre-trained latent language
representations [11, 12, 13] and zero-shot inference [14]. In-

1

https://shreyas-s-raman.github.io/CAPE/
mailto:shreyas_sundara_raman@brown.edu

Step 8: Pick up energy drink

Error: I am already holding the cap.

A correct step would be to:

Step 8: Put cap on door

Error: I am not near the door.

A correct step would be to:

Step 8: Walk to door

...

Grounded Plan (cont'd)

Task: Prepare everything needed for
a run on a warm day
Step 1: Walk to shoes
Error: I am sitting down.
A correct step would be to:
Step 1: Stand up
Step 2: Walk to shoes
...

Grounded Plan Robot Execution Robot Execution

A correct step would be to:
Step 1: Stand up

Step 1: Walk to shoes
Error: I am sitting down.

Step 8: Pick up energy drink
Error: I am already holding the cap.
Error: I am not near the door.

A correct step would be to:
Step 8: Walk to door

Fig. 1. Qualitative results of CAPE for robot execution of the task "prepare for a run". We highlight 2 cases where re-prompting with precondition error
information resolves action failures (left: resolving prerequisite for walking by standing; right: resolving one-armed manipulation constraint).

context learning performs best when examples are relevant
to the test task; we retrieve in-context examples based on
their semantic similarity to a task [15, 3].

Open-Loop Plan Generation: CAPE extends the open-
loop framework of Huang et al. [3], which generates plans
for a task zero-shot without environment feedback. Given a
query task Q, first an example task T and its plan are chosen
from a demonstration set as a contextual example for the
Planning LLM; T is selected to maximize cosine similarity
with the query task Q. The Planning LLM auto-regressively
generates actions for task Q in free-form language (al) via
in-context learning. The Translation LLM then utilizes a
BERT LM (Sentence-BERT [16]) to embed free-form actions
(al) to the most semantically similar (i.e., cosine-similar)
admissible action from the agent’s repertoire (ae). Here, an
admissible action refers to the language description of the
action. The chosen admissible action (âe) is then appended
to the unfinished prompt to condition future auto-regressive
step generation on admissible actions. We investigate how
to plan in a closed-loop setting by leveraging precondition
error feedback as an auxiliary mode of information.

Affordance and Preconditions: Action preconditions and
effects are commonly adopted in robot planning domains,
such as those using PDDL [7] or STRIPS [17], where robots
have access to a library of predefined skills. Affordance
models factorize states into preconditions, where affordance
is defined by independent state components that must be
satisfied for execution. This can be formalized by the options
framework [18], where options O(s) over the state space S
form a set of temporally extended actions equivalent to those
in an agent’s skill repertoire. An initiation set of an option
I(o) defines the states in which option execution is afforded
(akin to preconditions), while a termination condition βo(s)
describes the terminal state of the skill. If the current state
fails to meet the initiation state of an option, a precondition
error arises. Environment states in these domains can be
factorized in a semantically meaningful manner to evaluate
the validity of preconditions for a skill, thus enabling a
skill’s affordance to be measured. Learning and modeling
preconditions have been largely studied in model-based
approaches that leverage symbolic planning [19, 20]. Our
work investigates how these preconditions can be leveraged
to improve planning using LLMs.

III. METHOD

Given a task specified in natural language, we use LLMs
to generate a plan. When an agent fails skill execution, CAPE
injects precondition errors into a prompt for plan repair.

A. Plan Generation via Re-prompting

In control theory, a closed-loop system relies on feedback
from its outputs for adaptive control [21]. Similarly, when
the LLM proposes an action not afforded execution (output),
CAPE closes the loop by injecting the corresponding
precondition error (feedback) into a corrective prompt
(see Figure 2), allowing the LLM to adaptively correct
the generated plan. Certain errors require more context
about the agent’s state, action history and environment. For
instance, correcting the VirtualHome [9] error <character>
(1) does not have a free hand when executing
"[GRAB] <obj> (1) [1]" requires knowledge of objects
previously / currently grabbed by the agent and available
adjacent receptacles on which held objects can be dropped,
to free the agent’s hands. Our corrective prompts are
composed with the following segments of feedback:

• Contextual Information: includes relevant context and
action history upon action failure, i.e., query task Q and
query steps up to the failed action.

• Precondition Error Information: optionally includes
details on violated preconditions, tailored to the degree
to which the agent can assess precondition violations.

For the Translation LLM to ground language steps, we
must assume the agent is equipped with a repertoire of
skills admissible to the environment. Preconditions only
need to be defined for each parametrized skill. More im-
portantly, the Planning LLM used by CAPE has no explicit
knowledge of the agent’s skills nor their preconditions (i.e.,
logical propositions assessing a skill’s affordance) during
re-prompting. Instead, we evaluate the current environment
state using preconditions (logical propositions) defined for
each parametrized skill to identify precondition violations
or errors. Although the environment state and preconditions
are external to the LLM, linguistic error information can be
integrated into the corrective prompt. As a result, the Plan-
ning LLM has to infer the cause of failures and environment
mechanics over a wide layer of abstraction (based only on
the context from corrective prompts and the agent’s action
history) before proposing an appropriate corrective action.
CAPE can be applied to planning domains where skills are
represented using preconditions and effects described using
symbolic propositions (e.g., PDDL [7], STRIPS [17], or
LTL [22]). Since preconditions are well-defined in these
representations, minimal effort is required to integrate ap-
propriate language feedback for precondition violations.

Re-prompting Strategies: CAPE’s re-prompting ablations
provide varying degrees of precondition error detail in both

2

Task: Carry fruit to the kitchen
Step 1: Walk to home office
Step 2: Walk to dining room
Step 3: Walk to apple
Step 4: Grab apple
Step 5: Walk to dining table
Step 6: Put apple on dining table

Task: Organize pantry
Step 1: Walk to pantry
Step 2: Look at pantry
Step 3: Walk to cereal
Step 4: Grab cereal

Add Corrective Action and ContinueRe-prompt with Error Information

Step 1: Walk to pantry
Step 2: Look at pantry
Step 3: Walk to cereal
Step 4: Put cereal on pantry
Error: I am not holding cereal.
A correct step would be to:

Planning LLM

Step 4: Grab cereal

Match to Admissible Action

Step 1: Walk to pantry
Step 2: Look at pantry
Step 3: Walk to cereal
Step 4: Put cereal on pantry
Step 5: ...

Translation LLM

go_to("pantry")
look("pantry")
go_to("cereal")
place("cereal", "pantry")
...

Few-shot Plan Generation

Task: Carry fruit to the kitchen
Step 1: Walk to home office
Step 2: Walk to dining room
Step 3: Walk to apple
Step 4: Grab apple
Step 5: Walk to dining table
Step 6: Put apple on dining table

Task: Organize pantry

Planning LLM

Step 1: Walk to pantry
Step 2: ...

Error: I am not holding cereal!

Step 1: Walk to pantry
Step 2: Look at pantry
Step 3: Walk to cereal
Step 4: Put cereal on pantry

Validate Action in Environment

Environment

Precondition error!

Fig. 2. Overview of CAPE: To generate executable plans, we select an in-context example task (from a demonstration set) that is most semantically
similar to the query task. The Planning LLM generates a natural language description for the next step. The Translation LLM [16] grounds this description
to an admissible skill in the agent’s repertoire. If violating preconditions prevent execution of the proposed skill, precondition error information is formatted
into a corrective prompt, which is provided with the failed skill to the LLM for corrective action proposal.

zero-shot (Z) and few-shot (F) settings, denoted by P = Z∨
F . Few-shot ablations (F) inject 3 in-context precondition
error and corrective action pairs from the demonstration set.
For all ablations, corrective prompts are only injected when
the Planning LLM proposes corrective actions. There are 3
degrees of precondition error detail:

• Re-prompting with Success Only (ZS): solely informs
the LLM that the action failed (i.e., “Task Failed”).1

• Re-prompting with Implicit Cause (ZI): shares the
failed action and object(s) the agent interacted with
to the LLM in a prompt template (i.e., “I cannot
<action> <object>”). This requires the LLM to in-
fer the cause of error when proposing corrective actions.

• Re-prompting with Explicit Cause (ZE): states
the violated precondition for the non-afforded
action, in addition to feedback provided by ZI

(i.e., “I cannot <action> <object> because
<unmet_precondition>”).

Scoring Grounded Actions: We define a scoring function
Sw (Equation 1) as a weighted combination of log probability
and cosine similarity, thresholded to determine the feasibility
of each proposed grounded step [3]. Log probability is
defined as Pθ(Xi) := 1

ni

∑ni

j=1logpθ(xi,j |xi<j), where θ
parameterizes the pretrained Planning LLM and Xi is a
generated step consisting of n tokens (xi,1, ..., xi,n). Cosine
similarity is defined as C(f(â), f(ae)) := f(â)·f(ae)

||f(â)||||f(ae)|| ,
where f is the Translation LLM’s embedding function; a and
ae are the predicted and admissible action pair for which we
estimate the distance. β is a weighting coefficient:

Sw = argmax
ae

[max
â

C(f(â), f(ae)) + β · Pθ(â)], (1)

Sw prioritizes the quality of natural language at the cost
of semantic translation. This often results in mistranslations
when C(f(â), f(ae)) dominates the sum as Pθ(â) is close
to 0 and β is low or when Pθ(â) dominates the sum as
C(f(â), f(ae)) is close to 0 and β is large. The mean
log probability is also unbounded, which makes finding

1This is analogous to Inner Monologue’s [4] “success detection”, which
determines whether to re-execute failed actions due to stochasticity of low-
level policies. However, our aim is to repair high-level plans with corrective
actions that arise from a new distribution of actions given precondition
feedback.

a score threshold more challenging. We propose a novel
scoring function Sg (Equation 2) that considers the squared
geometric mean of C(f(â), f(ae)) and Pθ(â), to produce a
bounded non-negative (0, 1) score that prioritizes both lan-
guage generation and semantic translation objectives jointly

Sg = argmax
ae

[max
â

C(f(â), f(ae)) + 1

2
· ePθ(â)] (2)

All CAPE ablations are reported only using Sw. We addi-
tionally report Sg for explicit cause re-prompting (PE).

B. Baseline: Plan Generation via Re-sampling

The closed-loop re-sampling method does not use error
feedback when a grounded action is not executable. Instead,
this approach iteratively evaluates the top k admissible
actions proposed by the Planning LLM and grounded by the
Translation LLM in reverse order of their Sw scores until
an executable action is found. If none of the k re-sampled
admissible actions are executable, plan generation terminates.
Resampling assesses whether CAPE enables more efficient
corrections due to the utility of re-prompts rather than ben-
efiting from more attempts at proposing corrective actions.

C. Baseline: Plan Generation with SayCan

For every step generated, SayCan [2] assigns a score to
each action in the agent’s repertoire and the highest scoring
action is executed. This score is the product of the LLM’s
log probability and affordance for each action. This process
is repeated until the termination skill (done) is assigned the
highest score. We make two important adjustments in our
SayCan implementation for VirtualHome [9]:

• It is intractable to evaluate all possible skills in Virtu-
alHome (over 50K admissible object-action pairs) for
every step, so we use the Planning LLM to generate
a prototype step with which we sub-sample the 500
most semantically similar object-action pairs (by cosine
similarity) and at most 1000 object-action pairs contain-
ing objects in the prototype step, forming a subset of
≤ 1500 skills to be scored. This ensures sub-sampled
skills have the highest log probability according to the
LLM and are contextually relevant to the task.

• We evaluate a perfect SayCan, with 0% affordance
model misclassification, using VirtualHome’s oracle

3

precondition checks on the environment state. However,
as Ahn et al. [2] cites a minimum planning failure of
16% with 35% of these originate from affordance model
errors, we also present a noisy ablation of SayCan with
a 6% (16% × 35%) random chance of misclassifying
the oracle affordance, i.e., false when actually true or
true when actually false.

Similar to CAPE, SayCan assumes access to an agent’s skill
repertoire with language descriptions. SayCan leverages a
trained affordance model (value function) to evaluate the
executability of skills and can easily be extended to identify
or predict language-specified precondition violations.

IV. EVALUATION

We test the hypothesis that corrective re-prompting in-
creases executability of plans generated by LLM models
while maintaining plan correctness. We focus on OpenAI’s
davinci-instruct model line for their demonstrated ca-
pabilities in instruction-following and planning tasks [10,
23]. We evaluate eight approaches in a zero-shot setting:
three baselines – Huang et al. [3] (Section II), the closed-loop
re-sampling (Section III-B), and SayCan [2] (Section III-C)
– and our proposed ablations of CAPE (Section III-A).

A. Experimental Setup

We evaluate CAPE across 7 scenes in VirtualHome [9] and
2 scenes with a Boston Dynamics Spot robot (Figure 1). The
contrast in environments aims to demonstrate that corrective
re-prompting can resolve unmet preconditions for embodied
agents and robots across a variety of tasks; VirtualHome
provides a large skillset with many objects, while the robot
environments focus on physical embodiment with fewer
objects and skills. In VirtualHome, we evaluate plans for
100 household tasks (e.g., “Make breakfast”, “Browse the
Internet”). To show that our method extends to unseen
unstructured real-world environments, we compare plans
generated by CAPE with those generated by the 3 baselines
across 6 human-assistance tasks and 2 scenes for each task.

B. Robot Demonstration

To demonstrate CAPE’s performance on unstructured real-
world tasks, we compare our re-prompting ablations against
all 3 baselines with the Boston Dynamics Spot (a quadruped
robot with a single 6-DOF arm) across 2 scenes (a lab
environment and a kitchen) with structural variation in the
maps and object inter-placement. On average, 9 household
objects (e.g., phone, bed, coffee, etc.) each with five state
attributes (e.g, at location, grabbed, opened, turned on) are
present in each scene. We evaluate performance on 6 tasks:
1) Prepare for a run on a warm day, 2) Put the phone on the
nightstand, 3) Iron a shirt, 4) Put mail in storage, 5) Organize
Pantry, and 6) Put away groceries. We assume the robot has
access to a set of 14 parametrized skills (including stand
up, walk to, pick up, put, touch, look at, open and close).
We first build a semantic map from images and waypoints
recorded in each scene; vision-language models (VLM)
(CLIP [24] and CLIPSeg [25]) are used to ground admissible

skills to spatial targets for navigation or grasping in the
physical environment, similar to NLMap-SayCan [26]. The
robot’s embodiment (single arm), a limited skill repertoire
and extensibility to new unstructured environments make
this a challenging setting for task completion. Figure 1
shows Spot successfully completing the task “Prepare for
a run on a warm day.” Re-prompting resolves precondition
violations caused by the robot’s initial state and single-arm
embodiment. Demonstrations for additional tasks and scenes
are in our supplementary video.

C. Human Evaluation

Like Huang et al. [3], we use human evaluation to de-
termine correctness of generated plans through the crowd-
sourcing platform Prolific. 50% of the total tasks across
all baselines and ablations were supplied to annotators. For
each task, five annotators evaluate whether the grounded
plan (in English) accomplishes the given task objective. The
environment for each plan is randomly selected.

D. Evaluation Metrics

We adopt % Executability and % Correctness from Huang
et al. [3]. % Executability measures if all grounded actions
satisfy preconditions imposed by the environment, i.e., if the
entire plan is afforded execution in the agent’s environment
and state % Affordability measures the average percentage
of all plan steps in order that are executable, skipping steps
that are not afforded execution (i.e., partial executability).
% Correct is a human-annotated assessment of semantic
correctness and relevance of a grounded plan to the target
task. Assessing the quality of plans in natural language
using only executability is difficult and ambiguous; thus,
we conduct human evaluations where participants assign
binary scores reflecting whether a plan is correct (1) or
incorrect (0). For a fairer representation of correctness, we
consider executability constraints (i.e., precondition errors)
and present all plans to human evaluators up to the step
where they remain executable by the agent. We also report
Fleiss’ Kappa for inter-annotator agreement among human
annotators of our % Correct categorical labeling task. The
score ranges from 0 to 1, where higher values indicate
a stronger agreement between annotators [27]. Longest
Common Subsequence (LCS) measures raw string over-
lap between generated grounded programs and ground-truth
programs as proposed by Puig et al. [9]. LCS serves as a less
robust proxy for plan semantics as human evaluations (cor-
rectness) are not constrained by the richness of interactions
in the embodied environment and variability of approaches to
complete a task. We also report the average number of Steps
and Corrections (number of corrective re-prompts or re-
samples) needed across tasks to generate a plan. Whilst these
metrics are incidental to the goal (i.e., minimizing them does
not necessarily correlate to improved performance), they
still assess the relative efficiency of each method towards
correcting skill execution. Finally, Scene Graph Similarity
(%GS) reflects the percentage of state-object attributes that
overlap between the final states resulting from execution

4

TABLE I
PERFORMANCE OF BASELINES AND CAPE ACROSS 100 TEST-SET TASK TYPES AND 7 SCENES IN VIRTUALHOME [9] (700 TOTAL).

Method %Correct↑ %Exec.↑ %Aff.↑ %GS↑ LCS↑ Fleiss’ Kappa↑ Steps↓ Corrections↓
Baselines
Huang et al. [3] 38.15 72.52 87.72 95.54 20.80 0.47 7.21 N/A
Re-sampling 38.89 76.43 75.24 95.65 23.45 0.45 6.87 7.67
SayCan [2] (Perfect) 28.89 100.00 100.00 94.17 22.98 0.33 7.56 N/A
SayCan [2] (Noisy) 22.59 97.33 99.89 94.68 19.43 0.46 5.97 N/A

CAPE: Zero-Shot (Z)
Success Only (ZS) 41.11 97.57 90.46 95.49 23.79 0.38 7.68 1.08
Implicit Cause (ZI) 42.22 97.86 90.05 95.64 23.20 0.51 7.48 0.93
Explicit Cause (ZE) 42.59 98.29 91.69 95.69 23.48 0.45 8.16 0.72
Explicit Cause (ZE + Sg) 48.52 98.57 91.28 96.23 23.30 0.35 8.81 1.31

CAPE: Few-Shot (F)
Explicit Cause (FE) 47.04 98.57 92.29 96.05 24.20 0.41 8.69 0.89
Explicit Cause (FE + Sg) 49.63 96.29 90.93 96.29 23.47 0.39 9.35 1.82

TABLE II
PERFORMANCE OF BASELINES AND CAPE ACROSS 6 TEST-SET TASKS AND 2 SCENES FOR HOUSEHOLD TASKS WITH ROBOT DEMO (12 TOTAL).

Method %Correct↑ %Exec.↑ %Aff.↑ %GS↑ LCS↑ Fleiss’ Kappa↑ Steps↓ Corrections↓
Baselines
Huang et al. [3] 16.67 41.64 56.46 66.03 26.77 0.28 2.40 N/A
Re-sampling 13.33 75.00 47.98 67.33 32.92 0.71 4.60 13.19
SayCan [2] (Perfect) 28.33 83.33 83.33 68.02 41.13 0.26 6.80 N/A
SayCan [2] (Noisy) 16.67 66.67 79.13 67.54 38.36 0.22 6.80 N/A

CAPE: Zero-Shot (Z)
Success Only (ZS) 18.33 75.00 43.05 66.02 32.45 0.28 3.04 2.25
Implicit Cause (ZI) 20.00 75.00 52.37 66.25 32.44 0.32 3.14 1.83
Explicit Cause (ZE) 31.67 100.00 79.69 69.18 48.12 0.11 6.30 1.91
Explicit Cause (ZE + Sg) 23.33 100.00 79.04 69.85 46.68 0.12 6.30 1.73

CAPE: Few-Shot (F)
Explicit Cause (FE) 45.00 100.00 81.36 77.91 65.07 0.23 11.70 2.91
Explicit Cause (FE + Sg) 50.00 100.00 80.70 77.40 69.77 0.12 11.30 2.90

of the generated grounded program (Ggen) and the ground-
truth human-written program (Ggt). The number of matching
attributes are normalized over the union of objects in both
Ggen and Ggt. This metric is invariant to differences in length
and ordering of steps between generated and ground-truth
plans, compared to a string-matching metric like LCS.

V. DISCUSSION

CAPE ablations outperform baselines on most metrics in
VirtualHome [9] environment (see Table I). CAPE: Few-
Shot with Explicit Cause (FE + Sg) attains the high-
est combined performance for % Correct (49.63%) and
Executability (96.29%). This ablation improves % Correct
over SayCan (Perfect) by 71.80% (absolute improvement
of 20.74%) while maintaining comparable executability and
percentage of afforded steps. The Fleiss’ Kappa across
all ablations indicates moderate inter-annotator agreement
for the % Correct metric. Our zero-shot ablations with
varying specificity of error information outperform SayCan
and Huang et al. [3] baselines as well as other baselines
[28] that report 90% executability and 72% graph similarity
using 3 in-context examples with davinci-codex model.
Thus, CAPE’s re-prompting is effective even without few-
shot learning; increasing specificity of errors also improves
performance. Our method generates higher quality plans
while requiring up to 10× fewer corrections than the re-
sampling baseline, which reflects the utility of corrective
prompts. Our method also outperforms SayCan across nearly

all metrics, though SayCan implicitly provides environment
feedback through the affordance model. Furthermore, our
method significantly reduces time complexity below SayCan,
O(n) compared with O(|s|n) respectively, where s is the
skill repertoire and n the number of plan steps, since SayCan
iterates the entire skill space to generate every step.

CAPE ablations also outperform baselines on robot
demonstration (see Table II). CAPE: Few-Shot with Ex-
plicit Cause (FE + Sg) attains the highest combined per-
formance for % Correct (50%) and Executability (100%).
This ablation improves % Correct over SayCan (Perfect)
by 76.49% (absolute improvement of 21.67%) while attain-
ing comparable percentage of afforded steps, even though
SayCan operates in an oracle setting. SayCan usually fails
because the affordance function severely constrains available
actions, sometimes leading to local optima, i.e., afforded
actions with highest log probability do not resolve precondi-
tion errors critical to task completion, while afforded actions
that do resolve these preconditions do not have sufficient
log probability. The Fleiss’ Kappa across all ablations for
robot demonstration tasks indicate modest inter-annotator
agreement between annotators for the % Correct metric,
except for re-sampling where annotators unanimously agreed
that generated plans do not successfully complete the task.

Finally, Figure 3 shows the distribution of 22 VirtualHome
precondition error types across 4 difficulty levels for all
CAPE and resampling ablations. Difficulty levels include
errors that require: no corrections (D1: e.g., “opening an open

5

13% (1)Resampling

Success
Only

Implicit
Cause

Explicit
Cause

Explicit
Cause + Sg

Few-Shot
Explicit
Cause

Few-Shot
Explicit
Cause + Sg

32% (5) 53% (3) 2% (2)
14% (1) 23% (6) 61% (4) 1% (2)
15% (2) 19% (3) 64% (3) 2% (3)
49% (1) 5% (3) 43% (4) 2% (3)

14% (3) 1% (1)
22% (1) 1% (2)

16% (1) 28% (4) 45% (2) 11% (2)
0% (0) 7% (2) 92% (4) 2% (3)

7% (2) 24% (5) 62% (2) 7% (3)
3% (3) 4% (1) 91% (3) 2% (3)

11% (1) 18% (3) 63% (4) 9% (3)
3% (1) 3% (1) 71% (2) 23% (2)

10% (4) 17% (5) 70% (4) 3% (3)
15% (2) 2% (2) 72% (2) 11% (3)

D1: Difficulty 1 [7] D2: Difficulty 2 [7] D3: Difficulty 3 [4] D4: Difficulty 4 [4] Total
202

5,168

191

553

217

436

19% (3)
7% (2)

65% (3)
68% (2)

214

292

356

558

396

225
474

797

upto 2x more
resolved/unresolved

upto 3x more
resolved/unresolved

upto 5x more
resolved/unresolved

upto 10x more
resolved/unresolved

upto 20x more
resolved/unresolved

>20x more
resolved/unresolved

Fig. 3. The distribution of precondition errors that are resolved (top)
and unresolved (bottom) for all re-prompting methods on the VirtualHome
environment, across 4 difficulty levels (D1–4). Values in square brackets
show the number of error types for a given difficulty. Color and intensity
correspond to ratio of errors resolved (green) vs. unresolved (red) errors.

door”), one-step corrections (D2), multi-step corrections
(D3), and long-term planning with ambiguous resolution
(D4: e.g., “too many objects on the table”). A precondition
error in step i is ‘resolved’ only if the plan progresses to
step ≥ i+1 before the next error. There are 4 observations:
(1) majority of resolved/unresolved errors in all ablations
fall under D3; (2) FE is the only ablation with more
resolved (396) than unresolved (225) errors and an average of
4× more resolutions across difficulties; (3) increased error
specificity can more readily resolve D1–3 errors, with the
sharpest increase for D2 errors; (4) whilst Sg disproportion-
ately increases total number of unresolved errors, diluting the
ratio of resolved errors, Sg does not change the distribution
of unresolved errors across difficulties and broadens the
diversity of resolved errors compared to unresolved errors.

VI. RELATED WORK

LLMs for Task Planning: Several works use LLMs for
planning [3, 2, 29, 30]. Huang et al. [3] uses LLMs to
generate step-by-step plans for tasks described in language.
We additionally incorporate precondition error feedback from
the environment as auxiliary input. Similarly, Song et al. [29]
and Gramopadhye and Szafir [30] provide information about
the agent’s environment and action set to help LLMs generate
contextualized plans. However, CAPE assumes less informa-
tion with similar output: the Planning LLM is not given ac-
cess to information about what objects lie in the environment
nor the agent’s high-level action set. SayCan [2] uses an LLM
to score a predefined set of robot skills (demonstrated by an
expert), implicitly incorporating feedback through affordance
detection to propose action sequences.

Visual & Language Feedback for Planning: Following
our prior work [8], several works use language feedback to
reason about errors [31, 32, 33, 34]. Reflexion [33] converts
scalar feedback (from heuristic evaluators) into structured
linguistic feedback with long-term memory to improve de-
cision making via trial-and-error. CAPE does not assume
access to long-term feedback over multiple episodes. Other
works like DoReMi [31] and Zhang et al. [32] assume access
to primitive skills and detect action failures by monitoring

properties associated with action constraints (either from
planning domains like PDDL or from the LLM) using
VLMs and LLMs. CAPE only provides implicit feedback
in the form of corrective prompts with which the LLM
has to infer the current state and propose an appropriate
next step. REFLECT [34] uses multi-modal feedback to
extract a hierarchy of events and visually informed scene
graphs, which are used to explain failures during planning.
However, assessing object states from visual and auditory
feedback requires predefined audio and object state labels
for visual/audio grounding, which requires a non-trivial extra
effort in addition to predefining all skills.

Task and Motion Planning (TAMP): TAMP [35, 20]
hierarchically decouples robot planning and execution into
task planning, which aims to find a sequence of actions that
realize state transitions and goal state corresponding to a
high-level problem [36], and motion planning, which aims to
find collision-free trajectories that realize objectives of a task
plan [37, 38]. LLMs provide agents or robots with implicit
representations of actions in language, without having to rely
on explicitly defined structures or symbols that are typically
used in TAMP, to identify key details (actions or objects)
underpinning the problem at hand.

VII. CONCLUSION

We introduce CAPE, a re-prompting strategy for LLM-
based planners, that injects precondition errors parsed from
environment feedback as contextual information. CAPE sub-
stantially improves executability and correctness of gener-
ated plans, enabling agents to resolve action failures. Our
experiments show that corrective prompting generates more
semantically correct plans with fewer precondition errors
than those generated by baseline methods (Huang et al. [3],
SayCan [2], and re-sampling). CAPE also overcomes the
computational intractability of SayCan in environments with
a large number of admissible skills, as CAPE explores a
narrower subset of skills and uses far fewer interjections.

However, we acknowledge important limitations. First,
CAPE carries a strong assumption that skill preconditions
can be predetermined. We will incorporate methods that
propose action preconditions using the innate reasoning
capabilities of LLMs [31, 32]. Second, CAPE abstracts low-
level control into a repertoire of high-level skills that we
assume have perfect low-level execution, such that only
logical precondition errors (the focus of our work) can
disrupt plan execution. We plan to use multi-modal feedback,
which would allow CAPE to reason over a wider range of
error types that cannot be described in language and enable
recovery for low-level control as in related work [31, 34].

ACKNOWLEDGEMENTS

This work is supported by ONR grants N00014-21-1-2584
and N00014-22-1-2592, NSF award CNS-2038897 and Echo
Labs, and is based on work supported by the Defense Ad-
vanced Research Projects Agency (DARPA) under contract
HR001122C0007.

6

REFERENCES

[1] S. Tellex, N. Gopalan, H. Kress-Gazit, and C. Ma-
tuszek, “Robots That Use Language ,” Annual Review
of Control, Robotics, and Autonomous Systems, vol. 3,
pp. 25–55, 2020.

[2] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes,
B. David, C. Finn, C. Fu, K. Gopalakrishnan, K. Haus-
man, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter,
A. Irpan, E. Jang, R. J. Ruano, K. Jeffrey, S. Jesmonth,
N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H.
Lee, S. Levine, Y. Lu, L. Luu, C. Parada, P. Pastor,
J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes, P. Ser-
manet, N. Sievers, C. Tan, A. Toshev, V. Vanhoucke,
F. Xia, T. Xiao, P. Xu, S. Xu, M. Yan, and A. Zeng,
“Do As I Can, Not As I Say: Grounding Language
in Robotic Affordances,” in Proceedings of The 6th
Conference on Robot Learning, ser. Proceedings of
Machine Learning Research, K. Liu, D. Kulic, and
J. Ichnowski, Eds., vol. 205. PMLR, 14–18 Dec 2022,
pp. 287–318.

[3] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch,
“Language models as zero-shot planners: Extracting
actionable knowledge for embodied agents,” in Inter-
national Conference on Machine Learning. PMLR,
2022, pp. 9118–9147.

[4] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Flo-
rence, A. Zeng, J. Tompson, I. Mordatch, Y. Chebotar,
P. Sermanet, T. Jackson, N. Brown, L. Luu, S. Levine,
K. Hausman, and b. ichter, “Inner Monologue: Em-
bodied Reasoning through Planning with Language
Models,” in Proceedings of The 6th Conference on
Robot Learning, ser. Proceedings of Machine Learning
Research, K. Liu, D. Kulic, and J. Ichnowski, Eds., vol.
205. PMLR, 14–18 Dec 2022, pp. 1769–1782.

[5] S. Yao, R. Rao, M. Hausknecht, and K. Narasimhan,
“Keep CALM and explore: Language models for action
generation in text-based games,” in Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Association for Com-
putational Linguistics, Nov. 2020, pp. 8736–8754.

[6] I. Singh, G. Singh, and A. Modi, “Pre-trained Language
Models as Prior Knowledge for Playing Text-based
Games,” in Proceedings of the 21st International Con-
ference on Autonomous Agents and Multiagent Systems,
2022, pp. 1729–1731.

[7] D. McDermott, M. Ghallab, A. Howe, C. Knoblock,
A. Ram, M. Veloso, D. Weld, and D. Wilkins, “PDDL –
The Planning Domain Definition Language,” CVC TR-
98-003/DCS TR-1165, Yale Center for Computational
Vision and Control, Tech. Rep., 1998.

[8] S. S. Raman, V. Cohen, E. Rosen, I. Idrees,
D. Paulius, and S. Tellex, “Planning With Large
Language Models Via Corrective Re-Prompting,”
in NeurIPS 2022 Foundation Models for Decision
Making Workshop, 2022. [Online]. Available: https:
//openreview.net/forum?id=cMDMRBe1TKs

[9] X. Puig, K. Ra, M. Boben, J. Li, T. Wang, S. Fidler,
and A. Torralba, “VirtualHome: Simulating Household
Activities via Programs,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 2018, pp. 8494–8502.

[10] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D.
Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sas-
try, A. Askell et al., “Language Models are Few-Shot
Learners,” Advances in Neural Information Processing
Systems, vol. 33, pp. 1877–1901, 2020.

[11] A. Radford, K. Narasimhan, T. Salimans, and
I. Sutskever, “Improving language understanding by
generative pre-training,” 2018.

[12] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
“BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[13] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner,
C. Clark, K. Lee, and L. Zettlemoyer, in Proceedings of
the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers). New
Orleans, Louisiana: Association for Computational Lin-
guistics, Jun. 2018, pp. 2227–2237.

[14] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,
and I. Sutskever, “Language Models are Unsupervised
Multitask Learners,” OpenAI Blog, vol. 1, no. 8, p. 9,
2019.

[15] J. Liu, D. Shen, Y. Zhang, B. Dolan, L. Carin, and
W. Chen, “What Makes Good In-Context Examples
for GPT-3?” in Proceedings of Deep Learning Inside
Out (DeeLIO 2022): The 3rd Workshop on Knowledge
Extraction and Integration for Deep Learning Architec-
tures. Association for Computational Linguistics, May
2022, pp. 100–114.

[16] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen,
O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov,
“RoBERTa: A Robustly Optimized BERT Pretraining
Approach,” arXiv preprint arXiv:1907.11692, 2019.

[17] R. E. Fikes and N. J. Nilsson, “STRIPS: A New
Approach to the Application of Theorem Proving to
Problem Solving,” Artificial intelligence, vol. 2, no. 3-
4, pp. 189–208, 1971.

[18] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs
and semi-MDPs: A framework for temporal abstraction
in reinforcement learning,” Artificial Intelligence, vol.
112, no. 1-2, pp. 181–211, 1999.

[19] G. Konidaris, L. P. Kaelbling, and T. Lozano-Pérez,
“From skills to symbols: Learning symbolic represen-
tations for abstract high-level planning,” Journal of
Artificial Intelligence Research, vol. 61, pp. 215–289,
2018.

[20] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Sil-
ver, L. P. Kaelbling, and T. Lozano-Pérez, “Integrated
task and motion planning,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 4, pp. 265–
293, 2021.

7

https://openreview.net/forum?id=cMDMRBe1TKs
https://openreview.net/forum?id=cMDMRBe1TKs

[21] F. Golnaraghi and B. C. Kuo, Automatic Control Sys-
tems. McGraw-Hill Education, 2017.

[22] A. Pnueli, “The temporal logic of programs,” in 18th
Annual Symposium on Foundations of Computer Sci-
ence (sfcs 1977). IEEE, 1977, pp. 46–57.

[23] D. Summers-Stay, C. Bonial, and C. Voss, “What can a
generative language model answer about a passage?” in
Proceedings of the 3rd Workshop on Machine Reading
for Question Answering. Association for Computa-
tional Linguistics, Nov. 2021, pp. 73–81.

[24] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh,
S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark,
G. Krueger, and I. Sutskever, “Learning Transferable
Visual Models From Natural Language Supervision,”
in Proceedings of the 38th International Conference
on Machine Learning, ser. Proceedings of Machine
Learning Research, M. Meila and T. Zhang, Eds., vol.
139. PMLR, 18–24 Jul 2021, pp. 8748–8763.

[25] T. Lüddecke and A. Ecker, “Image segmentation us-
ing text and image prompts,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2022, pp. 7086–7096.

[26] B. Chen, F. Xia, B. Ichter, K. Rao, K. Gopalakrish-
nan, M. S. Ryoo, A. Stone, and D. Kappler, “Open-
vocabulary Queryable Scene Representations for Real
World Planning,” in 2023 IEEE International Confer-
ence on Robotics and Automation (ICRA), 2023, pp.
11 509–11 522.

[27] J. R. Landis and G. G. Koch, “The measurement of
observer agreement for categorical data,” Biometrics,
vol. 33, no. 1, pp. 159–174, 1977.

[28] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu,
J. Tremblay, D. Fox, J. Thomason, and A. Garg, “Prog-
prompt: Generating situated robot task plans using
large language models,” in 2023 IEEE International
Conference on Robotics and Automation (ICRA), 2023,
pp. 11 523–11 530.

[29] C. H. Song, J. Wu, C. Washington, B. M. Sadler, W.-L.
Chao, and Y. Su, “LLM-Planner: Few-Shot Grounded
Planning for Embodied Agents with Large Language
Models,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), October 2023.

[30] M. Gramopadhye and D. Szafir, “Generating Exe-
cutable Action Plans with Environmentally-Aware Lan-
guage Models,” in 2023 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), 2023.

[31] Y. Guo, Y.-J. Wang, L. Zha, Z. Jiang, and J. Chen,
“DoReMi: Grounding Language Model by Detecting
and Recovering from Plan-Execution Misalignment,”
arXiv preprint arXiv:2307.00329, 2023.

[32] X. Zhang, Y. Ding, S. Amiri, H. Yang, A. Kaminski,
C. Esselink, and S. Zhang, “Grounding Classical Task
Planners via Vision-Language Models,” ICRA 2023
Workshop on Robot Execution Failures and Failure
Management Strategies, 2023.

[33] N. Shinn, F. Cassano, B. Labash, A. Gopinath,
K. Narasimhan, and S. Yao, “Reflexion: Language

agents with verbal reinforcement learning,” arXiv
preprint arXiv:2303.11366, vol. 14, 2023.

[34] Z. Liu, A. Bahety, and S. Song, “REFLECT: Sum-
marizing Robot Experiences for Failure Explanation
and Correction,” in 7th Annual Conference on Robot
Learning, 2023.

[35] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical
planning in the now,” in Workshops at the Twenty-
Fourth AAAI Conference on Artificial Intelligence,
2010.

[36] M. Ghallab, D. Nau, and P. Traverso, Automated Plan-
ning and Acting. Cambridge University Press, 2016.

[37] T. Lozano-Pérez and M. A. Wesley, “An Algorithm for
Planning Collision-Free Paths Among Polyhedral Ob-
stacles,” Communications of the ACM, vol. 22, no. 10,
pp. 560–570, 1979.

[38] C. Dornhege, M. Gissler, M. Teschner, and B. Nebel,
“Integrating symbolic and geometric planning for mo-
bile manipulation,” in 2009 IEEE International Work-
shop on Safety, Security & Rescue Robotics (SSRR
2009). IEEE, 2009, pp. 1–6.

8

	Introduction
	Background
	Method
	Plan Generation via Re-prompting
	Baseline: Plan Generation via Re-sampling
	Baseline: Plan Generation with SayCan

	Evaluation
	Experimental Setup
	Robot Demonstration
	Human Evaluation
	Evaluation Metrics

	Discussion
	Related Work
	Conclusion

