
Planning with Large Language Models via Corrective
Re-prompting

Shreyas Sundara Raman∗,1, Vanya Cohen2, Eric Rosen1, Ifrah Idrees1,
David Paulius1 and Stefanie Tellex1

1Brown University
2The University of Texas at Austin

Abstract

Extracting the common sense knowledge present in Large Language Models
(LLMs) offers a path to designing intelligent, embodied agents. Related works
have queried LLMs with a wide-range of contextual information, such as goals,
sensor observations and scene descriptions, to generate high-level action plans for
specific tasks; however these approaches often involve human intervention or ad-
ditional machinery to enable sensor-motor interactions. In this work, we propose
a prompting-based strategy for extracting executable plans from an LLM, which
leverages a novel and readily-accessible source of information: precondition er-
rors. Our approach assumes that actions are only afforded execution in certain
contexts, i.e., implicit preconditions must be met for an action to execute (e.g., a
door must be unlocked to open it), and that the embodied agent has the ability to
determine if the action is/is not executable in the current context (e.g., detect if a
precondition error is present). When an agent is unable to execute an action, our
approach re-prompts the LLM with precondition error information to extract an
executable corrective action to achieve the intended goal in the current context.
We evaluate our approach in the VirtualHome simulation environment on 88 dif-
ferent tasks and 7 scenes. We evaluate different prompt templates and compare to
methods that naively re-sample actions from the LLM. Our approach, using pre-
condition errors, improves executability and semantic correctness of plans, while
also reducing the number of re-prompts required when querying actions.

Baseline (Huang et. al, 2022)

Task: Put away groceries

Step 1: Walk to kitchen
Step 2: Walk to fridge
Step 3: Open fridge
Step 4: Put groceries in fridge

Script fails because agent is not
holding groceries

Re-sampling Baseline

Task: Put away groceries

Step 1: Walk to kitchen
Step 2: Walk to fridge
Step 3: Open fridge
Step 4: Find food food
Step 5: Grab food food

Our Method

Task: Put away groceries

Step 1: Walk to kitchen
Step 2: Walk to fridge
Step 3: Open fridge
Step 4: Put groceries in fridge
Error: I don't have the food.
A correct step would be to
Step 4: Walk to groceries
Step 5: Grab groceries
Step 6: Put groceries in folder
Error: putin folder is not allowed.
A correct step would be to
Step 6: Walk to pantry
Step 7: Put groceries on pantry

Figure 1: The percentage of executable plans v.s. semantic correctness, conditioned upon executabil-
ity (left). A sample comparing plans generated by Huang et al. (2022) and re-sampling baselines
with our method (right).

∗Corresponding Author (Email: shreyas sundara raman@brown.edu)

Foundation Models for Decision Making Workshop at Neural Information Processing Systems, 2022

ar
X

iv
:2

21
1.

09
93

5v
1

 [
cs

.A
I]

 1
7

N
ov

 2
02

2

1 Introduction

Large Language Models (LLMs) excel at performing diverse natural language processing (NLP)
tasks including translation, sentiment analysis, and arithmetic (Brown et al., 2020). LLMs learn a
generative model of large web-sourced text datasets. This large scale pre-training encodes latent
common-sense knowledge that can be utilized in downstream tasks (Bosselut et al., 2019). Our
objective is to use LLMs to aid with intelligent decision-making for embodied agents that are per-
forming long-horizon tasks (e.g., cleaning a room, prepping a meal, etc.).

Embodied agents exist in an environment with the purpose of accomplishing a goal. Extracting
actionable knowledge from LLMs requires incorporating relevant context about the situation or
embodiment of the agent. For example, related works have investigated zero-shot approaches to
extract plans from LLMs using prompting strategies that include natural language descriptions of
the agent’s goal to generate action sequences (Huang et al., 2022). To provide context about the
scene, other work has used visual-language models to determine what natural language actions are
feasible based on sensor data (Ahn et al., 2022) or processed scene descriptions (e.g., common-sense
reasoning for embodied agents in text-based video games (Yao et al., 2020; Singh et al., 2021)). In
this work, we investigate a previously unexplored source of contextual information, precondition
errors (which we subsequently define more concretely), to query LLMs with to extract action plans.

Preconditions come from the notion that actions are not executable in all circumstances, and that
certain conditions must first be satisfied. In certain scenarios, these conditions are factorized and ex-
plicit to the agent (e.g., to follow a cooking recipe, the agent must access the requisite ingredients),
while in other scenarios, there may be no easy or accessible way to explicitly decompose the pre-
conditions, and so the agent only has the ability to determine whether an action is currently afforded
or not (e.g., observing a cluttered scene and determining if a cup can currently be picked up or not).
In the latter case, the agent only has the ability to report a precondition error stating that an action
is currently infeasible, whereas in the former case the precondition error can contain more infor-
mation about why that action is currently not feasible. To our knowledge, leveraging precondition
errors (with or without explanatory reasons) to query LLMs for actions to accomplish a task has not
previously been explored, and we suggest that it is a promising source of auxiliary information.

In this work, we propose a prompt-based strategy for querying plans from LLMs using precondition
errors. Our approach takes a natural language description of a task and uses a LLM to produce a
sequence of actions for the robot to execute. When the robot fails to execute a skill in the plan and
reports a precondition error, we use a template-based prompt strategy to query new actions from the
LLM to produce new plans for the embodied agent. In cases where the agent only has the ability to
evaluate whether an action is afforded in the current situation, our approach uses a prompt format that
incorporates a description of the failed action; in cases where the agent has structured information
about the precondition error, our approach uses a prompt includes that explanatory information
about why the action is currently not feasible. Therefore, our prompt-based strategy is adaptable
and can be integrated into a wide-variety of approaches depending on what structured information
and assumptions are made about the agent’s knowledge regarding evaluating action affordance.

We compare our prompt-based approach that leverages precondition errors to a baseline strategy
of naively re-sampling the LLM for new actions upon encountering an error, and also conduct ab-
lations on different prompt-templates to evaluate the best way to leverage precondition errors to
extract corrective actions for faulty plans. We evaluate our approach in the VirtualHome simulation
environment (Puig et al., 2018) on a reserved set of 88 tasks, and measure the percentage of exe-
cutable tasks and the percentage of correct plans produced by these methods as evaluated by human
annotators. We show that LLMs are able to utilize error information to improve plan generation. Our
re-sampling baseline outperforms current methods ((Huang et al., 2022)) by 16% in executability,
on average; our prompt-based approach further outperforms the baseline by 2.27% in executability
and 12.22% in human-evaluated correctness, and all re-prompting ablations similarly achieve high
executability (> 90%) and correctness (20− 21%) with variations within 1%.

Our contributions are as follows:

• We propose a method for querying plans from LLMs for embodied agents that leverages
precondition errors to generate corrective actions via a re-prompting strategy. Our approach
is adaptable to situations where agents are only able to evaluate whether an action is cur-

2

rently afforded or not, and to more structured settings where explicit knowledge about what
preconditions are currently unmet are known.

• We evaluate our method for leveraging precondition errors against a baseline method for
querying LLMs for corrective actions without precondition error information in the Vir-
tualHome domain and demonstrate that our approach achieves near-perfect executability
with minimal impact on the semantic correctness of plans.

• We compare different prompt templates for querying LLMs that assume different amounts
of information regarding precondition error information (ranging from no information be-
sides the skill is not executable to structured information about what precondition is not
satisfied). This provides researchers an easy and flexible way to most effectively integrate
our approach into their work depending on what information is available to them.

2 Background

2.1 In-Context Learning

Brown et al. (2020) introduces GPT-3, a 175 billion parameter language model capable of few-shot
in-context learning of novel tasks. With in-context learning, the LLM is prompted with a sequence
of tasks examples, as concatenated input-output pairs. To generate an output for a test example, the
example is appended to the prompt. The language model is then queried for a completion of the
prompt which forms the model output. This approach stands in contrast to tasks learning based on
fine-tuning of pre-trained language representations (Radford et al., 2018; Devlin et al., 2018; Peters
et al., 2018), and the zero-shot inference of GPT-2 (Radford et al., 2019). In-context learning offers
a number of advantages over other learning paradigms; It enables task specific learning and updating
of training datasets without fine-tuning or redeploying the LLM. In-context learning performs best
when prompt examples are relevant to the test example, and we follow the method of Liu et al.
(2021) and Huang et al. (2022) and retrieve prompt examples using a semantic similarity metric.

2.2 Open-Loop Plan Generation

The method for zero shot open-loop generation proposed by Huang et al. (2022) leverages the rich
world knowledge internalized by LLMs to query an action plan to a task without feedback from the
environment. Their method utilizes two frozen LLMs named the Planning LLM and the Transla-
tion LLM to auto-regressively generate action steps for a given task and perform in-context learning.

First, a high-level task T and its associated mid-level plan are chosen (from the demonstration set)
as a contextual prompt of a free-form plan for the Planning LLM; note that T is chosen such that
it maximizes cosine similarity with the query task Q, i.e., the target task for which we would like to
generate a plan. This step enables in-context learning for the high-level task T by using the similar
query task Q.

The Translation LLM (or Pre-trained Masked LLM) then utilizes a BERT-style LM (pre-trained
with Sentence-BERT) to embed the generated free-form actions (â) to an action admissible in the
environment (ae); the cosine similarity between the action’s phrase (â) embedding and the embed-
dings of each admissible action (ae) is calculated to determine the admissible action with minimum
semantic distance. The chosen admissible action (ae) is then appended to the unfinished prompt, to
condition auto-regressive step generation on admissible actions. A detailed review of this method
can be found in Huang et al. (2022). Our approach extends this framework, as we investigate how
to improve planning by leveraging precondition errors as an auxiliary information modality.

2.3 Preconditions and Affordances

Gibson originally introduced the notion of an affordance as the set of action possibilities latent to
the environment and context the agent is in (Gibson, 1977). Many related works have investigated
identifying robotic affordances in the context of robotic grasping (Yamanobe et al., 2017), path
planning (Ardón et al., 2020), and generic skill execution (Ahn et al., 2022). While some affor-
dance models only offer the ability to classify or generate states that afford skill execution, more
structured models of affordance use a factorized model to decompose the initiation set of a skill into
separate components, termed preconditions. Preconditions capture the notion that the affordance of

3

a skill is compromised of independent components, and can be used to generate cause explanations
for why a skill is not currently afforded (i.e., because a certain condition is not satisfied). Learn-
ing and modeling preconditions have been largely studied in model-based approaches that leverage
symbolic planning (Garrett et al., 2021; Konidaris et al., 2018), but in this work we investigate how
precondition information can be leveraged to improve planning with LLMs.

3 Related Work

3.1 Large Language Models for Task Planning

Most closely related to our paper are Ahn et al. (2022) and Huang et al. (2022), which both aim
to integrate LLMs into an open-loop planning pipeline for task execution. Huang et al. (2022)
used a prompting strategy to derive step-by-step plans that achieve the goal presented in a prompt;
however, as mentioned before, our work extends their approach by incorporating feedback from the
environment as auxiliary input to improve the executability of a derived plan. Similarly, Ahn et al.
(2022) introduced SayCan, an LLM-integrated pipeline that is capable of determining a sequence of
actions to achieve specific goals grounded to “affordances” (pre-defined set of skills that the robot
can perform, all manually demonstrated by expert). They used semantic similarity to determine
the closest skill in the robot’s skill library that would achieve the intended goal of an instructions
extracted from the language prompt. However, as with Huang et al. (2022), they do not incorporate
feedback for failed actions, as their focus is on finding the most affordable action based on a verbal
command and the visual state of its environment.

3.2 Task and Motion Planning

Task and motion planning (TAMP) aims to decompose robot planning and execution processes in
a hierarchical manner (Kaelbling & Lozano-Pérez, 2010; Garrett et al., 2021). This involves the
integration of: 1) task planning, which aims to find a sequence of actions that realize state transitions
needed to achieve a goal state corresponding to a high-level problem (Ghallab et al., 2016); and 2)
motion planning, which aims to find physically consistent and collision-free trajectories that realizes
the objectives of a task plan (Lozano-Pérez & Wesley, 1979; Dornhege et al., 2009). Rather than
relying on explicitly defined structures or symbols as typically used in TAMP, LLMs can provide an
agent or robot with an implicit representation of action and language, which allows it to interpret a
task and identify key details (such as objects or actions) that are related to the problem at hand.

3.3 Semantic Parsing and Program Synthesis

The task of mapping natural language instructions to executable formal symbolic representations
closely resembles tasks in the semantic parsing and program synthesis literature (Chen et al., 2021).
Our method for plan generation resembles semantic parsing as a learned translation task (Wong &
Mooney, 2006) and Guu et al. (2017) leverages weak supervision to learn to translate language to
executable programs.

3.4 Common-Sense Knowledge in LLMs

Other work explores the degree to which large language models contain common-sense world
knowledge. The Winograd Schema Challenge (Levesque et al., 2012) and larger WINOGRANDE
benchmark (Sakaguchi et al., 2021) evaluate common-sense reasoning in word problems. The
WinoGround dataset investigates common-sense reasoning in a related image caption disambigua-
tion challenge (Thrush et al., 2022). LLMs have improved upon baseline methods for this task
(Brown et al., 2020) indicating that language model scale contributes to common-sense reasoning
performance. Our system leverages the finding that language models contain latent common-sense
world knowledge to incorporate precondition error information to improve plan executability.

4 Method

In this section, we investigate our approaches for injecting corrective information to improve skill
execution in embodied agents.

4

To arrive at an approach for closed-loop zero-shot planning using pre-condition error information,
we build on existing methods for zero-shot open-loop planning proposed by Huang et al. (2022). We
describe the adaptations to construct an inference-time procedure that corrects skill execution with
closed-loop planning; we unravel two variations of our approach between re-prompting strategies
(based on precondition error information) that encourage quality corrective actions and a naive re-
sampling baseline for the closed-loop setting. These approaches address some of the shortcomings
of open loop planning and offer improved results.

4.1 Plan Generation via Re-prompting

Our investigation initially presented a trade-off between open-loop planners suffering in executabil-
ity and closed-loop planners integrating sensorimotor experiences being more expensive.

We propose an alternative middle-ground strategy: we use re-prompting to generate corrective ac-
tions for non-executable plans by embedding pre-condition error information about the cause of
skill execution failure into corrective prompts. Previous works have shown that pretrained LLMs
contain sufficient world knowledge to make goal-driven plans and particular language prompts im-
prove an LLM’s ability to outline logical reasoning (Ahn et al., 2022; Kojima et al., 2022), so we
see language-based re-prompting as a potentially useful method to integrate environment error in-
formation to LLM planners.

In the context of control theory, closed-loop systems incorporate some form of feedback from their
outputs for adaptive control (Golnaraghi & Kuo, 2017). In a similar vein, we leverage feedback (as
errors) for evaluation and correction in our closed-loop planning setup. Specifically, we add a Pre-
condition Error Prompting Module that transforms pre-condition errors into corrective prompts.
We explore various re-prompting templates using different degrees of pre-condition error informa-
tion and contextual error information – all following the visual model shown in Figure 2.

Figure 2: Our pipeline for plan generation with re-prompting. From left to right: (Column 1) A
related task (with the highest cosine similarity to the target task) is chosen from the set of training
tasks; a frozen autoregressive LLM (e.g., davinci, curie, davinci-instruct) generates a free-
form language description of the current step; (Column 2) a frozen masked LLM (such as Roberta-
Large) then maps the free-form description to an admissible action in the VH space; (Column 3) the
admissible action is checked for violating pre-condition errors and (any potential error information)
is crafted into a corrective prompt; (Column 4) the error-step, along with corrective prompt, are used
to motivate the LLM to generate an executable corrective action.

Certain errors require more information on the agent’s action history or context about the agent’s
state or environment (e.g., correcting an error such as: <character> (1) does not have a free

hand when executing "[GRAB] <milk> (1) [1]" might require knowledge of the objects the agent

5

has previously grabbed or is holding). Hence, we identified different categories of contextual infor-
mation (environment information) and corrective information (re-prompting styles) whose cross-
product forms a space of re-prompting strategies we explore. We define these categories as follows:

Contextual Information: the contextual/historical information prior to the corrective information.
We investigate supplying the query taskQ, the query steps and the corrective information (e.g., The
output of the prompting module in column 3 of Figure 2).

Pre-condition Error Information: the corrective message used to prompt suggestions for correc-
tive actions, which are constructed as follows:

• Notion of Error: indicates to the agent that a step is not executable e.g. ‘Task Failed’.
We call this approach Re-prompting with Notion.

• Inference of Error: provides the object interacted with and atomic action taken within the
non-executable step, leaving the agent to infer the cause of error and correction e.g., ‘I
cannot <action> <object>’. We call this approach Re-prompting with Inference.

• Cause of Error: provides the object interacted with, action taken and the object/action
relation (ie the cause of the error) in the non-executable step e.g., ‘I cannot <action>

<object> because <reason>’. We call this approach Re-prompting with Cause.

Whereas inference of error and notion of error do not require any additional information than the
action information provided by the LLM, leveraging cause of error assumes the agent has a model of
the preconditions for the action and the ability to explicitly evaluate what preconditions are not cur-
rently satisfied. Therefore, deciding which pre-condition error information in the corrective prompt
depends on the modeling capabilities of the agent (i.e., re-prompting with inference can be integrated
into visual-language model approaches like SayCan (Ahn et al., 2022), whereas re-prompting with
inference can be integrated with task and motion planning approaches (Garrett et al., 2021)).

4.2 Scoring Function

When grounding free-form language to actions in the environment, Huang et al. (2022) used the
mean log-probability to assess the quality of natural language generated by the LLM and the cosine
similarity between embeddings to assess semantic translations.

Log-Probability: The log-probability is defined as Pθ(Xi) :=
1
ni

∑ni
j=1logpθ(xi,j |xi<j), where

θ parametrizes the pretrained Causal LLM and Xi is a sample generated step consisting of tokens
(xi,1, xi,2, xi,3, ..., xi,n).

Cosine Similarity Cosine similarity is defined as C(f(â), f(ae)) := f(â)·f(ae)
||f(â)||||f(ae)|| , where f is

the MaskedLLM embedding function, â is the predicted action and ae is the admissible action for
which we estimate the distance with respect to:

Sw = argmax
ae

[max
â

C(f(â), f(ae)) + β · Pθ(â)], where β is a weighting coefficient. (1)

The original scoring function Sw (Equation 1) is based on a weighted combination of log-probability
and cosine similarity, which is then thresholded to determine feasibility of each proposed grounded
step. This scoring function prioritizes the quality of natural language at the cost of semantic transla-
tion or vice versa and results in mistranslations, which is prevalent when C(f(â), f(ae)) dominates
the sum as Pθ(â) is close to 0 and β is low or when Pθ(â) dominates the sum as C(f(â), f(ae)) is
close to 0 and β is large. The mean log-probability term is also unbounded, making it challenging to
explore an appropriate score threshold. Hence, we propose a novel scoring function Sg (Equation 2)
that considers the squared geometric mean of C(f(â), f(ae)) and Pθ(â), to produce a bounded non-
negative (0, 1) scoring function, which prioritizes both language generation and semantic translation
objectives jointly, defined as:

Sg = argmax
ae

[max
â

C(f(â), f(ae)) + 1

2
· ePθ(â)] (2)

6

4.3 Plan Generation via Re-sampling

As a benchmark for closed-loop planning, we also implement a new baseline involving re-sampling
the LLM. We refer to experiments following this new baseline as Re-sampling <LM>, where <LM> is
replaced by a particular language model (e.g., GPT-3).

For the Re-sampling <LM>, when an action in the generated plan is not executable, the re-sampling
closed-loop method does not use the error messages to generate corrective prompts. Instead, we
iterate through and evaluate the top k admissible actions proposed by the MaskedLLM (in descend-
ing order of weighted sum of mean log-probability and cosine similarity – refer to Equation 3 in
Huang et al. (2022)) until an executable action is found i.e., we re-sample from the set of k admis-
sible actions. In the case where no executable actions are re-sampled from the top k proposals, plan
generation is terminated.

The re-sampling method serves as a performance baseline in the closed-loop domain, in order to
assess the net contribution that pre-condition error information and re-prompting templates have
on generating more executable/correct action in fewer number of steps. That is, re-sampling aids
in assessing whether re-prompting strategies perform well simply because they provide additional
attempts for corrective action proposal or whether the pre-condition error information helps direct
the corrective action.

5 Experiments

5.1 Environment

As described in Huang et al. (2022), generating plans for open-ended tasks with virtual embodied
agents requires a virtual environment supporting diverse agent-environment interactions, a rich ac-
tion space, and a method to generate grounded actions using LLM outputs. This is especially true
in the closed-loop domain, where we leverage the pre-condition error information from the environ-
ment to extract descriptive corrections for skill execution. Similar to Huang et al. (2022), we use
the VirtualHome environment (Puig et al., 2018) to simulate the execution of household tasks. The
environment has 1120 different objects and 22 actions in 7 scenes with intricate preconditions for
interactions, albeit within a household setting. The generated plans are captured by programs that
contain a sequence of textual steps in the form:

[ACTION] <object_1> (id_1) ... <object_n> (id_n),

where [ACTION] refers to the action name and <object_i> and (id_i) refer to the i-th object
argument name and identifier respectively. Each step contains one of the 22 atomic actions in Vir-
tualHome, a list of objects or arguments defining the interactions, and a list of associated identifiers
for each object instance as defined in the scene. When errors occur during program execution,
the VirtualHome environment throws descriptive messages containing the step information above
along with the cause of the error. An example program and associated error message are shown
in Figure 5.1. A detailed description of all error types in VirtualHome can be found in Appendix
A.1. We note that our method of incorporating precondition errors via cause of error only requires
a natural language description of the precondition error, which is standard in other simulators (like
AI2Thor (Kolve et al., 2017)), and therefore our approach is not specific to VirtualHome.

We use the same test set as Huang et al. (2022) consisting of 88 realistic human tasks compiled
from the ActivityPrograms knowledge base by Puig et al. (2018); the remaining 204 tasks in the
knowledge base are used as a demonstration set, i.e., to prompt the LLM for plan generation. Our
methods leverage the verb-object syntax embedded in environment error messages to generate cor-
rective prompts and ground the actions generated by LLMs.

Due to the variation in the objects and preconditions across scenes, we find that a given query
task (Q) might require different re-prompts in different scenes to be executable (i.e., plans must be
generated in an online fashion for each scene and query task). Hence, we generate a program for
each combination of task and scene, and an average is taken across all 7 programs (corresponding
to the 7 scenes provided in VirtualHome) generated for each of the 88 tasks when calculating our
evaluation metrics.

7

[WALK] <dishwasher> (1)

[OPEN] <dishwasher> (1)

[GRAB] <bowl> (1)

[WALK] <sink> (1)

[PUTBACK] <bowl> (1) <sink> (1)

[GRAB] <plate> (1)

[WALK] <dining room> (1)

[PUTBACK] <plate> (1) <table> (1)

Script is not executable, since <character> (1) is not close to <table> (1) when

executing "[PUTBACK] <plate> (1) <table> (1) [1]"

Figure 3: An example of a program in VirtualHome for the task “Empty dishwasher and fill dish-
washer”, and its associated error message due to the last step not currently being executable.

5.2 Evaluation Metrics

A plan that follows VirtualHome’s program syntax would be largely executable in the environment,
but may not be semantically correct nor transferable to other environments. Likewise, a plan that is
not grounded in the environment might generate outputs with correct natural language but actions
may not be executable in VirtualHome since free-form language has ambiguous formats and ignores
pre-conditions (e.g., a door needs to be open before the agent can walk through it). Hence we need
to consider both executability and correctness in our evaluation. We lift both of these metrics from
Huang et al. (2022).

Incorporating re-prompts and re-samples would add multiple corrective steps to plans until they
become executable; thus our methods would tend to increase the length and complexity of generated
plans. Hence, we also track the number of corrections required to produce an executable and
correct plan in order to compare the effectiveness of different re-prompting/re-sampling strategies.

Executability measures if the generated actions can be correctly parsed and if they satisfy the pre-
conditions and post-conditions imposed by the environment; satisfying these conditions makes the
program “executable” in VirtualHome. To be correctly parsed, each action must be syntactically
correct and only contain actions/objects admissible by VirtualHome. To satisfy pre-conditions and
post-conditions, each action must adhere to the conditions (of the objects in the interaction) defined
by each scene graph in VirtualHome (e.g., the state of the fridge changes from “closed” to “open”
after the agent opens it).

Correctness is a human annotated metric assesses whether the given steps could hypothetically
accomplish the given task. Assessing the completion of tasks using natural language based skill-
execution is difficult, particularly in a virtual environment; thus, we conduct human evaluations for
all generated plans using 4 experimenters, asking participants to assess if the plan is “correct” or
“incorrect” (a boolean metric). Given execution in the VirtualHome environment, only executable
plans can be “correct.” However the annotation task ignores this requirement and asks annotators
to assess correctness independent of any specific environment or execution constraints. This metric
attempts to determine the relevance of the plan to the task.

Correctness-Executable-Plans measures semantic correctness (as described above) but condi-
tioned on plans being executable in the VirtualHome environment i.e., the plan up to the step where
it remains executable.

The Longest Common Sub-sequence (LCS) between the generated program and the ground-truth
program for a given task is also computed as a proxy for correctness, as measured by Puig et al.
(2018). LCS only serves as a proxy since human-evaluated correctness is a more robust measure of
plan semantics since it not hindered by the interactive richness of the environment and variability
in approaches to complete a task that make it difficult to compare generated plans to a “golden
standard” i.e., some fixed ground-truth program.

Scene Graph Similarity (GS) measures the degree of similarity between the scene graphs produced
by executing the generated program (Ggen) and the ground-truth human-written program (Ggt) in
VirtualHome. This is a normalized metric as it compares the final state of a scene graph with a fixed

8

size (i.e., over the union of all objects in Ggen and Ggt), as opposed to optimizing a “template fit” to
an arbitrary ground-truth plan like LCS does.

Steps and Number of Corrections measures the total number of steps taken in the environment and
the number of corrective re-prompts or re-samples that are performed, upon encountering a precon-
dition error, until an executable action is sampled/generated. While these metrics are incidental to
the goal (i.e., minimizing the metrics does not necessarily imply improved performance), they assess
the effective of the information in each contextual-prompt towards correcting skill execution.

Fleiss’ Kappa measures inter-rater agreement between multiple raters on a categorical labeling task.
The value ranges from 0 to 1. We report Fleiss’ Kappa for the % Correct-EP human annotations.

Method % Executable↑ % Correct↑ % Correct-EP↑ % GS↑
(Huang et al., 2022) 78.35(1.60) 46.12 36.08 99.67
Re-Sampling 96.59 28.69 28.69 99.51

Re-Prompting w/ Notion 96.27 30.11 30.11 99.46
Re-Prompting w/ Inference 96.45 30.40 30.40 99.48
Re-Prompting w/ Cause 98.86 41.76 41.76 99.83
Re-Prompting w/ Cause + Sg 97.73 41.76 41.76 99.67

Table 1: The mean percentage of executable programs, correct programs, correct programs condi-
tioned on them being executable, and scene graph similarity. Means and standard deviations are
reported across 3 trials for the baseline method of Huang et al. (2022).

Method LCS↑ Fleiss’ Kappa↑ Steps No. Corrections
(Huang et al., 2022) 24.72 (0.28) 0.5934(0.05) 6.70(0.23) N/A
Re-Sampling 22.48 0.5510(0.05) 5.79 4.08

Re-Prompting w/ Notion 20.77 0.6760(0.04) 5.22 0.50
Re-Prompting w/ Inference 20.77 0.5658(0.05) 5.22 0.53
Re-Prompting w/ Cause 21.53 0.6485(0.04) 4.11 0.29
Re-Prompting w/ Cause + Sg 20.21 0.9416(0.05) 6.11 0.90

Table 2: The mean Longest Common Sub-sequence (LCS), Fleiss’ Kappa, number of steps, and
number of corrections. Means and standard deviations are reported across 3 trials for the baseline
method of Huang et al. (2022). Fleiss’ Kappa is computed across four annotators. The proposed
scoring function Sg (Section 4.2) was only applied to the best-performing re-prompting approach.

5.3 Evaluated Approaches

Brown et al. (2020) has shown that novel Codex models (with thresholded outputs) outperform
GPT-Neo and GPT-J with > 2× strict accuracy on code generation benchmarks. Similarly, Douglas
Summers-Stay & Voss (2021) show that the davinci-instruct line outperforms its non-instruct
counterpart across all prompt variations on the McCarthy logical reasoning and question-answer
benchmark. We also performed ablations on smaller models (such as babbage or ada) but only
chose to report the performance with the best-performing model. Thus, we choose to focus on larger
state-of-the-art LLMs (davinci-instruct) for its demonstrated capabilities. We evaluate 6 different
approaches: Huang et al. (2022) (Section 2.2), Re-sampling (Section 4.3), Re-prompting w/ Notion,
Re-prompting w/ Inference, Re-prompting w/ Cause (Section 4.1) and Re-prompting w/ Cause + Sg
(Section 4.2) using this model.

6 Results

The results of our experiments for all the evaluated approaches can be found in Tables 1 and 2.
Re-Prompting w/ Cause performs the best in terms of percent executable (98.86%), whereas the
original Huang et al. (2022) approach performs best in terms of percent of programs that are correct
(46.12%). However, whilst Huang et al. (2022) performs the worst accounting for the percent of pro-
grams that are correct conditioned on them being executable, Re-Prompting w/ Cause performs the

9

best (41.76%). Therefore, re-prompting with causes demonstrably improves the model’s capability
to produce more executable plans that are correct. In addition, while Re-Prompting w/ Inference
and Re-prompting w/ Notion have a slightly lower percentage of executable programs (96.45% and
96.27%) compared to the re-sampling baselines (96.59%), they both have a higher generated percent
of correct programs and a higher percent of correct programs conditioned on them being executable
(30.40% and 30.11% vs. 28.69%). Therefore, while supplying detailed precondition errors to the
LLM helps the most in terms of improving executability and correctness (as seen with Re-prompting
w Cause), re-prompting while asking for the inference of the error or simply providing a notion of
error gives improvements over resampling. We do note however that Huang et al. (2022) does per-
form the best in terms of LCS (24.72%), but this is only a proxy for correctness. In addition, Huang
et al. (2022) and the re-sampling strategy generate the longer plans (6.7 and 5.79 respectively), and
re-sampling requires sampling many more corrective actions (4.08) as compared to re-prompting w/
Notion, w/ Inference, and w/ Cause (0.50, 0.53 and 0.29 respectively). Incorporating the scoring
function slightly reduces executability (98.86% to 97.73%) and maintains semantic correctness (at
41.76%) with respect to Re-prompting w/ Cause, though the inter-annotator agreement (from 0.6485
to 0.9416) increases substantially. This implies generated plans are correct with much greater consis-
tency when using the new scoring function. These results emphasize the usefulness of constructing
contextualized query prompts that leverage precondition information as an additional modality for
improving embodied decision-making with LLMs. A more detailed analysis on the distribution of
errors encountered by the models can be found in Appendix A.3.

7 Conclusion

Our work investigates re-prompting strategies to improve the executability and correctness of LLM-
generated plans. Our approach supplies contextual information in the form of precondition errors to
improve the generation of plans. Our results demonstrate that LLMs that can leverage precondition
errors with error-cause-information to produce more semantically correct and executable plans. We
also show that leveraging affordance information (i.e., determining that an action is not currently
feasible to executable but without explaining why) for prompt-based strategies is more effective
than naively re-sampling actions from the LLM. Finally, our scoring function is shown to improve
the consistency of correct plans with higher inter-rater agreements

8 Future Work

We propose 3 areas for future work to explore: providing more contextual information about the
scene and agent’s skill repertoire within the LLM prompt, thresholding sampled actions based on
their executability in the environment and removing assumptions on the availability of strictly tem-
plated prompts and a related example for in-context learning.

Acknowledgments and Disclosure of Funding

Part of this research was conducted using computational resources and services at the Center for
Computation and Visualization, Brown University.

The authors would also like to acknowledge Wenlong Huang for providing us with access to the
codebase from their previous work (Huang et al., 2022) for baseline comparison.

10

References
Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea

Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, et al. Do As
I Can and Not As I Say: Grounding Language in Robotic Affordances. In arXiv preprint
arXiv:2204.01691, 2022.

Paola Ardón, Èric Pairet, Katrin S Lohan, Subramanian Ramamoorthy, and Ronald Petrick. Affor-
dances in robotic tasks–a survey. arXiv preprint arXiv:2004.07400, 2020.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli Celikyilmaz, and Yejin
Choi. COMET: Commonsense transformers for automatic knowledge graph construction. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp.
4762–4779, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/
v1/P19-1470. URL https://aclanthology.org/P19-1470.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language Models are
Few-Shot Learners. Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, et al.
Evaluating Large Language Models Trained on Code. 2021. doi: 10.48550/ARXIV.2107.03374.
URL https://arxiv.org/abs/2107.03374.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805, 2018.

Christian Dornhege, Marc Gissler, Matthias Teschner, and Bernhard Nebel. Integrating symbolic
and geometric planning for mobile manipulation. In 2009 IEEE International Workshop on Safety,
Security & Rescue Robotics (SSRR 2009), pp. 1–6. IEEE, 2009.

Claire Bonial Douglas Summers-Stay and Clare Voss. What Can a Generative Language Model
Answer About a Passage? 2021. URL https://aclanthology.org/2021.mrqa-1.7.pdf.

Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom Silver, Leslie Pack
Kaelbling, and Tomás Lozano-Pérez. Integrated task and motion planning. Annual Review of
Control, Robotics, and Autonomous Systems, 4:265–293, 2021.

Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning and Acting. Cambridge Uni-
versity Press, 2016. doi: 10.1017/CBO9781139583923.

James J Gibson. The theory of affordances. Hilldale, USA, 1(2):67–82, 1977.

Farid Golnaraghi and Benjamin C Kuo. Automatic Control Systems. McGraw-Hill Education, 2017.

Kelvin Guu, Panupong Pasupat, Evan Zheran Liu, and Percy Liang. From Language to Programs:
Bridging Reinforcement Learning and Maximum Marginal Likelihood. 2017. doi: 10.48550/
ARXIV.1704.07926. URL https://arxiv.org/abs/1704.07926.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language Models as
Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents. arXiv preprint
arXiv:2201.07207, 2022.

Leslie Pack Kaelbling and Tomás Lozano-Pérez. Hierarchical planning in the now. In Workshops at
the Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
Language Models are Zero-Shot Reasoners. arXiv preprint arXiv:2205.11916, 2022.

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Daniel
Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. Ai2-thor: An interactive 3d environment for
visual ai. arXiv preprint arXiv:1712.05474, 2017.

11

https://aclanthology.org/P19-1470
https://arxiv.org/abs/2107.03374
https://aclanthology.org/2021.mrqa-1.7.pdf
https://arxiv.org/abs/1704.07926

George Konidaris, Leslie Pack Kaelbling, and Tomas Lozano-Perez. From skills to symbols: Learn-
ing symbolic representations for abstract high-level planning. Journal of Artificial Intelligence
Research, 61:215–289, 2018.

Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In Thir-
teenth international conference on the principles of knowledge representation and reasoning,
2012.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What
Makes Good In-Context Examples for GPT-3? arXiv preprint arXiv:2101.06804, 2021.

Tomás Lozano-Pérez and Michael A Wesley. An algorithm for planning collision-free paths among
polyhedral obstacles. Communications of the ACM, 22(10):560–570, 1979.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. arXiv preprint arXiv:1802.05365,
2018.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio Tor-
ralba. VirtualHome: Simulating Household Activities via Programs. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 8494–8502, 2018.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
Models are Unsupervised Multitask Learners. 2019.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Ishika Singh, Gargi Singh, and Ashutosh Modi. Pre-trained Language Models as Prior Knowledge
for Playing Text-based Games, 2021.

Tristan Thrush, Ryan Jiang, Max Bartolo, Amanpreet Singh, Adina Williams, Douwe Kiela, and
Candace Ross. Winoground: Probing vision and language models for visio-linguistic composi-
tionality. 2022. doi: 10.48550/ARXIV.2204.03162. URL https://arxiv.org/abs/2204.
03162.

Yuk Wah Wong and Raymond Mooney. Learning for semantic parsing with statistical machine
translation. In Proceedings of the Human Language Technology Conference of the NAACL, Main
Conference, pp. 439–446, 2006.

Natsuki Yamanobe, Weiwei Wan, Ixchel G Ramirez-Alpizar, Damien Petit, Tokuo Tsuji, Shuichi
Akizuki, Manabu Hashimoto, Kazuyuki Nagata, and Kensuke Harada. A brief review of affor-
dance in robotic manipulation research. Advanced Robotics, 31(19-20):1086–1101, 2017.

Shunyu Yao, Rohan Rao, Matthew Hausknecht, and Karthik Narasimhan. Keep CALM and Explore:
Language Models for Action Generation in Text-based Games. In Empirical Methods in Natural
Language Processing (EMNLP), 2020.

12

https://arxiv.org/abs/2204.03162
https://arxiv.org/abs/2204.03162

A Appendix

A.1 Error Types in VirtualHome

Error ID Error Type Error Template
(from VirtualHome)

Explanation

1 Unflipped
Boolean state

<object> (ID) is not {object
state e.g., open, on, closed,
off} when executing "[action]
<object> (ID) [1]"

The action applied to an ob-
ject with a Boolean state does
not change its state (e.g., action
open is applied to an already
opened door).

2 Field of view <character> (ID) does not face
<object> (ID) when executing
"[action] <object> (ID) [1]"

The agent does not face an ob-
ject when performing an action
on the object (e.g., one needs to
[TURNTO] a television in order
to [WATCH] television).

3 Empty program empty program The LLM has not been able to
generate a plan – containing at
least one step – for the given
task.

4 Absent from
room

char room <character room>
(ID) is not node room
<target room> (ID) when
executing "[action] <object>
(ID) [1]"

The target object does not exist
in any room within the specific
virtual scene.

5 Missing object <character> (ID) is not
holding <object> (ID) when
executing "[action] <object>
(ID) [1]"

The agent is not holding the tar-
get object in the current step,
which prevents it from complet-
ing the action.

6 Enclosed object <object> (ID) is inside other
closed thing when executing
"[action] <object> (ID) [1]"

The target object is contained
within a closed structure, and
the action does not liberate the
object for use.

7 Invalid action <object> (ID) does not have
{property} when executing
"[action] <object> (ID) [1]"

The agent is attempting to ex-
ecute an action on a target ob-
ject that is not afforded to it
(e.g., the agent cannot execute
[PULL] on the ceiling).

8 Over-occupied
agent

<character> (ID) does not have
a free hand when executing
"[action] <object> (ID) [1]"

The agent’s hands are oc-
cupied or are already hold-
ing/interacting with objects,
leaving no room to interact
with the target object in the
current step.

9 Agent proximity <character> (ID) is not
close to <object> (ID) when
executing "[action] <object>
(ID) [1]"

The agent is not close enough
to the target object, which pre-
vents it from completing the ac-
tion.

10 Other precondi-
tion

- The agent attempts to execute
an action whose pre-conditions
are not satisfied.

Table 3: Description of error types observed in the VirtualHome environment.

To arrive at an effective method for prompt engineering and re-sampling, we looked for patterns in
executability errors generated by VirtualHome. This could be incorporated into any environment
with an embodied agent that can explicitly identify what preconditions are currently unmet.

13

Qualitative analysis show us these errors neatly organize into 10 broad error types, each with a
uniquely structured error message and cause for the error. These error types are largely structured
around the types of pre-condition failures in the environment as listed in Table 3.

A.2 Pre-condition Error Distributions using different seeds

(a) curie (With Translation) (b) curie (With Translation)

(c) curie (Without Translation) (d) curie (Without Translation)

Figure 4: Decomposition of pre-condition errors into error types for the same LLM (curie) run with
different random seeds with the open-loop method

To assess the variability introduced by random seeds (different starting states in a scene graph) in the
natural language generated by LLMs, we decomposed the pre-condition errors produced by running
the same LLM (curie) using the open-loop method in Figure 4.

Both with and without translations, the types pre-condition errors remains consistent. The distribu-
tion across error types seems to vary less drastically (by 2.2% on average) without translation than
with translation (by 5% on average); though the distribution remains consistent when considering
the 3 most prominent error types.

14

(a) curie (b) code-cushman-001

(c) code-davinci-002 (d) davinci-instruct-beta

Figure 5: Decomposition of pre-condition errors into error types for the best performing and state-
of-the-art LLMs with the open-loop method

A.3 Causes for execution errors with open-loop planning

Figure 7 highlights the percentage composition of errors of the 2 LLMs with highest executabil-
ity, i.e., curie and code-cushman-001 (Figures 5a and 5b respectively) and 2 novel state-of-the-art
LLMs, i.e., code-davinci-002 and davinci-instruct-beta (Figures 5c and 5d respectively).

From the figures, “missing object” in dark blue (see definition in Table 3) is the most prominent error
type across the 4 LLMs – accounting for 34.8% of errors on average – followed by either “agent
proximity” errors, “empty program” errors or “other (precondition)” errors. Note the large “empty
program” error presence for curie with Translation and the prominent “other (precondition)” error
presence for code-cushman-001 with Translation. In fact, for each of the 4 LLMs shown above, just
the “missing object”, “agent proximity” and “empty program” error types account for at least 50%
of errors produced by the LLM and these error-types could be made executable using single step
corrections with appropriate prompting.

Figure 6 shows the union of all tasks that fail between the curie and code-cushman-001 LLMs, with
and without the Translation LLM, visualizing the cause of the execution error using the color key to
the right; curie and code-cushman-001 are the language models with highest translated executabil-
ity.

The symmetrical color pattern along pairs of columns (for both curie and code-cushman-001) in-
dicates that incorporating the Translation LLM does not modify or alter the distribution of errors
for non-executable tasks i.e., the Translation LLM seems to be a purely subtractive component that
eliminates certain types of errors. This is further corroborated by qualitative observations that the
sequence of actions taken and plan syntax remain identical with and without Translation LLM, with
the exception of grounding atomic actions and object tokens to be more executable.

Additionally, of the top 5 “most difficult“ tasks (i.e., tasks for which all 4 LLMs produced non-
executable programs), all 4 language models encountered errors of identical type, viz. “object en-

15

cur
ie

(w
/Tr

an
sla

tio
n) cur

ie

(w
/o

Tra
nsl

ati
on

)

cod
e-c

ush
man

-00
1

(w
/Tr

an
sla

tio
n)

cod
e-c

ush
man

-00
1

(w
/o

Tra
nsl

ati
on

)

Breakfast
Wash face
Make bed

Put away groceries
Apply lotion

Fix snack
Grab things
Hang keys

Hang pictures
Keep cats out of room

Look at painting
Organize pantry

Play musical chairs
Put clothes away

Read yourself to sleep
Style hair

Get glass of milk
Prepare pot of boiling water

Wash monitor
Put on your shoes

Leave home
Take shoes off

Eat snacks and drink tea
Paint ceiling

Wipe down sink
Entertain

Keep cats inside while door is open
Push all chairs in

Push in desk chair
Put alarm clock in bedroom

Take jacket off

5 0 0 0
0 2 0 0
0 0 10 0
0 0 0 5
3 3 0 0
9 9 0 0
3 3 0 0
5 5 0 0
5 5 0 0
9 9 0 0
2 2 0 0
5 9 0 0
6 6 0 0
3 3 0 0
3 3 0 0
2 2 0 0
0 1 0 1
0 5 0 5
0 0 3 3
0 0 5 5
0 0 5 5
0 0 5 5
0 0 5 5
2 0 7 7
0 10 10 10
3 3 10 10
10 10 10 10
6 6 6 6
6 6 6 6
5 5 5 5
6 6 5 5

0 - No Error

1 - Unflipped Boolean

2 - Field of view

3 - Empty Program

4 - Absent from Room

5 - Missing Object

6 - Enclosed Object

7 - Invalid Action

8 - Over-occupied Agent

9 - Agent Proximity

10 - Other Precondition

Figure 6: Matrix showing tasks that failed using curie and code-cushman-001 LLMs along with
causes for those errors (based on Table 3).

closed” and “other (precondition)” errors. For example, the models failed with the task “Keep cats
inside while door is open” because the door was closed.

Hence, we find certain tasks are intrinsically more complex, increasing the number and difficulty of
failed pre-requisites to target with re-prompting and corrective actions. There are several qualitative
observations that further validate this finding:

• Tasks such as “Take jacket off” or “Entertain” have implicit assumptions (e.g., jacket is
already on) or are extremely vague, respectively, which could impede a language model’s
ability to generate sensible actions without observing the current state.

• Certain tasks require initial states or objects that are not present in the scene (e.g., tasks like
“push all chairs in“ usually require no actions since all chairs begin tucked under a table).
Therefore, generating viable plans for such tasks requires knowledge of the initial state.

• LLMs using pure language (i.e., without environment feedback) are too optimistic, as
LLMs often infer object locations from the task/prompt and assume objects are available
with no obstructions. Therefore, plans generated by LLMs without feedback are usually
only executable in the theoretical regime of “describe a plan for task“, as opposed to
“within constraints of an embodied environment“.

The observations above tell us that neither seed variations nor the addition of Translation LLM
influence error distributions, and that certain tasks are intrinsically harder to correct for given the
assumptions made by LLMs. Figures 7 and 6 also highlight that each LLM produces a unique pattern
of error types. Hence, we determine that error distributions are unique artefacts of LLMs themselves,
and some of the most common error types have the potential to be corrected with re-prompting.

A.4 Hyper-parameter Search for Re-sampling Basline

Our approach (Section 4.1 and Section 4.3) encourages the LLM to generate ”corrective actions”
upon receiving pre-condition error information from the environment, thereby making it a closed-
loop planning system. We hypothesized that the inclusion of additional re-prompts and corrective ac-
tions would increase plan length (during re-sampling) and the frequency of tokens used (during both

16

90

92

94

96

98

100

0.2 0.3 0.4 0.5 0.6 0.7

(a) Executability

21.0

21.5

22.0

22.5

23.0

0.2 0.3 0.4 0.5 0.6 0.7

(b) LCS

4.0

4.5

5.0

5.5

6.0

0.2 0.3 0.4 0.5 0.6 0.7

(c) Number of Steps

3

4

5

6

7

0.2 0.3 0.4 0.5 0.6 0.7

(d) Number of Corrective Steps

Figure 7: Graphs showing hyper-parameter search results across several metrics and penalty values.

re-prompting and re-sampling). Thus we performed a hyper-parameter search on the re-sampling
baseline, defined in Section 4.3, to assess how the LLM sensitivity to hyper-parameters and optimize
parameter selection for our re-prompting approaches in the closed-loop domain.

Our hyper-parameter search explores different temperatures and presence penalties in the ranges
shown in Table 4 below. These parameters influence how out of distribution a proposed action is
and penalize the repetition of old topics, respectively, making them the strongest drivers of LLM
performance.

Table 4: Hyper-parameters and their corresponding values used in our search process

Hyper-parameter Search Values

Temperature 0.2, 0.3, 0.5, 0.7
Presence Penalty 0.3, 0.5, 0.7

In Table 5 below, the columns represent presence penalties (PresPen) and the rows represent temper-
ature (Temp). Each table entry includes a set of metrics in top-to-bottom order: executability, LCS,
correctness, number of steps and the number of corrections (as described in Section 5.2)

Presence Penalty does not seem to influence executability at lower temperatures; for higher tem-
peratures, executability decreases with increased presence penalties. No clear relationship exists
between LCS and presence penalty. The number of corrective steps seems to be independent of

17

PresPen@0.3 PresPen@0.5 PresPen@0.7

Temp@0.2

95.45% 95.45% 95.45%
21.57% 21.65% 21.54%

- - -
5.131 5.093 5.075
3.575 3.584 3.601

Temp@0.3

95.45% 95.45% 95.45%
21.91% 21.83% 21.90%

- - -
5.375 5.334 5.255
3.776 3.746 3.734

Temp@0.5

96.59% 96.59% 95.49%
22.47% 22.43% 22.08%

- - -
5.791 5.880 5.763
4.083 4.138 4.117

Temp@0.7

94.48% 93.99% 93.51%
21.87% 21.93% 21.90%

- - -
4.182 4.156 4.052
6.435 6.550 6.438

Table 5: Hyper-parameter search performance (executability, LCS, correctness, no. steps and
no. corrections) over different temperatures (Temp) and presence penalties (PresPen) using the
instruct-davinci LLM

presence penalty as well.No other significant observations can be made as to the independent influ-
ence of presence penalty

Temperature and executability seem to follow a quadratic relationship i.e., there is an optimal
temperature value around which executability is lower, for all presence penalties. A similar quadratic
correlation is also seen between LCS and temperature, as well as between the number of steps and
temperature, peaking at approx. Temp = 0.5 in both cases. More evidently, the number of corrective
steps seem to monotonically increase with temperature

Maximum executability and LCS are observed using presence penalty 0.3 and temperature of 0.5.
We use these hyper-parameters for our re-sampling and re-prompting methods in Sections 4.3 and
4.1

A.5 Samples of Qualitative Examples

The following examples highlight 10 sample tasks comparing the Huang et al. (2022) baseline with
the re-sampling baseline and our Re-prompting w/Cause method.

We find qualitative improvements in the planner’s corrective capabilities (correcting pre-condition
errors due to re-prompting) as well as the degree of relevant specificity and detail in plans (due to
optimized hyperparameter selection in the closed loop domain)

18

Task Baseline Method
(Huang et al. (2022))

Re-Sampling Re-Prompting

Get glass of
milk

Step 1: Walk to dining room
Step 2: Walk to kitchen
counter
Step 3: Find kitchen counter
Step 4: Open stove
Step 5: Find milk
Step 6: Grab milk
Step 7: Close stove
Step 8: Walk to fridge
Step 9: Find fridge
Step 10: Open fridge

Step 1: Walk to dining room
Step 2: Walk to kitchen
counter
Step 3: Find kitchen counter
Step 4: Find fridge
Step 5: Open fridge
Step 6: Find milk
Step 7: Grab milk

Step 1: Walk to dining room
Step 2: Walk to kitchen
counter
Step 3: Find kitchen counter
Step 4: Find fridge
Step 5: Open fridge
Step 6: Find milk
Step 7: Grab milk

Prepare pot
of boiling
water

Step 1: Find stove
Step 2: Find pot
Step 3: Turn to stove

Step 1: Find stove
Step 2: Find pot
Step 3: Turn to stove

Step 1: Find stove
Step 2: Find pot
Step 3: Turn to stove
Step 4: Switch on stove
Step 5: Put pot on stove
Error: I don’t have the pot. A
correct step would be to
Step 5: Find pot

Look at
mirror

Step 1: Walk to bedroom
Step 2: Walk to mirror
Step 3: Find mirror
Step 4: Turn to mirror
Step 5: Look at mirror

Step 1: Walk to bedroom
Step 2: Walk to mirror
Step 3: Find mirror
Step 4: Turn to mirror
Step 5: Look at mirror

Step 1: Walk to bedroom
Step 2: Walk to mirror
Step 3: Find mirror
Step 4: Turn to mirror
Step 5: Look at mirror
Step 6: Find face
Step 7: Turn to face
Step 8: Look at face
Step 9: Find hair
Step 10: Turn to hair
Step 11: Look at hair
Step 12: Find clothes dress
Step 13: Turn to clothes dress
Step 14: Look at clothes dress

19

Task Baseline Method (Huang
et al. (2022))

Re-Sampling Re-Prompting

Listen to
Music Step 1: Walk to home office

Step 2: Walk to remote con-
trol
Step 3: Find remote control
Step 4: Grab remote control
Step 5: Walk to couch
Step 6: Sit on couch
Error: agent is sitting so can-
not execute Step 8 until the
agent stands up
Step 7: Touch remote control
Step 8: Find television
Step 9: Switch on television
Step 10: Turn to television
Step 11: Watch television
Step 12: Switch on stereo
Step 13: Turn to stereo
Step 14: Switch on cd player
Step 15: Turn to cd player

Step 1: Walk to home office
Step 2: Walk to remote control
Step 3: Find remote control
Step 4: Grab remote control
Step 5: Walk to couch
Step 6: Sit on couch
Step 7: Touch remote control
Step 8: Find music stand

Step 1: Walk to home office
Step 2: Walk to remote con-
trol
Step 3: Find remote control
Step 4: Grab remote control
Step 5: Walk to couch
Step 6: Sit on couch
Step 7: Touch remote control
Step 8: Find television
Error: I am not near the tele-
vision. A correct step would
be to
Step 8: Walk to tv
Error: I am sitting. A correct
step would be to
Step 8: Stand up
Step 9: Walk to stereo
Step 10: Switch on stereo
Step 11: Turn to stereo
Step 12: Find cd
Step 13: Grab cd

Hang
pictures Step 1: Walk to home office

Step 2: Walk to table
Step 3: Find keys
Step 4: Grab keys
Step 5: Walk to wall
Step 6: Find hanger
Step 7: Put keys on hanger
Step 8: Walk to livingroom
Step 9: Find picture
Error: agent has not picked
up picture, so cannot execute
Step 10
Step 10: Put picture on
hanger

Step 1: Walk to livingroom
Step 2: Walk to table
Step 3: Find picture
Step 4: Grab picture
Step 5: Walk to wall
Step 6: Find hanger
Step 7: Put picture on hanger

Step 1: Walk to livingroom
Step 2: Walk to table
Step 3: Find picture
Step 4: Grab picture
Step 5: Walk to wall
Step 6: Find hanger
Step 7: Put picture on hanger

Eat snacks
and drink

tea
Step 1: Walk to livingroom
Step 2: Sit on couch
Step 3: Drink tea
Step 4: Eat food snack
Step 5: Drink juice

Step 1: Walk to livingroom
Step 2: Walk to couch
Step 3: Walk to kitchen
Step 4: Walk to cupboard
Step 5: Open cupboard
Step 6: Find tea
Step 7: Grab tea
Step 8: Walk to kettle
Step 9: Switch on kettle
Step 10: Pour water into cup
Step 11: Pour tea into cup
Step 12: Drink tea
Step 13: Drink water

Step 1: Walk to dining room
Step 2: Walk to cupboard
Step 3: Open cupboard
Step 4: Find tea
Step 5: Grab tea
Step 6: Walk to table
Step 7: Pour tea into cup

Receive
credit card Step 1: Walk to home office Step 1: Walk to home office

Step 2: Find chair
Step 3: Sit on chair

Step 1: Walk to home office
Step 2: Walk to cabinet
Step 3: Find cabinet
Step 4: Open cabinet
Step 5: Find creditcard
Step 6: Grab creditcard

20

Task Baseline Method
(Huang et al. (2022))

Re-Sampling Re-Prompting

Empty
dishwasher
and fill
dishwasher

Step 1: Walk to dishwasher
Step 2: Open dishwasher

Step 1: Walk to dishwasher
Step 2: Open dishwasher
Step 3: Walk to sink
Step 4: Find faucet
Step 5: Switch on faucet
Step 6: Find bowl
Step 7: Grab bowl
Step 8: Rinse bowl

Step 1: Walk to dishwasher
Step 2: Open dishwasher
Step 3: Walk to sink
Step 4: Find faucet
Step 5: Switch on faucet
Step 6: Find bowl
Step 7: Grab bowl
Step 8: Rinse bowl
Step 9: Switch off faucet
Error: I am not near the faucet.
A correct step would be to
Step 9: Walk to faucet

Take shoes
off

Step 1: Walk to home office
Step 2: Walk to shoes
Step 3: Find shoes

Step 1: Walk to home office
Step 2: Walk to shoes
Step 3: Find shoes

Step 1: Walk to home office
Step 2: Walk to shoes
Step 3: Find shoes
Step 4: Take off shoes
Step 5: Walk to dresser
Step 6: Open dresser
Step 7: Grab shoes
Step 8: Put shoes in dresser
Error: putin dresser is not al-
lowed. A correct step would be
to
Step 8: Put shoes in closet

21

	1 Introduction
	2 Background
	2.1 In-Context Learning
	2.2 Open-Loop Plan Generation
	2.3 Preconditions and Affordances

	3 Related Work
	3.1 Large Language Models for Task Planning
	3.2 Task and Motion Planning
	3.3 Semantic Parsing and Program Synthesis
	3.4 Common-Sense Knowledge in LLMs

	4 Method
	4.1 Plan Generation via Re-prompting
	4.2 Scoring Function
	4.3 Plan Generation via Re-sampling

	5 Experiments
	5.1 Environment
	5.2 Evaluation Metrics
	5.3 Evaluated Approaches

	6 Results
	7 Conclusion
	8 Future Work
	A Appendix
	A.1 Error Types in VirtualHome
	A.2 Pre-condition Error Distributions using different seeds
	A.3 Causes for execution errors with open-loop planning
	A.4 Hyper-parameter Search for Re-sampling Basline
	A.5 Samples of Qualitative Examples

