
Journal of Machine Learning Research ? (2002) ? Submitted 12/01; Published ?

Bottom-Up Relational Learning of Pattern Matching Rules

for Information Extraction

Mary Elaine Cali� mecalif@ilstu.edu

Department of Applied Computer Science

Illinois State University

Normal, IL 61790, USA

Raymond J. Mooney mooney@cs.utexas.edu

Department of Computer Sciences

The University of Texas at Austin

Austin, TX 78712, USA

Editor:

Abstract

Information extraction is a form of shallow text processing that locates a speci�ed set of
relevant items in a natural-language document. Systems for this task require signi�cant
domain-speci�c knowledge and are time-consuming and diÆcult to build by hand, making
them a good application for machine learning. We present a system, Rapier, that uses
pairs of sample documents and �lled templates to induce pattern-match rules that directly
extract �llers for the slots in the template. Rapier employs a bottom-up learning algorithm
which incorporates techniques from several inductive logic programming systems and ac-
quires unbounded patterns that include constraints on the words, part-of-speech tags, and
semantic classes present in the �ller and the surrounding text. We present encouraging
experimental results on two domains.

Keywords: Natural Language Processing, Information Extraction, Relational Learning

1. Introduction

In the wake of the recent explosive growth in on-line text on the web and in other places,
has come a need for systems to help people cope with the information explosion. A number
of researchers in language processing have begun to develop information extraction systems:
systems that pull speci�c data items out of text documents.

Information extraction systems seem to be a promising way to deal with certain types of
text documents. However, a diÆculty with information extraction systems is that they are
diÆcult and time-consuming to build, and they generally contain highly domain-speci�c
components, making porting to new domains also time-consuming. Thus, more eÆcient
means for developing information extraction systems are desirable.

This situation has made information extraction systems an attractive application for
machine learning. Several researchers have begun to use learning methods to aid in the
construction of information extraction systems (Soderland et al., 1995, Rilo�, 1993, Kim and
Moldovan, 1995, Hu�man, 1996). However, in these systems, learning is used for part of a
larger information extraction system. Our system Rapier (Robust Automated Production
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of Information Extraction Rules) learns rules for the complete information extraction task,
rules producing the desired information pieces directly from the documents without prior
parsing or any post-processing. We do this by using a structured (relational) symbolic
representation, rather than learning classi�ers.

Using only a corpus of documents paired with �lled templates, Rapier learns Eliza-like
patterns (Weizenbaum, 1966) that make use of limited syntactic and semantic information,
using freely available, robust knowledge sources such as a part-of-speech tagger or a lexicon.
The rules built from these patterns can consider an unbounded context, giving them an ad-
vantage over more limited representations which consider only a �xed number of words.
This relatively rich representation requires a learning algorithm capable of dealing with
its complexities. Therefore, Rapier employs a relational learning algorithm which uses
techniques from several Inductive Logic Programming (ILP) systems (Lavra�c and D�zeroski,
1994). These techniques are appropriate because they were developed to work on a rich,
relational representation (�rst-order logic clauses). Our algorithm incorporates ideas from
several ILP systems, and consists primarily of a speci�c to general (bottom-up) search. We
show that learning can be used to build useful information extraction rules, and that rela-
tional learning is more e�ective than learning using only simple features and a �xed context.
Simultaneous with Rapier's development other learning systems have recently been devel-
oped for this task which also use relational learning (Freitag, 2000, Soderland, 1999). Other
recent approaches to this problem include using hidden Markov models (HMMs) (Freitag
and McCallum, 2000) and combining boosting with the learning of simpler \wrappers"
(Freitag and Kushmerick, 2000).

Experiments usingRapier were performed in two di�erent domains. One of the domains
was a set of computer-related job postings from Usenet newsgroups. The utility is evident in
the success of FlipDog, a job posting website (www.
ipdog.com) developed by WhizBang!
(www.whizbanglabs.com) using information extraction techniques. It should be noted that
our template is both much more detailed than the one used for FlipDog and that it is speci�c
to computer-related jobs. The second domain was a set of seminar announcement compiled
at Carnegie Mellon University. The results were compared to the two other relational
learners and to a Naive Bayes-based system. The results are encouraging.

The remainder of the article is organized as follows. Section 2 presents background
material on information extraction and relational learning. Section 3 describes Rapier's
rule representation and learning algorithm. Section 4 presents and discusses experimental
results, including comparisons to a simple Bayesian learner and two other relational learners.
Section 5 suggests some directions for future work. Section 6 describes some related work
in applying learning to information extraction, and Section 7 presents our conclusions.

2. Background

This section provides background on the task of information extraction and on the relational
learning algorithms that are the most immediate predecessors of our learning algorithm.

2.1 Information Extraction

Information extraction is a shallow form of natural language understanding useful for certain
types of document processing, which has been the focus of ARPA's Message Understanding
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Posting from Newsgroup

Subject: US-TN-SOFTWARE PROGRAMMER

Date: 17 Nov 1996 17:37:29 GMT

Organization: Reference.Com Posting Service

Message-ID: <56nigp$mrs@bilbo.reference.com>

SOFTWARE PROGRAMMER

Position available for Software Programmer experienced

in generating software for PC-Based Voice Mail systems.

Experienced in C Programming. Must be familiar with

communicating with and controlling voice cards; preferable

Dialogic, however, experience with others such as Rhetorix

and Natural Microsystems is okay. Prefer 5 years or more

experience with PC Based Voice Mail, but will consider as

little as 2 years. Need to find a Senior level person who

can come on board and pick up code with very little training.

Present Operating System is DOS. May go to OS-2 or UNIX

in future.

Please reply to:

Kim Anderson

AdNET

(901) 458-2888 fax

kimander@memphisonline.com

Figure 1: A sample job posting from a newsgroup.

Conferences (MUC) (Lehnert and Sundheim, 1991, DARPA, 1992, 1993). It is useful in
situations where a set of text documents exist containing information which could be more
easily used by a human or computer if the information were available in a uniform database
format. Thus, an information extraction system is given the set of documents and a template
of slots to be �lled with information from the document. Information extraction systems
locate and in some way identify the speci�c pieces of data needed from each document.

Two di�erent types of data may be extracted from a document: more commonly, the
system is to identify a string taken directly from the document, but in some cases the
system selects one from a set of values which are possible �llers for a slot. The latter type
of slot-�ller may be items like dates, which are most useful in a consistent format, or they
may simply be a set of terms to provide consistent values for information which is present
in the document, but not necessarily in a consistently useful way. In this work, we limit
ourselves to dealing with strings taken directly from the document in question.

Information extraction can be useful in a variety of domains. The various MUC's have
focused on tasks such as the Latin American terrorism domain mentioned above, joint ven-
tures, microelectronics, and company management changes. Others have used information
extraction to track medical patient records (Soderland et al., 1995), to track company merg-
ers (Hu�man, 1996), and to extract biological information (Craven and Kumlien, 1999, Ray
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Filled Template

computer_science_job

id: 56nigp$mrs@bilbo.reference.com

title: SOFTWARE PROGRAMMER

salary:

company:

recruiter:

state: TN

city:

country: US

language: C

platform: PC \ DOS \ OS-2 \ UNIX

application:

area: Voice Mail

req_years_experience: 2

desired_years_experience: 5

req_degree:

desired_degree:

post_date: 17 Nov 1996

Figure 2: The �lled template corresponding to the message shown in Figure 1. All of the
slot-�llers are strings taken directly from the document. Not all of the slots are
�lled, and some have more than one �ller.

and Craven, 2001). More recently, researchers have applied information extraction to less
formal text genres such as rental ads (Soderland, 1999) and web pages (Freitag, 1998a, Hsu
and Dung, 1998, Muslea et al., 1998).

Another domain which seems appropriate, particularly in the light of dealing with the
wealth of online information, is to extract information from text documents in order to
create easily searchable databases from the information, thus making the wealth of text
online more easily accessible. For instance, information extracted from job postings in
USENET newsgroups such as misc.jobs.offered can be used to create an easily searchable
database of jobs. An example of the information extraction task for such a system limited
to computer-related jobs appears in Figures 1 and 2.

2.2 Relational Learning

Since much empirical work in natural language processing has employed statistical tech-
niques (Manning and Sch�utze, 1999, Charniak, 1993, Miller et al., 1996, Smadja et al.,
1996, Wermter et al., 1996) , this section discusses the potential advantages of symbolic
relational learning. In order to accurately estimate probabilities from limited data, most
statistical techniques base their decisions on a very limited context, such as bigrams or
trigrams (2 or 3 word contexts). However, NLP decisions must frequently be based on
much larger contexts that include a variety of syntactic, semantic, and pragmatic cues.
Consequently, researchers have begun to employ learning techniques that can handle larger
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contexts, such as decision trees (Magerman, 1995, Miller et al., 1996, Aone and Bennett,
1995), exemplar (case-based) methods (Cardie, 1993, Ng and Lee, 1996), and a maximum
entropy modeling method (Ratnaparkhi, 1997). However, these techniques still require the
system developer to specify a manageable, �nite set of features for use in making decisions.
Developing this set of features can require signi�cant representation engineering and may
still exclude important contextual information.

In contrast, relational learning methods (Birnbaum and Collins, 1991) allow induction
over structured examples that can include �rst-order logical predicates and functions and
unbounded data structures such as lists and trees. In particular, inductive logic program-

ming (ILP) (Lavra�c and D�zeroski, 1994, Muggleton, 1992) studies the induction of rules in
�rst-order logic (Prolog programs). ILP systems have induced a variety of basic Prolog pro-
grams (e.g. append, reverse, sort) as well as potentially useful rule bases for important
biological problems (Muggleton et al., 1992, Srinivasan et al., 1996). Detailed experimental
comparisons of ILP and feature-based induction have demonstrated the advantages of rela-
tional representations in two language related tasks, text categorization (Cohen, 1995a) and
generating the past tense of an English verb (Mooney and Cali�, 1995). Recent research
has also demonstrated the usefulness of relational learning in classifying web pages (Slattery
and Craven, 1998).

While Rapier is not an ILP system, it is a relational learning algorithm learning a struc-
tured rule representation, and its algorithm was inspired by ideas from ILP systems. The
ILP-based ideas are appropriate because they were designed to learn using rich, unbounded
representations. Therefore, the following sections discuss some general design issues in de-
veloping ILP and other rule learning systems and then describe the three ILP systems that
most directly in
uenced Rapier's learning algorithm: Golem, Chillin, and Progol.

2.2.1 General Algorithm Design Issues

One of the design issues in rule learning systems is the overall structure of the algorithm.
There are two primary forms for this outer loop: compression and covering. Systems that
use compression begin by creating an initial set of highly speci�c rules, typically one for each
example. At each iteration a more general rule is constructed, which replaces the rules it
subsumes, thus compressing the rule set. At each iteration, all positive examples are under
consideration to some extent, and the metric for evaluating new rules is biased toward
greater compression of the rule set. Rule learning ends when no new rules to compress
the rule set are found. Systems that use compression include Duce, a propositional rule
learning system using inverse resolution (Muggleton, 1987), Cigol, an ILP system using
inverse resolution (Muggleton and Buntine, 1988), and Chillin (Zelle and Mooney, 1994).

Systems that use covering begin with a set of positive examples. Then, as each rule is
learned, all positive examples the new rule covers are removed from consideration for the
creation of future rules. Rule learning ends when all positive examples have been covered.
This is probably the more common way to structure a rule learning system. Examples
include Foil (Quinlan, 1990), Golem (Muggleton and Feng, 1992), Progol (Muggleton,
1995), Claudien (De Raedt and Bruynooghe, 1993), and various systems based on Foil

such as Focl (Pazzani et al., 1992), mFoil (Lavra�c and D�zeroski, 1994), and Foidl(Mooney
and Cali�, 1995).
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There are trade-o�s between these two designs. The primary di�erence is the trade-o�
between a more eÆcient search or a more thorough search. The covering systems tend to be
somewhat more eÆcient, since they do not seek to learn rules for examples that have already
been covered. However, their search is less thorough than that of compression systems, since
they may not prefer rules which both cover remaining examples and subsume existing rules.
Thus, the covering systems may end up with a set of fairly speci�c rules in cases where a
more thorough search might have discovered a more general rule covering the same set of
examples.

A second major design decision is the direction of search used to construct individual
rules. Systems typically work in one of two directions: bottom-up (speci�c to general)
systems create very speci�c rules and then generalize those to cover additional positive
examples, and top-down (general to speci�c) systems start with very general rules{ typically
rules which cover all of the examples, positive and negative, and then specialize those rules,
attempting to uncover the negative examples while continuing to cover many of the positive
examples. Of the systems above, Duce, Cigol, and Golem and pure bottom-up systems,
while Foil and the systems based on it are pure top-down systems. Chillin and Progol
both combine bottom-up and top-down methods.

Clearly, the choice of search direction also creates tradeo�s. Top-down systems are often
better at �nding general rules covering large numbers of examples, since they start with a
most general rule and specialize it only enough to avoid the negative examples. Bottom-up
systems may create overly-specialized rules that don't perform well on unseen data because
they may fail to generalize the initial rules suÆciently. Given a fairly small search space of
background relations and constants, top-down search may also be more eÆcient. However,
when the branching factor for a top-down search is very high (as it is when there are many
ways to specialize a rule), bottom-up search will usually be more eÆcient, since it constrains
the constants to be considered in the construction of a rule to those in the example(s) that
the rule is based on. The systems that combine bottom-up and top-down techniques seek
to take advantage of the eÆciencies of each.

2.2.2 Golem

As mentioned above, Golem (Muggleton and Feng, 1992) uses a greedy covering algo-
rithm. The construction of individual clauses is bottom-up, based on the construction of
least-general generalizations (LGGs) of more speci�c clauses (Plotkin, 1970). A clause G
subsumes a clause C if there is a substitution for the variables in G that make the literals
in G a subset of the literals in C. Informally, we could turn C into G by dropping some
conditions and changing some constants to variables. If G subsumes C, anything that can
be proved from C could also be proved from G, since G imposes fewer conditions. Hence
G is said to be more general than C (assuming C does not also subsume G, in which case
the clauses must be equivalent except for renaming of variables).

The LGG of clauses C1 and C2 is de�ned as the least general clause that subsumes both
C1 and C2. An LGG is easily computed by \matching" compatible literals of the clauses;
wherever the literals have di�ering structure, the LGG contains a variable. When identical
pairings of di�ering structures occurs, the same variable is used for the pair in all locations.
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uncle(john,deb) :-

sibling(john,ron), sibling(john,dave),

parent(ron,deb), parent(ron,ben),

male(john), male(dave), female(deb).

uncle(bill,jay):-

siblingbill,bruce)

parent(bruce,jay), parent(bruce,rach),

male(bill), male(jay).

Figure 3: Two speci�c instances of uncle relationships

uncle(A,B):-

sibling(A,C), sibling(A,D),

parent(C,B), parent(C,E), parent(C,F), parent(C,E)

male(A), male(G), male(H), male(I).

Figure 4: The LGG of the clauses in Figure 3

For example, consider the clauses in Figure 3. These two speci�c clauses describe the
concept uncle in the context of some known familial relationships. The rather complex
LGG of these clauses is shown in Figure 4. Here A replaces the pair hjohn,billi, B replaces
hdeb,jayi, C replaces hron,brucei, etc. Note that the result contains four parent literals
(two of which are duplicates) corresponding to the four ways of matching the pairs of parent
literals from the original clauses. Similarly, there are four literals for male. In the worst
case, the result of an LGG operation may contain n2 literals for two input clauses of length
n. The example LGG contains no female literal since the second clause does not contain
a compatible literal. Straightforward simpli�cation of the result by removing redundant
literals yields the clause in Figure 5. This is one of the two clauses de�ning the general
concept, uncle/2.

The construction of the LGG of two clauses is in some sense \context free." The re-
sulting generalization is determined strictly on the form of the input clauses, there is no
consideration of potential background knowledge. In order to take background knowledge
into account Golem produces candidate clauses by considering Relative LGGs (RLGGS)
of positive examples with respect to the background knowledge. The idea is to start with
the assumption that any and all background information might be relevant to determining
that a particular instance is a positive example. Thus, each positive example is repre-
sented by a clause of the form: E :- hevery ground facti where hevery ground facti
is a conjunction of all true ground literals that can be derived from the background rela-
tions. In the case of member/2, this would include facts such as components([1],1,[]),
components([1,2],1,[2]), components([2],2,[]), etc. An RLGG of two examples is
simply the LGG of the examples' representative clauses. The LGG process serves to gener-
alize away the irrelevant conditions.
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uncle(A,B):-

sibling(A,C) parent(C,B), male(A).

Figure 5: The result of simplifying the clause from Figure 4 by removing redundant clauses

Let Pairs = random sampling of pairs of positive examples

Let RLggs = fC :he; e0i 2Pairs and C = RLGG(e; e0) and C consistentg
Let S be set of the pair e; e0 with best cover RLgg in RLggs

Do

Let Examples be a random sampling of positive examples

Let RLggs = fC: e0 2 Examples and C = RLGG(S
S
e0)) and C consistentg

Find e0 = which produces greatest cover in RLggs

Let S = S
S
e0

Let Examples = Examples � cover(RLGG(S))
While increasing-cover

Figure 6: Golem's clause construction algorithm

One diÆculty of this approach is that interesting background relations will give rise
to an in�nite number of ground facts. For example, there can be no �nite set of facts
that completely describes the components/3 relation, since lists may be inde�nitely long.
Golem builds initial representative clauses for examples by considering a �nite subset
corresponding to the facts that can be derived from the background predicates through a
�xed number of binary resolutions. Figure 6 shows Golem's clause construction algorithm.

2.2.3 Chillin

Chillin (Zelle and Mooney, 1994) is an example of an ILP algorithm that uses compression
for its outer loop. It combines elements of both top-down and bottom-up induction tech-
niques including a mechanism for demand-driven predicate invention. The basic compaction
algorithm appears in Figure 7.

Chillin starts with a most speci�c de�nition (the set of positive examples) and intro-
duces generalizations which make the de�nition more compact (as measured by a Cigol-like
size metric (Muggleton and Buntine, 1988)). The search for more general de�nitions is car-
ried out in a hill-climbing fashion. At each step, a number of possible generalizations are
considered; the one producing the greatest compaction of the theory is implemented, and
the process repeats. To determine which clauses in the current theory a new clause should
replace, Chillin uses a notion of empirical subsumption. If a clause A covers all of the ex-
amples covered by clause B along with one or more additional examples, then A empirically
subsumes B.

The build gen algorithm attempts to construct a clause which empirically subsumes
some clauses of DEF without covering any of the negative examples. The �rst step is to
construct the LGG of the input clauses. If the LGG does not cover any negative examples,
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DEF := fE :- true j E 2 Positivesg
Repeat

PAIRS := a sampling of pairs of clauses from DEF
GENS := fG j G = build gen(Ci,Cj ,DEF,Positives,Negatives) for hCi; Cji 2 PAIRSg
G := Clause in GENS yielding most compaction
DEF := (DEF�(Clauses subsumed by G)) [ G

Until no further compaction

Figure 7: Chillin's compaction algorithm

no further re�nement is necessary. If the clause is too general, an attempt is made to
re�ne it using a Foil-like mechanism which adds literals derivable either from background
or previously invented predicates. If the resulting clause is still too general, it is passed
to a routine which invents a new predicate to discriminate the positive examples from the
negatives which are still covered.

2.2.4 Progol

Progol (Muggleton, 1995) also combines bottom-up and top-down search. Like Foil and
Golem, Progol uses a covering algorithm for its outer loop. As in the propositional rule
learner AQ (Michalski, 1983), individual clause construction begins by selecting a random
seed example. Using mode declarations provided for both the background predicates and
the predicate being learned, Progol constructs a most speci�c clause for that random seed
example, called the bottom clause. The mode declarations specify for each argument of each
predicate both the argument's type and whether it should be a constant, a variable bound
before the predicate is called, or a variable bound by the predicate. Given the bottom clause,
Progol employs an A*-like search through the set of clauses containing up to k literals
from the bottom clause in order to �nd the simplest consistent generalization to add to
the de�nition. Advantages of Progol are that the constraints on the search make it fairly
eÆcient, especially on some types of tasks for which top-down approaches are particularly
ineÆcient, and that its search is guaranteed to �nd the simplest consistent generalization if
such a clause exists with no more than k literals. The primary problems with the system
are its need for the mode declarations and the fact that too small a k may prevent Progol
from learning correct clauses while too large a k may allow the search to explode.

3. The Rapier System

3.1 Rule Representation

Rapier's rule representation uses Eliza-like patterns (Weizenbaum, 1966) that can make use
of limited syntactic and semantic information. The extraction rules are indexed by template
name and slot name and consist of three parts: 1) a pre-�ller pattern that matches text
immediately preceding the �ller, 2) a pattern that must match the actual slot �ller, and 3)
a post-�ller pattern that must match the text immediately following the �ller. Each pattern
is a sequence (possibly of length zero in the case of pre- and post-�ller patterns) of pattern
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Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
1) syntactic: fnn,nnpg 1) word: undisclosed 1) semantic: price
2) list: length 2 syntactic: jj

Figure 8: A rule for extracting the transaction amount from a newswire concerning a cor-
porate acquisition. \nn" and \nnp" are the part of speech tags for noun and
proper noun, respectively; \jj" is the part of speech tag for an adjective.

elements. Rapier makes use of two types of pattern elements: pattern items and pattern

lists. A pattern item matches exactly one word or symbol from the document that meets
the item's constraints. A pattern list speci�es a maximum length N and matches 0 to N
words or symbols from the document (a limited form of Kleene closure), each of which must
match the list's constraints. Rapier uses three kinds of constraints on pattern elements:
constraints on the words the element can match, on the part-of-speech tags assigned to
the words the element can match, and on the semantic class of the words the element can
match. The constraints are disjunctive lists of one or more words, tags, or semantic classes
and document items must match one of those words, tags, or classes to ful�ll the constraint.

A note on part-of-speech tags and semantic classes: in theory, these could be from any
source. Rapier's operation does not depend on any particular tagset or tagging method.
In practice, we used Eric Brill's tagger as trained on the Wall Street Journal corpus (Brill,
1994). Although the rule representation does not require a particular type of semantic
class, we used WordNet synsets as the semantic classes (Miller et al., 1993), and Rapier's
handling of semantic classes is heavily tied to that represenation.

Figure 8 shows an example of a rule that shows the various types of pattern elements and
constraints. This is a rule constructed by Rapier for extracting the transaction amount
from a newswire concerning a corporate acquisition. This rule extracts the value \undis-
closed" from phrases such as \sold to the bank for an undisclosed amount" or \paid Honey-
well an undisclosed price". The pre-�ller pattern consists of two pattern elements. The �rst
is an item with a part-of-speech constraining the matching word to be tagged as a noun or
a proper noun. The second is a list of maximum length two with no constraints. The �ller
pattern is a single item constrained to be the word \undisclosed" with a POS tag labeling it
an adjective. The post-�ller pattern is also a single pattern item with a semantic constraint
of \price".

In using these patterns to extract information, we apply all of the rules for a given slot
to a document and take all of the extracted strings to be slot-�llers, eliminating duplicates.
Rules may also apply more than once. In many cases, multiple slot �llers are possible, and
the system seldom proposes multiple �llers for slots where only one �ller should occur.
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3.2 The Learning Algorithm

3.2.1 Algorithm Design Choices

Rapier, as noted above, is inspired by ILP methods, particularly by Golem, Chillin, and
Progol. It is compression-based and primarily consists of a speci�c to general (bottom-
up) search. The choice of a bottom-up approach was made for two reasons. The �rst
reason is the very large branching factor of the search space, particularly in �nding word
and semantic constraints. Learning systems that operate on natural language typically
must have some mechanism for handling the search imposed by the large vocabulary of
any signi�cant amount of text (or speech). Many systems handle this problem by imposing
limits on the vocabulary considered{using only the n most frequent words, or considering
only words that appear at least k times in the training corpus (Yang and Pederson, 1997).
While this type of limitation may be e�ective, using a bottom-up approach reduces the
consideration of constants in the creation of any rule to those appearing in the example(s)
from which the rule is being generalized, thus limiting the search without imposing arti�cial
hard limits on the constants to be considered.

The second reason for selecting a bottom-up approach is that we decided to prefer overly
speci�c rules to overly general ones. In information extraction, as well as other natural
language processing task, there is typically a trade-o� between high precision (avoiding
false positives) and high recall (identifying most of the true positives). For the task of
building a database of jobs which partially motivated this work, we wished to emphasize
precision. After all, the information in such a database could be found by performing a
keyword search on the original documents, giving maximal recall (given that we extract
only strings taken directly from the document), but relatively low precision. A bottom-up
approach will tend to produce speci�c rules, which also tend to be precise rules.

Given the choice of a bottom-up approach, the compression outer loop is a good �t. A
bottom-up approach has a strong tendency toward producing speci�c, precise rules. Using
compression for the outer loop may partially counteract this tendency with its tendency
toward a more thorough search for general rules. So, like Chillin (Zelle and Mooney,
1994), Rapier begins with a most speci�c de�nition and then attempts to compact that
de�nition by replacing rules with more general rules. Since in Rapier's rule representation
rules for the di�erent slots are independent of one another, the system actually creates the
most speci�c de�nition and then compacts it separately for each slot in the template.

3.2.2 Initial Rulebase Construction

To construct the initial rulebase, most-speci�c patterns for each slot are created for each
example, specifying words and tags for the �ller and its complete context. Thus, the pre-
�ller pattern contains an item for each word from the beginning of the document to the
word immediately preceding the �ller with constraints listing the speci�c word and its POS
tag. Likewise, the �ller pattern has one item from each word in the �ller, and the post-�ller
pattern has one item for each word from the end of the �ller to the end of the document.

Using semantic class information creates some issues is the construction of the initial
rulebase. The semantic class is left unconstrained because a single word often has multiple
possible semantic classes because of the homonymy and polysemy of language. If semantic
constraints were immediately created, Rapier would have to either use a disjunction of all
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of the possible classes at the lowest level of generality (in the case of WordNet{ the synsets
that the word for which the item is created belongs to) or choose a semantic class. The �rst
choice is somewhat problematic because the resulting constraint is quite likely to be too
general to be of much use. The second choice is the best, if and only if the correct semantic
class for the word in context is known, a diÆcult problem in and of itself. Selecting the most
frequent choice from WordNet might work for some cases, but certainly not in all cases, and
there is the issue of domain speci�city. The most frequent meaning of a word in all contexts
may not be the most frequent meaning of that word in the particular domain in question.
And, of course, even within a single domain words will have multiple meanings so even
determining the most frequent meaning of a word in a speci�c domain may often be a wrong
choice. Rapier avoids the issue altogether by waiting to create semantic constraints until
generalization. Thus, it implicitly allows the disjunction of classes, selecting a speci�c class
only when the item is generalized against one containing a di�erent word. By postponing
the choice of a semantic class until there are multiple items required to �t the semantic
constraint, Rapier narrows the number of possible choices for the semantic class to classes
that cover two or more words. Details concerning the creation of semantic constraints are
discussed below.

3.2.3 Rule Generalization

Given this maximally speci�c rule-base, Rapier attempts to compress the rules for each
slot. New rules are created by selecting pairs of existing rules and creating generalizations,
somewhat like Golem (Muggleton and Feng, 1992). However, Rapier di�ers from Golem

signi�cantly in its use of this basic concept. First, Golem always selects random pairs of
examples, and Rapier selects random pairs of rules. When the rules selected by Rapier are
the most-speci�c rules covering a single example, there is no real di�erence between these
two, since an example in Inductive Logic Programming is essentially a most-speci�c rule.
However, Rapiermay select rules that resulted from an earlier generalization and generalize
them further. This points to a second di�erence between the two learning algorithms: the
di�erence in the way they repeat generalization to achieve rules as general as possible.
While Golem takes the rule resulting from generalizing a pair of examples and attempts to
generalize it further to cover new, randomly selected examples, Rapier simply adds the rule
to the rulebase where it may be later selected for generalization with another rule. These
di�erences stem primarily from the di�ering approaches of the two algorithms at the outer
level. Since Golem takes a covering approach, it must fully generalize a given rule initially,
since the examples the rule covers will be removed from further consideration. Rapier's
compression approach leads it to do less generalization at each iteration of the loop.

The most unique aspect of Rapier's learning algorithm is the way in which it actually
creates a new rule from a random pair of rules. The straightforward method of generalizing
two rules together would be �nd the least general generalization (LGG) of the two pre-�ller
patterns and use that as the pre-�ller pattern of the new rule, make the �ller pattern of
the new rule be the LGG of the two �ller patterns, and then do the same for the post-�ller
pattern. There are, however, two serious problems with this obvious approach.

The �rst problems is the expense of computing the LGGs of the pre-�ller and post-�ller
patterns. These patterns may be very long, and the pre-�ller or post-�ller patterns of two
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rules may be of di�erent lengths. Generalizing patterns of di�erent lengths is computa-
tionally expensive because each individual pattern element in the shorter pattern may be
generalized against one or more elements of the longer pattern, and it is not known ahead
of time how elements should be combined to produce the LGG. Thus, the computation
of the LGG of the pre-�ller and post-�ller patterns in their entirety may be prohibitively
computationally expensive.

The second problem is not a matter of computational complexity, but rather a problem
caused by the power of the rule representation. Because Rapier's rule representation allows
for unlimited disjunction, the LGG of two constraints is always their union. When the two
constraints di�er, the resulting disjunct may be the desirable generalization, but often a
better generalization results from simply removing the constraint instead of creating the
disjunction. Therefore, when generalizing pattern elements, rather than simply taking the
LGG of the constraints, it is useful to consider multiple generalizations if the constraints
on the pattern elements di�er, and this is the approach the Rapier takes { considering
for each pair of di�ering constraints the generalization created by dropping the constraint
as well as the generalization which is the union of the constraints. However, considering
multiple generalizations of each pair of pattern elements greatly increases the computational
complexity of generalizing pairs of lengthy patterns such as the most-speci�c pre-�llers and
post-�llers tend to be.

Because of these issues, Rapier does not use a pure bottom-up approach. Instead, like
Progol, it combines the bottom-up approach with a top-down component, using a speci�c
rule to constrain a top-down search for an acceptable general rule. However, instead of using
a single seed or using some type of user-provided information (such as Progol's modes),
Rapier uses a pair of rules to constrain the search, more like Chillin does. This approach,
along with the di�erence in representation, makes Rapier's top-down search very di�erent
from Progol's.

Rapier's rule generalization method operates on the principle that the relevant infor-
mation for extracting a slot-�ller will be close to that �ller in the document. Therefore,
Rapier begins by generalizing the two �ller patterns and creates rules with the resulting
generalized �ller patterns and empty pre-�ller and post-�ller patterns. It then specializes
those rules by adding pattern elements to the pre-�ller and post-�ller patterns, working out-
ward from the �ller. The elements to be added to the patterns are created by generalizing
the appropriate portions of the pre-�llers or post-�llers of the pair of rules from which the
new rule is generalized. Working in this way takes advantage of the locality of language,
but does not preclude the possibility of using pattern elements that are fairly distant from
the �ller.

Figure 9 shows Rapier's basic algorithm. RuleList is a priority queue of length k which
maintains the list of rules still under consideration, where k is a parameter of the algorithm.
The priority of the rule is its value according to Rapier's heuristic metric for determining
the quality of a rule (see Section 3.2.4). Rapier's search is basically a beam-search: a
breadth-�rst search keeping only the best k items at each pass. However, the search does
di�er somewhat from a standard beam-search in that the nodes (or rules) are not fully
expanded at each pass (since at each iteration the specialization algorithms only consider
pattern elements out to a distance of n from the �ller), and because of this the old rules are
only thrown out when they fall o� the end of the priority queue.
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For each slot, S in the template being learned
SlotRules = most speci�c rules for S from example documents
while compression has failed fewer than CompressLim times

initialize RuleList to be an empty priority queue of length k

randomly select M pairs of rules from SlotRules

�nd the set L of generalizations of the �llers of each rule pair
for each pattern P in L

create a rule NewRule with �ller P and empty pre- and
post-�llers

evaluate NewRule and add NewRule to RuleList

let n = 0
loop

increment n
for each rule, CurRule, in RuleList

NewRuleList = SpecializePreFiller (CurRule, n)
evaluate each rule in NewRuleList and add it to RuleList

for each rule, CurRule, in RuleList

NewRuleList = SpecializePostFiller (CurRule, n)
evaluate each rule in NewRuleList and add it to RuleList

until best rule in RuleList produces only valid �llers or
the value of the best rule in RuleList has failed to
improve over the last LimNoImprovements iterations

if best rule in RuleList covers no more than an allowable
percentage of spurious �llers

add it to SlotRules and remove empirically subsumed rules

Figure 9: Rapier Algorithm for Inducing Information Extraction Rules

3.2.4 Rule Evaluation

One diÆculty in designing the Rapier algorithm was in determining an appropriate heuris-
tic metric for evaluating the rules being learned. The �rst issue is the measurement of
negative examples. Clearly, in a task like information extraction there are a very large
number of possible negative examples { strings which should not be extracted { a num-
ber large enough to make explicit enumeration of the negative examples diÆcult, at best.
Another issue is the question of precisely which substrings constitute appropriate negative
examples: should all of the strings of any length be considered negative examples, or only
those strings with lengths similar to the positive examples for a given slot. To avoid these
problems, Rapier does not enumerate the negative examples, but uses a notion of implicit
negatives instead (Zelle et al., 1995). First, Rapier makes the assumption that all of the
strings which should be extracted for each slot are speci�ed, so that any strings which a rule
extracts that are not speci�ed in the template are assumed to be spurious extractions and,
therefore, negative examples. Whenever a rule is evaluated, it is applied to each document
in the training set. Any �llers that match the �llers for the slot in the training templates are
considered positive examples; all other extracted �llers are considered negative examples
covered by the rule.
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Given a method for determining the negative as well as the positive examples covered
by the rule, a rule evaluation metric can be devised. Because Rapier does not use a
simple search technique such as hill-climbing, it cannot use a metric like information gain
(Quinlan, 1990) which measures how much each proposed new rule improves upon the
current rule in order to pick the new rule with the greatest improvement. Rather, each rule
needs an inherent value which can be compared with all other rules. One such value is the
informativity of each rule.

I(T ) = � log2(T+=jT j): (1)

However, while informativity measures the degree to which a rule separates positive and
negative examples (in this case, identi�es valid �llers but not spurious �llers), it makes no
distinction between simple and complex rules. The problem with this is that, given two rules
which cover the same number of positives and no negatives but di�erent levels of complexity
(one with two constraints and one with twenty constraints), we would expect the simpler
rule to generalize better to new examples, so we would want that rule to be preferred.
Many machine learning algorithms encode such a preference; all top-down hill-climbing
algorithms which stop when a rule covering no negatives is found have this preference for
simple rather than complex rules. Since Rapier's search does not encode such a preference,
but can, because of its consideration of multiple ways of generalizing constraints, produce
many rules of widely varying complexities at any step of generalization or specialization,
the evaluation metric for the rules needs to encode a bias against complex rules. Finally,
we want the evaluation metric to be biased in favor of rules which cover larger number of
positive examples.

The metricRapier uses takes the informativity of the rule and weights that by the size of
the rule divided by the number of positive examples covered by the rule. The informativity
is computed using the Laplace estimate of the probabilities. The size of the rule is computed
by a simple heuristic as follows: each pattern item counts 2; each pattern list counts 3; each
disjunct in a word constraint counts 2; and each disjunct in a POS tag constraint or semantic
constraint counts 1. This size is then divided by 100 to bring the heuristic size estimate
into a range which allows the informativity and the rule size to in
uence each other, with
neither value being overwhelmed by the other. Then the evaluation metric is computed as:

ruleV al = � log2(
p+ 1

p+ n+ 2
) +

ruleSize

p

where p is the number of correct �llers extracted by the rule and n is the number of spurious
�llers the rule extracts.

Rapier does allow coverage of some spurious �llers. The primary reason for this is
that human annotators make errors, especially errors of omission. If Rapier rejects a rule
covering a large number of positives because it extracts a few negative examples, it can
be prevented from learning useful patterns by the failure of a human annotator to notice
even a single �ller that �ts that pattern which should, in fact, be extracted. If Rapier's
specialization ends due to failure to improve on the best rule for too many iterations and
the best rule still extracts spurious examples, the best rule is used if it meets the criteria:

p� n

p+ n
> noiseParam
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where p is the number of valid �llers extracted by the rule and n is the number of spurious
�llers extracted. This equation is taken from Ripper (Cohen, 1995b), which uses it for
pruning rules measuring p and n using a hold-out set. Because Rapier is usually learning
from a relatively small number of examples, it does not use a hold-out set or internal cross-
validation in its evaluation of rules which cover spurious �llers, but uses a much higher
default value of noiseParam (Cohen uses a default of 0.5; Rapier's default value is 0.9).

Note that Rapier's noise handling does not involve pruning, as noise handling often
does. Pruning is appropriate for top-down approaches, because in noise handling the goal is
to avoid creating rules that are too specialized and over-�t the data and, in pure top-down
systems, the only way to generalize a too-speci�c rule is some sort of pruning. Since Rapier
is a primarily bottom-up compression-based system, it can depend on subsequent iterations
of the compression algorithm to further generalize any rules that may be too speci�c. The
noise handling mechanism need only allow the acceptance of noisy rules when the \best"
rule, according to the rule evaluation metric, covers negative examples.

The description of Rapier's algorithm thus far has given the overall structure of the
algorithm and has described its search pattern but has left vague three important steps:
the generalization of a pair of �llers and the two specialization phases: specialization of the
pre-�ller pattern and specialization of the post-�ller pattern. Crucial to an understanding
of these three steps is the understanding of how Rapier generalizes pairs of patterns.
Therefore, this section describes how this is done, starting by describing the generalization
of constraints, then the generalization of pattern elements, and �nally the generalization of
patterns.

3.2.5 Constraint Generalization

The generalization of a pair of word or tag constraints is straightforward. The only issue
involved in this generalization is that simply taking the LGG of the constraints will always
produce a disjunction, and it is preferable to consider both the disjunction and the more
general option of simply dropping the constraint. Throughout the following discussion, an
empty constraint is used to describe the result of dropping a constraint.

In three cases, Rapier does simply take the LGG as the only appropriate generalization.
Clearly, if the two constraints are identical, then the new constraint is simply the same as
the original constraints. If either constraint is empty (the word or tag is unconstrained),
then the generalized constraint is also empty. If either constraint is a superset of the other,
the new constraint will be the superset. The reason for only creating the disjunction in this
case is that the disjunction which is the superset must have been one of two generalizations
created, so the result of dropping the constraint either is still under consideration elsewhere
or has been rejected in favor of the disjunction.

In all other cases, two alternative generalizations are created: one is the union of the
two constraints and one is the empty constraint. Thus, the results of generalizing fnn, nnpg
and fadjg are fnn, nnp, adjg and the empty tag constraint.

The generalization of semantic constraints is more complex for two reasons. First, as
mentioned above, because a word can be a member of many semantic classes, Rapier does
not create semantic constraints in the initial rules, but instead waits until generalization so
that a single semantic class covering at least two di�erent words is chosen, making it more
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likely that the semantic class is a useful generalization. The second cause for the greater
complexity is the use of a semantic hierarchy. Rather than simply creating disjunctions of
classes, the system seeks to �nd a superclass covering all of classes in the initial constraints.
Given these issues, the generalization of semantic constraints proceeds as follows:

� If the two constraints are non-empty and identical, the new constraint is the same as
the original constraints.

� If both constraints are empty and either pattern element has an empty word constraint
or a word constraint containing more than one word, the new constraint is empty. In
this case, the constraints in the element with the empty word constraint or the word
constraint with multiple words must be the result of a previous generalization. Since
the semantic class is unconstrained, search for an appropriate semantic constraint
must have already failed.

� If both semantic constraints are empty and the pattern elements' word constraints
each consist of a single word and the two word constraints di�er, Rapier attempts to
create a semantic constraint. The system searches the semantic hierarchy for a class
which covers both of the words in the word constraints. The goal is to �nd the least
general class which covers a meaning for each of the words. In WordNet, this means
�nding the synsets for the two words and searching, following the hypernym links, for
the synset which is closest to a synset for each word. If the two words are \man"and
\world", the semantic class will be the synset shared by \humanity", \mankind",
\world", \humankind", and \man", which is the second synset for \world" and the
third synset for \man". The words \man" and \woman" would result in the semantic
class \person", while the words \man" and \rock" would result in \entity". If no
match is found, the new semantic constraint will be empty. Rapier avoids creating a
semantic constraint when the two word constraints are identical for the same reason
that it does not create semantic constraints for the initial rules: having a only a single
word leaves the choice of a semantic class insuÆciently constrained. This will not
prevent it from creating a semantic class later, because the word constraint in the
rule will still be a single word.

� If one of the semantic constraints is empty and the other is not, there are two cases:

1. If the pattern element with the empty semantic constraint also has an empty word
constraint or a word constraint with multiple words, the generalized constraint
will be empty.

2. Otherwise, the system starts with the semantic class in the semantic constraint
and climbs the semantic hierarchy as necessary to �nd a semantic class which
covers the word in the �rst element's word constraint. That semantic class will
be the new semantic constraint.

� Finally, if both semantic constraints are non-empty, the system searches for the lowest
class in the semantic hierarchy which is a superclass of both constraints, and makes
that the new semantic constraint. If no matching superclass is found, the new con-
straint is empty. Thus, for semantic classes, Rapier does not actually make use of
disjunction in the current implementation.
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Elements to be generalized
Element A Element B
word: man word: woman
syntactic: nnp syntactic: nn
semantic: semantic:

Resulting Generalizations
word: word: fman, womang
syntactic: fnn, nnpg syntactic: fnn, nnpg
semantic: person semantic: person

word: word: fman, womang
syntactic: syntactic:
semantic: person semantic: person

Figure 10: An example of the generalization of two pattern elements. The words \man"
and \woman" form two possible generalizations: their disjunction and dropping
the word constraint. The tags \nn" (noun) and \nnp" (proper noun) also have
two possible generalizations. Thus, there are a total of four generalizations of
the two elements.

It should be noted that the implementation of semantic constraints and their generaliza-
tion is very closely tied to WordNet (Miller et al., 1993) since that is the semantic hierarchy
used in this research. However, the code has been carefully modularized in order to make
the process of substituting an alternative source for semantic information or modifying the
generalization method to allow for disjunctions of classes relatively easy.

3.2.6 Generalizing Pattern Elements

Given the rules for generalizing constraints, the generalization of a pair of pattern elements
is fairly simple. First, the generalizations of the word, tag and semantic constraints of the
two pattern elements are computed as described above. From that set of generalizations,
Rapier computes all combinations of a word constraint, a tag constraint, and the semantic
constraint and creates a pattern element with each combination. See Figure 10 for an
example of this combination. If both of the original pattern elements are pattern items,
the new elements are pattern items as well. Otherwise, the new elements are pattern lists.
The length of these new pattern lists is the maximum length of the original pattern lists (or
the length of the pattern list in the case where a pattern item and a pattern list are being
generalized).

3.2.7 Generalizing Patterns

Generalizing a pair of patterns of equal length is also quite straightforward. Rapier pairs
up the pattern elements from �rst to last in the patterns and computes the generalizations
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Patterns to be Generalized
Pattern A Pattern B
1) word: ate 1) word: hit

syntactic: vb syntactic: vb
2) word: the 2) word: the

syntactic: dt syntactic: dt
3) word: pasta 3) word: ball

syntactic: nn syntactic: nn

Resulting Generalizations
1) word: fate, hitg 1) word:

syntactic: vb syntactic: vb
2) word: the 2) word: the

syntactic: dt syntactic: dt
3) word: fpasta, ballg 3) word: fpasta, ballg

syntactic: nn syntactic: nn

1) word: fate, hitg 1) word:
syntactic: vb syntactic: vb

2) word: the 2) word: the
syntactic: dt syntactic: dt

3) word: 3) word:
syntactic: nn syntactic: nn

Figure 11: Generalization of a pair of patterns of equal length. For simplicity, the semantic
constraints are not shown, since they never have more than one generalization.

of each pair. It then creates all of the patterns made by combining the generalizations of
the pairs of elements in order. Figure 11 shows an example.

Generalizing pairs of patterns that di�er in length is more complex, and the problem of
combinatorial explosion is greater. Suppose we have two patterns: one �ve elements long
and the other three elements long. We need to determine how to group the elements to
be generalized. If we assume that each element of the shorter pattern must match at least
one element of the longer pattern, and that each element of the longer pattern will match
exactly one element of the shorter pattern, we have a total of three ways to match each
element of the shorter pattern to elements of the longer pattern, and a total of six ways to
match up the elements of the two patterns. As the patterns grow longer and the di�erence
is length grows larger, the problem becomes more severe.

In order to limit this problem somewhat, before creating all of the possible general-
izations, Rapier searches for any exact matches of two elements of the patterns being
generalized, making the assumption that if an element from one of the patterns exactly
matches an element of the other pattern then those two elements should be paired and the
problem broken into matching the segments of the patterns to either side of these matching
elements. However, the search for matching elements is con�ned by the �rst assumption
of matching above: that each element of the shorter pattern should be generalized with at
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Pattern to be Generalized
1) word: bank

syntactic: nn
2) word: vault

syntactic: nn

Resulting Generalizations
1) list: length 2 1) list: length 2

word: fbank, vaultg word:
syntactic: nn syntactic: nn

Figure 12: Generalization of two pattern items matched with no pattern elements from the
other pattern.

least one element of the longer pattern. Thus, if the shorter pattern, A, has three elements
and the longer, B, has �ve, the �rst element of A is compared to elements 1 to 3 of B,
element 2 of A to elements 2-4 of B, and element 3 of A to elements 3-5 of B. If any matches
are found, they can greatly limit the number of generalizations that need to be computed.

Any exact matches that are found break up the patterns into segments which still must
be generalized. Each pair of segments can be treated as a pair of patterns that need to be
generalized, so if any corresponding pattern segments are of equal length, they are handled
just like a pair of patterns of the same length as described above. Otherwise, we have
patterns of uneven length that must be generalized.

There are three special cases of di�erent length patterns. First, the shorter pattern may
have 0 elements. In this case, the pattern elements in the longer pattern are generalized into
a set of pattern lists, one pattern list for each alternative generalization of the constraints
of the pattern elements. Each of the resulting pattern lists must be able to match as many
document tokens as the elements in the longer pattern, so the length of the pattern lists is
the sum of the lengths of the elements of the longer pattern, with pattern items naturally
having a length of one. Figure 12 demonstrates this case.

The second special case is when the shorter pattern has a single element. This is
similar to the previous case, with each generalization again being a single pattern list, with
constraints generalized from the pattern elements of both patterns. In this case the length
of the pattern lists is the greater of the length of the pattern element from the shorter
pattern or the sum of the lengths of the elements of the longer pattern. The length of the
shorter pattern must be considered in case it is a list of length greater than the length of
the longer pattern. A example of this case appears in Figure 13.

The third special case is when the two patterns are long or very di�erent in length. In
this case, the number of generalizations becomes very large, so Rapier simply creates a
single pattern list with no constraints and a length equal to the longer of the two patterns
(measuring sums of lengths of elements). This case happens primarily with slot �llers of
very disparate length, where there is unlikely to be a useful generalization, and any useful
rule is likely to make use of the context rather than the structure of the actual slot �ller.
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Patterns to be Generalized
Pattern A Pattern B
1) word: bank 1) list: length 3

syntactic: nn word:
2) word: vault syntactic: nnp

syntactic: nn

Resulting Generalizations
1) list: length 3 1) list: length 3

word: word:
syntactic: fnn,nnpg syntactic:

Figure 13: Generalization of two pattern items matched with one pattern element from the
other pattern. Because Pattern B is a pattern list of length 3, the resulting
generalizations must also have a length of 3.

When none of the special cases holds, Rapier must create the full set of generalizations
as described above. Rapier creates the set of generalizations of the patterns by �rst creating
the generalizations of each of the elements of the shorter pattern against each possible set
of elements from the longer pattern using the assumptions mentioned above: each element
from the shorter pattern must correspond to at least one element from the longer pattern
and each element of the longer pattern corresponds to exactly one element of the shorter
pattern for each grouping. Once all of the possible generalizations of elements are computed,
the generalizations of the patterns are created by combining the possible generalizations of
the elements in all possible combinations which include each element of each pattern exactly
once in order.

In the case where exact matches were found, one step remains after the various resulting
pattern segment pairs are generalized. The generalizations of the patterns are computed by
creating all possible combinations of the generalizations of the pattern segment pairs.

3.2.8 Specialization Phase

The �nal piece of the learning algorithm is the specialization phase, indicated by calls to
SpecializePreFiller and SpecializePostFiller in Figure 9. These functions take two parame-
ters, the rule to be specialized and an integer n which indicates how many elements of the
pre-�ller or post-�ller patterns of the original rule pair are to be used for this specialization.
As n is incremented, the specialization uses more context, working outward from the slot-
�ller. In order to carry out the specialization phase, each rule maintains information about
the two rules from which it was created, which are referred to as the base rules: pointers to
the two base rules, how much of the pre-�ller pattern from each base rule has been incorpo-
rated into the current rule, and how much of the post-�ller pattern from each base rule has
been incorporated into the current rule. The two specialization functions return a list of
rules which have been specialized by adding to the rule generalizations of the appropriate
portions of the pre-�llers or post-�llers of the base rules.
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SpecializePreFiller(CurRule,n)
Let BaseRule1 and BaseRule2 be the two rules from which CurRule was created
Let CurPreFiller be the pre-�ller pattern of CurRule
Let PreFiller1 be the pre-�ller pattern of BaseRule1
Let PreFiller2 be the pre-�ller pattern of BaseRule2
Let PatternLen1 be the length of PreFiller1
Let PatternLen2 be the length of PreFiller2
Let FirstUsed1 be the �rst element of PreFiller1 that has been used in CurRule

Let FirstUsed2 be the �rst element of PreFiller2 that has been used in CurRule

GenSet1 = Generalizations of elements (PatternLen1 + 1 � n) to FirstUsed1 of
PreFiller1 with elements (PatternLen2 + 1 � (n � 1)) to FirstUsed2 of
PreFiller2

GenSet2 = Generalizations of elements (PatternLen1 + 1 � (n � 1)) to
FirstUsed1 of PreFiller1 with elements (PatternLen2 + 1 � n) to
FirstUsed2 of PreFiller2

GenSet3 = Generalizations of elements (PatternLen1 + 1 � n) to FirstUsed1 of
PreFiller1 with elements (PatternLen2 + 1 � n) to FirstUsed2 of
PreFiller2

GenSet = GenSet1 [GenSet2 [GenSet3

NewRuleSet = empty set
For each PatternSegment in GenSet

NewPreFiller = PatternSegment concatenate CurPreFiller
Create NewRule from CurRule with pre-�ller NewPreFiller
Add NewRule to NewRuleSet

Return NewRuleSet

Figure 14: Rapier Algorithm for Specializing the Pre-Filler of a Rule

One issue arises in these functions. If the system simply considers adding one element
from each pattern at each step away from the �ller, it may miss some useful generalizations
since the lengths of the two patterns being generalized would always be the same. For
example, assume we have two rules for required years of experience created from the phrases
\6 years experience required" and \4 years experience is required." Once the �llers were
generalized, the algorithm would need to specialize the resulting rule(s) to identify the
number as years of experience and as required rather than desired. The �rst two iterations
would create items for \years" and \experience," and the third iteration would match up
\is" and \required." It would be helpful if a fourth iteration could match up the two
occurrences of \required," creating a list from \is." In order to allow this to happen, the
specialization functions do not only consider the result of adding one element from each
pattern; they also consider the results of adding an element to the �rst pattern, but not the
second, and adding an element to the second pattern but not the �rst.

Pseudocode for SpecializePreFiller appears in Figure 14. SpecializePostFiller is analo-
gous. In order to allow pattern lists to be created where appropriate, the functions generalize
three pairs of pattern segments. The patterns to be generalized are determined by �rst de-
termining how much of the pre-�ller (post-�ller) of each of the original pair of rules the
current rule already incorporates. Using the pre-�ller case as an example, if the current
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rule has an empty pre-�ller, the three patterns to be generalized are: 1) the last n elements
of the pre-�ller of BaseRule1 and the last n� 1 elements of the pre-�ller of BaseRule2, 2)
the last n�1 elements of the pre-�ller of BaseRule1 and the last n elements of the pre-�ller
of BaseRule2, and 3) the last n elements of the pre-�ller of each of the base rules. If the
current rule has already been specialized with a portion of the pre-�ller, then whatever
elements it already incorporates will not be used, but the pattern of the pre-�ller to be used
will start at the same place, so that n is not the number of elements to be generalized, but
rather speci�es the portion of the pre-�ller which can be considered at that iteration.

The post-�ller case is analogous to the pre-�ller case except that the portion of the
pattern to considered is that at the beginning, since the algorithm works outward from the
�ller.

3.2.9 Complete Sample Induction Trace

As an example of the entire process of creating a new rule, consider generalizing the rules
based on the phrases \located in Atlanta, Georgia." and \oÆces in Kansas City, Missouri."
These phrases are suÆcient to demonstrate the process, though rules in practice would be
much longer. The initial, speci�c rules created from these phrases for the city slot for a job
template would be

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
1) word: located 1) word: atlanta 1) word: ,

tag: vbn tag: nnp tag: ,
2) word: in 2) word: georgia

tag: in tag: nnp
3) word: .

tag: .
and
Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
1) word: oÆces 1) word: kansas 1) word: ,

tag: nns tag: nnp tag: ,
2) word: in 2) word: city 2) word: missouri

tag: in tag: nnp tag: nnp
3) word: .

tag: .

For the purposes of this example, we assume that there is a semantic class for states, but not
one for cities. For simplicity, we assume the beam-width is 2. The �llers are generalized to
produce two possible rules with empty pre-�ller and post-�ller patterns. Because one �ller
has two items and the other only one, they generalize to a list of no more than two words.
The word constraints generalize to either a disjunction of all the words or no constraint.
The tag constraints on all of the items are the same, so the generalized rule's tag constraints
are also the same. Since the three words do not belong to a single semantic class in the
lexicon, the semantics remain unconstrained. The �llers produced are:

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
1) list: max length: 2

word: fatlanta, kansas, cityg
tag: nnp

and
Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
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1) list: max length: 2
tag: nnp

Either of these rules is likely to cover spurious examples, so we add pre-�ller and post-�ller
generalizations. At the �rst iteration of specialization, the algorithm considers the �rst
pattern item to either side of the �ller. This results in:

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
1) word: in 1) list: max length: 2 1) word: ,

tag: in word: fatlanta, kansas, cityg tag: ,
tag: nnp

and
Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
1) word: in 1) list: max length: 2 1) word: ,

tag: in tag: nnp tag: ,

The items produced from the \in"'s and the commas are identical and, therefore, unchanged.
Alternative, but less useful rules, will also be produced with lists in place of the items in
the pre-�ller and post-�ller patterns because of specializations produced by generalizing
the element from each pattern with no elements from the other pattern. Continuing the
specialization with the two alternatives above only, the algorithm moves on to look at
the second to last elements in the pre-�ller pattern. This generalization of these elements
produce six possible specializations for each of the rules in the current beam:

list: length 1 list: length 1 word: flocated, oÆcesg
word: located word: oÆces tag: fvbn, nnsg
tag: vbn tag: nns

word: word: word: flocated, oÆcesg
tag: fvbn, nnsg tag: tag:

None of these specializations is likely to improve the rule, and specialization proceeds to the
second elements of the post-�llers. Again, the two pattern lists will be created, one for the
pattern item from each pattern. Then the two pattern items will be generalized. Since we
assume that the lexicon contains a semantic class for states, generalizing the state names
produces a semantic constraint of that class along with a tag constraint nnp and either no
word constraint or the disjunction of the two states. Thus, a �nal best rule would be:

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
1) word: in 1) list: max length: 2 1) word: ,

tag: in tag: nnp tag: ,
2) tag: nnp

semantic: state

4. Experimental Evaluation

We present here results from two data sets: a set of 300 computer-related job postings from
austin.jobs and a set of 485 seminar announcements from CMU.1 In order to analyze
the e�ect of di�erent types of knowledge sources on the results, three di�erent versions of

1. The seminar dataset was annotated by Dayne Freitag, who graciously provided the data.
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Rapier were tested. The full representation used words, POS tags as assigned by Brill's
tagger (Brill, 1994), and semantic classes taken from WordNet. The other two versions are
ablations, one using words and tags (labeled Rapier-wt in tables), the other words only
(labeled Rapier-w).

We also present results from three other learning information extraction systems. One
is a Naive Bayes system which uses words in a �xed-length window to locate slot �llers
(Freitag, 1998b). Very recently, two other systems have been developed with goals very
similar to Rapier's. These are both relational learning systems which do not depend
on syntactic analysis. Their representations and algorithms; however, di�er signi�cantly
from each other and from Rapier. SRV (Freitag, 2000) employs a top-down, set-covering
rule learner similar to Foil (Quinlan, 1990). It uses four pre-determined predicates which
allow it to express information about the length of a fragment, the position of a particular
token, the relative positions of two tokens, and various user-de�ned token features (e.g.
capitalization, digits, word length). The second system is Whisk (Soderland, 1999) which
like Rapier uses pattern-matching, employing a restricted form of regular expressions. It
can also make use of semantic classes and the results of syntactic analysis, but does not
require them. The learning algorithm is a covering algorithm, and rule creation begins by
selection of a single seed example and creates rules top-down, restricting the choice of terms
to be added to a rule to those appearing in the seed example (similar to Progol).

4.1 Computer-Related Jobs

The �rst task is extracting information from computer-related job postings that could be
used to create a database of available jobs. The computer job template contains 17 slots,
including information about the employer, the location, the salary, and job requirements.
Several of the slots, such as the languages and platforms used, can take multiple values. We
performed ten-fold cross-validation on 300 examples, and also trained on smaller subsets of
the training examples for each test set in order to produce learning curves. We present two
measures: precision, the percentage of slot �llers produced which are correct, and recall,
the percentage of slot �llers in the correct templates which are produced by the system.
Statistical signi�cance was evaluated using a two-tailed paired t-test.

Figure 15 shows the learning curve for precision and Figure 16 shows the learning curve
for recall. Clearly, the Naive Bayes system does not perform well on this task, although it has
been shown to be fairly competitive in other domains, as will be seen below. It performs well
on some slots but quite poorly on many others, especially those which usually have multiple
�llers. In order to compare at reasonably similar levels of recall (although Naive Bayes' recall
is still considerably less than Rapier's), Naive Bayes' threshold was set low, accounting for
the low precision. Of course, setting the threshold to obtain high precision results in even
lower recall. These results clearly indicate the advantage of relational learning since a
simpler �xed-context representation such as that used by Naive Bayes appears insuÆcient
to produce a useful system.

By contrast, Rapier's precision is quite high, over 89% for words only and for words
with POS tags. This fact is not surprising, since the bias of the bottom-up algorithm is for
speci�c rules. High precision is important for such tasks, where having correct information
in the database is generally more important than extracting a greater amount of less-reliable
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Figure 15: Precision on job postings
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Figure 16: Recall on job postings

information. Also, the learning curve is quite steep. The Rapier algorithm is apparently
quite e�ective at making maximal use of a small number of examples. The precision curve

attens out quite a bit as the number of examples increases; however, recall is still rising,
though slowly, at 270 examples. The use of active learning to intelligently select training
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System stime etime loc speaker
Prec Rec Prec Rec Prec Rec Prec Rec

Rapier 93.9 92.9 95.8 94.6 91.0 60.5 80.9 39.4
Rap-wt 96.5 95.3 94.9 94.4 91.0 61.5 79.0 40.0
Rap-w 96.5 95.9 96.8 96.6 90.0 54.8 76.9 29.1

NaiBay 98.2 98.2 49.5 95.7 57.3 58.8 34.5 25.6
SRV 98.6 98.4 67.3 92.6 74.5 70.1 54.4 58.4
Whisk 86.2 100.0 85.0 87.2 83.6 55.4 52.6 11.1
Wh-pr 96.2 100.0 89.5 87.2 93.8 36.1 0.0 0.0

Table 1: Results for seminar announcements task

examples can improve the rate of learning even further (Cali�, 1998). Overall, the results
are very encouraging.

In looking at the performance of the three versions of Rapier, an obvious conclusion
is that word constraints provide most of the power. Although POS and semantics can
provide useful classes that capture important generalities, with suÆcient examples, these
relevant classes can be implicitly learned from the words alone. The addition of POS tags
does improve performance at lower number of examples. The recall of the version with tag
constraints is signi�cantly better at least at the 0.05 level for each point on the training
curve up to 120 examples. Apparently, by 270 examples, the word constraints are capable of
representing the concepts provided by the POS tags, and any di�erences are not statistically
signi�cant. WordNet's semantic classes provided no signi�cant performance increase over
words and POS tags only.

One other learning system, Whisk (Soderland, 1999), has been applied to this data
set. In a 10-fold cross-validation over 100 documents randomly selected from the data set,
Whisk achieved a precision of 85% and recall of 55%. This is slightly worse than Rapier's
performance at 90 examples with part-of-speech tags with precision of 86% and recall of
60%. In making this comparison, it is important to note that the test sets are di�erent and
that Whisk system's performance was actually counted a bit di�erently, since duplicates
were not eliminated.

4.2 Seminar Announcements

For the seminar announcements domain, we ran experiments with the three versions of
Rapier, and we report those results along with previous results on this data using the
same 10 data splits with the Naive Bayes system and SRV (Freitag, 2000). The dataset
consists of 485 documents, and this was randomly split approximately in half for each of
the 10 runs. Thus training and testing sets were approximately 240 examples each. The
results for the other systems are reported by individual slots only. We also report results
for Whisk. These results are from a 10-fold cross-validation using only 100 documents
randomly selected from the training set. Soderland presents results with and without post-
pruning of the rule set. Table 1 shows results for the six systems on the four slots for the
seminar announcement task. The line labeled Whisk gives the results for unpruned rules;
that labeled Wh-pr gives the results for post-pruned rules.
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All of the systems perform very well on the start time and end time slots, although
Rapier with semantic classes performs signi�cantly worse on start time than the other
systems. These two slots are very predictable, both in contents and in context, so the high
performance is not surprising. Start time is always present, while end time is not, and this
di�erence in distribution is the reason for the di�erence in performance by Naive Bayes on
the two slots. The di�erence also seems to impact SRV's performance, but Rapier performs
comparably on the two, resulting in better performance on the end time slot than the two
CMU systems. Whisk also performs very well on the start time task with post-pruning,
but also performs less well on the end time task.

Location is a somewhat more diÆcult �eld and one for which POS tags seem to help
quite a bit. This is not surprising, since locations typically consist of a sequence of cardinal
numbers and proper nouns, and the POS tags can recognize both of those consistently. SRV
has higher recall that Rapier, but substantially lower precision. It is clear that all of the
relational systems are better than Naive Bayes on this slot, despite the fact that building
names recur often in the data and thus the words are very informative.

The most diÆcult slot in this extraction task is the speaker. This is a slot on which
Naive Bayes, Whisk, and Rapier with words only perform quite poorly, because speaker
names seldom recur through the dataset and all of these systems are using word occurrence
information and have no reference to the kind of orthographic features which SRV uses or
to POS tags, which can provide the information that the speaker names are proper nouns.
Rapier with POS tags performs quite well on this task, with worse recall than SRV, but
better precision.

In general, in this domain semantic classes had very little impact on Rapier's perfor-
mance. Semantic constraints are used in the rules, but apparently without any positive
or negative e�ect on the utility of the rules, except on the start time slot, where the use
of semantic classes may have discouraged the system from learning the precise contextual
rules that are most appropriate for that slot. POS tags help on the location and speaker
slots, where the ability to identify proper nouns and numbers is important.

4.3 Discussion

The results above show that relational methods can learn useful rules for information ex-
traction, and that they are more e�ective than a propositional system such as Naive Bayes.
Di�erences between the various relational systems are probably due to two factors. First,
the three systems have quite di�erent learning algorithms, whose biases may be more or less
appropriate for particular extraction tasks. Second, the three systems use di�erent repre-
sentations and features. All use word occurrence and are capable of representing constraints
on unbounded ordered sequences. However, Rapier and SRV are capable of explicitly con-
straining the lengths of �llers (and, in Rapier's case, sequences in the pre and post �llers),
and Whisk cannot. Rapier makes use of POS tags, and the others do not (but could
presumably be modi�ed to do so). SRV uses orthographic features, and none of the other
systems have access to this information (though in some cases POS tags provide similar
information: capitalized words are usually tagged as proper nouns; numbers are tagged as
cardinal numbers). One issue that should be addressed in future work is to examine the
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e�ect of various features, seeing how much of the di�erences in performance depend upon
the features rather than basic representational and algorithmic biases.

4.4 Sample Learned Rules

One �nal interesting thing to consider about Rapier is the types of rules it creates. One
common type of rule learned for certain kinds of slots is the rule that simply memorizes
a set of possible slot-�llers. For example, Rapier learns that \mac," \mvs," \aix," and
\vms" are platforms in the computer-related jobs domain, since each word only appears in
documents where it is to be extracted as a platform slot-�ller. One interesting rule along
these lines is one which extracts \C++" or \Visual C++" into the language slot. The
pre-�ller and post-�ller patterns are empty, and the �ller pattern consists of a pattern list
of length 1 with the word constraint \visual" and then pattern items for \c", \+" and \+".
In the seminar announcements domain, one rule for the location slot extracts \doherty,"
\wean" or \weh" (all name of buildings at CMU) followed by a cardinal number. More
often, rules which memorize slot-�llers also include some context to ensure that the �ller
should extracted in this particular case. For example, a rule for the area slot in the jobs
domain extracts \gui" or \rpc" if followed by \software."

Other rules rely more on context than on �ller patterns. Some of these are for very
formal patterns, such as that for the message id of a job posting:

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
1) word: message 1) list: length 5 1) word: >
2) word: -
3) word: id
4) word: :
5) word: <

Probably the majority of rules have some mix of context and the contents of the �ller.
An example is the following rule for a title in the computer-related jobs domain:

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
1) word: f:, seekingg 1)

2) fconsultant, dbag

In the seminar announcements domain, the following rule for the start time relies on a
combinations of the structure of the �ller and its context:

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
1) word: f:, forg 1) syntactic: cd
2) 2) word: :

syntactic: :
3) syntactic: cd
4) syntactic: nn

5. Future Work

There are number of directions in which this work could be extended. Here we list a few of
those that we consider immediately promising or helpful.
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As mentioned above, our understanding of the various relational learning systems for
information extraction would bene�t from a systematic study of these systems that used the
same features for each system and thus distinguished the contributions of available features
vs. algorithms. At present, there is very little evidence to indicate which of the systems is
best or most promising as a step toward future improvements. Adding additional constraint
types to Rapier's representation (such as the orthographical features employed by SRV) is
a straightforward task.

Another useful extension to Rapier would be the ability to learn rules which extract
�llers for multiple slots. There are two advantages to learning such rules. First, if two
slots often appear in a particular relationship to one another is a document, then learning a
single rule for both slots may help to focus the search for a good rule. This could be helpful
for learning start time and end time in the seminar announcements domain or for a position
and a company in a management changes domain. There are also certain situations where
there are multiple �llers for slots, but the �llers are in some way connected. For instance,
in a rental ads domain on whichWhisk has been tested (Soderland, 1999), it is common to
have di�erent sized apartments at di�erent prices listed in the same ad. To simply extract
the numbers of bedrooms and the prices without connecting them is not helpful. Learning
rules that extract both the number of bedrooms and the related price can help to solve this
problem.

Modifying Rapier to handle multiple slot extraction rules should be fairly straightfor-
ward. A rule would simply have additional patterns: one for each slot-�ller to be extracted,
patterns between the slot-�llers, and the context patterns before the �rst slot-�ller and after
the last slot-�ller. The primary issue that might be problematic would be the generalization
of patterns in between two slot �llers. These would probably contain useful information,
but might be long and of di�erent sizes, causing generalizing a pair of them to be pro-
hibitively expensive. It might be necessary to take a more top-down approach to learning
the connecting patterns: starting with an unconstrained pattern list and breaking it up into
pattern items or smaller lists and adding constraints (taken from those in the original rule
pair to limit search) as long as such constraints improved rule quality.

Another desirable modi�cation to Rapier would be to enable the algorithm to take
advantage of other kinds of pre-processing which somehow tag more than one token of text,
such as parsing or named-entity recognition. This is less-straightforward than handling
additional constraint types on a single token and would clearly complicate the generalization
and specialization phases of Rapier's algorithm. However, named-entity recognition in
particular could prove very useful in identifying �ller patterns.

A �nal direction of research would be considering applying Rapier's representation and
algorithm to other natural language processing tasks. It seems to us quite likely that this
language-speci�c representation would �t well with other types of tasks and possibly allow
success with less engineering of features than many of the learning systems currently used
must employ.

6. Related Work

Some of the work closest to Rapier was discussed in the previous section. In this section,
we brie
y mention some other related systems. Previous researchers have generally applied
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machine learning only to parts of the information extraction task and have required more
human interaction than providing texts with �lled templates. Crystal uses a form of
clustering to create a dictionary of extraction patterns by generalizing patterns identi�ed in
the text by an expert (Soderland et al., 1995). AutoSlog creates a dictionary of extraction
patterns by specializing a set of general syntactic patterns (Rilo�, 1993), and assumes that
an expert will later �lter the patterns it produces. Palka learns extraction patterns relying
on a concept hierarchy to guide generalization and specialization (Kim andMoldovan, 1995).
These systems all rely on prior detailed sentence analysis to identify syntactic elements and
their relationships, and their output requires further processing to produce the �nal �lled
templates. Liep also learns information extraction patterns (Hu�man, 1996), but also
requires a sentence analyzer to identify noun groups, verbs, subjects, etc. and assumes
that all relevant information is between two entities it identi�es as \interesting." Finally,
RoboTag uses decision trees to learn the locations of slot-�llers in a document (Bennett
et al., 1997). The features available to the decision trees are the result of pre-processing
the text and are based on a �xed context. RoboTag learns trees to identify possible start
and end tokens for slot-�llers and then uses a matching algorithm to pair up start and end
tokens to identify actual slot-�llers.

Also requiring mention is work on learning information extraction and text categoriza-
tion rules using ILP (Junker et al., 2000). Unlike Rapier, Whisk, and SRV, which use
text-speci�c representations and algorithms informed by ILP methods, they use a logic rep-
resentation with an algorithm focused on text. Comparisons to this work is not yet possible,
since they present no results.

Other e�ective approaches to learning information extraction rules have been studied
recently. These approaches have been shown to work well on some portions of the tasks
used in this paper. However, none of them has been tested on the complete set of tasks.
Particularly, most have not been tested on the slots that require the ability to produce
multiple �llers for a given slot.

One approach has been learning hidden Markov models (Freitag and McCallum, 2000,
McCallum et al., 2000, La�erty et al., 2001). The HMM learning methods seem to work
well, but they have been tested on only a few of the slots in the job and seminar datasets:
tasks that are generally generally the more diÆcult for SRV and Rapier. This work has
been limited to locating a single string to extract and has not been applied to slots with
multiple correct �llers.

Another approach has been to use a simpler learner used to develop \wrappers" for
accomplishing information extraction from very structured texts such as web pages and
applying boosting (Freitag and Kushmerick, 2000). The BWI system has been tested on a
few slots of the seminar announcement and job posting tasks, but has not been applied to
the full job postings task. It also has not been applied to extraction of multiple �llers per
slot. The results using BWI are therefore inconclusive, but also positive.

Roth and Yih (2001) have presented a system{SNoW-IE{which they use to learn the
relational representation desirable for the information extraction task using propositional
learning mechanisms. Their system performs very well on the seminar task; however, it has
not been tested on the job task, and is, in fact, geared speci�cally toward extraction of at
most one �ller per slot.
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Another very successful recent approach to the information extraction task has been
that of Ciravegna (2001). His symbolic rule learner learns rules that insert tags into the
text independently, proceeding in four phases: an initial tag insertion phase; a contextual
rules phase, in which rules are dependent on the presence of other tags; a correction phase,
in which rules are applied to adjust the placement of tags; and a validation phase, in which
tags without matches are removed (beginning tags without ending tags or vice versa). This
system bene�ts from use of morphological and dictionary linguistic evidence. It outperforms
existing work overall, although Rapier does outperform it on several slots of the job task,
indicating that there is room for improvement in both systems.

7. Conclusion

The ability to extract desired pieces of information from natural language texts is an impor-
tant task with a growing number of potential applications. Tasks requiring locating speci�c
data in newsgroup messages or web pages are particularly promising applications. Manu-
ally constructing such information extraction systems is a laborious task; however, learning
methods have the potential to help automate the development process. The Rapier sys-
tem described here uses relational learning to construct unbounded pattern-match rules for
information extraction given only a database of texts and �lled templates. The learned
patterns employ limited syntactic and semantic information to identify potential slot �llers
and their surrounding context. Results from realistic applications demonstrate that fairly
accurate rules can be learned from relatively small sets of examples, and that its results are
superior to a probabilistic method applied to a �xed-length context.
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