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Abstract

Information extraction systems process
natural language documents and locate
a speci�c set of relevant items. Given
the recent success of empirical or corpus-
based approaches in other areas of natu-
ral language processing, machine learning
has the potential to signi�cantly aid the
development of these knowledge-intensive
systems. This paper presents a system,
Rapier, that takes pairs of documents and
�lled templates and induces pattern-match
rules that directly extract �llers for the
slots in the template. The learning al-
gorithm incorporates techniques from sev-
eral inductive logic programming systems
and learns unbounded patterns that in-
clude constraints on the words and part-
of-speech tags surrounding the �ller. En-
couraging results are presented on learn-
ing to extract information from com-
puter job postings from the newsgroup
misc.jobs.offered.

1 Introduction

An increasing amount of information is available in
the form of electronic documents. The need to in-
telligently process such texts makes information ex-
traction (IE), the task of locating speci�c pieces of
data from a natural language document, a particu-
larly useful sub-area of natural language processing
(NLP). In recognition of their signi�cance, IE sys-
tems have been the focus of DARPA's MUC program
(Lehnert and Sundheim, 1991). Unfortunately, IE
systems are di�cult and time-consuming to build
and the resulting systems generally contain highly
domain-speci�c components, making them di�cult
to port to new domains.

Recently, several researchers have begun to ap-
ply learning methods to the construction of IE sys-
tems (McCarthy and Lehnert, 1995; Soderland et
al., 1995; Soderland et al., 1996; Rilo�, 1993; Rilo�,
1996; Kim and Moldovan, 1995; Hu�man, 1996).
Several symbolic and statistical methods have been
employed, but learning is generally used to construct
only part of a larger IE system. Our system, Rapier
(Robust Automated Production of Information Ex-
traction Rules), learns rules for the complete IE
task. The resulting rules extract the desired items
directly from documents without prior parsing or
subsequent processing. Using only a corpus of doc-
uments paired with �lled templates, Rapier learns
unbounded Eliza-like patterns (Weizenbaum, 1966)
that utilize limited syntactic information, such as
the output of a part-of-speech tagger. Induced pat-
terns can also easily incorporate semantic class infor-
mation, such as that provided by WordNet (Miller
et al., 1993). The learning algorithm was inspired
by several Inductive Logic Programming (ILP) sys-
tems and primarily consists of a speci�c-to-general
(bottom-up) search for patterns that characterize
slot-�llers and their surrounding context.
The remainder of the paper is organized as follows.

Section 2 presents background material on IE and re-
lational learning. Section 3 describes Rapier's rule
representation and learning algorithm. Section 4
presents and analyzes results obtained on extracting
information from messages posted to the newsgroup
misc.jobs.offered. Section 5 discusses related
work in applying learning to IE, Section 6 suggests
areas for future research, and Section 7 presents our
conclusions.

2 Background

2.1 Information Extraction

In information extraction, the data to be extracted
from a natural language text is given by a template
specifying a list of slots to be �lled. The slot �llers



Posting from Newsgroup

Telecommunications. SOLARIS Systems
Administrator. 38-44K. Immediate need

Leading telecommunications firm in need

of an energetic individual to fill the
following position in the Atlanta

office:

SOLARIS SYSTEMS ADMINISTRATOR

Salary: 38-44K with full benefits
Location: Atlanta Georgia, no

relocation assistance provided

Filled Template

computer_science_job
title: SOLARIS Systems Administrator

salary: 38-44K
state: Georgia

city: Atlanta

platform: SOLARIS
area: telecommunications

Figure 1: Sample Message and Filled Template

may be either one of a set of speci�ed values or
strings taken directly from the document. For ex-
ample, Figure 1 shows part of a job posting, and the
corresponding slots of the �lled computer-science job
template.
IE can be useful in a variety of domains. The var-

ious MUC's have focused on domains such as Latin
American terrorism, joint ventures, microelectron-
ics, and companymanagement changes. Others have
used IE to track medical patient records (Soderland
et al., 1995) or company mergers (Hu�man, 1996).
A general task considered in this paper is extracting
information from postings to USENET newsgroups,
such as job announcements. Our overall goal is to
extract a database from all the messages in a news-
group and then use learned query parsers (Zelle and
Mooney, 1996) to answer natural language questions
such as \What jobs are available in Austin for C++
programmers with only one year of experience?".
Numerous other Internet applications are possible,
such as extracting information from product web
pages for a shopping agent (Doorenbos, Etzioni, and
Weld, 1997).

2.2 Relational Learning

Most empirical natural-language research has em-
ployed statistical techniques that base decisions on
very limited contexts, or symbolic techniques such
as decision trees that require the developer to spec-
ify a manageable, �nite set of features for use in
making decisions. Inductive logic programming and
other relational learning methods (Birnbaum and

Collins, 1991) allow induction over structured exam-
ples that can include �rst-order logical predicates
and functions and unbounded data structures such
as lists, strings, and trees. Detailed experimen-
tal comparisons of ILP and feature-based induction
have demonstrated the advantages of relational rep-
resentations in two language related tasks, text cat-
egorization (Cohen, 1995) and generating the past
tense of an English verb (Mooney and Cali�, 1995).
While Rapier is not strictly an ILP system, its rela-
tional learning algorithm was inspired by ideas from
the following ILP systems.

Golem (Muggleton and Feng, 1992) is a bottom-
up (speci�c to general) ILP algorithm based on the
construction of relative least-general generalizations,
rlggs (Plotkin, 1970). The idea of least-general gen-
eralizations (LGGs) is, given two items (in ILP, two
clauses), �nding the least general item that covers
the original pair. This is usually a fairly simple com-
putation. Rlggs are the LGGs relative to a set of
background relations. Because of the di�culties in-
troduced by non-�nite rlggs, background predicates
must be de�ned extensionally. The algorithm op-
erates by randomly selecting several pairs of posi-
tive examples and computing the determinate rlggs
of each pair. Determinacy constrains the clause to
have for each example no more than one possible
valid substitution for each variable in the body of the
clause. The resulting clause with the greatest cover-
age of positive examples is selected, and that clause
is further generalized by computing the rlggs of the
selected clause with new randomly chosen positive
examples. The generalization process stops when
the coverage of the best clause no longer increases.

The Chillin (Zelle and Mooney, 1994) system
combines top-down (general to speci�c) and bottom-
up ILP techniques. The algorithm starts with a most
speci�c de�nition (the set of positive examples) and
introduces generalizations which make the de�nition
more compact. Generalizations are created by se-
lecting pairs of clauses in the de�nition and com-
puting LGGs. If the resulting clause covers negative
examples, it is specialized by adding antecedent lit-
erals in a top-down fashion. The search for new liter-
als is carried out in a hill-climbing fashion, using an
information gain metric for evaluating literals. This
is similar to the search employed by Foil (Quin-
lan, 1990). In cases where a correct clause cannot
be learned with the existing background relations,
Chillin attempts to construct new predicates which
will distinguish the covered negative examples from
the covered positives. At each step, a number of
possible generalizations are considered; the one pro-
ducing the greatest compaction of the theory is im-



plemented, and the process repeats. Chillin uses
the notion of empirical subsumption, which means
that as new, more general clauses are added, all of
the clauses which are not needed to prove positive
examples are removed from the de�nition.

Progol (Muggleton, 1995) also combines
bottom-up and top-down search. Using mode decla-
rations provided for both the background predicates
and the predicate being learned, it constructs a
most speci�c clause for a random seed example. The
mode declarations specify for each argument of each
predicate both the argument's type and whether
it should be a constant, a variable bound before
the predicate is called, or a variable bound by the
predicate. Given this most speci�c clause, Progol
employs a A*-like search through the set of clauses
containing up to k literals from that clause in order
to �nd the simplest consistent generalization to add
to the de�nition. Advantages of Progol are that
the constraints on the search make it fairly e�cient,
especially on some types of tasks for which top-down
approaches are particularly ine�cient, and that its
search is guaranteed to �nd the simplest consistent
generalization if such a clause exists with no more
than k literals. The primary problems with the
system are its need for the mode declarations and
the fact that too small a k may prevent Progol
from learning correct clauses while too large a k

may allow the search to explode.

3 Rapier System

3.1 Rule Representation

Rapier's rule representation uses patterns that
make use of limited syntactic and semantic informa-
tion, using freely available, robust knowledge sources
such as a part-of-speech tagger and a lexicon with se-
mantic classes, such as the hypernym links in Word-
Net (Miller et al., 1993). The initial implementation
does not use a parser, primarily because of the dif-
�culty of producing a robust parser for unrestricted
text and because simpler patterns of the type we pro-
pose can represent useful extraction rules for at least
some domains. The extraction rules are indexed by
template name and slot name and consist of three
parts: 1) a pre-�ller pattern that must match the
text immediately preceding the �ller, 2) a pattern
that must match the actual slot �ller, and 3) a post-
�ller pattern that must match the text immediately
following the �ller. Each pattern is a sequence (pos-
sibly of length zero in the case of pre- and post-�ller
patterns) of pattern items or pattern lists. A pattern
item matches exactly one word or symbol from the
document that meets the item's constraints. A pat-

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
1) word: leading 1) list: len: 2 1) word: [�rm, company]

tags: [nn, nns]

Figure 2: A Rule Extracting an Area Filler from the
Example Document

tern list speci�es a maximum length N and matches
0 to N words or symbols from the document that
each must match the list's constraints. Possible con-
straints are: a list of words, one of which must match
the document item; a list of part-of-speech (POS)
tags, one of which must match the document item's
POS tag; a list of semantic classes, one of which
must be a class that the document item belongs to.
Figure 2 shows a rule created by hand that extracts
the area �ller from the example document in �g-
ure reftemplate. This rule assumes that the docu-
ment has been tagged with the POS tagger of (Brill,
1994).

3.2 The Learning Algorithm

As noted above, Rapier is inspired by ILP meth-
ods, and primarily consists of a speci�c to gen-
eral (bottom-up) search. First, for each slot, most-
speci�c patterns are created for each example, speci-
fying word and tag for the �ller and its complete con-
text. Thus, the pre-�ller pattern contains an item
for each word from the beginning of the document to
the word immediately preceding the �ller with con-
straints on the item consisting of the word and its
assigned POS tag. Likewise, the �ller pattern has
one item from each word in the �ller, and the post-
�ller pattern has one item for each word from the
end of the �ller to the end of the document.
Given this maximally speci�c rule-base, Rapier

attempts to compress and generalize the rules for
each slot. New rules are created by selecting two
existing rules and creating a generalization. The
aim is to make small generalization steps, covering
more positive examples without generating suprious
�llers, so a standard approach would be to generate
the least general generalization (LGG) of the pair
of rules. However, in this particular representation
which allows for unconstrained disjunction, the LGG
may be overly speci�c. Therefore, in cases where the
LGG of two constraints is their disjunction, we want
to create two generalizations: one would be the dis-
junction and the other the removal of the constraint.
Thus, we often want to consider multiple generaliza-
tion of a pair of items. This, combined with the fact
that patterns are of varying length, making the num-
ber of possible generalizations of two long patterns
extremely large, makes the computational cost of



For each slot, S in the template being learned
SlotRules = most speci�c rules from documents for S
while compression has failed fewer than lim times

randomly select 2 rules, R1 and R2, from S

�nd the set L of generalizations of the �llers of R1
and R2

create rules from L, evaluate, and initialize
RulesList

let n = 0
while best rule in RuleList produces spurious

�llers and the weighted information value
of the best rule is improving

increment n
specialize each rule in RuleList with general-

izations of the last n items of the
pre-�ller patterns of R1 and R2 and
add specializations to RuleList

specialize each rule in RuleList with general-
izations of the �rst n item of the
post-�ller patterns of R1 and R2 and
add specializations of RuleList

if best rule in RuleList produces only valid �llers
Add it to SlotRules and remove empirically

subsumed rules

Figure 3: Rapier Algorithm for Inducing IE Rules

producing all interesting generalizations of two com-
plete rules prohibitive. But, while we do not want
to arbitrarily limit the length of a pre-�ller or post-
�ller pattern, it is likely that the important parts of
the pattern will be close to the �ller. Therefore, we
start by computing the generalizations of the �ller
patterns of the two rules and create rules from those
generalizations. We maintain a list of the best n

rules created and specialize the rules under consid-
eration by adding pieces of the generalizations of the
pre- and post-�ller patterns of the two seed rules,
working outward from the �llers. The rules are or-
dered using an information value metric (Quinlan,
1990) weighted by the size of the rule (preferring
smaller rules). When the best rule under consider-
ation produces no negative examples, specialization
ceases; that rule is added to the rule base, and all
rules empirically subsumed by it are removed. Spe-
cialization will be abandoned if the value of the best
rule does not improve across k specialization itera-
tions. Compression of the rule base for each slot is
abandoned when the number of successive iterations
of the compression algorithm which fail to produce
a compressing rule exceed either a pre-de�ned limit
or the number of rules for that slot. An outline of
the algorithm appears in Figure 3 where RuleList is
a prioritized list of no more than Beam-Width rules.
The search is somewhat similar to a beam search in
that a limited number of rules is kept for considera-

tion, but all rules in RuleList are expanded at each
iteration, rather than only the best.
As an example of the creation of a new rule, con-

sider generalizing the rules based on the phrases \lo-
cated in Atlanta, Georgia." and \o�ces in Kansas
City, Missouri." The rules created from these
phrases for the city slot would be

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
1) word: located 1) word: atlanta 1) word: ,

tag: vbn tag: nnp tag: ,
2) word: in 2) word: georgia

tag: in tag: nnp
3) word: .

tag: .
and

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
1) word: o�ces 1) word: kansas 1) word: ,

tag: nns tag: nnp tag: ,
2) word: in 2) word: city 2) word: missouri

tag: in tag: nnp tag: nnp
3) word: .

tag: .

The �llers are generalized to produce two possible
rules with empty pre-�ller and post-�ller patterns.
Because one �ller has two items and the other only
one, they generalize to a list of no more than two
words. The word constraints generalize to either a
disjunction of all the words or no constraint. The tag
constraints on all of the items are the same, so the
LGG's tag constraints are also the same. Since the
three words do not belong to a single semantic class
in the lexicon, the semantics remain unconstrained.
The �llers produced are:

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
1) list: len: 2

word: [atlanta, kansas, city]
tag: nnp

and

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
1) list: len: 2

tag: nnp

Either of these rules is likely to cover spurious exam-
ples, so we add pre-�ller and post-�ller LGGs. The
items produced from the \in"'s and the commas are
identical and, therefore, unchanged. Assuming that
our lexicon contains a semantic class for states, gen-
eralizing the state names produces a semantic con-
straint of that class along with a tag constraint nnp
and either no word constraint or the disjunction of
the two states. Thus, a �nal best rule would be:

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
1) word: in 1) list: len: 2 1) word: ,

tag: in tag: nnp tag: ,
2) tag: nnp

semantic: state

4 Evaluation

The task we have chosen for initial tests of Rapier
is to extract information from computer-related job
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Figure 4: Performance on job postings

postings that could be used to create a database
of available jobs. The computer-related job post-
ing template contains 17 slots, including informa-
tion about the employer, the location, the salary,
and job requirements. Several of the slots, such as
the languages and platforms used, can take multiple
values. The current results do not employ semantic
categories, only words and the results of Brill's POS
tagger.
The results presented here use a data set of 100

documents paired with �lled templates. We did
a ten-fold cross-validation, and also ran tests with
smaller subsets of the training examples for each test
set in order to produce learning curves. We use three
measures: precision, the percentage of slot �llers
produced which are correct; recall, the percentage
of slot �llers in the correct templates which are pro-
duced by the system; and an F-measure, which is
the average of the recall and the precision.
Figure 4 shows the learning curves generated.

At 90 training examples, the average precision was
83.7% and the average recall was 53.1%. These num-
bers look quite promising when compared to the
measured performance of other information extrac-
tion systems on various domains. This performance
is comparable to that of Crystal on a medical do-
main task (Soderland et al., 1996), and better than
that of AutoSlog and AutoSlog-TS on part of
the MUC4 terrorism task (Rilo�, 1996). It also com-
pares favorably with the typical system performance
on the MUC tasks (ARPA, 1992; ARPA, 1993). All
of these comparisons are only general, since the tasks
are di�erent, but they do indicate that Rapier is do-
ing relatively well. The relatively high precision is an
especially positive result, because it is highly likely
that recall will continue to improve as the number
of training examples increases.

The rules Rapier learns are of several di�erent
types. Some are fairly simple memorizations of
words or phrases that consistently appear in par-
ticular slots: these include things like programming
languages and operating systems. Others learn the
context of the �ller, usually also constraining the
parts of speech of the �ller: for example, a rule for
the language slot where the pre�x is constrained to
\familiarity with", the su�x is \programming" and
the �ller is a list of up to three items which must be
proper nouns or symbols.

5 Related Work

Previous researchers have generally applied machine
learning only to parts of the IE task and their sys-
tems have typically required more human interaction
than just providing texts with �lled templates. Re-
solve uses decision trees to handle coreference deci-
sions for an IE system and requires annotated coref-
erence examples (McCarthy and Lehnert, 1995).
Crystal uses a form of clustering to create a dictio-
nary of extraction patterns by generalizing patterns
identi�ed in the text by an expert (Soderland et al.,
1995; Soderland et al., 1996). AutoSlog creates
a dictionary of extraction patterns by specializing a
set of general syntactic patterns (Rilo�, 1993; Rilo�,
1996). It assumes that an expert will later examine
the patterns it produces. Palka learns extraction
patterns relying on a concept hierarchy to guide gen-
eralization and specialization (Kim and Moldovan,
1995). AutoSlog, Crystal, and Palka all rely
on prior sentence analysis to identify syntactic ele-
ments and their relationships, and their output re-
quires further processing to produce the �nal �lled
templates. Liep also learns IE patterns (Hu�man,
1996). Liep's primary limitations are that it also re-
quires a sentence analyzer to identify noun groups,
verbs, subjects, etc.; it makes no real use of semantic
information; it assumes that all information it needs
is between two entities it identi�es as \interesting";
and it has been applied to only one domain in which
the texts are quite short (1-3 sentences).

6 Future Research

Currently, Rapier assumes slot values are strings
taken directly from the document; however, MUC
templates also include slots whose values are taken
from a pre-speci�ed set. We plan to extend the sys-
tem to learn rules for such slots. Also, the current
system attempts to extract the same set of slots from
every document. Rapier must be extended to learn
patterns that �rst categorize the text to determine
which set of slots, if any, should be extracted from a



given document. Finally, the same pattern learning
algorithmmay prove applicable to other natural lan-
guage processing tasks such as identifying the sense
of an ambiguous word based on its surrounding con-
text.

7 Conclusion

The ability to extract desired pieces of information
from natural language texts is an important task
with a growing number of potential applications.
Tasks requiring locating speci�c data in newsgroup
messages or web pages are particularly promising
applications. Manually constructing such informa-
tion extraction systems is a laborious task; however,
learning methods have the potential to help auto-
mate the development process. The Rapier system
described in this paper uses relational learning to
construct unbounded pattern-match rules for infor-
mation extraction given only a database of texts and
�lled templates. The learned patterns employ lim-
ited syntactic and semantic information to identify
potential slot �llers and their surrounding context.
Results on extracting information from newsgroup
jobs postings have shown that for one realistic ap-
plication, fairly accurate rules can be learned from
relatively small sets of examples. Future research
will hopefully demonstrate that similar techiques
will prove useful in a wide variety of interesting ap-
plications.
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