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Information Extraction, the task of locating textual mentions of specific types

of entities and their relationships, aims at representing the information contained

in text documents in a structured format that is more amenable to applications in

data mining, question answering, or the semantic web. The goal of our research

is to design information extraction models that obtain improved performance by

exploiting types of evidence that have not been explored in previous approaches.

Since designing an extraction system through introspection by a domain expert is a
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laborious and time consuming process, the focus of this thesis will be on methods

that automatically induce an extraction model by training on a dataset of manually

labeled examples.

Named Entity Recognition is an information extraction task that is concerned

with finding textual mentions of entities that belong to a predefined set of categories.

We approach this task as a phrase classification problem, in which candidate phrases

from the same document are collectively classified. Global correlations between

candidate entities are captured in a model built using the expressive framework of

Relational Markov Networks. Additionally, we propose a novel tractable approach

to phrase classification for named entity recognition based on a special Junction

Tree representation.

Classifying entity mentions into a predefined set of categories achieves only

a partial disambiguation of the names. This is further refined in the task of Named

Entity Disambiguation, where names need to be linked to their actual denotations.

In our research, we use Wikipedia as a repository of named entities and propose

a ranking approach to disambiguation that exploits learned correlations between

words from the name context and categories from the Wikipedia taxonomy.

Relation Extraction refers to finding relevant relationships between entities

mentioned in text documents. Our approaches to this information extraction task

differ in the type and the amount of supervision required. We first propose two

relation extraction methods that are trained on documents in which sentences are

manually annotated for the required relationships. In the first method, the extrac-

tion patterns correspond to sequences of words and word classes anchored at two

entity names occurring in the same sentence. These are used as implicit features in

a generalized subsequence kernel, with weights computed through training of Sup-

port Vector Machines. In the second approach, the implicit extraction features are

focused on the shortest path between the two entities in the word-word dependency
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graph of the sentence. Finally, in a significant departure from previous learning

approaches to relation extraction, we propose reducing the amount of required su-

pervision to only a handful of pairs of entities known to exhibit or not exhibit the

desired relationship. Each pair is associated with a bag of sentences extracted auto-

matically from a very large corpus. We extend the subsequence kernel to handle this

weaker form of supervision, and describe a method for weighting features in order

to focus on those correlated with the target relation rather than with the individual

entities. The resulting Multiple Instance Learning approach offers a competitive

alternative to previous relation extraction methods, at a significantly reduced cost

in human supervision.
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Chapter 1

Introduction

1.1 Motivation

A vast amount of knowledge is contained nowadays in large repositories of un-

structured or weakly structured text documents. Publicly available collections of

documents range from very general and highly distributed (World Wide Web) to

very specific and localized (MEDLINE). The utility of such document repositories

would increase significantly if they could be used to reliably answer queries about

relevant entities (e.g. people, companies), and their relationships (e.g. employee,

owner, affiliation). Information Extraction (IE) (Grishman, 2003) is the task of

identifying mentions of entities and their relationships in text documents, with the

aim of structuring the text data in a form that is more amenable to database or

data mining algorithms. Conceptually, IE subsumes three basic subtasks: named

entity recognition, named entity disambiguation, and relation extraction.

Named entity recognition addresses the problem of locating textual mentions

of predefined types of entities, where the entity categories can be very diverse,

ranging from people and companies in business applications to cells and proteins in

biomedical applications. For example, when given the sentence ”One of the invited
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talks at ACL in Ann Arbor this summer was by Michael Jordan”, a name entity

recognizer that is targeted to people and locations should identify the two named

entities ”Ann Arbor” of type Location, and ”Michael Jordan” of type Person.

Knowing that a particular occurrence of a name refers to a predefined type

of entity is often insufficient to uniquely identify the corresponding entity. This is

due to the fact that, in natural language, the same name can refer to more than one

entity – for example ”Michael Jordan” can refer to the Berkeley professor, or the

basketball player. Named entity disambiguation is the task of identifying the entity

that corresponds to a particular occurrence of a name in a text document. Disam-

biguating named entities is an important IE subtask, especially when information

extracted from a particular document must be integrated with information about

the same entity coming from other documents.

Assuming that the relevant named entities have been correctly identified, a

further step in IE is to find predefined relationships between the extracted entities.

Similarly to named entity recognition, relation extraction is usually targeted to

a particular application domain. Consequently, the set of relevant relationships

considered in relation extraction depends on the type of narrative – they can range

from corporate acquisitions mentioned in newspaper corpora to protein interactions

described in biomedical literature. For example, when given the sentence ”One of

the invited talks at ACL in Ann Arbor this summer was by Michael Jordan”, a

relation extraction system that is designed to identify relationships between people

and locations should extract a LocatedAt relation between ”Michael Jordan” and

”Ann Arbor”.

Information extraction can provide the structured input required by more so-

phisticated algorithms in data mining (Nahm & Mooney, 2000), question answering

(Fleischman et al., 2003), or the semantic web (Cimiano et al., 2004). In partic-

ular, question answering can benefit from all three IE subtasks. For example, if
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the question is “Which cities did Michael Jordan go to in 2000?”, in compiling the

corresponding answers (where an answer is a list of cities) one can apply the three

IE subtasks as follows:

1. The answer type for the question above is City. Therefore, a named entity

recognizer that is trained to extract locations of type City can be run over the

entire corpus in order to identify all city mentions, thus significantly reducing

the set of candidate answers.

2. A relation extraction system that is trained to identify LocatedAt relation-

ships between people and locations can be applied on sentences where the

name Michael Jordan and a city name co-occur, further reducing the set of

candidate answers.

3. The name “Michael Jordan” can refer to more than one individual – for exam-

ple, Wikipedia contains entries for six people with this name. Named entity

disambiguation can be used to cluster the results returned by the relation ex-

traction system, so that cities that belong to the same cluster correspond to

the same “Michael Jordan” entity. A list of cities that is partitioned to reflect

the various entities that have the same name “Michael Jordan” is going to be

more informative for the user than an answer that contains a flat list of cities.

1.2 Thesis contributions

The goal of this thesis is to derive information extraction models with improved

performance by exploiting types of evidence that have not been used in previous

systems.

Since designing an IE system through introspection by a domain expert is a

laborious and time consuming process, the focus of this thesis will be on methods

3



that automatically induce the extraction model by training on a dataset of man-

ually labeled examples. Because every model is designed such that its parameters

can be learned through training on supervised data, we also address efficiency re-

lated issues, such as the time complexity of the algorithms used for inference and

training. The advantages of our proposed models are empirically validated through

experimental evaluations in which the new method is compared against previously

proposed methods. The contributions of this thesis are outlined below.

1.2.1 Named Entity Recognition

Previous approaches to this task have considered candidate named entities in isola-

tion, thus ignoring potential correlations between them. We approach named entity

recognition as a collective phrase classification problem and propose using the ex-

pressive framework of Relational Markov Networks (RMNs) (Taskar et al., 2002)

in order to capture correlations between the labels of various types of candidate

phrases. For example, long names and their corresponding acronyms tend to have

the same entity type, and the same is true of repetitions of a candidate name inside

the same document. These correlations are captured by an RMN graph that is asso-

ciated with an entire document. The strength of the correlations is then estimated

through training on a corpus of text documents manually labeled for named entities.

During testing, the candidate entities in a given document are collectively classified

by running an inference algorithm on the corresponding RMN graph. In general,

exact inference in the resulting graph is intractable, therefore an approximate infer-

ence algorithm is used instead. However, we also show that efficient exact inference

can be achieved for the basic phrase based classification approach to named entity

recognition by exploiting the special structure of the problem in a suitable junc-

tion tree (Cowell et al., 1999) representation. Experimental results on biomedical

and newspaper corpora show that a significant increase in performance is obtained

4



when the RMN framework is used for modeling mutual influences between multiple

extractions from the same document.

1.2.2 Named Entity Disambiguation

Our approach to entity disambiguation is intrinsically dependent on a large dictio-

nary that maps proper names to their possible named entity denotations - in our

research the dictionary was compiled from Wikipedia (Remy, 2002), a large online

encyclopedia. The method detects whether a proper name refers to a named en-

tity contained in the dictionary, and disambiguates between multiple named entities

that can be denoted by the same name. Both detection and disambiguation are

formulated as a ranking problem, using a ranking function that takes as arguments

a proper name and a named entity. The value computed by the ranking function is

a measure of the similarity between the document context of the proper name and

the text of the article corresponding to the argument entity. Standard similarity

functions (e.g., TF-IDF cosine similarity (Baeza-Yates & Ribeiro-Neto, 1999)) are

based on the assumption that both the context and the article have many relevant

words in common. However, there are many cases in which the context and the

article refer to the same concepts using different words and phrases (synonyms),

and consequently measures like TF-IDF cosine similarity fail to capture the actual

context-article similarity. We alleviate this problem by augmenting the similarity

measure with correlations between context words and Wikipedia categories that

contain the argument entity. The strength of the correlations is learned from a very

large set of training examples that are automatically extracted from the hyperlinks

contained in Wikipedia articles. Experimental results on the task of detecting and

disambiguating named entities in Wikipedia show that the newly learned similarity

function obtains significantly better disambiguation accuracy than the traditional

TF-IDF cosine similarity.
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1.2.3 Relation Extraction

In relation extraction, pairs of entities mentioned in the same sentence are classified

as to whether they belong to a predefined set of relationships. We describe a set

of approaches to learning relation extractors that differ especially in the type of

supervision required.

Single Instance Learning

In the first, traditional approach, a machine learning algorithm is applied to a col-

lection of documents that have been manually annotated for the relation of interest.

The choice of the actual learning algorithm depends on the type of structural in-

formation available. For example, deep syntactic information provided by current

parsers for new types of corpora such as biomedical text is seldom reliable, since

most parsers have been trained on different types of narrative. If reliable syntactic

information is lacking, sequences of words around and between the two entities can

be used as alternative useful discriminators. Therefore, we first describe a gener-

alization of subsequence kernels (Lodhi et al., 2002) for which the implicit features

correspond to sequences of words and word classes anchored at the two entity names.

We also propose an alternative method that is based on a dependency graph kernel,

for domains where a reliable dependency analysis of the sentence is available. The

new dependency kernel is based on the observation that most of the information

relevant for relation extraction is contained in the shortest path between the two

entities in the dependency graph of the sentence.

Both methods belong to the class of Single Instance Learning (SIL) approaches –

each training example consists of a sentence containing the two entities, and a rela-

tionship label as assigned by a human annotator. The advantages of using the two

new approaches are demonstrated through experimental evaluations in which they

are compared against previously proposed relation extraction methods.
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Multiple Instance Learning

In the second approach to relation extraction, the amount of supervision is reduced

significantly to only a handful of pairs of entities known to exhibit or not exhibit a

particular relationship. Bags of sentences containing the pairs are extracted from

the web, and the subsequence kernel approach is extended to handle this weaker

form of supervision. The new relation extraction method belongs to the class of

Multiple Instance Learning (MIL) (Dietterich et al., 1997) approaches – a positive

training example in MIL is a bag of sentences known to contain at least one posi-

tive sentence. For relation extraction, because the training bags are very few and

relatively large, a straightforward application of any MIL algorithm is bound to be

affected by two types of bias: words that are semantically correlated with either of

the two relation arguments (Type I) or words that are correlated only to a specific

relation instance (Type II) are given too much weight in the learned model, thus

leading to extraction errors during testing. We address the first type of bias by

integrating a set of appropriately induced word weights into the subsequence kernel.

Experimental results demonstrate that the new approach is successful at reducing

the undesired influence of the first type of bias, and that overall the new system can

reliably extract relations from web documents.

1.3 Thesis Outline

Below is a summary of the remaining chapters in this thesis, with references to the

relevant publications:

• Chapter 2: We present a collective approach to named entity recognition

(Bunescu & Mooney, 2004), and a novel phrase classification model in which

inference is both exact and tractable (Bunescu, 2004) .
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• Chapter 3: This chapter describes a ranking approach to named entity dis-

ambiguation that exploits the rich structure of a large online encyclopedia

(Bunescu & Pasca, 2006).

• Chapter 4: We first present two relation extraction systems which differ

with respect to the depth of syntactic analysis required for the input sentences

(Bunescu & Mooney, 2005b, 2005a). One of these methods is then extended

to learn from a much weaker type of supervision (Bunescu & Mooney, 2007).

• Chapter 5: We discuss possible directions for future research based on the

work presented in this thesis.

• Chapter 6: We conclude with a review of the main contributions of this

thesis.
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Chapter 2

Named Entity Recognition

2.1 Motivation

A basic component of an IE system is that of named entity recognition - the task

of locating references to specific types of items in natural-language text. Since IE

systems are difficult and time-consuming to construct, most recent research has fo-

cused on empirical techniques that automatically construct information extractors

by training on supervised corpora. Traditionally, IE systems have been trained to

recognize names of people, organizations and locations (MUC (Grishman, 1995),

CoNLL (Tjong Kim Sang & De Meulder, 2003)). Recently, substantial resources

have been allocated for automatically extracting information from biomedical cor-

pora (Verspoor et al., 2006), which has naturally led to the need of locating biolog-

ically relevant entity types, such as genes, proteins, or diseases. The wide variety

of names used in the biomedical literature, coupled with their lack of formal struc-

ture, have made the IE problem especially difficult. This has further motivated the

search for methods which are able to efficiently use any type of task-relevant knowl-

edge. One particular type of knowledge which is especially useful for recognizing

biological entities refers to correlations between the labels of repeated phrases inside
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a document, as well as between acronyms and their corresponding long form. In

both cases, the mentioned phrases tend to have the same entity label. For example,

Figure 2.1 shows part of an abstract from Medline, an online database of biomedical

articles. In this abstract, the protein referenced by ’rpL22’ is first introduced by

its long name ’ribosomal protein L22’, followed by the short name ’rpL22’ between

parentheses. The presence of the word ’protein’ is a very good indicator that the

entire phrase ’ribosomal protein L22’ is a protein name. Also, ’rpL22’ is an acronym

of ’ribosomal protein L22’ which increases the likelihood that it too is a protein name.

The same name ’rpL22’ occurs later in the abstract in contexts which do not indicate

so clearly the entity type, however we can use the fact that repetitions of the same

name tend to have the same type inside the same document.

The control of human ribosomal protein L22 (rpL22) to enter into the

nucleolus and its ability to be assembled into the ribosome is regulated

by its sequence. The nuclear import of rpL22 depends on a classical

nuclear localization signal of four lysines at positions 13-16. RpL22

normally enters the nucleolus via a compulsory sequence of KKYLKK

(I-domain, positions 88-93) ... Once it reaches the nucleolus, the

question of whether rpL22 is assembled into the ribosome depends upon

the presence of the N-domain.

Figure 2.1: Medline abstract with all protein names emphasized.

However, it is not always the case that repeated phrases have the same label.

Figure 2.2 shows an example, where the first occurrence of ’eNOS’ is a protein name,

while its second occurrence is not a protein name by itself, because it is included

in another protein name ’eNOS interaction protein’. Constraining repeated words like

’eNOS’ to have the same label (i.e. either Inside or Outside a protein name) does

not solve the problem either, as shown in Figure 2.2, where both tokens ’nitric’ and

’oxide’ are first tagged as Outside, and then Inside a protein name. In Section 2.3

we show how to capture the correlations between the labels of repeated phrases so

that all the exceptions above are taken into account.
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Production of nitric oxide (NO) in endothelial cells is regulated by

direct interactions of endothelial nitric oxide synthase (eNOS) with

effector proteins such as Ca2+-calmodulin. Here we have used the

yeast two-hybrid system and identified a novel 34kDa protein, termed

NOSIP (eNOS interaction protein), which avidly binds to the carboxyl

terminal region of the eNOS oxygenase domain.

Figure 2.2: Medline abstract with all protein names emphasized.

The capitalization pattern of the name itself is another useful indicator, how-

ever it is not sufficient by itself, as similar patterns are also used for other types

of biological entities such as cell types or amino acids (see Figure 2.3). Therefore,

correlations between the labels of repeated phrases, or between acronyms and their

long form can provide additional useful information. Our intuition is that a method

that could use this kind of information would show an increase in performance, es-

pecially when doing extraction from biomedical literature, where phenomena like

repetitions and acronyms are pervasive.

The 5’ upstream region (-448/-443) of the human dipeptidyl peptidase IV

gene promoter containing a consensus E-box (CACGTG) was shown to bind

upstream stimulatory factor using nuclear extracts from mouse (3T3)

fibroblasts and the human intestinal and hepatic epithelial cell lines

Caco-2 and HepG2.

Figure 2.3: Medline abstract with all protein names emphasized.

2.2 Background

The task of automatically inducing named entity recognizers from training data

has received a lot of attention in the past decade, consequently we observe a high

diversity in the proposed approaches and the learning algorithms used therein. Most

of the proposed systems can be classified into two basic types of approaches:
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• Phrase Classification: Candidate phrases from a document are classified as

to whether they are instances of a predefined set of entity types or not. This

can be done by learning a multi-class classifier, where the number of classes is

equal to the number of entity types plus one (for non-entity phrases). Usually,

this process boils down to learning sets of extraction patterns, one set of

patterns for each of the entity types.

• Token Classification: Word tokens in a document are sequentially classified

as being Inside or Outside of a given named entity. This type of classification

is commonly referred to as tagging: each word in a sequence of words is labeled

with an Inside or Outside tag. Named entities are extracted by doing token

classification and then assembling maximally contiguous sequences of Inside

tokens.

Relational learning has been one of the learning paradigms used in some of the early

IE systems, such as Rapier (Califf & Mooney, 1999) and SRV (Freitag, 1998). Both

Rapier and SRV belong to the category of phrase classification approaches, and so

is our collective approach to named entity recognition (as described in Section 2.3).

On the other hand, our method is firmly grounded in the expressive framework

of graphical models, like most of the token classification approaches that will be

described in the next section.

2.2.1 Token Classification Approaches

Hidden Markov Models

Hidden Markov Models (HMMs) (Rabiner, 1989) have been successfully used for

speech recognition before becoming a model of choice for other natural language

tasks such as part-of-speech (POS) tagging or named entity (NE) recognition. An

HMM can be defined as the stochastic version of a finite state automaton. Thus,
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there is a set of states (hidden), with transitions between them. Given a state, there

is a probability distribution over all possible transitions from that state. Symbols

can be generated from any state, one symbol at a time, based on a symbol emission

distribution. In a typical application of HMMs, a sequence of symbols is given,

together with an HMM that is assumed to have produced it. The generative process

by which the HMM produces a string of symbols starts by choosing a distinguished

state (referred to as a starting state), then transitioning to another state according

to the corresponding transition probability. This process of transitioning from one

state to another continues until it reaches another distinguished state (referred to as

the final state). Each time a transition is made from a state, a symbol is generated

according to that state’s symbol emission probability distribution. Graphically, an

unrolled HMM can be represented as a directed graph, as in Figure 2.4. In this

and all subsequent figures, the X symbols are used to denote observations, while Y

symbols refer to hidden variables (states or labels).

Y1 Y2 Y Y Y3 n−1 n

1X X2 X3 Xn−1 Xn

.  .  .

.  .  .

Y0

Figure 2.4: Unrolling an HMM as a directed graphical model.

One of the questions that an HMM inference algorithm is usually required

to answer is to find the sequence of states that is most likely to have generated

a given sequence of symbols. For example, in the case of NE recognition, each

state corresponds to a named entity inside tag or the outside tag, whereas symbols

correspond to words. Given a particular sentence, the named entities are defined by

the most likely sequence of states that generated the sentence.
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HMMs are particularly attractive as they have a solid mathematical foun-

dation, and the associated inference problem can be solved in time linear with the

number of observed symbols using dynamic programming (the Viterbi algorithm)

(Rabiner, 1989). During learning, if the data is fully observable (e.g. labeled training

data), the HMM parameters are simply set to their maximum likelihood estimates.

If the data is only partially observable i.e. the states are hidden, the Baum-Welch

algorithm, an instantiation of the more general Expectation Maximization (EM)

algorithm (Dempster et al., 1977), can be used to find a set of parameters such that

the likelihood function is locally optimized.

IE systems based on HMMs belong naturally to the category of token clas-

sification approaches. The most likely path through the Markov model leads to a

tagging of the input symbols, and consequently entities are extracted by assembling

maximal contiguous sequences of words which are tagged with the same entity tag.

Numerous IE systems are based on HMMs, and with them a whole diversity

of augmentations to the basic model was introduced in order to better address

various aspects of the task, such as the need for adequate representational power, or

how to deal with sparsity due to insufficient training data (Bikel et al., 1999; Freitag

& McCallum, 1999).

Linear-Chain Conditional Random Fields

We have already distinguished between IE approaches based on token classification

and approaches based on phrase classification. Another useful dichotomy, orthogo-

nal to the previous one, is that of generative vs. discriminative models. An HMM

model is generative in the sense that it tries to model both the observation and hid-

den state sequences. However, in most applications of HMMs, the observations are

given, the task being that of ”decoding” the hidden state sequence. Therefore, a ma-

jor drawback of generative models is that modeling effort is spent on observations,
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instead of being focused entirely on describing the state sequence. The attempt to

model the observations while keeping the inference tractable has led to the output

independence assumption, which stipulates that the current observation, given the

current state, is independent of previous observations. Usually, in text applications,

observations correspond to words, and consequently the output independence as-

sumption is often unrealistic. The mismatch between model assumptions and data

becomes even more pronounced if overlapping features based on observations such

as word capitalization and part-of-speech are added to the model. Another inade-

quacy (McCallum et al., 2000) is due to the way parameters are estimated. In an

HMM, parameters are set to maximize the likelihood of the observation sequence,

while the task is that of predicting the state sequence given the observations. All

these mismatches and limitations are eliminated in discriminative approaches, in

which the conditional probability of state sequences given the observations lies at

the core of the model.

The Maximum Entropy principle has been widely used to create discrim-

inative probabilistic models for natural language tasks (Berger et al., 1996). A

maximum entropy approach to sequence tagging is able to accommodate a wide

variety of overlapping features, based on binary tests on both the state and the

observation context at the current position in the sequence. This type of model has

been augmented by Ratnaparkhi (1996) to include features that relate the tags of

two consecutive tokens. The new type of features suggests a class of maximum en-

tropy models in which binary features may include a test on the class of the previous

token, besides conditioning on the observed input context and the mandatory test

on the class of the current token. Such an approach is taken by a Maximum Entropy

Markov Model (MEMM) (McCallum et al., 2000), which creates a maximum en-

tropy model for each state in the model. For any given state s′, the framework learns

an exponential model corresponding to the probability of transitioning to another
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state s from s′, given the observation sequence o, i.e. p(s|s′, o). Finding the most

likely sequence of states in this context can be done efficiently using a Viterbi-like

decoding algorithm.

Y1 Y2 Y Y Y3 n−1 n

1X X2 X3 Xn−1 Xn

.  .  .

.  .  .

Y0

Figure 2.5: Unrolling an MEMM as a directed graphical model.

A fundamental problem with MEMMs and other discriminative Markov mod-

els based on directed graphical models is that they are biased toward states with few

successor states. This is the ”label bias problem” (Lafferty et al., 2001), which in a

more general form stipulates that states with low entropy next-state distributions

will take little notice of observations. The maximum entropy model of Ratnaparkhi

(1996) is subject to this problem too, as some of the features it uses are indirectly

associated with transitions (they contain conditions on labels of consecutive tokens).

The reason for this behavior stems from the fact that the same probability mass is

allocated for modeling the labeling decision at each position in the sequence. A prin-

cipled solution to this problem is that of linear-chain Conditional Random Fields

(CRFs) (Lafferty et al., 2001), where a single probability distribution is learned, one

that models the joint probability of a label sequence given a sequence of observations.

Informally, this can be viewed as a finite state model with unnormalized transition

probabilities. Therefore, some transitions may contribute more than others to the

overall score, depending on the corresponding observations.

Inference in linear-chain CRFs can be done efficiently by accommodating the

corresponding forward-backward or Viterbi algorithms used for HMMs (Rabiner,
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X
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Figure 2.6: Unrolling a linear-chain CRF as an undirected graphical model.

1989). Learning the CRFs parameters can be cast as an optimization problem – the

likelihood function is concave, thus a global maximum can be found efficiently using

standard procedures, such as Improved Iterative Scaling (Della Pietra et al., 1997),

or gradient based methods.

We have started the list of token classification approaches with HMM mod-

els, which are generative and can be represented as directed graphical models. We

have argued that conditional models are more appropriate for the tagging task, one

of their benefits being that they allow for arbitrary, potentially overlapping features

over the observation sequence. Maximum Entropy models are a class of condi-

tional models that subsume Maximum Entropy Markov Models, a particular type

of conditional Markov models. Although these conditional models offer increased

representational power when compared with HMMs (their generative counterpart),

they are affected by the label bias problem. This is particularly troublesome, as

the problem does not occur with HMMs. The solution came in the form of linear-

chain Conditional Random Fields, a type of undirected graphical models especially

suited for labeling sequences, which overcomes the label bias problem by modeling

the joint probability over the entire label sequence given the observation sequence.

In the next section we give a more formal description of the framework underlying

Conditional Random Fields.
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2.2.2 Markov Random Fields

Graphical models offer an intuitive representation of conditional independence be-

tween domain variables. They come in two main flavors:

• Directed Models – well suited to represent temporal and causal relationships

(Bayesian Networks, Neural Networks, HMMs);

• Undirected Models – appropriate for representing statistical correlations

between variables (linear-chain CRFs, Boltzmann Machines).

Markov Random Fields are a type of undirected graphical model. Below is their

definition, based on the following notation:

• V = a set of vertices used to denote random variables;

• G = (V, E) an undirected graph;

• N(v) = the set of neighbors of vertex v ∈ V .

Definition 1 (Li, 1995) V is said to be a Markov Random Field (MRF) with respect

to G if for any vertex, its value depends only on its neighbors i.e. ∀Vi ∈ V , P (Vi|V −

Vi) = P (Vi|N(Vi)).

For the discriminative version, assume X is the set of observed variables, and Y is

the set of hidden variables, such that V = X ∪ Y .

Definition 2 V is said to be a Conditional Markov Random Field with respect to

G if ∀Yi ∈ Y , P (Yi|X, Y − Yi) = P (Yi|X, N(Yi)).

Markov Random Fields characterize the underlying undirected graphical model via a

local property, namely the Markov assumption. On the other hand, Gibbs Random

Fields, which are going to be defined next, use a global property to characterize the

corresponding graphical model. The corresponding notation follows below:
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• V = a set of vertices which stand for random variables;

• G = (V, E) an undirected graph;

• C(G) = the set of cliques in G;

• Vc = the set of vertices in a clique c ∈ C;

• φ = {φc : Vc → R+, c ∈ C(G)} a set of clique potentials.

Definition 3 (Li, 1995) V is said to be a Gibbs Random Field (GRF) with respect

to G if P (V ) = 1
Z

∑

c∈C(G) φc(Vc), where Z is a normalization constant.

Thus, a Gibbs Random Field is specified numerically by associating potentials with

cliques in the graph. A clique potential is a function that associates a positive

number with each possible assignment of values to the clique vertices. Intuitively,

the clique potential provides a quantitative measure for the compatibility between

the values associated to vertices in a clique. The joint probability distribution over

all vertices in the graph is obtained by taking a product over all clique potentials.

For the discriminative version, assume X is the set of observed variables, and

Y is the set of hidden variables, such that V = X∪Y , and similarly, for every clique

c ∈ C(G), let Vc = Xc ∪ Yc.

Definition 4 V is said to be a Conditional Gibbs Random Field with respect to G

if P (Y |X) = 1
Z(X)

∏

c∈C(G) φc(Xc, Yc), where Z(X) is a normalization constant.

Therefore, whereas a Markov Random Field is an undirected graphical model char-

acterized by a local property, a Gibbs Random Field is an undirected graphical

model constrained by a global property e.g. the Gibbs distribution. The following

theorem stipulates that the two types of graphical models are in fact equivalent.

Theorem 1 (Hammersley & Clifford, 1971) V is a (conditional) MRF with respect

to G if and only if V is a (conditional) GRF with respect to G.
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Consequently, one can create a Markov Random Field by specifying an underlying

probability distribution that factorizes into potentials over all maximal cliques in

the graph.

The following notational variants are often used in the graphical models literature:

• Markov Networks = Markov Random Fields;

• Conditional Random Fields = Conditional Markov Random Fields.

Relational Markov Networks

Relational Markov Networks (RMNs) (Taskar et al., 2002) are conditional Markov

random fields augmented with a set of clique templates. A clique template specifies

which vertices are to be connected in a clique, associating the same clique potential

with all cliques that it creates in the graph. Thus, a clique template provides at

the same time a procedure for creating edges in the graph, and a mechanism for

tying parameters (clique potentials) in the model. For example, the linear-chain

CRF illustrated in Figure 2.6 can be specified by an RMN in which clique templates

create 3-node cliques between any two consecutive labels, Yt−1 and Yt, and their

corresponding contextual features Xt.

Relational Markov Networks are a general framework that allows for a com-

pressed representation of undirected graphical models. RMNs can be seen as a con-

venient method for specifying general types of correlations between the attributes

of entities in a particular domain. As such, they offer a suitable framework for our

approach to ”collective information extraction”, as will be described in Section 2.3.

Factor Graphs

An alternative, useful representation for Markov random fields is provided by factor

graphs (Kschischang et al., 2001). Factor graphs are bipartite graphs which express

how a global function of many variables (the probability P (Y |X) in Definition 4)
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factors into a product of local functions (the potentials φc(Xc, Yc) in Definition 4).

Factor graphs subsume many different types of graphical models, including Bayesian

networks and Markov random fields. The sum/max-product algorithm used for

inference in factor graphs generalizes a wide variety of algorithms including the

forward/backward algorithm, the Viterbi algorithm, and Pearl’s belief propagation

algorithm (Pearl, 1988). To obtain the factor graph for a given Markov random field,

we copy all original nodes from the MRF, referred henceforth as variable nodes, and

create a potential node for each clique potential. Each potential node is then linked

to all variable nodes from the associated clique. As an example, Figure 2.7 illustrates

the factor graph corresponding to the linear-chain CRF from Figure 2.6.

Y Y Y Y Y

X X X X

0 21 3 n

X

Y
n −1

1 2 3 n −1 n

Figure 2.7: Representing a linear-chain CRF as a factor graph.

2.3 A Graphical Model for Collective NE Recognition

This section introduces our collective approach to named entity recognition as a

phrase classification task. The expressive framework of Relational Markov Net-

works will be used in order to model correlations between the labels of candidate

extractions from the same document. We start by defining a set of simple heuristics

used to restrict the space of candidate entities, followed by a short description of

the feature templates used to generate the actual features associated with each can-

didate extraction. We then show how the entity features can be modeled by local

clique templates in the RMN framework, followed by the global clique templates used

21



to model the correlations between entity labels. The section ends with a description

of the algorithms used for inference and learning.

2.3.1 Candidate Entities

Doing phrase classification requires a set of phrases to start with. Throughout this

chapter, we will use the terms candidate entities, candidate extractions, or candidate

phrases to refer to the set of phrases that are to be classified as being valid extractions

or not. Considering as candidate entities all contiguous word sequences from a

document would lead to a quadratic number of phrases, which would adversely affect

the time complexity of the extraction program. Various heuristics exist however

which can significantly reduce the size of the candidate set, and some of them are

listed below:

• H1: In general, named entities have limited length. Therefore, one simple way

of creating the set of candidate phrases is to compute the maximum length of

all annotated entities in the training set, and then consider as candidates all

word sequences whose length is up to this maximum length. This is also the

approach followed in SRV by Freitag (1998).

• H2: In the task of extracting protein names from Medline abstracts, we no-

ticed that, like most entity names, almost all proteins in our data are base noun

phrases or parts of them. Therefore, such substrings are used to determine

candidate entities. To avoid missing options, we adopt a very broad definition

of base noun phrase – a maximal contiguous sequence of tokens whose part-

of-speech tags (using the Penn tagset described in (Santorini, 1990)) are from

{”JJ”, ”VBN”, ”VBG”, ”POS”, ”NN”, ”NNS”, ”NNP”, ”NNPS”, ”CD”,

”–”}, and whose last word (the head) is tagged either as a noun, or a num-

ber. Candidate extractions then consist of base NPs, together with all their

contiguous subsequences headed by a noun or number.
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• H3: The CoNLL 2003 English corpus (Tjong Kim Sang & De Meulder, 2003)

contains four types of named entities: persons (PER), locations (LOC), or-

ganizations (ORG), and other (MISC). A more appropriate heuristic in this

case is to consider as candidates all sequences of proper names, potentially

interspersed with prepositions, commas, conjunctions or definite articles.

Table 2.1 below shows the candidate entities generated by H1 and H2 on

a fragment from a Medline abstract. Similarly, Table 2.2 shows candidate entities

generated by H1 and H3 on a fragment from a CoNLL document. Both H2 and

H3 are strong heuristics, in the sense that they drastically reduce the number of

candidate entities. In the next sections, we shall focus on the task of extracting

protein names from Medline abstracts.

“the control of human ribosomal protein L22 ( rpL22 ) “

◦ the ◦ the control ◦ the control of ◦ the control of human ◦ the control of

H1 human ribosomal ◦ ... ◦ ribosomal ◦ ribosomal protein ◦ ribosomal protein L22

◦ ribosomal protein L22 ( ◦ ribosomal protein L22 ( rpL22 ◦ ... ◦ L22 ◦ L22 ( ◦

◦ L22 ( rpL22 ◦ L22 ( rpL22 ) ◦ ... ◦ rpL22 ◦ rpL22 ) ◦ ) ◦

H2 ◦ control ◦ human ribosomal protein ◦ human ribosomal protein L22

◦ ribosomal protein ◦ ribosomal protein L22 ◦ protein L22 ◦ L22 ◦ rpL22 ◦

Table 2.1: Candidate Extractions: Medline.

“Israel gave Palestinian President Yasser Arafat permission on Thursday“

◦ Israel ◦ Israel gave ◦ Israel gave Palestinian ◦ Israel gave Palestinian

H1 President ◦ ... ◦ Palestinian ◦ Palestinian President ◦ Palestinian President Yasser

◦ Palestinian President Yasser Arafat ◦ ... ◦ Yasser ◦ Yasser Arafat ◦ President

Yasser Arafat permission ◦ ... ◦ on ◦ on Thursday ◦ Thursday ◦

H3 ◦ Israel ◦ Palestinian ◦ Palestinian President ◦ Palestinian President Yasser

◦ Palestinian President Yasser Arafat ◦ President ◦ President Yasser

◦ President Yasser Arafat ◦ Yasser ◦ Yasser Arafat ◦ Arafat ◦

Table 2.2: Candidate Extractions: CoNLL.
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2.3.2 Entity Features

The set of features associated with each candidate is based on the feature templates

introduced by Collins (2002), used there for training a ranking algorithm on the

extractions returned by a maximum-entropy tagger. Many of these features use

the concept of word type, which allows a different form of token generalization than

POS tags. The short type of a word is created by replacing any maximal contiguous

sequences of capital letters with ’A’, of lower-case letters with ’a’, and of digits with

’0’. For example, the word TGF-1 would be mapped to type A-0.

Consequently, each token position i in a candidate extraction provides three

types of information: the word itself wi, its POS tag ti, and its short type si. The

full set of features types is listed in Table 2.3, where we consider a generic candidate

extraction as a sequence of n + 1 words w0w1...wn.

Description Feature Template

Head Word w(n)

Text w(0) w(1) ... w(n)

Short Type s(0) s(1) ... s(n)

Bigrams Left w(−1) w(0) w(−1) s(0)

(4 bigrams) s(−1) w(0) s(−1) s(0)

Bigrams Right w(n) w(n+1) w(n) s(n+1)

(4 bigrams) s(n) w(n+1) s(n) s(n+1)

Trigrams Left w(−2) w(−1) w(0) ...

(8 trigrams) s(−2) s(−1) s(0)

Trigrams Right w(n) w(n+1) w(n+2) ...

(8 trigrams) s(n) s(n+1) s(n+2)

Word, POS Left w(−1) t(−1)

Word, POS Right w(n+1) t(n+1)

Prefix s(0) s(0) s(1) ...

(n+1 prefixes) s(0) s(1) ... s(n+1)

Suffix s(n) s(n−1) s(n) ...

(n+1 suffixes) s(0) s(1) ... s(n+1)

Table 2.3: Feature Templates.
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Each feature template instantiates numerous features. For example, the can-

didate extraction ’HDAC1 enzyme’ has the head word HD=enzyme, the short type

ST=A0 a, the prefixes PF=A0 and PF=A0 a, and the suffixes SF=a and SF=A0 a.

All other features depend on the left or right context of the entity. Feature values

that occur less than three times in the training data are filtered out.

2.3.3 The RMN Framework for NE Recognition

Given a collection of documents D, we associate with each document d ∈ D a set

of candidate entities d.E, in our case a restricted set of token sequences from the

document (Section 2.3.1). Each entity e ∈ d.E is characterized by a predefined set

of boolean attributes e.F (Section 2.3.2), the same for all candidate entities. One

particular attribute is e.label which is set to 1 if e is considered a valid extraction,

and 0 otherwise. In this document model, labels are the only hidden variables,

and the inference procedure will try to find a most probable assignment of values

to labels, given the current model parameters. Because the focus is on extracting

protein names from Medline abstracts, in this section we consider only binary labels;

however the model can also accommodate multiple entity types, as will be described

later in Section 2.5.2.

Each document is associated with an undirected graphical model, with nodes

corresponding directly to entity attributes, one node for each attribute of each can-

didate entity in the document. The set of edges is created by matching clique

templates against the entire set of entities d.E. A clique template is a procedure

that finds all subsets of entities satisfying a given constraint, after which, for each

entity subset, it connects a selected set of attribute nodes so that they form a clique.

Formally, there is a set of clique templates C, with each template c ∈ C

specified by:

1. A matching operator Mc for selecting subsets of entities, Mc(E) ⊆ 2E
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2. A selected set of features Sc = 〈Xc, Yc〉, the same for all subsets of entities

returned by the matching operator. Xc denotes the observed features, while

Yc refers to the hidden labels.

3. A clique potential φc which gives the compatibility of each possible configura-

tion of values for the features in Sc, s.t. ∀s ∈ Sc, φc(s) ≥ 0.

Given a set E of nodes, Mc(E) consists of subsets of entities whose attribute nodes

Sc are to be connected in a clique. In previous applications of RMNs, the selected

subsets of entities for a given template have the same size; however, some of our

clique templates may match a variable number of entities. The set Sc may contain

the same attribute from different entities. Usually, for each entity in a matching set,

its label is included in Sc. All these will be illustrated with examples in Sections 2.3.3

and 2.3.3 where the clique templates used in our model are described in detail.

Depending on the number of hidden labels in Yc, we define two categories of

clique templates:

• Local Templates are all templates c ∈ C for which |Yc| = 1. They model

the correlations between an entity’s observed features and its label.

• Global Templates are all templates c ∈ C for which |Yc| > 1. They capture

influences between multiple entities from the same document.

After the graphical model for a document d has been completed with cliques from

all templates, the probability distribution over the random field of hidden entity

labels d.Y given the observed features d.X is given by the Gibbs distribution:

P (d.Y |d.X) =
1

Z(d.X)

∏

c∈C

∏

G∈Mc(d.E)

φC(G.Xc, G.Yc) (2.1)

where Z(d.X) is the normalizing partition function:

Z(d.X) =
∑

Y

∏

c∈C

∏

G∈Mc(d.E)

φC(G.Xc, G.Yc) (2.2)
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Local Clique Templates

As described in the previous section, the role of local clique templates is to model

correlations between an entity’s observed features (see Table 2.3) and its label. If,

after filtering, we are left with h distinct boolean features fi, one way to model these

correlations is to introduce h local (clique) templates LT1, LT2, ..., LTh. A template

LTi would then be defined as follows:

1. The matching operator Mi is set to match any single-entity set {e}.

2. The collection of attributes Si corresponding to a singleton entity set {e} is

defined to be Si = 〈Xi, Yi〉 = 〈{e.fi}, {e.label}〉. This amounts to introducing

in the RMN graph h attribute nodes for each candidate entity, which are to

be connected by the h local templates to the corresponding entity label node.

The 2-node cliques created by all h templates around one entity are illustrated

in Figure 2.8 (a).

3. The potential φi associated with all 2-node cliques created by template LTi

would consist in a 2 × 2 table (as both e.fi and e.label have cardinality 2 –

assuming only one entity type is to be extracted, we need only two values for

the label attribute).

Each entity has the label node connected to its own set of h binary feature nodes.

This leads to an excessive number of nodes in the model, most of which have value

zero. However, the Gibbs distribution can be reduced by eliminating all potentials

corresponding to zero-valued feature nodes. This is equivalent to a graphical model

containing only nodes with a non-zero value. Consequently, the table associated with

the local potential is reduced to contain only 2 values, specifying the compatibility

between that feature and the two possible values for the entity label. As an example,
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(a) RMN generated by local templates (b) Factor Graph for local templates.

Figure 2.8: Local templates.

Figure 2.8 (b) shows the factor graph that is generated around the entity label for

’HDAC1 enzyme’ (with variable nodes figured as empty circles and potential nodes

figured as black squares). Since we consider only features that have value 1, their

influence on the entity labels is implicitly modeled through the potential nodes,

hence the corresponding variable nodes can be safely ignored in the factor graph

representation.

Global Clique Templates

Global clique templates facilitate the modeling of hypothesized influences between

entities from the same document. They connect the label nodes of two or more

entities, which, in the factor graph representation, translates into potential nodes

connected to at least two label nodes. In our approach we use three global templates:

Overlap Template (OT): No two entity names overlap in the text i.e if the

span of one entity is [s1, e1] and the span of another entity is [s2, e2], and s1 ≤ s2,

then e1 < s2.

Repeat Template (RT): If multiple entities in the same document are

repetitions of the same name, their labels tend to have the same value (i.e. most of

them are protein names, or most of them are not protein names). Later we discuss

situations in which repetitions of the same protein name are not tagged as proteins,
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and design an approach to handle this.

Acronym Template (AT): It is common convention that a protein is first

introduced by its long name, immediately followed by its short-form (acronym) in

parentheses.

The Overlap Template

The definition of a candidate extraction from Section 2.3.1 leads to many overlapping

entities. For example, ’glutathione S - transferase’ is a base NP, and it generates five

candidate extractions: ’glutathione’, ’glutathione S’, ’glutathione S - transferase’, ’S -

transferase’, and ’transferase’. If ’glutathione S - transferase’ has label-value 1, the

other four entities should all have label-value 0, because they overlap with it. This

type of constraint is enforced by the overlap template as follows:

1. The MOT operator matches any two overlapping candidate entities {e1, e2}.

2. The set of attributes SOT selected by this template for two overlapping entities

{e1, e2} is SOT = 〈XOT , YOT 〉 = 〈∅, {e1.label, e2.label}〉. This translates in the

factor graph into a potential node connected to the two selected label nodes.

3. The potential function φOT is set so that at most one of the overlapping entities

can have label-value 1, as illustrated in Table 2.4.

φOT e1.label = 0 e1.label = 1

e2.label = 0 1 1

e2.label = 1 1 0

Table 2.4: Overlap Potential.

Continuing with the previous example, because ’glutathione S’ and ’S - transferase’ are

two overlapping entities, the factor graph model will contain an overlap potential

node connected to the label nodes of these two entities.
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An alternative solution for the overlap template is to create a potential node

for each token position that is covered by at least two candidate entities in the

document, and connect it to their label nodes. The difference in this case is that

that the potential node will be connected to a variable number of entity label nodes.

We will investigate this clique template in more detail later in Section 2.4.1.

The Repeat Template

We could specify the potential for the repeat template in a similar 2× 2 table, this

time leaving the table entries to be learned, given that assigning the same label

to repetitions is not a hard constraint. However we can do better by noting that

the vast majority of cases where a repeated protein name is not also tagged as a

protein happens when it is part of a larger phrase that is tagged. For example,

’HDAC1 enzyme’ is a protein name, therefore ’HDAC1’ is not tagged in this phrase,

even though it may have been tagged previously in the abstract where it was not

followed by ’enzyme’. We need a potential that allows two entities with the same

text to have different labels if the entity with label-value 0 is inside another entity

with label-value 1. But a candidate entity may be inside more than one “including”

entity, and the number of including entities may vary from one candidate extraction

to another. Using the example from Section 2.3.3, the candidate entity ’glutathione’

is included in two other entities: ’glutathione S’ and ’glutathione S - transferase’.

In order to instantiate potentials over variable number of label nodes, we

introduce a logical OR clique template that matches a variable number of enti-

ties. When this template matches a subset of entities e1, e2, ..., en, it will cre-

ate an auxiliary OR entity eOR, with a single attribute eOR.label. The potential

function φOR is set so that it assigns a non-zero potential only when eOR.label =

e1.label ∨ e2.label ∨ ... ∨ en.label. The cliques are only created as needed, e.g. when

the auxiliary OR entity is required by repeat and acronym clique templates.
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Figure 2.9 shows the factor graph for a sample instantiation of the repeat

template using the OR template. Here, u and v represent two same-text entities,

u1, u2, ... un are all entities that include u, and v1, v2, ..., vm are entities that

include v. To avoid clutter, all entities in this and subsequent factor graphs stand

for their corresponding label features. The potential function φRT can either be

preset to prohibit unlikely label configurations, or it can be learned to represent

an appropriate soft constraint. In our experiments, it was learned since this gave

slightly better performance.

1 u2u v1 2v

φ φ

u u v v

or or

or or

RT
φ

un vm

... ...

Figure 2.9: Repeat Factor Graph.

Following the previous example, suppose that the phrase ’glutathione’ occurs

inside two base NPs in the same document, ’glutathione S - transferase’ and ’glutathione

antioxidant system’. Then the first occurrence of ’glutathione’ will be associated with

the entity u, and correspondingly its including entities will be u1 = ’glutathione S’ and

u2 = ’glutathione S - transferase’. Similarly, the second occurrence of ’glutathione’ will

be associated with the entity v, while the including entities will be v1 = ’glutathione

antioxidant’ and v2 = ’glutathione antioxidant system’.
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The Acronym Template

One approach to the acronym template would be to use an extant algorithm for

identifying acronyms and their long forms in a document, and then define a potential

function that would favor label configurations in which both the acronym and its

definition have the same label. One such algorithm is described by Schwartz and

Hearst (2003), achieving a precision of 96% at a recall rate of 82%. However, because

this algorithm would miss a significant number of acronyms, we have decided to

implement a softer version as follows: detect all situations in which a single word is

enclosed between parentheses, such that the word length is at least 2 and it begins

with a letter. Let v denote the corresponding entity. Let u1, u2, ..., un be all entities

that end exactly before the open parenthesis. If this is a situation in which v is an

acronym, then one of the entities ui is its corresponding long form. Consequently,

we use a logical OR template to introduce the auxiliary entity uOR, and connect it

to v’s node label through an acronym potential φAT , as illustrated in Figure 2.10.

1 u2u

φ

u v

or

or

un

...

φAT

Figure 2.10: Acronym Factor Graph.

For example, consider the phrase ’the antioxidant superoxide dismutase - 1 (

SOD1 )’, where both ’superoxide dismutase - 1’ and ’SOD1’ are tagged as proteins.

’SOD1’ satisfies our criteria for acronyms, thus it will be associated with the entity v

in Figure 2.10. The candidate long forms are u1 = ’antioxidant superoxide dismutase

- 1’, u2 = ’superoxide dismutase - 1’, and u3 = ’dismutase - 1’.
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2.3.4 Inference and Learning

So far, we have specified the theoretical apparatus needed to create the undirected

graphical model corresponding to a given document: first, a set of candidate entities

are selected based on one of the strong heuristics from Section 2.3.1; then, the actual

graphical model is created by matching the clique templates introduced Section 2.3.3

against the selected set of candidate entities. There are two main problems that need

to be solved once the undirected graphical model has been built:

1. Inference: Usually, two types of quantities are needed from the graphical

model:

• The marginal distribution for a hidden variable, or for a subset of hidden

variables in the graphical model.

• The most probable assignment of values to all hidden variables in the

model.

2. Learning: As the structure of the RMN model is already defined by its clique

templates, learning refers to finding the clique potentials that maximize the

likelihood over the training data. Inference is usually performed multiple times

during the learning algorithm, which means that an accurate, fast inference

procedure is doubly important.

In our setting, given the clique potentials, the inference step for the factor graph

associated with a document involves computing the most probable assignment of

values to the hidden labels of all candidate entities:

d.Y ∗ = argmax
d.Y

P (d.Y |d.X) (2.3)

where P (d.Y |d.X) is defined as in Equation 2.1. A brute-force approach is ex-

cluded, since the number of possible label configurations is exponential in the num-
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ber of candidate entities. The sum-product algorithm (Kschischang et al., 2001) is

a message-passing algorithm that can be used for computing the marginal distri-

bution over the label variables in factor graphs without cycles, and with a minor

change (replacing the sum operator used for marginalization with a max operator)

it can also be used for deriving the most probable label assignment. In our case, in

order to get an acyclic graph, we would have to use local templates only. However,

it has been observed that the algorithm often converges in general factor graphs,

and when it converges, it gives a good approximation to the correct marginals. The

algorithm works by altering the belief at each label node by repeatedly passing mes-

sages between the node and all potential nodes connected to it (Kschischang et al.,

2001).

The time complexity of computing messages from a potential node to a label

node is exponential in the number of label nodes attached to the potential. Since

this “fan-in” can be large for OR potential nodes (and also for the second solution

to overlap potential nodes), this step required optimization. Fortunately, due to

the special form of the OR and overlap potentials (high degree of sparsity), and the

normalization before each message-passing step, these special cases can be computed

in linear-time. For example, the formulae for computing the OR messages for the

sum-product algorithm are shown in Figure 2.11 (to avoid clutter, e and φ stand for

eOR and φOR respectively).

Learning the model parameters is defined as finding their maximum likeli-

hood estimates. We use the following log-linear representation of potentials:

φC(G.Xc, G.Yc) = exp{wcfc(G.Xc, G.Yc)} (2.4)

Let w be the concatenated vector of all potential parameters wc. One approach to

finding the maximum-likelihood solution for w is to use a gradient-based method,

which requires computing the gradient of the log-likelihood with respect to potential
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Figure 2.11: Messages in OR Factor Graph.

parameters wc. It can be shown that this gradient is equal to the difference between

the empirical counts of fc and their expectation under the current set of parameters

w.

∇L(w, D) =
∑

d∈D

fc(d.X, d.Y )−
∑

d∈D

∑

d.Y ′

fc(d.X, d.Y ′)Pw(d.Y ′|d.X) (2.5)

The expectation in the second term is expensive to compute, since it requires sum-

ming over all possible configurations of candidate entity labels from a given docu-

ment. To circumvent this complexity, we used Collins’ voted perceptron approach

(Collins, 2002), which can be seen as approximating the full expectation of fc with

the fc counts for the most likely labeling under the current parameters w.

∇L(w, D) ≈
∑

d∈D

fc(d.X, d.Y )−
∑

d∈D

fc(d.X, d.Yw) (2.6)

The Voted Perceptron algorithm is detailed in Table 2.5. At each step i in the

algorithm, inference is performed using the current parameters wi, so that we get the

most likely labeling d.Yi. The parameters are then updated based on the difference

between the features counts computed on the ideal labeling d.Y and those computed

on the current most likely labeling d.Yi. The final set of parameters is the average
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Input: a set of documents D, number of epochs T ,
learning rate η.

set parameters w0 = 0
set counter i = 0
for t = 1...T

for every document d ∈ D
d.Yi = argmaxd.Y ′ Pwi

(d.Y ′|d.X)
wi+1 = wi + η ∗ [f(d.X, d.Y )− f(d.X, d.Yi)]
i = i + 1

Output: w = 1
T |D|

∑

i wi

Table 2.5: The Voted Perceptron Algorithm.

taken over the parameters at all steps i in the algorithm.

2.4 Exact & Tractable Inference for Phrase-Based NE

Recognition

The problem of inference in general Markov Networks is known to be NP-hard

(Cooper, 1990). Consequently, algorithms such as loopy belief propagation or gen-

eralized loopy belief propagation (Yedidia et al., 2000) are often used to do approx-

imate inference. In this section we design an inference algorithm for local phrase

based classification that is both exact and tractable.

By constraining the type of clique templates that are used to create the un-

derlying graphical model, we can distinguish between the following two approaches

to NE recognition:

• [GT-RMN] corresponds to an RMN that uses the local templates and all

global templates. This Global Templates RMN stands for our approach to

collective NE recognition introduced in Section 2.3.3.

• [LT-RMN] is the graphical model obtained by unrolling an RMN that uses

only local templates and the overlap template. This Local Templates RMN
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can be seen as the basic phrase classification approach to NE recognition –

the only label correlations captured by the model are local, and they enforce

the constraint that entity names should not overlap.

The sum-product algorithm is guaranteed to do exact inference for factor graphs

without cycles. However, it happens very often that the factor graphs generated

by our approach contain cycles, even in the LT-RMN model where only the overlap

template is used. For example, if w1w2w3 is a sequence of three nouns, the entire

sequence, together with all its subsequences, will become candidate entities. We

shall use the letter e to denote these candidate entities, as follows:

• unigram entities: e1 ← w1, e2 ← w2, e3 ← w3

• bigram entities: e12 ← w1w2, e23 ← w2w3

• trigram entities: e123 ← w1w2w3

The corresponding set of overlapping pairs is {(e1, e12), (e1, e123), (e2, e12), (e2, e23),

(e2, e123), (e3, e23), (e3, e123), (e12, e23), (e12, e123), (e23, e123)}. The overlap tem-

plate will create a two-node clique between the two nodes from each overlapping

pair in the RMN factor graph, as illustrated in Figure 2.12. Of all cycles contained

in this graph, we have emphasized using thick lines the cycle e1−e12−e2−e123−e1,

with the corresponding factor graph illustrated on the right.

Since the factor graphs in LT-RMN may contain cycles, the sum-product

algorithm is not always guaranteed to do exact inference. Approximate inference

may result in a significant number of extraction errors, which could explain why LT-

RMN does not perform as well as linear-chain CRFs, for which the inference is exact

(as shown by the comparative results from Section 2.5). In the remainder of this

section we will show that exact inference can be done for the phrase based model LT-

RMN in linear time, by using the junction-tree algorithm (Cowell et al., 1999) and by

exploiting the sparsity of a different version of the overlap potential. Experimental
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Figure 2.12: MRF and factor graph with cycles due to overlap clique potentials.

results will show that the new exact inference method leads to a significant increase

in performance for the basic phrase based classification approach to NE recognition.

2.4.1 A Different Overlap Template

The original overlap template used in our approach from Section 2.3.3 creates an

edge between any two overlapping entities. The constraint that entities should not

overlap can also be enforced with a different type of overlap template, as follows.

For a token position i in the document, let Ei be the set of candidate entities whose

span includes that position. The overlap template is then defined so that, for each

i, it connects the labels of all entities in Ei in a clique, with an associated potential

that is non-zero only when at most one entity from Ei has label-value 1. Thus, if

|Ei| = n, then the corresponding overlap potential can be specified as a table with 2n

entries, of which n+1 are set on 1, the rest being set to 0. This makes the potential

table very sparse (a linear number of non-zero entries), a fact that will be used

later in the inference algorithm. Notice that this version of the overlap template

can match a variable number of entities, depending on the number of overlapping
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entities at each token position.

Continuing with the same noun phrase example w1w2w3, the sets of overlap-

ping entities corresponding to the three token positions are:

1. E1 = {e1, e12, e123}

2. E2 = {e2, e12, e23, e123}

3. E3 = {e3, e23, e123}

The overlap template creates three cliques, corresponding to the three sets

E1, E2, and E3. This results in the same graph as that from Figure 2.12, containing

numerous cycles, which again means that the belief propagation algorithm (or the

sum-product algorithm in the equivalent factor graph) is not guaranteed to result

in exact inference.

2.4.2 Exact, Linear Time Inference

The junction tree algorithm (Cowell et al., 1999) is a generalization of the sum-

product algorithm that can be used for exact inference in general graphs. It is

based on the junction tree representation, which is a singly connected graph whose

nodes are clusters of nodes from the original graph. The utility of the junction tree

algorithm is however limited by the fact that its time complexity is exponential in

the size of the largest cluster, which can get very large, especially when the original

graph has cycles.

Definition 5 (Cowell et al., 1999) H = (H.V, H.E) is a cluster graph for G =

(G.V, G.E) if H.V ⊆ 2G.V e.g. any vertex in H is a cluster of vertices from G. �

Definition 6 (Cowell et al., 1999) A cluster graph H is a junction tree for G if

it has the following three properties:

1. singly connected: there is exactly one path between each pair of clusters.
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2. covering: for each clique A of G there is some cluster C such that A ⊆ C.

3. running intersection: for each pair of clusters C and C ′ that contain a

vertex v ∈ G.V , each cluster on the unique path between C and C ′ also contains

v. �

In order to create a cluster graph having the running intersection property,

one needs to triangulate the original graph. Triangulation refers to adding sufficient

additional edges such that the graph contains no chordless cycles i.e. cycles of four

or more distinct vertices without a short-cut. The cluster nodes in the junction tree

are simply maximal cliques in the triangulated graph. It is usually the process of

triangulation which leads to arbitrarily large cliques in the triangulated graph, which

translates into arbitrarily large cluster nodes in the junction tree. Fortunately, as

the next theorem asserts, the graphs created by the overlap template are already

triangulated (e.g. chordal):

Theorem 2 (Bunescu, 2004) Let w1w2...wn be a word sequence, arbitrarily long

(it may be the entire sequence of words from a document). Let E be an arbitrary

set of candidate entities, and Ei the set of overlapping entities at position i, where

1 ≤ i ≤ n. Let G be the graph created by the application of the overlap template e.g.

the result of creating n cliques, one clique for each Ei, for all 1 ≤ i ≤ n. Then the

overlap graph G is a chordal graph. �

For example, it can be verified easily that the overlap graph in Figure 2.12

is a chordal graph. In Theorem 3 below, we create a particular cluster graph and

show that it is a junction tree for the overlap graph by verifying directly the three

properties from Definition 6. A similar argument can be used for proving Theorem 2.

Theorem 3 (Bunescu, 2004) Keeping with the notation from Theorem 2, let H be

a cluster graph for G, defined as follows:

40



• H.V = {Ei|1 ≤ i ≤ n} e.g. the sets of overlapping entities are vertices in the

cluster graph.

• H.E = {(Ei, Ei+1)|1 ≤ i ≤ n − 1} e.g. connect clusters corresponding to

consecutive positions only (resulting in a list of clusters).

Then H is a junction tree for G. �

The result of applying this procedure on the overlap graph in Figure 2.12 is

illustrated in Figure 2.13. Ellipses denote cluster nodes, while rectangles (separator

nodes) are used to show the intersection between adjacent cluster nodes. It can be

easily verified that this is a junction tree.

e 1

e 12

e 123

e 2

e 12

e 23

e 123

e 3

e 23

e 123

1E

e 12

e 23

e 23

e 123

2E E3

Figure 2.13: Sample junction tree.

Proof of Theorem 3. The first two properties from Definition 6 are directly

verified by H. What is left to prove is the running intersection property. Let

Ei and Ej be two cluster nodes. Assume without loss of generality that i < j.

Let e be a vertex in the original graph G such that e ∈ Ei and e ∈ Ej . Let

e.l and e.r be the left and respectively right boundaries of entity e in the word

sequence. Using the definition of the overlapping sets, e ∈ Ei ⇔ e.l ≤ i ≤ e.r, and

e ∈ Ej ⇔ e.l ≤ j ≤ e.r. Let Ek be a cluster node on the path between Ei and Ej .
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Because of the way in which H was created, k should be a position between i and

j i.e. i < k < j. At this point, we have these three inequalities:

• e.l ≤ i ≤ e.r

• e.l ≤ j ≤ e.r

• i < k < j

Based on these inequalities, it results that e.l ≤ i < k < j ≤ e.r, therefore e.l < k <

e.r. This implies that e ∈ Ek. As Ek was an arbitrary cluster on the path between

Ei and Ej , this means that H has the running intersection property. Therefore, H

is a junction tree for G. �

Both Theorem 2 and Theorem 3 are important because they show that the

size of the largest cluster in the junction tree (i.e. its width) is actually the size of

the largest overlapping clique in the original graph. Because the inference algorithm

using junction trees is in general exponential in this size, and because the size of

the largest overlapping clique can be linear in the number of candidate entities,

this means that exact inference using the generic junction tree algorithm is still

exponential in the number of candidate entities. However, as Theorem 3 shows, for

any overlapping graph, there exists a junction tree whose clusters are exactly the

overlapping cliques. Because of the special form of the overlap clique potential (a

sparse table, with only n + 1 non-zero entries, where n is the size of the clique),

the messages sent between two adjacent cluster nodes in the junction tree can be

computed in time linear in the size of the cluster. We therefore have an exact

inference algorithm based on message propagation, where:

• The computation of any message takes time linear in the size of the adjacent

cluster nodes.

• Assuming a two-phase propagation schedule (Jensen et al., 1990), the total

number of messages is twice the number of cluster nodes.
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• Assuming the length of any candidate entity is less than a maximum length

(as is the norm in information extraction), the sum of all cluster sizes in the

junction tree is linear in the total number of candidate entities.

Based on the three facts above, the overall time complexity of the message propaga-

tion algorithm in the junction tree structure from Theorem 3 is linear in the number

of candidate entities.

2.4.3 Gradient-Based Learning

In Section 2.3.4 we have argued that since the gradient of the log-likelihood for the

global GT-RMN model is generally expensive to compute, one could use instead

the simpler voted perceptron algorithm in which only an approximate value of the

gradient is calculated. In this section we derive a closed form formula of the gradient

for the local LT-RMN model, which can be computed in time that is linear in the

number of candidate entities. The exact value of the gradient is then provided to a

gradient-based optimization algorithm in order to find a set of parameters that is

globally optimal.

Because the overlap template potential is fixed, the only potential values that

need to be learned are those used by local templates. Based on the same notation as

in Section 2.3.4, we use the log-linear representation for a local template potential

φc = exp(wcfc). Being an exponential model, the gradient of the log-likelihood

objective function L(w, D) with respect to the weight vector wc is the difference

between the observed and expected counts of the feature vector fc:

∇cL(w, D) =
∂L(w, D)

∂wc

=
∑

d∈D

fc(d.X, d.Y )−
∑

d∈D

∑

d.Y ′

fc(d.X, d.Y ′)Pw(d.Y ′|d.X)

=
∑

d∈D

fc(d.X, d.Y )−
∑

d∈D

Ew[fc(d)] (2.7)
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While the first term in Equation 2.7 is easy to compute, the second term is usually

expensive to compute in general graphical models. In the current setting however,

we’ll make use of the fact that all potentials involved are local potentials. Therefore,

we can write:

fc(d.X, d.Y ) =
∑

e∈d.E

fc(e.X, e.Y ) (2.8)

Consequently, the expectation term in Equation 2.7 can be rewritten as follows:

Ew[fc(d)] =
∑

d.Y

∑

e∈d.E

fc(e.X, e.Y )Pw(d.Y |d.X) (2.9)

=
∑

e∈d.E

∑

d.Y

Pw(d.Y |d.X)fc(e.X, e.Y ) (2.10)

=
∑

e∈d.E

∑

e.Y

(

∑

d.Y ∼e.Y

Pw(d.Y |d.X)

)

fc(e.X, e.Y ) (2.11)

=
∑

e∈d.E

∑

e.Y

Pw(e.Y |d.X)fc(e.X, e.Y ) (2.12)

The expression d.Y ∼ e.Y above refers to all labelings of d consistent with a par-

ticular entity label e.Y . The term Pw(e.Y |d.X) in the last equation is the marginal

distribution for an entity label e.Y , which can be easily computed after running

belief propagation in the junction tree, by selecting a cluster node containing e and

marginalizing the cluster distribution over all other entities from the same cluster.

Because the junction tree algorithm computes all clusters’ marginal distributions at

once, this means that computing the expectation term Ew[fc(d)] takes time linear in

the number of candidate entities d.E. Based on the last equation, the final formula

for the gradient is:

∇cL(w, D) =
∑

d∈D

∑

e∈d.E

(

fc(e.X, e.Y )−
∑

e.Y ′

Pw(e.Y ′|d.X)fc(e.X, e.Y ′)

)

(2.13)

with a total computation time linear in the number of candidate entities. Maxi-
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mum Likelihood (ML) estimation implicitly assumes a uniform prior distribution of

the parameters w. Alternatively, the parameters could be “smoothed” by using a

Gaussian prior with zero mean and predefined variance σ2, thus giving preference

to more uniform models. The gradient for the maximum a posteriori (MAP) setting

that uses a Gaussian prior is:

∇cL(w, D) =
∑

d∈D

∑

e∈d.E

(

fc(e.X, e.Y )−
∑

e.Y ′

Pw(e.Y ′|d.X)fc(e.X, e.Y ′)

)

−
wc

σ2

(2.14)

Based on either formulation, any gradient-based method can be used for the ML

or MAP estimation of the parameters. In our implementation we used L-BFGS,

a limited-memory quasi-Newton method (Liu & Nocedal, 1989), which has shown

very good performance elsewhere (Sha & Pereira, 2003).

In conclusion, we have introduced a discriminative model for information

extraction based on phrase classification, in which exact inference is linear in the

number of candidate phrases, and where both ML and MAP learning can be done

efficiently. The overall approach is simple, and can be summarized as follows:

1. Candidate Entities: Based on the generic heuristic H1, or alternative domain-

specific heuristics, create a set of candidate entities d.E, for each document in

the corpus, d ∈ D.

2. Junction Tree: Assemble the set of candidate entities into cluster nodes Ei,

one node for each token position i in the document. Each cluster Ei contains

candidate entities that span over position i. Link cluster nodes corresponding

to consecutive positions. The result is a list of cluster nodes, which by The-

orem 3 is a junction tree for the original overlap graph. Depending on the

set of candidate entities, some positions in the document may result in empty

clusters, which split the junction tree into two or more smaller trees. This

is also the case when the document is first split into sentences – because no
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entity can belong to two different sentences, each sentence will have its own

separate junction tree.

3. Cluster Potentials: Initialize each cluster potential with an overlap poten-

tial. Due to sparsity, if the cluster size is n, the cluster potential can be

represented using only n + 1 parameters. Multiply all local template poten-

tials for each entity into only one cluster potential. If there is more than one

cluster containing the entity, choose one at random.

4. Inference: Run a message propagation algorithm on the resulting set of

junction trees, using a two-phase propagation schedule.

5. Learning: Use a gradient based method in a ML or MAP setting, based on

the gradient formula in Equation 2.13 or Equation 2.14 respectively.

Compared with CRFs, this has the additional benefit of allowing the incor-

poration of phrase-based features. Sarawagi and Cohen (2005) have introduced a

conditional version for segmental semi-Markov models (Ge, 2002) to achieve a similar

aim, showing that the phrase classification approach can lead to better performance

vs. CRFs, especially when training data is small, because of a more natural use

of phrase based features, such as similarities with existing dictionaries. Compared

with their work, where sentences are modeled as Markov sequences of segments, our

approach is more direct in modeling the extraction task as one of phrase classifica-

tion. We explicitly model the entire set of candidate entities by including a node

for each entity label in the graphical model.
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2.5 Experimental Results

2.5.1 Systems

In order to evaluate the benefit of modeling correlations between candidate entities

and the impact of the corresponding inference and learning algorithms, we compare

the extraction performance of the following four systems:

• [GT-RMN] is our approach to collective NE recognition based on the RMN

model that uses all local and global clique templates, as described in Sec-

tion 2.3.3. Approximate inference is done using the sum-product algorithm

for factor graphs, while learning is performed using the voted perceptron al-

gorithm from Table 2.5 for 50 epochs, with a learning rate set at 0.01.

• [LT-RMN] is the graphical model obtained by unrolling an RMN that uses

only local templates and the overlap template. The algorithms used for infer-

ence and learning for this phrase classification approach to NE recognition are

the same as for GT-RMN.

• [LT-JT] corresponds to the phrase classification approach described in Sec-

tion 2.4. In terms of local features and label constraints, this is equivalent

with LT-RMN. However, the junction trees representation from Section 2.4.2

allows for an inference procedure that is both exact and tractable. For learning

we use an implementation of the L-BFGS algorithm (Liu & Nocedal, 1989),

coupled with the gradient computation from Section 2.4.3.

• [CRF-TK] is a CRF model for labeling token sequences based on the im-

plementation of McCallum (2002). As in the maximum entropy approach of

Bunescu et al. (2005), we use a comprehensive set of tags that distinguishes

between five token types: outside tokens, beginning entity tokens, ending en-

tity tokens, inside entity tokens and tokens from single word entities. The
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token features are generated based on the features templates from Table 2.6,

through which we try to emulate at the token level the entity level feature

templates from Table 2.3. Like in the other three systems, features occurring

less than three times in the training data are ignored.

Description Feature Template

Current Word w(0)

Short Type s(0)

Bigrams Left w(−1) w(0) w(−1) s(0)

(4 bigrams) s(−1) w(0) s(−1) s(0)

Bigrams Right w(0) w(+1) w(0) s(+1)

(4 bigrams) s(0) w(+1) s(0) s(+1)

Trigrams Left w(−2) w(−1) w(0) ...

(8 trigrams) s(−2) s(−1) s(0)

Trigrams Right w(0) w(+1) w(2) ...

(8 trigrams) s(0) s(+1) s(2)

Word, POS Left w(−1) t(−1)

Word, POS Right w(+1) t(+1)

Table 2.6: CRF Feature Templates.

2.5.2 Datasets

The four systems above were tested on two datasets that have been hand-tagged

for human protein names. The first dataset is Yapex (Franzen et al., 2002), which

consists of 200 Medline abstracts. Of these, 147 have been randomly selected by

posing a query containing the (Mesh) terms protein binding, interaction, and molec-

ular to Medline, while the rest of 53 have been extracted randomly from the GENIA

corpus (Collier et al., 1999). It contains a total of 3,713 protein references. The

second dataset is AIMed, which has been previously used for training the protein

interaction extraction systems of Bunescu et al. (2005). It consists of 225 Medline

abstracts, of which 200 are known to describe interactions between human proteins,
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while the other 25 do not refer to any interaction. There are 4,084 protein refer-

ences in this dataset. All Medline abstracts are tokenized and then POS tagged

using Brill’s tagger (Brill, 1995).

In order to assess the impact of our collective approach to NE recognition on

other types of narrative, we have also experimented with the CoNLL 2003 English

corpus (Tjong Kim Sang & De Meulder, 2003) which contains four types of named

entities: persons (PER), locations (LOC), organizations (ORG), and other (MISC).

This leads to five possible label values (with a label-value of 0 indicating none of the

four categories). For the global approach we used the same overlap template and a

modified version of the repeat template in which the OR potential was replaced with

a different type of potential (SEL) that allows at most one of the including entities

to have a non-zero label-value. The SEL variable (replacing the OR variable) is

forced to have label-value 0 if all including entities have label-value 0, otherwise

it selects the one label-value that is not 0. The resulting repeat template, besides

handling exact repetitions, is also able to capture correlations between entity types,

when one entity repetition is included in another entity with a potentially different

type. For example, it is common in this corpus to have country names repeated

inside organization names in the same document, as is “Japan” in “Bank of Japan”,

or “Japan Aluminium Federation”.

2.5.3 Results and Discussion

We run 10-fold cross-validation experiments, using the same folds for all systems, and

pool the extraction results from all ten folds. Each extracted name in the test data

is compared to the human-tagged data, with the positions taken into account. Two

extractions are considered a match if they consist of the same character sequence in

the same position in the text. Results for the protein recognition task are shown in

Tables 2.7 and 2.8 which give average precision (P), recall (R), and F-measure (F).
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P = #correct extractions
#extractions , R = #correct extractions

#annotated extractions
, F = 2P×R

P+R
.

Yapex

Method Precision Recall F-measure

GT-RMN 69.71 65.76 67.68

LT-RMN 70.79 53.81 61.14

LT-JT 72.08 57.46 63.95

CRF-TK 72.18 57.47 63.99

Table 2.7: Extraction Performance on Yapex.

The results show that, in terms of recall and F-measure, the use of global

templates for modeling influences between candidate entities from the same doc-

ument in GT-RMN significantly improves extraction performance over the local

approach in LT-RMN (a one-tailed paired t-test for statistical significance results in

a p value less than 0.01 on both datasets). In GT-RMN, a candidate phrase may be

extracted, despite the fact that it appears in a non-informative context, if the same

phrase is also repeated in a context that is very indicative of a protein name. It

is therefore the ability to capture mutual influences between candidate extractions

that allows GT-RMN to obtain a significant increase in recall. There is also a small

improvement over CRF-TK, with the results being statistically significant only for

the Yapex dataset, corresponding to a p value of 0.02.

AIMed

Method Precision Recall F-measure

GT-RMN 82.79 80.04 81.39

LT-RMN 81.33 72.79 76.82

LT-JT 81.76 75.11 78.29

CRF-TK 82.89 74.12 78.27

Table 2.8: Extraction Performance on AIMed.

The experimental results also show that the junction-tree version LT-JT
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of the local model obtains a slightly better performance than the LT-RMN model.

This is the expected behavior, since the junction tree algorithm does exact inference,

whereas the sum-product algorithm in factor graphs is only an approximate inference

algorithm. As shown in Section 2.4.2, exact inference can be done in time linear in

the number of candidate entities by exploiting the sparsity of the overlap potentials.

In terms of actual running time, on average, the exact inference implementation was

around two times faster than the approximate inference algorithm. We have also run

experiments with a version of LT-JT in which the parameters were learned using

the voted perceptron algorithm. The results were very similar to those obtained

using gradient-based learning, which means that exact inference is the actual cause

for the observed increase in performance.

The overall results for the CoNLL dataset are presented in Table 2.9, with the

global approach GT-RMN exhibiting improvement over its local version LT-RMN,

albeit less pronounced than in the biomedical domain.

CoNLL

Method Precision Recall F-measure

GT-RMN 83.17 81.44 82.30

LT-RMN 82.15 78.13 80.09

LT-JT 82.14 79.80 80.95

CRF-TK 81.57 80.08 80.82

Table 2.9: Extraction Performance on CoNLL.

2.6 Related Work

Previous to our research, Chieu and Ng (2003) have exploited a set of global features

in order to improve the accuracy of a Maximum-Entropy tagger; however, those

features do not fully capture the mutual influence between the labels of acronyms

and their long forms, or between entity repetitions. In particular, they only allow
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earlier extractions in a document to influence later ones and not vice-versa.

Subsequent to the development of our method, there have been two alter-

native proposals for collective NE recognition: the skip-chain CRFs of Sutton and

McCallum (2004), and the Gibbs sampling approach of Finkel et al. (2005). Both

methods belong to the class of token based classification approaches, but differ with

respect to the algorithm used for inference in the presence of long distance label

correlations.

The skip-chain CRF of Sutton and McCallum (2004) is created by augment-

ing a linear-chain CRF with edges connecting similar (e.g. identical) tokens. Cor-

respondingly, the probability distribution is modified with potential functions that

depend on the context of every pair of similar tokens. Because the new edges intro-

duce cycles in the underlying graphical model, exact inference becomes intractable,

hence approximate inference is done using loopy belief propagation on the entire

graph, guided by a tree based reparameterization (TRP) schedule for message pass-

ing (Wainwright et al., 2001).

Finkel et al. (2005) propose a significantly different approach that is centered

on using Gibbs sampling (Geman & Geman, 1984) for inference. Long distance

correlations are modeled through a multiplicative factor that penalizes a sequential

structure based on the number of correlations that are violated, and the strength of

the correlations as observed in the training data. Because Gibbs sampling proceeds

by probabilistically changing only one state in the tag sequence, the probability

distribution of the entire sequence can be updated dynamically in a very efficient

way, even in the presence of long distance constraints.

While the two techniques are similar to our approach in the sense that they

are both formulated inside the framework of undirected graphical models, each has

its own advantages and disadvantages. Finkel’s approach in particular looks very

appealing, as it can enforce soft constraints that are based not only on the observed
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features, but also on the labels. On the other hand, Gibbs sampling can be very

time consuming, and it is unclear how good a performance it will obtain if applied to

a phrase classification approach such as ours. We believe that doing NE recognition

by phrase classification has the added benefit of allowing for phrase based features,

which can have a significant impact in domains where entity dictionaries are avail-

able. Similarities between candidate entities and entries in the dictionary can be

easily incorporated in a phrase classification approach, and can lead to improve-

ments in extraction accuracy, especially when training data is scarce (Sarawagi &

Cohen, 2005). Another advantage of phrase based classification is that, by relaxing

the non-overlapping constraint, it could also allow for extractions that overlap. This

can be very useful, since names often contain other names (e.g., “Interleukin-1” in

“Interleukin-1 receptor”, or “Japan” in “Bank of Japan”). Extracting all named

entities, as opposed to extracting only the ones with the longest span, could provide

a richer and more informative output.

The Semi-Markov Conditional Random Fields framework, which was pro-

posed by Sarawagi and Cohen (2005), is another tractable approach to NE recogni-

tion modeled as phrase classification. We believe that the LT-JT method, which was

first presented in (Bunescu, 2004), is significantly easier to implement. The inference

in LT-JT is based on the traditional message passing algorithm, which is easy to

understand and implement. Also, as shown in Section 2.4.3 on gradient-based learn-

ing, the expectation term from the gradient is simply a byproduct of inference (i.e.,

belief propagation) in the junction tree. In semi-Markov CRFs, inference is done

using a complex semi-Markov analog of the Viterbi algorithm, while the gradient

is computed with a significantly more complicated algorithm, completely separated

from inference. LT-JT also explicitly creates an undirected graphical model that

contains a node for each candidate phrase, making it easier to model long distance

dependencies between phrases. While it is unclear how to accommodate such de-
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pendencies in a semi-Markov CRF, they could be captured in the LT-JT model by

adding an edge between the dependent phrases, an idea that we intend to pursue in

future work.

2.7 Chapter Summary

In this chapter we have described two novel phrase based classification approaches

to NE recognition. In the first model (GT-RMN), extraction is done by collectively

classifying all candidate entities from the same document. We use the expressive

framework of Relational Markov Networks in order to capture label correlations

between repetitions, or between short and long forms of the same entity name.

Experimental results demonstrate that the new global approach to NE recognition

outperforms a local version that ignores label correlations between extractions. The

new system also outperforms a token classification approach based on linear chain

Conditional Random Fields, a state-of-the-art graphical model for sequence tagging.

In the second model (LT-JT), we exploit the sparsity of the overlap potentials in a

junction tree representation and obtain a new approach to NE recognition in which

the phrase classification algorithm used for inference is both exact and tractable. We

show that LT-JT obtains performance that is competitive to CRFs, and argue that

the ability to easily incorporate phrase features makes LT-JT especially appropriate

for domains in which named entity dictionaries are available.
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Chapter 3

Named Entity Disambiguation

3.1 Motivation

As described in the previous chapter, in Named Entity Recognition one is concerned

with finding textual mentions of predefined types of entities, such as people or

companies in the news domain, or proteins and genes in the biomedical domain.

In general, there is a many-to-many mapping between names and entities, which

means that one cannot reason about entities based solely on the output of a NE

recognizer. The many-to-many relationship between entities and names is caused

by two different phenomena:

• Polysemy: The same name can refer to multiple entities.

• Synonymy: The same entity can have multiple names.

Polysemy is illustrated in the three sentences below, where the same name John

Williams is used to refer to three different persons:

1. “John Williams and the Boston Pops conducted a summer Star Wars concert

at Tanglewood.”

2. “John Williams lost a Taipei death match against his brother, Axl Rotten.”
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3. “John Williams won a Victoria Cross for his actions at the battle of Rorke‘s

Drift.”

The entities denoted by the same name do not necessarily have to belong to the

same category (e.g. people). For instance, Venus can refer to the second-closest

planet to the Sun, or to the Roman goddess of love, as illustrated in the sentences

below:

• “Venus is covered with an opaque layer of highly reflective clouds of carbon

dioxide.”

• “Paris decided in favor of Venus and gave her the golden apple.”

In synonymy, the same entity may be mentioned using different names, as in the

following sentence in which Venus, Morning Star, and Evening Star all refer to the

same entity (i.e. the planet Venus).

• ”Venus reaches its maximum brightness shortly before sunrise or shortly after

sunset, for which reason it is often called the Morning Star or the Evening

Star.”

Synonymy is especially pervasive in the biomedical domain, where researchers do

not always follow the standard nomenclature. For instance, it is not uncommon for

a gene to have five or more alternative names, as illustrated below:

• I1F5 HUMAN: Interleukin 1 family member 5 | Interleukin-1 HY1 | Interleukin-

1 delta | Interleukin-1 protein 1 | Interleukin-1 receptor antagonist homolog

1 | Interleukin-1-like protein 1 | IL-1 delta | IL-1 related protein 3 | IL-1F5 |

IL-1HY1 | IL-1L1 | IL-1RP3 | IL-1ra homolog 1 | IL1F5 | IL1RP3 | FIL1 delta.

The Named Entity Disambiguation task is concerned with mapping occur-

rences of names in text documents to their corresponding denotations. A reliable
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solution to the disambiguation problem would enable applications downstream on

the NLP pipeline to reason about entities and thus provide results that more closely

match the actual information need of the users.

Web Information Retrieval is one of the tasks that could benefit from NE

disambiguation. Queries about named entities constitute a significant portion of

popular web queries, according to search engine logs. When submitting queries

such as John Williams or Venus, search engine users could also be presented with

a compilation of facts and specific attributes about those named entities, rather

than a set of best-matching web pages. One of the challenges in creating such an

alternative search result page is the inherent ambiguity of the queries, as several

instances of the same class (e.g., different people) or different classes (e.g., a planet,

or a mythological entity) may share the same name in the query. The effectiveness

of the search could be greatly enhanced if the search results were grouped together

according to the corresponding sense, rather than presented as a flat, sense-mixed

list of items (whether links to full-length documents, or extracted facts). As an

added benefit, users would have easier access to a wider variety of results, whenever

the top 10 or so results returned by the largest search engines happen to refer to only

one particular (arguably the most popular) sense of the query (e.g., the composer

in the case of John Williams), thus submerging or “hiding” documents that refer to

other senses of the query.

Web Information Extraction is another NLP task where NE disambiguation

could have a significant impact. In IE, like in many other natural language applica-

tions, significant performance gains can be achieved as a function of data size rather

than algorithm complexity, as illustrated by the increasingly popular use of the web

as a (very large) corpus (Dale, 2003). It seems therefore natural to try to exploit

the web in order to also improve the performance of relation extraction, i.e. the

discovery of useful relationships between named entities mentioned in text docu-
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ments. A relation between two given entities can be asserted in multiple documents

on the web. We believe that an IE system that exploited evidence from multiple

text sources would see a significant gain in performance. However, if one wants to

combine evidence from multiple web pages, then one needs again to solve the name

disambiguation problem. Without solving it, a relation extraction system analyzing

the sentence examples given above for John Williams could mistakenly consider the

third as evidence that John Williams the composer fought at Rorke’s Drift.

3.2 Background

3.2.1 Disambiguation vs. Discrimination

Named Entity Disambiguation associates names with entities that are predefined in

an external repository. Building a comprehensive repository of entity definitions can

be a very complex and laborious endeavor. For example, in the more general problem

of Word Sense Disambiguation (WSD), a traditional source of sense definitions is

WordNet (Fellbaum, 1998) – an “electronic lexical database” that has taken many

person years to develop.

A slightly different task is that of Named Entity Discrimination, in which

multiple occurrences of a name are clustered into classes by detecting whether two

occurrences refer to the same entity. Essential to the distinction between disam-

biguation and discrimination is that the sense definitions be external. Without this

condition, one could see disambiguation as discrimination followed by an extra step

in which the sense associated with a cluster can be defined either by choosing one

“representative” context from the cluster, or as the sum of all contexts in the cluster.

When extended to general noun phrases, the discrimination problem is also known

as coreference resolution.

Discrimination may be perceived as being easier than disambiguation because
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we only need to determine if two names refer to the same entity and not what the

actual entity is. Discrimination is clearly less demanding in terms of resources, as

it does not require an external source of knowledge. However, both general and

domain-specific sense repositories are already freely available, and most of them

contain very useful types of rich structural information (e.g. taxonomies, hyperlink

structures). As will be described later in Section 3.2.2, a disambiguation model can

be trained to exploit the structural information contained in these repositories in

order to improve the disambiguation, and implicitly the discrimination, accuracy.

The external sources used for sense definitions in named entity disambigua-

tion can be very diverse; for instance, in the related task of WSD, people have

used dictionaries, thesauri, bilingual corpora or hand-labeled training sets (Schutze,

1998). For the specific task of disambiguating person names, an interesting approach

to entity definitions was taken by Bekkerman and McCallum (2005). In their ap-

proach, a person entity is implicitly defined by that person’s social network. By

design, our NE disambiguation method works with any type of named entities. The

disambiguation algorithm is based on an entity dictionary derived from Wikipedia,

a free online encyclopedia written collaboratively by volunteers. In the next sec-

tion we give an overview of the Wikipedia structures that are most relevant to our

approach to named entity disambiguation.

3.2.2 Wikipedia

Wikipedia is a free online encyclopedia written collaboratively by volunteers, us-

ing a wiki software that allows almost anyone to add and change articles. It is a

multilingual resource – there are about 200 language editions with varying levels of

coverage. Wikipedia is a very dynamic and quickly growing resource – articles about

newsworthy events are often added within days of their occurrence. As an example,

the September 2005 version contains 751,666 articles, around 180,000 more articles
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than four months earlier. The work in this thesis is based on the English version

from May 2005, which contains 577,860 articles.

Each article in Wikipedia is uniquely identified by its title – a sequence

of words, with the first word always capitalized. Typically, the title is the most

common name for the entity described in the article. When the name is ambiguous,

it is further qualified with a parenthetical expression. For instance, the article

on John Williams the composer has the title John Williams (composer). Because

each article describes a specific entity or concept, we consider the article to be the

definition for that entity.

In general, there is a many-to-many correspondence between names and en-

tities. This relation is captured in Wikipedia through redirect and disambiguation

pages, as described in the next two sections.

Redirect Pages

Synonymy is explicitly modeled in Wikipedia through redirect pages. A redirect page

exists for each alternative name that can be used to refer to an entity in Wikipedia.

The name is transformed (using underscores for spaces) into a title whose article

contains a redirect link to the actual article for that entity. For example, John

Towner Williams is the full name of the composer John Williams. It is therefore

an alternative name for the composer, and consequently the article with the title

John Towner Williams is just a pointer to the article for John Williams (composer).

An example entry with a considerably higher number of redirect pages is United

States. Its redirect pages correspond to acronyms (U.S.A., U.S., USA, US), Spanish

translations (Los Estados Unidos, Estados Unidos), misspellings (Untied States) or

synonyms (Yankee land).
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Title Redirect Disambig

John Williams (composer) John Towner Williams John Williams

John Williams (wrestler) Ian Rotten John Williams

John Williams (VC) none John Williams

Boston Pops Orchestra Boston Pops, Pops
The Boston Pops Orchestra

United States US, USA, ... US, USA,
United States of America United States

Venus,
Venus (planet) Planet Venus Morning Star,

Evening Star

Table 3.1: Examples of Wikipedia titles and their aliases.

Disambiguation Pages

Polysemy is modeled in Wikipedia through disambiguation pages, which are created

only for ambiguous names, i.e. names that denote two or more entities in Wikipedia.

For example, the disambiguation page for the name John Williams lists 22 associated

entities. Therefore, besides the non-ambiguous names that come from redirect pages,

additional aliases can be found by looking for all disambiguation pages that list a

particular Wikipedia entity. In his philosophical article “On Sense and Reference”,

Frege (1892) gave a famous argument to show that sense and reference are distinct.

In his example, the planet Venus may be referred to using the phrases “morning

star” and “evening star”. This example is nicely captured in Wikipedia by two

disambiguation pages, Morning Star and Evening Star, both listing Venus as a

potential referent.

Categories

Every article in Wikipedia is required to have at least one category. As shown in

Table 3.2, John Williams (composer) is associated with a set of categories, among

them Star Wars music, Film score composers, and 20th century classical composers.

Categories allow articles to be placed into one or more topics. The topics can be
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further categorized by associating them with one or more parent categories. In

Table 3.2 Venus is shown as both an article title and a category. As a category,

it has one direct parent Planets of the Solar System, which in turn belongs to two

more general categories, Planets and Solar System. Thus, categories form a directed

acyclic graph, allowing multiple categorization schemes to co-exist simultaneously.

There are in total 59,759 categories in Wikipedia.

Title Categories

John Williams (composer) Star Wars music, Film score composers,
20th century classical composers, ...

John Williams (wrestler) Professional wrestlers,
People living in Baltimore

John Williams (VC) British Army soldiers,
British Victoria Cross recipients

Boston Pops Orchestra American orchestras,
Massachusetts musicians

United States North American countries,
Republics, United States

Venus (planet) Venus, Planets, Solar System,
Planets of the Solar System, ...

Table 3.2: Examples of Wikipedia titles and their categories.

Hyperlinks

Articles in Wikipedia often contain mentions of entities that already have a corre-

sponding article. When contributing authors mention an existing Wikipedia entity

inside an article, they are required to link at least its first mention to the corre-

sponding article, by using links or piped links. Both types of links are exemplified in

the following wiki source code of a sentence from the article on Italy: “The [[Vat-

ican City|Vatican]] is now an independent enclave surrounded by [[Rome]]”. The

string from the second link (“Rome”) denotes the title of the referenced article. The

same string is also used in the display version. If the author wants another string

displayed (e.g., “Vatican” instead of “Vatican City”), then the alternative string

is included in a piped link, after the title string. Consequently, the display string
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for the aforementioned example is: “The Vatican is now an independent enclave

surrounded by Rome”.

3.3 Using Wikipedia for NE Disambiguation

In this section we show how to process the Wikipedia structures enumerated above

in order to obtain a dictionary that links names to their possible denotations, and a

dataset of disambiguated name occurrences. This will be followed by a description of

our ranking approach to named entity disambiguation, for which the disambiguation

dataset will be used to provide training and testing data.

The main concepts introduced so far are summarized using the notation

below:

• Let E denote the entire set of entities from Wikipedia.

• For any entity e∈E:

– Let e.name be the name obtained from the corresponding article title by

removing any expression between parentheses.

– Let e.T be the text of the article.

– Let e.R be the set of all names that redirect to e.

– Let e.D be the set of names whose disambiguation pages contain a link

to e.

– Let e.C be the set of categories to which e belongs (i.e. e’s immediate

categories and all their ancestors in the Wikipedia taxonomy).

3.3.1 The Named Entity Dictionary

We organize all named entities from Wikipedia into a dictionary structure D, where

each entry d∈D has two fields: the name d.name, and the set of entities d.E that
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can be denoted by the name d.name in Wikipedia.

The first step in building the dictionary is to identify named entities, i.e.

entities with a proper name title. Because every title in Wikipedia must begin with

a capital letter, the decision whether a title is a proper name relies on the following

sequence of heuristic steps:

1. If e’s title is a multiword title, check the capitalization of all content words, i.e.

words other than prepositions, determiners, conjunctions, relative pronouns

or negations. If all content words are capitalized, then e is a named entity.

Otherwise, go to step 2.

2. If e’s title is a one word title that contains at least two capital letters, then e

is a named entity. Otherwise, go to step 3.

3. Count how many times e.name occurs in the text of the article, in positions

other than at the beginning of sentences. If at least 75% of these occurrences

are capitalized, then e is a named entity.

The above heuristic procedure extracts close to half a million named entities from

Wikipedia. The second step constructs the actual dictionary D as follows:

• The set of names in D consists of all strings that may denote a named entity,

i.e. if e∈E is a named entity, then its title name e.name, its redirect names

e.R, and its disambiguation names e.D are all added as names in D.

• Each entry name d.name∈D is mapped to d.E, the set of entities that d.name

may denote in Wikipedia. Consequently, a named entity e is included in d.E

if and only if d.name = e.title, d.name∈e.R, or d.name∈e.D.

3.3.2 The Disambiguation Dataset

Disambiguated name occurrences can be extracted from the hyperlinks contained

inside Wikipedia articles. As described in Section 3.2.2, the Wikipedia guidelines

64



specify that at least the first occurrence of a name in an article must be linked to the

corresponding Wikipedia article, if such an article exists. Therefore, if the display

name is ambiguous, the link or the piped link is disambiguating it. We use the

term named entity query to denote the occurrence in a Wikipedia article of a proper

name for which we would like to retrieve the corresponding entity. Given a query q,

let q.name and q.e denote the display name and the actual entity corresponding to

that name, as specified in the hyperlink. We create a dataset Q of disambiguated

named entity queries by including in it all ambiguous proper name queries i.e. all

queries q such that there is a matching entry in the named entity dictionary d ∈ D

(i.e. q.name = d.name) for which d.E ≥ 2. For all such queries, we also set the

field q.E to contain all entities that may be denoted by q.name in Wikipedia (i.e.

q.E = d.E).

The notation used for queries q ∈ Q and their fields is summarized in the list

below:

• q.name is the name displayed in the article.

• q.e is the actual entity referred in the article.

• q.E is the set of entities that can be denoted by the name q.name (e.g., q.e ∈

q.E).

• q.T is a text window centered on the query name. The window size is set to

55, which is the value that was observed to give optimum performance in the

related task of cross-document coreference (Gooi & Allan, 2004).

The application of the extraction procedure outlined above results in a dataset Q

of 1, 783, 868 disambiguated queries.
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3.4 Ranking Models for Disambiguation

One solution to named entity disambiguation would be to model it as a classification

problem. In this approach, a classifier would be created for every name, where the

number of classes would be equal to the number of entities that correspond to

that name in Wikipedia. Given a feature vector representation, this approach is

equivalent to learning a separate set of weights for each named entity in Wikipedia,

where the number of weights is usually proportional to the size of the vocabulary.

This leads to memory requirements that are linear in the number of entities and

the vocabulary size. Since the total number of named entities in Wikipedia is very

large (virtually unbounded), the final space constraints might be hard to satisfy.

Ideally, one would like the named entity disambiguation model to depend as little

as possible on the total number of entities in Wikipedia.

An alternative approach is to cast disambiguation as a ranking problem.

Using the notation introduced in the previous section, let q be an arbitrary named

entity query q and e ∈ q.E an entity that may correspond to q.name. Assuming that

an appropriate scoring function score(q, e) is available, finding the named entity

corresponding to the query q can be defined as finding the entity that yields the

highest score:

ê = argmax
e∈q.E

score(q, e) (3.1)

If ê = q.e, then ê represents the correct answer. Disambiguation methods will then

differ based on the way they define the scoring function.
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3.4.1 Ranking with Context-Article Similarity

One ranking function that we evaluated experimentally is based on the TF-IDF

cosine similarity between the context of the query and the text of the entity’s article:

score(q, e) = cos(q.T, e.T ) =
q.T

‖q.T‖

e.T

‖e.T‖

The factors q.T and e.T are represented in the standard vector space model, where

each component corresponds to a term in the vocabulary, and the term weight is

the standard tf × idf score (Baeza-Yates & Ribeiro-Neto, 1999). The vocabulary V

is created by reading all Wikipedia articles and recording, for each word stem w, its

document frequency df(w) in Wikipedia. Stopwords and words that are too frequent

(20%) or too rare (0.1%)are discarded. A generic document d is then represented

as a vector of length |V |, with a position for each vocabulary word. If f(w) is the

frequency of word w in document d, and N is the total number of Wikipedia articles,

then the weight of word w∈V in the tf × idf representation of d is:

dw = f(w) ln
N

df(w)
(3.2)

A ranking approach based on cosine similarity has a very small memory footprint –

the ranking model needs to store just a set of IDF word weights.

3.4.2 Ranking with Word-Category Correlations

An error analysis of the cosine-based ranking method reveals that, in many cases,

the pair 〈q, q.e〉 fails to rank first, even though words from the query context unam-

biguously indicate q.e as the actual denoted entity. In these cases, cue words from

the context do not appear in q.e’s article due to two main reasons:

1. The article may be too short or incomplete.
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2. Even though the article captures most of the relevant concepts expressed in

the query context, it does this by employing synonymous words or phrases.

Latent Semantic Indexing (LSI) (Deerwester et al., 1990) can be seen as a possible

solution to this problem. In LSI, both the query context and the article are repre-

sented in a space indexed by concepts, instead of words. The projection from words

to concepts is created through a Singular Vector Decomposition (SVD) of a word-

document matrix that captures word co-occurrence patterns in a separate collection

of documents. The proponents of LSI argue that the dimensions corresponding to

the dominant singular vectors correspond to concepts that generalize across words,

capturing for example synonymy and polysemy relations.

However, in this thesis we take a different approach: we model the semantic

relationship between words indirectly through correlations between words and cat-

egories from the Wikipedia taxonomy. The cosine similarity between q and e can

be seen as an expression of the total degree of semantic correlation between words

from the context of query q and a given named entity e. When the correlation is

too low because the Wikipedia article for the named entity e does not contain all

words that are relevant to e, it is worth considering the semantic correlation between

context words and the categories to which e belongs. For illustration, consider the

two queries for the name John Williams from Figure 3.1.

To avoid clutter, Figure 3.1 depicts only two entities with the name John

Williams in Wikipedia: the composer and the wrestler. On top of each entity, the

figure shows one of their Wikipedia categories (Film score composers and Profes-

sional wrestlers respectively), together with some of their ancestor categories in the

Wikipedia taxonomy. The two query contexts are shown at the bottom of the fig-

ure. In the context on the left, words such as conducted and concert denote concepts

that are highly correlated with the Musicians, Composers and Film score composers

categories. On the other hand, their semantic correlation with other categories in
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Musicians

Composers

Film score composers

People by occupation

People

People known in connection

with sports and hobbies

Wrestlers

Professional wrestlers

high correlationshigh correlations

? ?
conducted

a summer Star Wars

John Williams John Williams

a Taipei death

lost

concert match[...] [...]

John Williams (composer) John Williams (wrestler)

Figure 3.1: Word-Category correlations.

Figure 3.1 is considerably lower. Consequently, we want to design a disambiguation

method that:

1. Learns the magnitude of semantic correlations between words and categories;

2. Exploits these correlations in a scoring function, together with the cosine sim-

ilarity.

Our intuition is that, given the query context on the left, such a ranking function

has a better chance of ranking the “composer” entity higher than the “wrestler”
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entity, when compared with the simple cosine similarity baseline. We consider using

a linear ranking function as follows:

ê = argmax
e∈q.E

w Φ(q, e) (3.3)

The feature vector Φ(q, e) contains a dedicated feature φcos for cosine similarity, and

|V |×|C| features φw,c corresponding to combinations of words w from the Wikipedia

vocabulary V and categories c from the Wikipedia taxonomy C:

Φ = [φcos|Φw,c] (3.4)

φcos(q, e) = cos(q.T, e.T )

φw,c(q, e) =







1 if w∈q.T and c∈e.C,

0 otherwise.

One advantage of this ranking formulation is that, unlike in classification, the num-

ber of features is independent of the number of entities in Wikipedia. Figure 3.2

shows an example query for the name John Williams. The arcs correspond to word-

category pairs 〈w, c〉, created from the context word “conducted” and some of the

categories to which either of the two candidate entities belongs. Using the notation

introduced earlier, the example from Figure 3.2 can be described as follows:

• Two named entities e1 and e2, corresponding to John Williams (composer)

and John Williams (wrestler) respectively.

• One query q, characterized by the following fields:

– q.name = “John Williams′′;

– q.E = {e1, e2};

– q.e = e1;
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People by occupation

People

Musicians

Composers

Film score composers

People known in connection

with sports and hobbies

Wrestlers

Professional wrestlers

John Williams (composer) John Williams (wrestler)

John Williams

?
This past weekend                                conducted   a summer Star Wars concert at Tanglewood. 

Figure 3.2: Query example.

– q.T = {“John Williams′′, “past′′, “week′′, “conduct′′,

“summer′′, “Star Wars′′, “concert′′, “Tanglewood′′, ...}.

The word-category features from the feature vector Φ(q, e) have binary values that

depend on the text of the query q (i.e. q.T ) and the categories (immediate and

ancestor) to which the entity e belongs (i.e. the set e.C). Based on the data from

Figure 3.2, we can create two feature vectors Φ(q, e1) and Φ(q, e2). Besides the

cosine similarity feature φcos, they also contain a binary feature for every possible
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pair 〈w, c〉 of words w from the Wikipedia vocabulary V and categories c from

Wikipedia taxonomy C. As defined in Equation 3.4, the feature values depend on

q.T and e.C, with some examples shown below:

1. The first feature vector Φ(q, e1):

• φw,c(q, e1) = 1 for 〈w, c〉 ∈ {

〈conducted, Composers〉, 〈conducted, Musicians〉,

〈conducted, People〉, ...,

〈concert, Composers〉, 〈concert, Musicians〉,

〈concert, People〉, ...};

• φw,c(q, e1) = 0 for 〈w, c〉 ∈ {

〈conducted, Wrestlers〉, 〈conducted, Professional Wrestlers〉, ...,

〈concert, Wrestlers〉, 〈concert, Professional Wrestlers〉, ...};

2. The second feature vector Φ(q, e2):

• φw,c(q, e2) = 1 for 〈w, c〉 ∈ {

〈conducted, Wrestlers〉, 〈conducted, Professional Wrestlers〉, ...,

〈conducted, People〉, ...,

〈concert, Wrestlers〉, 〈concert, Professional Wrestlers〉, ...},

〈concert, People〉, ...};

• φw,c(q, e2) = 0 for 〈w, c〉 ∈ {

〈conducted, Composers〉, 〈conducted, Musicians〉,

〈concert, Composers〉, 〈concert, Musicians〉, ...};

So far, the ranking approach to disambiguation implicitly assumes that Wikipedia

contains all entities that may be denoted by names from the named entity dictionary.

Taking for example the name John Williams, the present form of the ranking method

assumes that, in any context, the referred entity is among the entities listed on the
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disambiguation page in Wikipedia. In practice, there may be contexts where John

Williams refers to an entity eout that is not covered in Wikipedia, especially when

eout is not a popular entity. These out-of-Wikipedia entities are accommodated in the

ranking approach to disambiguation as follows. A special entity eout is introduced

to denote any entity not covered by Wikipedia. Its attributes are set to null values

as follows:

• The article text is empty: eout.T = ∅;

• The set of categories is empty: eout.C = ∅.

The ranking in Equation 3.1 can then be replaced with a new ranking procedure

that returns the Wikipedia entity with the highest score, if this score is greater then

a fix threshold τ , otherwise it returns eout:

emax = argmax
e∈q.E

score(q, e) (3.5)

ê =







emax if score(q, emax) > τ,

eout otherwise.

However, the same behavior can also be implemented using the initial simple ranking

formulation from Equation 3.3 if we redefine q.E to include eout (i.e. q.E ← q.E ∪

{eout}), and also add a new feature φout to the overall feature vector, as illustrated

in Equation 3.6 below:

Φ = [φout|φcos|Φw,c] (3.6)

φout(q, e) = 1(e, eout)

φcos(q, e) = cos(q.T, e.T )

φw,c(q, e) =







1 if w∈q.T and c∈e.C,

0 otherwise.
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The symbol 1 used in the formulation above stands for the identity function. The

threshold τ from Equation 3.5 is equivalent to the weight learned for the feature

φout in the new formulation from Equation 3.6. Thus, one advantage of the new

feature vector representation is that the threshold is learned along with the weights

for the other features.

The magnitude of each word-category correlation is captured by the weight

vector w, which can be learned by training on the disambiguated query dataset

described in Section 3.3.2. We use the kernel version of the large-margin ranking

approach introduced by Joachims (2002) which solves the optimization problem in

Figure 3.3. The aim of this formulation is to find a weight vector w such that:

1. The correct entity q.e has a higher score than the other candidate entities

e ∈ q.E−{q.e}, i.e. the number of ranking constraints w Φ(q, q.e) ≥ w Φ(q, e)

from the training data that are violated is minimized;

2. The ranking function score(q, e) = w Φ(q, e) generalizes well beyond the train-

ing data.

minimize:

V (w, ξ) = 1
2 ||w||

2 + C
∑

ξq,e

subject to:
w (Φ(q, q.e)− Φ(q, e)) ≥ 1− ξq,e

ξq,e ≥ 0
∀q, ∀e ∈ q.E − {q.e}

Figure 3.3: Optimization problem.

C is a parameter that allows trading-off margin size against training error. The

number of linear ranking constraints is
∑

q (|q.E| − 1). In the dual formulation,

the learned w is a linear combination of the feature vectors Φ(q, e), which makes

it possible to use kernels (Vapnik, 1998). Using a kernel approach means that the

feature vectors Φ(q, e) (which can be very large) do not need to be created explicitly.
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By definition, the kernel corresponds to the dot product between two feature vectors

Φ(q, e) and Φ(q′, e′). In Equation 3.6, the features Φw,c(q, e) were defined to be

nonzero only for words from the query context and categories associated with the

entity e. This means that the dot product between two feature vectors Φw,c(q, e)

and Φw,c(q
′, e′) is equal to the product between the number of common words in the

contexts of the two queries and the number of categories common to the two named

entities. Consequently, the ranking kernel corresponding to the overall feature vector

representation Φ is:

K
(

〈q, e〉, 〈q′, e′〉
)

= Φ(q, e) · Φ(q′, e′)

= 1(e, eout) · 1(e′, eout)

+ cos(q.T, e.T ) · cos(q′.T, e′.T )

+
∣

∣q.T ∩ q′.T
∣

∣ ·
∣

∣e.C ∩ e′.C
∣

∣

Because the product of the cosine terms can be very small compared to the other

products in the kernel (usually around 10−8 for positive query-entity pairs), the

word-category component of the kernel is normalized and the cosine term is multi-

plied with a constant α = 108:

K
(

〈q, e〉, 〈q′, e′〉
)

= 1(e, eout) · 1(e′, eout)

+ α · cos(q.T, e.T ) · cos(q′.T, e′.T )

+
|q.T ∩ q′.T |
√

|q.T | · |q′.T |
·
|e.C ∩ e′.C|
√

|e.C| · |e′.C|
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3.5 Experimental Results

3.5.1 Methodology and Datasets

The taxonomy kernel was trained using the SVMlight package (Joachims, 1999).

As described in Section 3.3.2, through its hyperlinks, Wikipedia provides a dataset

of 1,783,868 disambiguated queries that can be used for training a named entity

disambiguator. The apparently high number of queries actually corresponds to a

moderate size dataset, given that the space of parameters includes one parameter

for each word-category combination. However, due to time constraints, the taxon-

omy kernel was evaluated under the following four scenarios using just a subset of

disambiguated queries:

1. [S1] The working set of Wikipedia categories C1 is restricted to only the 110

top level categories under People by occupation. The query dataset used for

training and testing is reduced to contain only ambiguous queries 〈q, e〉 for

which any potential matching entity e belongs to at least one of the 110 cat-

egories (i.e. e.C ∩ C1 6= ∅). The set of negative matching entities e is also

reduced to those that differ from the true answer q.e in terms of their cat-

egories from C1 (i.e. e.C ∩ C1 6= q.e.C ∩ C1). In other words, this scenario

addresses the task of disambiguating between entities with different top-level

categories under People by occupation. Disambiguation is done using the fea-

ture representation from Equation 3.4.

2. [S2] In a slight generalization of [S1], the set of categories C2 is restricted to

all categories under People by occupation. Each category must have at least

200 articles to be retained,which results in a total of 540 categories out of the

8202 categories under People by occupation. The query dataset is generated

as in the first scenario by replacing C1 with C2.
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3. [S3] This scenario is similar with [S2], except that each category has to contain

at least 20 articles to be retained, leading to 2847 out of 8202 categories.

4. [S4] This scenario uses the same categories as [S2] (i.e. C4 =C2). In order to

make the task more realistic, all queries from the initial Wikipedia dataset are

considered as follows. For each query q, out of all matching entities that do

not have a category under People by occupation, one is randomly selected as an

out-of-Wikipedia entity. Then, out of all queries for which the true answer is

an out-of-Wikipedia entity, a subset is randomly selected such that, in the end,

the number of queries with out-of-Wikipedia true answers is 10% of the total

number of queries. In other words, the scenario assumes the task is to detect if

a name denotes an entity belonging to the People by occupation taxonomy and,

in the positive cases, to disambiguate between multiple entities under People

by occupation that have the same name. Detection and Disambiguation are

done jointly using the feature representation from Equation 3.6.

The dataset for each scenario is split into a training dataset and a testing dataset

which are disjoint in terms of the query names used in their examples. For instance,

if a query for the name John Williams is included in the training dataset, then all

other queries with this name are reserved for learning (and consequently excluded

from testing). Using a disjoint split provides a measure of how well the learned

word-category correlations transfer to unseen entities. In future work we plan to

investigate a complementary way of using the training data, in which the article of

each named entity is augmented with the contexts from all queries for which this

entity is the true answer. This alternative method has the potential of boosting the

accuracy for both disambiguation methods when the training and testing datasets

are not disjoint in terms of the proper names used in their queries.

Table 3.3 shows a number of relevant statistics for each scenario: #Cat

represents the number of Wikipedia categories, #Constr is the number of rank-
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ing constraints used during training. The training and testing datasets are also

characterized in terms of the number of queries and query-answer pairs.

Training Dataset Test Dataset

# Cat. Queries Pairs 〈q, e〉 # Constr. Queries Pairs 〈q, e〉
S1 110 12,288 39,880 27,592 48,661 147,165
S2 540 17,970 55,452 37,482 70,468 235,290
S3 2,847 21,185 64,560 43,375 75,190 261,723
S4 540 38,726 102,553 63,827 80,386 191,227

Table 3.3: Scenario statistics.

In order to reduce the training time in S4, the termination error criterion ǫ

from SVMlight is changed from its default value of 0.001 to 0.01. Also, in the same

scenario, the threshold τ for detecting out-of-Wikipedia entities when ranking with

cosine similarity is set to the value that gives highest accuracy on training data.

3.5.2 Results and Discussion

Table 3.4 shows the results obtained for each scenario: #SV is the number of sup-

port vectors, TK(A) and Cos(A) are the accuracy of the Taxonomy Kernel and the

Cosine similarity respectively. The Taxonomy Kernel significantly outperforms the

Cosine similarity in the first three scenarios, confirming our intuition that corre-

lations between words from the query context and categories from Wikipedia tax-

onomy provide useful information for disambiguating named entities. In the last

scenario, which combines detection and disambiguation, the gain is not that sub-

stantial. Most queries in the corresponding dataset have only two possible answers,

one of them an out-of-Wikipedia answer, and for these cases the cosine is already

doing well at disambiguation. We conjecture that a more significant impact would

be observed if the dataset queries were more ambiguous.

The high number of support vectors – half the number of query-answer pairs

in training data – suggests that all scenarios can benefit from more training data.
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Scenario # S.V. TK(A) Cos(A)
S1 19,693 77.2% 61.5%
S2 29,148 68.4% 55.8 %
S3 36,383 68.0% 55.4%
S4 35,494 84.8% 82.3%

Table 3.4: Comparative evaluation.

One method for making this feasible is to use the weight vector w explicitly in a linear

SVM. Because much of the computation time is spent on evaluating the decision

function, using w explicitly may result in a significant speed-up. The dimensionality

of w (by default |V | × |C|) can be reduced significantly by considering only word-

category pairs whose frequency in the training data is above a predefined threshold.

3.6 Related Work

Since comprehensive named entity repositories like Wikipedia have emerged only

recently, there have been very few approaches to general named entity disambigua-

tion. In general, published approaches focus on either of two types of named entities:

geographical locations and people.

In the geographical domain, the different locations that can be denoted by the

same name are extracted from gazetteers such as GNIS 1 for U.S. locations, or World

Gazetteer 2 for non-U.S. locations. A gazetteer is usually organized as a taxonomy,

in which a node is mapped to a unique place by hierarchically specifying its name

and the names of all the regions encompassing it. A typical disambiguation method

for geographical locations is that proposed by Li et al. (2002): first, candidate

senses are associated with each location mentioned in a document by looking it up

in the gazetteer; next simple word patterns are used to eliminate non-geographical

mentions, or to further refine the location type and eliminate incompatible senses;

1http://geonames.usgs.gov
2http://www.world-gazetteer
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then the one-sense-per-discourse is applied, followed by the application of a graph

search algorithm that tries to enforce coherence between the senses assigned to all

location names inside a document. Names that remain unresolved are assigned a

default sense that is automatically derived from downloaded web pages. A similar

method is also proposed by Amitay et al. (2004) – in their approach, coherence

between multiple sense assignments is achieved by preferring senses (i.e. unique

locations) that share the same encompassing region, as specified in the gazetteer

taxonomy.

Bekkerman and McCallum (2005) propose a collective approach to disam-

biguating names of people known to be related in a social network. Each person

name is first submitted as a query to a search engine, and then the first 100 pages are

downloaded. Disambiguation is defined in this context as finding which of the 100

pages refer to the entity that participates in the input social network. All extracted

pages are instantiated as nodes in an undirected graph, with edges connecting pages

with non-disjoint link structure. In their first approach, the authors enforce co-

herence between sense assignments by requiring that the subgraph containing the

relevant pages for all entities be maximally connected, based on the observation that

people who are related in a social network tend to be mentioned in web pages with

shared link structure.

Hassell et al. (2006) disambiguate researcher names in DBWorld 3 posts by

exploiting relational information contained in an ontology derived from the DBLP

(Ley, 2002) database. Attributes such as affiliations, topics of interests, or collab-

orators are extracted from the ontology and matched against the text surrounding

a name occurrence. The results of the match are then combined in a linear scoring

function that ranks all possible senses of that name.

Since training data is usually expensive to acquire, the methods described

3http://www.cs.wisc.edu/dbworld
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above are all unsupervised. In contrast, our supervised approach to named entity

disambiguation is trained on a dataset of disambiguated name queries that are

automatically extracted from Wikipedia articles. The method is also designed to

detect when a name denotes an entity that is not covered in the ontology – this

is not the case with gazetteer based methods discussed above, which are implicitly

based on a closed world assumption.

As described in Section 3.4.2, LSI can be used to give a better estimate of the

similarity between the context of a name occurrence and the article of a candidate

entity. Another possibility is to use an external semantic network for obtaining

word-similarity information. For example, in the “semantic smoothing” method of

Siolas and d’Alchè Buc (2000), the similarity between two words is computed as the

inverse of the distance between the two words in the WordNet hierarchy. The TF-

IDF document vectors are then smoothed through a linear transformation in which

they are multiplied with the word-similarity matrix. Cristianini et al. (2001) describe

how both LSI and semantic smoothing can be efficiently incorporated into a Latent

Semantic Kernel (LSK). When used in conjunction with polynomial or Gaussian

constructions, the LSK implicitly operates in spaces that are indexed by tuples of

concepts. Both LSI and semantic smoothing could be used in combination with our

taxonomy based approach in order to further improve disambiguation accuracy.

3.7 Chapter Summary

In this chapter, we have described a novel approach to NE disambiguation that

exploits the rich structure of an online encyclopedia. We use the redirect and disam-

biguation pages in Wikipedia to create a comprehensive dictionary that maps proper

names to their possible entity denotations. Disambiguation is modeled as a ranking

problem, in which candidate entities are ordered based on a linear scoring function

that exploits correlations between context words and categories in the Wikipedia
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taxonomy. The magnitude of each word-category correlation is learned by training

a ranking SVM kernel on a dataset of disambiguated name occurrences, automati-

cally extracted from the named entity hyperlinks in Wikipedia articles. Large scale

experiments show that the use of word-category correlations leads to a substantial

improvement in accuracy over the context-article similarity baseline.
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Chapter 4

Relation Extraction

4.1 Motivation

In Named Entity Recognition and Disambiguation, the aim is to find and disam-

biguate textual mentions of predefined types of entities. Often the user’s information

need is more complex, and it may refer to relations between entities, as illustrated

in the three queries below:

1. “What proteins interact with IL-1 receptor-associated kinase 1?”;

2. “Which companies were acquired by Google?”;

3. “In which city was Mozart born?”;

Relation Extraction (RE) is the task of finding tuples of entities for which there exists

textual evidence that supports a predefined type of relationship. For example, a

relation extraction system that is designed to extract protein interactions, company

acquisitions, or people birthplaces should be able to label the following sentences as

positive evidence for the tuples 〈IL-1 receptor-associated kinase 1, Pellino2〉,

〈Google, YouTube〉, and 〈Mozart, Salzburg〉 respectively:
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1. “The phosphorylation of Pellino2 by activated IRAK1 and IRAK4 could

trigger and modulate the translocation of IRAKs from complex I to II”;

2. “Search engine giant Google has bought video-sharing website YouTube in

a controversial $1.6 billion deal”;

3. “Wolfgang Amadeus Mozart was born to Leopold and Anna Maria

Pertl Mozart, in the front room of Getreidegasse 9 in Salzburg”.

The target relationship usually takes as arguments only entities with a pre-

defined type, as emphasized in the example queries given earlier. Thus, for the three

example queries, the relevant entities should be proteins, companies, or people and

cities. Hence the utility of named entity recognition (Chapter 2), which can be used

to provide the appropriate input to relation extraction.

Also, since users are most often interested in relations between entities rather

than their textual mentions, the mentions need to be linked to their proper deno-

tations, which could be entries in protein databases, or Wikipedia articles. In the

examples given above, the relation extraction system must decide whether the name

in the query is coreferential with the same name in the corresponding sentence.

There are also two cases of synonymy that must be solved properly: Wolfgang

Amadeus Mozart vs. Mozart, and IL-1 receptor-associated kinase 1 vs.

IRAK1. Hence also the utility of named entity disambiguation (Chapter 3), which

can be used to solve named entity coreference and synonymy.

4.2 Background

As argued for named entity recognition in Chapter 2, manually developing an IE

system can be a very time consuming, laborious process. The same holds for rela-

tion extraction, where a domain expert (e.g., a biologist if the focus is on protein

interactions) needs to come up with an extraction model (e.g, a set of extraction
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patterns) that is both accurate and comprehensive. In this chapter, we explore rela-

tion extraction models whose parameters are automatically learned from supervised

data. One advantage of the supervised learning approaches is that they require

significantly less human effort. However, the type of supervision provided to the

corresponding learning algorithm can vary greatly in terms of the amount of human

effort involved. The following two main distinctions have been made in the past in

this respect:

• Single Instance Learning (SIL) corresponds to the traditional view of super-

vised learning in which a model is trained on a dataset of examples, each of

which has been manually labeled as either positive or negative.

• Multiple Instance Learning (MIL) is a learning framework introduced by Diet-

terich et al. (1997) in which a model is trained on a dataset of bags of examples.

A bag is labeled as positive if it contains at least one positive example, other-

wise it is labeled as negative. Only the bag labels are available to the learning

algorithm.

In the next two sections we describe in more detail the two types of supervision in

the context of learning for relation extraction.

4.2.1 Single Instance Learning Supervision for RE

We restrict relation extraction to finding relationships between entities mentioned

in the same sentence. The RE task is then equivalent to classifying sentences as to

whether they assert a relationship between the entities mentioned therein. Because

the relations investigated in this chapter are all binary, a sentence containing more

than two entities will be used to create two or more examples. More exactly, if

a sentence contains n entities (n ≥ 2), it is replicated into
(

n
2

)

sentences, each

containing only two entities. If the two entities are known to be in the relationship,
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then the replicated sentence is added to the set of corresponding positive sentences,

otherwise it is added to the set of negative sentences. During testing, a sentence

having n entities (n ≥ 2) is again replicated into
(

n
2

)

sentences in a similar way. In

each sentence example, the two entity names are replaced with two generic tags 〈e1〉

and 〈e2〉, so that the learned relation extraction model is independent of the actual

names of the arguments.

Below we enumerate the two positive and one negative sentence examples generated

from the protein interaction sentence mentioned earlier in Section 4.1:

1. (+) “The phosphorylation of 〈e1〉 by activated 〈e2〉 and IRAK4 could trigger

and modulate the translocation of IRAKs from complex I to II”;

2. (+) “The phosphorylation of 〈e1〉 by activated IRAK1 and 〈e2〉 could trigger

and modulate the translocation of IRAKs from complex I to II”;

3. (−) “The phosphorylation of Pellino2 by activated 〈e1〉 and 〈e2〉 could trigger

and modulate the translocation of IRAKs from complex I to II”;

The amount of human effort is still significant – the labels are provided by a domain

expert through a process of manual annotation of sentences in the training cor-

pus. However, manually labeling sentence examples is likely to be less demanding

than manually devising a combination of extraction patterns. Also, many learning

algorithms, when trained with this type of supervision, induce a set of extraction

patterns whose weights are set such that the expected test error is minimized. In

contrast, manually selecting an adequate set of weights can be a daunting task even

for a domain expert. Examples of relation extractions approaches that learn from

SIL supervision and that have motivated our research in this area are: the ELCS

system developed by Rohit Kate and described in (Bunescu et al., 2005), the tree

kernel method of Zelenko et al. (2003), and the dependency tree kernel approach of

Culotta and Sorensen (2004).

86



In Sections 4.3 and 4.4 we describe two SIL approaches to relation extraction

that differ with respect to the type of representation used for relation examples:

• In the first approach, features as simple as sequences of words around the two

entity names can be used as extraction patterns. Additionally, the method

can also utilize part-of-speech or phrase tags, if such information is available

(Section 4.3).

• In the second approach, extraction patterns are created based on the shortest

path between the two entity names in the dependency graph of the sentence.

Compared to the first approach, this method requires a deeper syntactic anal-

ysis of the sentence examples (Section 4.4).

4.2.2 Multiple Instance Learning Supervision for RE

The amount of human effort could be further reduced if the only supervision re-

quired consisted of pairs of names of entities known to exhibit or not exhibit a

particular relationship. Given a few pairs of well-known entities that clearly exhibit

or do not exhibit a particular relation, such as Acquired(Google, YouTube) and Not

Acquired(Yahoo, Microsoft), a search engine could be used on a very large corpus

to find sentences that mention both of the entities in each of the pairs. The corpus is

assumed to be large enough such that, although not all of the sentences for positive

pairs will state the desired relationship, many of them will. Presumably, none of

the sentences for negative pairs state the targeted relation. Each pair of entities will

then be associated with a bag of extracted sentences, as illustrated below:

• (+) (Google, YouTube)

– Search engine giant Google has bought video-sharing website YouTube

in a controversial $1.6 billion deal.
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– The companies will merge Google’s search expertise with YouTube’s

video expertise.

– Google has acquired social media company, YouTube for $1.65 billion

in a stock-for-stock transaction.

• (−) (Yahoo, Microsoft)

– Yahoo is starting to look more like Microsoft and less like the innova-

tive, unified service that got my loyalty in the first place.

– Whatever it is, Yahoo is dashing in front, with Microsoft close behind.

– Yahoo and Microsoft teamed up on October 12 to make their instant

messaging software compatible.

Multiple instance learning is a machine learning framework that exploits

this sort of weak supervision, in which a positive bag is a set of instances which

is guaranteed to contain at least one positive example, and a negative bag is a set

of instances all of which are negative. MIL was originally introduced to solve a

problem in biochemistry (Dietterich et al., 1997); however, it has since been applied

to problems in other areas such as classifying image regions in computer vision

(Zhang et al., 2002), and text categorization (Andrews et al., 2003; Ray & Craven,

2005).

In Section 4.6 we extend our approach to relation extraction using support

vector machines and string kernels (to be introduced in Section 4.3) to handle this

weaker form of MIL supervision. This approach can sometimes be misled by tex-

tual features correlated with the specific entities in the few training pairs provided.

Therefore, we also describe a method for weighting features in order to focus on

those correlated with the target relation rather than with the individual entities.
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4.3 SIL with a Subsequence Kernel for RE

The development of our first approach to relation extraction using single instance

learning was motivated by previous work in text mining for protein-protein interac-

tions. One of the early approaches to extracting interactions between proteins from

biomedical abstracts is that of Blaschke and Valencia (2001, 2002). Their system is

based on a set of manually developed rules, where each rule (or frame) is a sequence

of words or part-of-speech (POS) tags and two protein-name tokens. Between ev-

ery two adjacent words is a number indicating the maximum number of intervening

words allowed when matching the rule to a sentence. An example rule is shown in

Figure 4.1. A sentence matches the rule if and only if it satisfies the word constraints

in the given order and respects the maximum length of the gaps between the words.

interaction of (3) 〈e1〉 (3) with (3) 〈e2〉

Figure 4.1: Sample extraction rule used in Blaschke’s system.

Extraction using Longest Common Subsequences (ELCS) is a more recent

method, developed by Rohit Kate and reported in (Bunescu et al., 2005), that

automatically learns such rules. ELCS’ rule representation is similar to that of

Blaschke, except that it currently does not use POS tags, but allows disjunctions

of words. An example rule learned by this system is shown in Figure 4.2. Words in

square brackets separated by ‘|’ indicate disjunctive lexical constraints, i.e. one of the

given words must match the sentence at that position. The numbers in parentheses

between adjacent constraints indicate the maximum number of unconstrained words

allowed between the two.

- (7) interaction (0) [between | of] (5) 〈e1〉 (9) 〈e2〉 (17) .

Figure 4.2: Sample extraction rule used in Blaschke’s system.
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4.3.1 Capturing Relation Patterns with a String Kernel

Both Blaschke and ELCS do relation extraction based on a limited set of matching

rules, where a rule is simply a sparse sequence of words or POS tags anchored on the

two entity names. Therefore, the two methods share a common limitation: either

through manual selection (Blaschke), or as a result of a greedy learning procedure

(ELCS), they end up using only a subset of all possible anchored word sequences.

Ideally, all such sequences of words would be used as features, with weights reflecting

their relative accuracy. However explicitly creating for each sentence a vector with

a position for each such feature is infeasible, due to the high dimensionality of the

feature space. Nevertheless, we can exploit dual learning algorithms that process

examples only via computing their dot-products, such as in Support Vector Machines

(SVMs) (Vapnik, 1998; Cristianini & Shawe-Taylor, 2000). An SVM learner tries

to find a hyperplane that separates positive from negative examples and at the same

time maximizes the separation between them. This type of max-margin separator

has been shown both theoretically and empirically to resist overfitting and to provide

good generalization performance on unseen examples.

Computing the kernel (i.e. dot-product) between the features vectors asso-

ciated with two relation examples amounts to calculating the number of common

anchored subsequences between the two sentences. This is done efficiently by mod-

ifying the dynamic programming algorithm used in the string kernel of Lodhi et al.

(2002) to account only for common sparse subsequences constrained to match at the

two entity tokens. The feature space is further prunned down by utilizing the follow-

ing property of natural language statements: when a sentence asserts a relationship

between two entity mentions, it generally does this using one of the following four

patterns:

• [FB] Fore–Between: words before and between the two entity mentions

are simultaneously used to express the relationship. Examples: ‘interaction of 〈e1〉
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with 〈e2〉‘, ‘activation of 〈e1〉 by 〈e2〉‘.

• [B] Between: only words between the two entities are essential for asserting

the relationship. Examples: ‘〈e1〉 interacts with 〈e2〉‘, ‘〈e1〉 is activated by 〈e2〉‘.

• [BA] Between–After: words between and after the two entity mentions are

simultaneously used to express the relationship. Examples: ‘〈e1〉 – 〈e2〉 complex‘,

‘〈e1〉 and 〈e2〉 interact‘.

• [M] Modifier: the two entity mentions have no words between them. Ex-

amples: ’U.S. troops’ (a Role:Staff relation), ’Serbian general’ (Role:Citizen).

While the first three patterns are sufficient to capture most cases of interac-

tions between proteins, the last pattern is needed to account for various relationships

expressed through noun-noun or adjective-noun compounds in other types of nar-

rative.

Another observation is that all these patterns use at most 4 words to ex-

press the relationship (not counting the two entity names). Consequently, when

computing the relation kernel, we restrict the counting of common anchored subse-

quences only to those having one of the four types described above, with a maximum

word-length of 4. This type of feature selection leads not only to a faster kernel com-

putation, but also to less overfitting, which results in increased accuracy. Notice that

the rare cases in which the relationship is expressed using a pattern different from

the four basic patterns above are still captured in this model by combinations of

two or more patterns.

The patterns enumerated above are completely lexicalized and consequently

their performance is limited by data sparsity. This can be alleviated by categorizing

words into classes with varying degrees of generality, and then allowing patterns

to use both words and their classes. Examples of word classes are POS tags and

generalizations over POS tags such as Noun, Active Verb or Passive Verb. The

entity type can also be used, if the word is part of a known named entity. Also,
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if the sentence is segmented into syntactic chunks such as noun phrases (NP) or

verb phrases (VP), the system may choose to consider only the head word from

each chunk, together with the type of the chunk as another word class. Content

words such as nouns and verbs can also be related to their synsets via WordNet.

Patterns then can consist of sparse sequences of words, POS tags, generalized POS

tags, entity and chunk types, or WordNet synsets. For example, ‘Noun of 〈e1〉 by

〈e2〉‘ is an FB pattern based on words and general POS tags.

4.3.2 A Generalized Subsequence Kernel

Let Σ1, Σ2, ...,Σk be a collection of disjoint feature spaces. Following the example

in Section 4.3.1, Σ1 could be the set of words, Σ2 the set of POS tags, etc. Let

Σ× = Σ1 × Σ2 × ... × Σk be the set of all possible feature vectors, where a feature

vector would be associated with each position in a sentence. Given two feature

vectors x, y ∈ Σ×, let c(x, y) denote the number of common features between x and

y. The next notation follows that introduced in (Lodhi et al., 2002). Thus, let s, t

be two sequences over the finite set Σ×, and let |s| denote the length of s = s1...s|s|.

The sequence s[i:j] is the contiguous subsequence si...sj of s. Let i = (i1, ..., i|i|) be

a sequence of |i| indices in s, in ascending order. We define the length l(i) of the

index sequence i in s as i|i| − i1 + 1. Similarly, j is a sequence of |j| indices in t.

Let Σ∪ = Σ1 ∪ Σ2 ∪ ... ∪ Σk be the set of all possible features. We say that

the sequence u ∈ Σ∗
∪ is a (sparse) subsequence of s if there is a sequence of |u|

indices i such that uk ∈ sik , for all k = 1, ..., |u|. Equivalently, we write u ≺ s[i] as

a shorthand for the component-wise ‘∈‘ relationship between u and s[i].

Finally, let Kn(s, t, λ) (Equation 4.1) be the number of weighted sparse sub-

sequences u of length n common to s and t (i.e. u ≺ s[i], u ≺ t[j]), where the weight
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of u is λl(i)+l(j), for some λ ≤ 1.

Kn(s, t, λ) =
∑

u∈Σn
∪

∑

i:u≺s[i]

∑

j:u≺t[j]

λl(i)+l(j) (4.1)

Let i and j be two index sequences of length n. By definition, for every k

between 1 and n, c(sik , tjk
) returns the number of common features between s and

t at positions ik and jk. If c(sik , tjk
) = 0 for some k, there are no common feature

sequences of length n between s[i] and t[j]. On the other hand, if c(sik , tjk
) is greater

than 1, this means that there is more than one common feature that can be used

at position k to obtain a common feature sequence of length n. Consequently, the

number of common feature sequences of length n between s[i] and t[j], i.e. the size of

the set {u ∈ Σn
∪|u ≺ s[i], u ≺ t[j]}, is given by

∏n
k=1 c(sik , tjk

). Therefore, Kn(s, t, λ)

can be rewritten as in Equation 4.2:

Kn(s, t, λ) =
∑

i:|i|=n

∑

j:|j|=n

n
∏

k=1

c(sik , tjk
)λl(i)+l(j) (4.2)

We use λ as a penalty factor that downweights longer subsequences. For

sparse subsequences, this means that wider gaps will be penalized more, which is

exactly the desired behavior for the extraction patterns. Through them, we try to

capture head-modifier dependencies that are important for relation extraction; for

lack of reliable dependency information, the larger the word gap is between two

words, the less confident we are in the existence of a head-modifier relationship

between them.

To enable an efficient computation of Kn, we use the auxiliary function K
′

n

with a definition similar to Kn, the only difference being that it counts the length

from the beginning of the particular subsequence u to the end of the strings s and

t, as illustrated in Equation 4.3:
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K
′

n(s, t, λ) =
∑

u∈Σn
∪

∑

i:u≺s[i]

∑

j:u≺t[j]

λ|s|+|t|−i1−j1+2 (4.3)

An equivalent formula for K
′

n(s, t, λ) is obtained by changing the exponent of λ from

Equation 4.2 to |s|+ |t| − i1 − j1 + 2, as shown in Equation 4.4 below:

K
′

n(s, t, λ) =
∑

i:|i|=n

∑

j:|j|=n

n
∏

k=1

c(sik , tjk
)λ|s|+|t|−i1−j1+2 (4.4)

Based on all definitions above, Kn is computed in O(kn|s||t|) time, by mod-

ifying the recursive computation of Lodhi et al. (2002) with the new factor c(x, y),

as shown in Figure 4.3. As in (Lodhi et al., 2002), the complexity of computing

K
′

i(s, t) is reduced to O(|s||t|) by first evaluating another auxiliary factor K
′′

i (s, t).

In Figure 4.3, the sequence sx is the result of appending x to s (with ty defined in

a similar way). To avoid clutter, the parameter λ is not shown in the argument list

of K and K ′, unless it is instantiated to a specific constant.

K
′

0(s, t) = 1, for all s, t

K
′

i(s, t) = 0, if min(|s|, |t|) < i

K
′′

i (s, ∅) = 0, for all i, s

K
′′

i (sx, ty) = λK
′′

i (sx, t) + λ2K
′

i−1(s, t) · c(x, y)

K
′

i(sx, t) = λK
′

i(s, t) + K
′′

i (sx, t)

Kn(s, t) = 0, if min(|s|, |t|) < n

Kn(sx, t) = Kn(s, t) +
∑

j

λ2K
′

n−1(s, t[1 : j − 1]) · c(x, t[j])

Figure 4.3: Computation of subsequence kernel.
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4.3.3 Computing the Subsequence Relation Kernel

As described at the beginning of Section 4.3, the input consists of a set of sentences,

where each sentence contains exactly two entities (protein names in the case of

interaction extraction). In Figure 4.4 we show the segments that will be used for

computing the relation kernel between two example sentences s and t. In sentence

s for instance, x1 and x2 are the two entities, sf is the sentence segment before

x1, sb is the segment between x1 and x2, and sa is the sentence segment after x2.

For convenience, we also include the auxiliary segment s
′

b = x1sbx2, whose span is

computed as l(s
′

b) = l(sb) + 2 (in all length computations, we consider x1 and x2 as

contributing one unit only).

sf

ft ta

sa

1 2y y

t

t’

b

b

1 2x x

s

s’b

b

s  =

t  =

Figure 4.4: Sentence segments.

The relation kernel computes the number of common patterns between two

sentences s and t, where the set of patterns is restricted to the four types introduced

in Section 4.3.1. Therefore, the kernel rK(s, t) is expressed as the sum of four sub-

kernels: fbK(s, t) counting the number of common fore–between patterns, bK(s, t)

for between patterns, baK(s, t) for between–after patterns, and mK(s, t) for modifier

patterns, as in Figure 4.5. The symbol 1 is used there as a shorthand for the indicator

function, which is 1 if the argument is true, and 0 otherwise.

The first three sub-kernels include in their computation the counting of com-
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rK(s, t) = fbK(s, t) + bK(s, t) + baK(s, t) + mK(s, t)

bKi(s, t) = Ki(sb, tb, 1) · c(x1, y1) · c(x2, y2) · λ
l(s

′

b
)+l(t

′

b
)

fbK(s, t) =
∑

i,j

bKi(s, t) ·K
′

j(sf , tf ), 1 ≤ i, 1 ≤ j, i + j < fbmax

bK(s, t) =
∑

i

bKi(s, t), 1 ≤ i ≤ bmax

baK(s, t) =
∑

i,j

bKi(s, t) ·K
′

j(s
−

a , t−a ), 1 ≤ i, 1 ≤ j, i + j < bamax

mK(s, t) = 1(sb = ∅) · 1(tb = ∅) · c(x1, y1) · c(x2, y2) · λ
2+2,

Figure 4.5: Computation of subsequence relation kernel.

mon subsequences between s
′

b and t
′

b. In order to speed up the computation, all these

common counts are calculated separately in bKi, which is defined as the number of

common subsequences of length i between s
′

b and t
′

b, anchored at x1/x2 and y1/y2

respectively (i.e. constrained to start at x1 in s
′

b and y1 in t
′

b, and to end at x2 in

s
′

b and y2 in t
′

b). Then fbK simply counts the number of subsequences that match

j positions before the first entity and i positions between the entities, constrained

to have length less than a constant fbmax. To obtain a similar formula for baK we

simply use the reversed (mirror) version of segments sa and ta (e.g. s−a and t−a ). In

Section 4.3.1 we constrained the three subsequence patterns to use at most 4 words

to express a relation, therefore the constants fbmax, bmax and bamax are set to 4.

Kernels K and K
′

are computed using the procedure described in Section 4.3.2.

4.4 SIL with a Dependency Path Kernel for RE

The pattern examples from Section 4.3.1 show the two entity mentions, together

with the set of words that are relevant for their relationship. A closer analysis of

these examples reveals that all relevant words form a shortest path between the
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two entities in a graph structure where edges correspond to relations between a

head word and its dependents. Figure 4.6 shows the full dependency graphs for

two sentences from the Automated Content Extraction (ACE) newspaper corpus

(NIST, 2000), in which words are represented as nodes and word-word dependen-

cies are represented as directed edges. A subset of these word-word dependencies

capture the predicate-argument relations present in the sentence. Arguments are

connected to their target predicates either directly through an arc pointing to the

predicate (’troops → raided’), or indirectly through a preposition or infinitive par-

ticle (’warning ← to ← stop’). Other types of word-word dependencies account for

modifier-head relationships present in adjective-noun compounds (’several → sta-

tions’), noun-noun compounds (’pumping→ stations’), or adverb-verb constructions

(’recently → raided’).

S1 =

=S2

Protesters stations workers

Troops churches ministers

seized   several   pumping , holding   127   Shell hostage .

recently   have   raided , warning to   stop   preaching .

Figure 4.6: Sentences as dependency graphs.

Dependency representations of language structure have a long tradition (Hud-

son, 1984). Word-word dependencies are typically categorized in two classes as

follows:

• [Local Dependencies] These correspond to local predicate-argument (or

head-modifier) constructions such as ’troops → raided’, or ’pumping → sta-
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tions’ in Figure 4.6.

• [Non-local Dependencies] Long-distance dependencies arise due to various

linguistic constructions such as coordination, extraction, raising and control.

In Figure 4.6, among non-local dependencies are ’troops → warning’, or ’min-

isters → preaching’.

A Context Free Grammar (CFG) parser can be used to extract local depen-

dencies (Collins, 1999), which for each sentence form a dependency tree. Mildly con-

text sensitive formalisms such as Combinatory Categorial Grammar (CCG) (Steed-

man, 2000) model word-word dependencies more directly and can be used to extract

both local and long-distance dependencies, resulting in a directed acyclic graph, as

illustrated in Figure 4.6.

4.4.1 The Shortest Path Hypothesis

If e1 and e2 are two entities mentioned in the same sentence such that they are

observed to be in a relationship R, then most of the contribution of the sentence

dependency graph to establishing the relationship R(e1, e2) is concentrated in the

shortest path between e1 and e2 in the undirected version of the dependency graph.

If entities e1 and e2 are arguments of the same predicate, then the shortest

path between them will pass through the predicate, which may be connected directly

to the two entities, or indirectly through prepositions. If e1 and e2 belong to different

predicate-argument structures that share a common argument, then the shortest

path will pass through this argument. This is the case with the shortest path

between ’stations’ and ’workers’ in Figure 4.6, passing through ’protesters’, which

is an argument common to both predicates ’holding’ and ’seized’. In Table 4.1, we

show the paths corresponding to the four relation instances encoded in the ACE

corpus for the two sentences from Figure 4.6. All these paths support the Located

relationship. For the first path, it is reasonable to infer that if a Person entity
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(e.g. ’protesters’) is doing some action (e.g. ’seized’) to a Facility entity (e.g.

’station’), then the Person entity is Located at that Facility entity. The second

path captures the fact that the same Person entity (e.g. ’protesters’) is doing two

actions (e.g. ’holding’ and ’seized’) , one action to a Person entity (e.g. ’workers’),

and the other action to a Facility entity (e.g. ’station’). A reasonable inference in

this case is that the ’workers’ are Located at the ’station’.

Relation Instance Shortest Undirected Path in Dependency Graph

S1:protesters AT stations protesters → seized ← stations
S1:workers AT stations workers → holding ← protesters → seized ← stations
S2:troops AT churches troops → raided ← churches
S2:ministers AT churches ministers → warning ← troops → raided ← churches

Table 4.1: Shortest Path representation of relations.

In Figure 4.7, we show three more examples of the Located (At) relation-

ship as dependency paths created from one or two predicate-argument structures.

The second example is an interesting case, as it illustrates how annotation decisions

are accommodated in our approach. Using a reasoning similar with that from the

previous paragraph, it is reasonable to infer that ’troops’ are Located in ’vans’,

and that ’vans’ are Located in ’city’. However, because ’vans’ is not an ACE

markable, it cannot participate in an annotated relationship. Therefore, ’troops’ is

annotated as being Located in ’city’, which makes sense due to the transitivity

of the relation Located. In our approach, this leads to shortest paths that pass

through two or more predicate-argument structures.

The last relation example is a case where there exist multiple shortest paths

in the dependency graph between the same two entities – there are actually two

different paths, with each path replicated into three similar paths due to coordina-

tion. Our current approach considers only one of the shortest paths, nevertheless

it could be extended to use all of them as multiple sources of evidence for relation

extraction.
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(1) He had no regrets for his actions in Brcko.

his → actions ← in ← Brcko

(2) U.S. troops today acted for the first time to capture an alleged
Bosnian war criminal, rushing from unmarked vans parked in the
northern Serb-dominated city of Bijeljina.

troops → rushing ← from ← vans → parked ← in ← city

(3) Jelisic created an atmosphere of terror at the camp by killing,
abusing and threatening the detainees.

detainees → killing ← Jelisic → created ← at ← camp
detainees → abusing ← Jelisic → created ← at ← camp
detainees → threatening ← Jelisic → created ← at ← camp
detainees → killing → by → created ← at ← camp
detainees → abusing → by → created ← at ← camp
detainees → threatening → by → created ← at ← camp

Figure 4.7: Relation examples.

There may be cases where e1 and e2 belong to predicate-argument structures

that have no argument in common. However, because the dependency graph is

always connected, we are guaranteed to find a shortest path between the two entities.

In general, we shall find a shortest sequence of predicate-argument structures with

target predicates P1, P2, ..., Pn such that e1 is an argument of P1, e2 is an argument

of Pn, and any two consecutive predicates Pi and Pi+1 share a common argument

(where by “argument” we mean both arguments and complements).

4.4.2 Learning with Dependency Paths

The shortest path between two entities in a dependency graph offers a very con-

densed representation of the information needed to assess their relationship. A

dependency path is represented as a sequence of words interspersed with arrows

that indicate the orientation of each dependency, as illustrated in Table 4.1. These
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paths however are completely lexicalized and consequently their performance will

be limited by data sparsity. The solution is to allow paths to use both words and

their word classes, similar with the approach taken for the subsequence patterns in

Section 4.3.1.

The set of features can then be defined as a Cartesian product over words

and word classes, as illustrated in Figure 4.8 for the dependency path between

’protesters’ and ’station’ in sentence S1. In this representation, sparse or contiguous

subsequences of nodes along the lexicalized dependency path (i.e. path fragments)

are included as features simply by replacing the rest of the nodes with their corre-

sponding generalizations.









protesters
NNS
Noun

Person









× [→]×





seized
VBD
Verb



× [←]×









stations
NNS
Noun

Facility









Figure 4.8: Feature generation from dependency path.

Examples of features generated by Figure 4.8 are “protesters → seized ←

stations”, “Noun→ Verb← Noun”, “Person→ seized← Facility”, or “Person

→ Verb ← Facility”. The total number of features generated by this dependency

path is 4× 1× 3× 1× 4.

For verbs and nouns (and their respective word classes) occurring along a

dependency path we also use an additional suffix ’(-)’ to indicate a negative polarity

item. In the case of verbs, this suffix is used when the verb (or an attached auxiliary)

is modified by a negative polarity adverb such as ’not’ or ’never’. Nouns get the

negative suffix whenever they are modified by negative determiners such as ’no’,

’neither’ or ’nor’. For example, the phrase “He never went to Paris” is associated

with the dependency path “He → went(-) ← to ← Paris”. A more principled

approach that we investigate in future work is to augment the dependency paths
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which dependency trees rooted at content words along path, and treat each rooted

tree as a generalized word class. One advantage of this extension is that negative

polarity items would be automatically learned from the training examples.

As in Section 4.3, we use kernel SVMs in order to avoid working explicitly

with high-dimensional dependency path feature vectors. Computing the dot-product

(i.e. kernel) between two relation examples amounts to calculating the number of

common features (i.e. paths) between the two examples. If x = x1x2...xm and

y = y1y2...yn are two relation examples, where xi denotes the set of word classes

corresponding to position i (as in Figure 4.8), then the number of common features

between x and y is computed as in Equation 4.5.

K(x,y) = 1(m = n) ·
n
∏

i=1

c(xi, yi) (4.5)

where c(xi, yi) = |xi ∩ yi| is the number of common word classes between xi and yi.

This is a simple kernel, whose computation takes O(n) time. If the two paths

have different lengths, they correspond to different ways of expressing a relationship

– for instance, they may pass through a different number of predicate argument

structures. Consequently, the kernel is defined to be 0 in this case. Otherwise, it

is the product of the number of common word classes at each position in the two

paths. As an example, let us consider two instances of the Located relationship,

and their corresponding dependency paths:

1. ’his actions in Brcko’ (his → actions ← in ← Brcko).

2. ’his arrival in Beijing’ (his → arrival ← in ← Beijing).

Their representation as a sequence of sets of word classes is given by:

1. x = [x1 x2 x3 x4 x5 x6 x7], where x1 = {his, PRP, Person}, x2 = {→}, x3

= {actions, NNS, Noun}, x4 = {←}, x5 = {in, IN}, x6 = {←}, x7 = {Brcko,

NNP, Noun, Location}
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2. y = [y1 y2 y3 y4 y5 y6 y7], where y1 = {his, PRP, Person}, y2 = {→}, y3

= {arrival, NN, Noun}, y4 = {←}, y5 = {in, IN}, y6 = {←}, y7 = {Beijing,

NNP, Noun, Location}

Based on the formula from Equation 4.5, the kernel is computed as K(x, y) =

3× 1× 1× 1× 2× 1× 3 = 18.

4.5 SIL Experimental Results

The two relation kernels described above are evaluated on the task of extracting

relations from two corpora with different types of narrative, which are described in

more detail in the following sections. In both cases, we assume that the entities and

their labels are known. All preprocessing steps – sentence segmentation, tokeniza-

tion, POS tagging and chunking – were performed using the OpenNLP1 package. As

explained in Section 4.2.1, if a sentence contains n entities (n ≥ 2), it is replicated

into
(

n
2

)

sentence examples, each containing only two entities.

The dependency graph that is input to the shortest path dependency kernel

is obtained from two different parsers:

• The CCG parser introduced of Hockenmaier and Steedman (2002)2 outputs a

list of functor-argument dependencies, from which head-modifier dependencies

are obtained using a straightforward, deterministic procedure.

• Head-modifier dependencies can be easily extracted from the full parse output

of Collins’ CFG parser (Collins, 1997), in which every non-terminal node is

annotated with head information.

The relation kernels are used in conjunction with SVM learning in order to

find a decision hyperplane that best separates the positive examples from negative

1URL: http://opennlp.sourceforge.net
2URL:http://www.ircs.upenn.edu/˜juliahr/Parser/
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examples. We modified the LibSVM3 package by plugging in the kernels described

above. The factor λ in the subsequence kernel is set to 0.75. The performance is

measured using precision (percentage of correctly extracted relations out of the total

number of relations extracted), recall (percentage of correctly extracted relations

out of the total number of relations annotated in the corpus), and F-measure (the

harmonic mean of precision and recall).

4.5.1 Interaction Extraction from AIMed

We did comparative experiments on the AIMed corpus, which has been previously

used for training the protein interaction extraction systems in (Bunescu et al., 2005).

It consists of 225 Medline abstracts, of which 200 are known to describe interactions

between human proteins, while the other 25 do not refer to any interaction. There

are 4,084 protein references and around 1,000 tagged interactions in this dataset.

We assume that the abstracts have already been tagged for protein names – for

evaluation we used the gold standard manual annotations.

The following systems are evaluated on the task of extracting protein inter-

actions from AIMed:

• [Manual]: We report the performance of the rule-based system of Blaschke

and Valencia (2001, 2002).

• [ELCS]: We report the 10-fold cross-validated results from (Bunescu et al.,

2005) as a Precision-Recall (PR) graph.

• [SSK]: The subsequence kernel is trained and tested on the same splits

as ELCS. In order to have a fair comparison with the other two systems, SSK was

constrained to use only lexical information.

• [SPK]: This is the shortest path dependency kernel, using the head-

modifier dependencies extracted by Collins’ syntactic parser. The kernel is trained

3URL:http://www.csie.ntu.edu.tw/˜cjlin/libsvm/
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and tested on the same 10 splits as ELCS and SSK.

The Precision-Recall curves that show the trade-off between these metrics

are obtained by varying a threshold on the minimum acceptable extraction confi-

dence, based on the probability estimates from LibSVM. The results, summarized

in Figure 4.9(a), show that the subsequence kernel outperforms the other three sys-

tems, with a substantial gain. The syntactic parser, which is originally trained on

a newspaper corpus, builds less accurate dependency structures for the biomedical

text. This is reflected in a significantly reduced accuracy for the dependency kernel.

Recent efforts aimed at the annotation of biomedical corpora with syntactic struc-

tures (Tateisi et al., 2005) may lead to the development of syntactic parsers that

output more accurate dependency structures, which in turn may yield an increased

performance for the dependency kernel approach to relation extraction.
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Figure 4.9: Precision-Recall curves for protein interaction extractors.
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4.5.2 Relation Extraction from ACE

The two kernels are also evaluated on the task of extracting top-level relations from

the ACE corpus (NIST, 2000), the version used for the September 2002 evaluation.

The training part of this dataset consists of 422 documents, with a separate set of

97 documents reserved for testing. This version of the ACE corpus contains three

types of annotations: coreference, named entities and relations. There are five types

of entities – Person, Organization, Facility, Location, and Geo-Political

Entity – which can participate in five general, top-level relations: Role, Part,

Located, Near, and Social. In total, there are 7,646 intra-sentential relations,

of which 6,156 are in the training data and 1,490 in the test data.

A recent approach to extracting relations is described by Culotta and Sorensen

(2004). The authors use a generalized version of the tree kernel of Zelenko et al.

(2003) to compute a kernel over relation examples, where a relation example consists

of the smallest dependency tree containing the two entities of the relation. Precision

and recall values are reported for the task of extracting the 5 top-level relations in

the ACE corpus under two different scenarios:

– [S1] This is the classic setting: one multi-class SVM is learned to discrim-

inate among the 5 top-level classes, plus one more class for the no-relation cases.

– [S2] One binary SVM is trained for relation detection, meaning that all

positive relation instances are combined into one class. The thresholded output of

this binary classifier is used as training data for a second multi-class SVM, trained

for relation classification.

The subsequence kernel (SSK) is trained under the first scenario, to recognize

the same 5 top-level relation types. While for protein interaction extraction only

the lexicalized version of the kernel was used, here we utilize more features, corre-

sponding to the following feature spaces: Σ1 is the word vocabulary, Σ2 is the set

of POS tags, Σ3 is the set of generic POS tags, and Σ4 contains the 5 entity types.
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Chunking information is used as follows: all (sparse) subsequences are created ex-

clusively from the chunk heads, where a head is defined as the last word in a chunk.

The same criterion is used for computing the length of a subsequence – all words

other than head words are ignored. This is based on the observation that in general

words other than the chunk head do not contribute to establishing a relationship

between two entities outside of that chunk. One exception is when both entities in

the example sentence are contained in the same chunk. This happens very often

due to noun-noun (’U.S. troops’) or adjective-noun (’Serbian general’) compounds.

In these cases, the chunk is allowed to contribute both entity heads.

The shortest-path dependency kernel (SPK) is trained under both scenarios.

The dependencies are extracted using either Hockenmaier’s CCG parser (SPK-CCG)

(Hockenmaier & Steedman, 2002), or Collins’ CFG parser (SPK-CFG) (Collins,

1997). To avoid numerical problems, the dependency paths are constrained to pass

through at most 10 words (as observed in the training data) by setting the kernel

to 0 for longer paths. The alternative solution of normalizing the kernel leads to

a slight decrease in accuracy. The fact that longer paths have larger kernel scores

in the unnormalized version does not pose a problem because, by definition, paths

of different lengths correspond to disjoint sets of features. Consequently, the SVM

algorithm will induce lower weights for features occurring in longer paths, resulting

in a linear separator that works irrespective of the size of the dependency paths.

Table 4.2 summarizes the performance of the two relation kernels on the ACE

corpus. For comparison, we also show the results presented in (Culotta & Sorensen,

2004) for their best performing kernel K4 (a sum between a bag-of-words kernel and

a tree dependency kernel) under both scenarios.

The subsequence kernel performs better than the dependency tree kernel K4

– even though SSK does not use dependency information, its features preserve the

word order observed in the training examples, unlike the simple bag-of-words kernel
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(Scenario) Method Precision Recall F-measure

(S1) K4 70.3 26.3 38.0

(S1) SSK 73.9 35.2 47.7

(S1) SPK-CCG 67.5 37.2 48.0

(S1) SPK-CFG 71.1 39.2 50.5

(S2) K4 67.1 35.0 45.8

(S2) SPK-CCG 63.7 41.4 50.2

(S2) SPK-CFG 65.5 43.8 52.5

Table 4.2: Extraction Performance on ACE.

baseline from (Culotta & Sorensen, 2004). This result validates our prior belief that

word order is an important factor in relation extraction.

The shortest-path dependency kernels outperform the dependency kernel of

Culotta and Sorensen (2004) in both scenarios, with a more substantial gain for

SP-CFG. This confirms our intuition that increased extraction performance can be

obtained by focusing the features space only on those dependency structures that

are relevant to relation extraction. An error analysis revealed that Collins’ parser

was better at capturing local dependencies, hence the increased accuracy of SP-CFG

over SP-CCG. Another advantage of shortest-path dependency kernels is that their

training and testing are very fast – this is due to representing the sentence as a chain

of dependencies on which a fast kernel can be computed. All the four SP kernels

from Table 4.2 take between 2 and 3 hours to train and test on a 2.6GHz Pentium

IV machine.

As expected, the newspaper articles from ACE are less prone to parsing errors

than the biomedical articles from AIMed. Consequently, the extracted dependency

structures are more accurate, leading to an improved accuracy for the dependency

kernel when compared to the subsequence kernel – in contrast to the results on the

biomedical domain.
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4.6 An MIL Approach to Relation Extraction

The two SIL methods described so far – the subsequence kernel in Section 4.3 and

the dependency path kernel in Section 4.4 – require the annotation of large corpora

with examples of the relations to be extracted, which is an expensive and tedious

process. In this section, we introduce a supervised learning approach to relation

extraction that requires only a handful of training examples in conjunction with a

very large corpus.

4.6.1 Problem Definition

We address the task of learning a relation extraction system targeted to a fixed

binary relationship R. The only supervision given to the learning algorithm is a

small set of pairs of named entities that are known to belong (positive) or not

belong (negative) to the given relationship. Table 4.3 shows four positive and two

negative example pairs for the corporate acquisition relationship. For each pair, a

bag of sentences containing the two arguments can be extracted from a corpus of

text documents. The corpus is assumed to be sufficiently large and diverse such that,

if the pair is positive, it is highly likely that the corresponding bag contains at least

one sentence that explicitly asserts the relationship R between the two arguments.

In Section 4.7.2 we describe a method for extracting bags of relevant sentences from

the web.

+/− Arg a1 Arg a2

+ Google YouTube
+ Adobe Systems Macromedia
+ Viacom DreamWorks
+ Novartis Eon Labs
− Yahoo Microsoft
− Pfizer Teva

Table 4.3: Corporate Acquisition Pairs.
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Using a limited set of entity pairs (e.g. those in Table 4.3) and their associ-

ated bags as training data, the aim is to induce a relation extraction system that

can reliably decide whether two entities mentioned in the same sentence exhibit the

target relationship or not. In particular, when tested on the example sentences from

Figure 4.10, the system should classify S1, S3,and S4 as positive, and S2 and S5 as

negative.

+/S1: Search engine giant Google has bought video-sharing website
YouTube in a controversial $1.6 billion deal.

−/S2: The companies will merge Google’s search expertise with
YouTube’s video expertise, pushing what executives believe is a hot
emerging market of video offered over the Internet.

+/S3: Google has acquired social media company, YouTube for $1.65
billion in a stock-for-stock transaction as announced by Google Inc. on
October 9, 2006.

+/S4: Drug giant Pfizer Inc. has reached an agreement to buy the
private biotechnology firm Rinat Neuroscience Corp., the companies
announced Thursday.

−/S5: He has also received consulting fees from Alpharma, Eli Lilly and
Company, Pfizer, Wyeth Pharmaceuticals, Rinat Neuroscience, Elan
Pharmaceuticals, and Forest Laboratories.

Figure 4.10: Sentence examples.

As formulated above, the learning task can be seen as an instance of multiple

instance learning. However, there are important properties that set it apart from

problems previously considered in MIL. The most distinguishing characteristic is

that the number of bags is very small, while the average size of the bags is very

large.
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4.6.2 The MIL Formulation

Since its introduction by Dietterich et al. (1997), an extensive and quite diverse

set of methods have been proposed for solving the MIL problem. For the task of

relation extraction, we consider only MIL methods where the decision function can

be expressed in terms of kernels computed between bag instances. This choice was

motivated by the comparatively high accuracy obtained by kernel-based SVMs when

applied to various natural language tasks, and in particular to relation extraction.

Gartner et al. (2002) adapted SVMs to the MIL setting using various multi-

instance kernels. Two of these – the normalized set kernel, and the statistic kernel –

have been experimentally compared to other methods by Ray and Craven (2005),

with competitive results. Alternatively, a simple approach to MIL is to transform

it into a standard supervised learning problem by labeling all instances from posi-

tive bags as positive. An interesting outcome of the study conducted by Ray and

Craven (2005) was that, despite the class noise in the resulting positive examples,

such a simple approach often obtains competitive results when compared against

other more sophisticated MIL methods. Based on this observation, we decided to

transform the MIL problem into a standard supervised SVM problem as illustrated

in Figure 4.11. In this formulation, X is the set of bags used for training, Xp ⊆ X

the set of positive bags, and Xn ⊆ X the set of negative bags. For any instance

x ∈ X from a bag X ∈ X , φ(x) is the implicit feature vector representation of x.

minimize:

J(w, b, ξ) = 1
2 ||w||

2 + C
L

(

cp
Ln

L

∑

X∈Xp

∑

x∈X

ξx + cn

Lp

L

∑

X∈Xn

∑

x∈X

ξx

)

subject to:

w φ(x) + b ≥ +1− ξx, ∀x ∈ X ∈ Xp

w φ(x) + b ≤ −1 + ξx, ∀x ∈ X ∈ Xn

ξx ≥ 0

Figure 4.11: SVM Optimization Problem.
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The capacity control parameter C is normalized by the total number of in-

stances L = Lp + Ln =
∑

X∈Xp
|X| +

∑

X∈Xn
|X|, so that it remains independent

of the size of the dataset. The additional non-negative parameter cp (cn = 1 − cp)

controls the relative influence that false negative vs. false positive errors have on

the value of the objective function. Because not all instances from positive bags are

real positive instances, it makes sense to have false negative errors be penalized less

than false positive errors (i.e. cp < 0.5).

In the dual formulation of the optimization problem from Figure 4.11, bag

instances appear only inside dot products of the form K(x1, x2) = φ(x1)φ(x2), which

makes it possible to use kernels.

The training bags consist of sentences extracted from online documents, us-

ing the methodology described in Section 4.7.2. Parsing web documents in order to

obtain a syntactic analysis often gives unreliable results – the type of narrative can

vary greatly from one web document to another, and sentences with grammatical

errors are frequent. Therefore, we decided to instantiate K to a modified version

of the subsequence kernel from Section 4.3, which does not require syntactic infor-

mation. As described in Section 4.3, the kernel value corresponds to the number of

common subsequences of tokens between two sentences. The subsequences are con-

strained to be “anchored” at the two entity names, and there is a maximum number

of tokens that can appear in a sequence. For example, a subsequence feature for

the sentence S1 in Figure 4.10 is s̃ = “〈e1〉 . . . bought . . . 〈e2〉 . . . in . . . billion . . .

deal”, where 〈e1〉 and 〈e2〉 are generic placeholders for the two entity names. Let

s = w1w2 . . . wk be a sequence of k words, and s̃ = w1 g1 w2 g2 . . . wk−1 gk−1 wk a

matching subsequence in a relation example, where gi stands for any sequence of

words between wi and wi+1. Then the sequence s will be represented in the rela-

tion example as a feature with weight computed as τ(s) = λg(s̃). The parameter λ

controls the magnitude of the gap penalty, where g(s̃) =
∑

i |gi| is the total gap.
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Many relations, like the ones that we explore in the experimental evalua-

tion, cannot be expressed without using at least one content word. We therefore

modified the kernel computation to optionally ignore subsequence patterns formed

exclusively of stop words and punctuation signs. In Section 4.6.4, we introduce a

new weighting scheme, wherein a weight is assigned to every token. Correspondingly,

every sequence feature will have an additional multiplicative weight, computed as

the product of the weights of all the tokens in the sequence. The aim of this new

weighting scheme, as detailed in the next section, is to eliminate the bias caused by

the special structure of the relation extraction MIL problem.

4.6.3 Two Types of Bias

As already hinted at the end of Section 4.6.1, there is one important property

that distinguishes the current MIL setting for relation extraction from other MIL

problems: the training dataset contains very few bags, and each bag can be very

large. Consequently, an application of the learning model described in Section 4.6.2

is bound to be affected by the following two types of bias:

� [Type I Bias] By definition, all sentences inside a bag are constrained to contain

the same two arguments. Words that are semantically correlated with either of

the two arguments are likely occur in many sentences. For example, consider the

sentences S1 and S2 from the bag associated with “Google” and “YouTube” (as

shown in Figure 4.10). They both contain the words “search” – highly correlated

with “Google”, and “video” – highly correlated with “YouTube”, and it is likely

that a significant percentage of sentences in this bag contain one of the two words

(or both). The two entities can be mentioned in the same sentence for reasons

other than the target relation R, and these noisy training sentences are likely to

contain words that correlated with the two entities, without any relationship to R.

A learning model where the features are based on words, or word sequences, is going
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to give too much weight to words or combinations of words that are correlated with

either of individual arguments. This overweighting will adversely affect extraction

performance through an increased number of errors. A method for eliminating this

type of bias is introduced in Section 4.6.4.

� [Type II Bias] While Type I bias is due to words that are correlated with the

arguments of a relation instance, the Type II bias is caused by words that are

specific to the relation instance itself. Using FrameNet terminology (Baker et al.,

1998), these correspond to instantiated frame elements. For example, the corporate

acquisition frame can be seen as a subtype of the “Getting” frame in FrameNet.

The core elements in this frame are the Recipient (e.g. Google) and the Theme (e.g.

YouTube), which for the acquisition relationship coincide with the two arguments.

They do not contribute any bias, since they are replaced with the generic tags 〈e1〉

and 〈e2〉 in all sentences from the bag. There are however other frame elements

– peripheral, or extra-thematic – that can be instantiated with the same value in

many sentences. In Figure 4.10, for instance, sentence S3 contains two non-core

frame elements: the Means element (e.g “in a stock-for-stock transaction”) and the

Time element (e.g. “on October 9, 2006”). Words from these elements, like “stock”,

or “October”, are likely to occur very often in the Google-YouTube bag, and because

the training dataset contains only a few other bags, subsequence patterns containing

these words will be given too much weight in the learned model. This is problematic,

since these words can appear in many other frames, and thus the learned model is

likely to make errors. Instead, we would like the model to focus on words that

trigger the target relationship (in FrameNet, these are the lexical units associated

with the target frame).
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4.6.4 A Solution for Type I Bias

In order to account for how strongly the words in a sequence are correlated with

either of the individual arguments of the relation, we modify the formula for the

sequence weight τ(s) by factoring in a weight τ(w) for each word in the sequence,

as illustrated in Equation 4.6.

τ(s) = λg(s̃) ·
∏

w∈s

τ(w) (4.6)

Given a predefined set of weights τ(w), it is straightforward to update the recursive

computation of the subsequence kernel so that it reflects the new weighting scheme.

If all the word weights are set to 1, then the new kernel is equivalent to the

old one. What we want, however, is a set of weights where words that are correlated

with either of the two arguments are given lower weights. For any word, the decrease

in weight should reflect the degree of correlation between that word and the two

arguments. Before showing the formula used for computing the word weights, we

first introduce some notation:

• Let X ∈ X be an arbitrary bag, and let X.a1 and X.a2 be the two arguments

associated with the bag.

• Let C(X) be the size of the bag (i.e. the number of sentences in the bag), and

C(X, w) the number of sentences in the bag X that contain the word w. Let

P (w|X) = C(X, w)/C(X).

• Let P (w|X.a1 ∨ X.a2) be the probability that the word w appears in a sen-

tence due only to the presence of X.a1 or X.a2, assuming X.a1 and X.a2 are

independent causes for w.
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The word weights are computed as follows:

τ(w) =
C(X, w)− P (w|X.a1 ∨X.a2) · C(X)

C(X, w)

= 1−
P (w|X.a1 ∨X.a2)

P (w|X)
(4.7)

The quantity P (w|X.a1∨X.a2) ·C(X) represents the expected number of sentences

in which w would occur, if the only causes were X.a1 or X.a2, independent of

each other. We want to discard this quantity from the total number of occurrences

C(X, w), so that the effect of correlations with X.a1 or X.a2 is eliminated.

We still need to compute P (w|X.a1 ∨ X.a2). Because in the definition of

P (w|X.a1 ∨ X.a2), the arguments X.a1 and X.a2 were considered independent

causes, P (w|X.a1∨X.a2) can be computed with the noisy-or operator (Pearl, 1986):

P (w|X.a1 ∨X.a2) = 1−(1−P (w|a1)) · (1−P (w|a2)) (4.8)

= P (w|a1)+P (w|a2)−P (w|a1) · P (w|a2)

The quantity P (w|a) represents the probability that the word w appears in a sen-

tence due only to the presence of a, and it could be estimated using counts on a

sufficiently large corpus. For the experimental evaluation, we used the following

approximation: given an argument a, a set of sentences containing a are extracted

from web documents (details in Section 4.7.2). Then P (w|a) is simply approximated

with the ratio of the number of sentences containing w over the total number of sen-

tences, i.e. P (w|a) = C(w, a)/C(a). Because this may be an overestimate (w may

appear in a sentence containing a due to causes other than a), and also because of

data sparsity, the quantity τ(w) may sometimes result in a negative value – in these

cases it is set to 0, which is equivalent to ignoring the word w in all subsequence

patterns.
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4.7 MIL Experimental Results

4.7.1 Systems

The experimental evaluation was designed to answer the following questions:

• How adequate is the subsequence kernel for relation extraction, as opposed to

using a much simpler approach such as a bag-of-words kernel;

• How successful is the word weights schema from Section 4.6.4 at reducing the

Type I bias;

• How does the MIL approach compare against the SIL setting.

Consequently, we evaluated the following four systems:

� SSK–MIL: This corresponds to the MIL formulation from Section 4.6.2,

with the original subsequence kernel modified as described at the end of the same

section.

� SSK–T1: This is the SSK–MIL system augmented with word weights, so

that the Type I bias is reduced, as described in Section 4.6.4.

� BW-MIL: This is a bag-of-words kernel, in which the relation examples

are classified based on the unordered words contained in the sentence. This baseline

shows the performance of a standard text-classification approach to the problem.

� SSK–SIL: This corresponds to the original subsequence kernel trained

with traditional, single instance learning (SIL) supervision. For evaluation, we train

on the manually labeled instances from the test bags. We use a combination of one

positive bag and one negative bag for training, while the other two bags are used

for testing. The results are averaged over all four possible combinations. Note that

the supervision provided to SSK–SIL requires significantly more annotation effort,

therefore, given a sufficient amount of training examples, we expect this system to

perform at least as well as its MIL counterpart.
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The subsequence kernel version described at the end of Section 4.6.2 was

used as a custom kernel in the LibSVM4 Java package. When run with the default

parameters, the results were extremely poor – too much weight was given to the

slack term in the objective function. Minimizing the regularization term is essential

in order to capture subsequence patterns shared among positive bags. Therefore

LibSVM was modified to solve the optimization problem from Figure 4.11, where

the capacity parameter C is normalized by the size of the transformed dataset. In

this new formulation, C is set to its default value of 1.0 – changing it to other values

did not result in significant improvement. The trade-off between false positive and

false negative errors is controlled by the parameter cp. When set to its default value

of 0.5, false-negative errors and false positive errors have the same impact on the

objective function. As expected, setting cp to a smaller value (0.1) resulted in better

performance. Tests with even lower values did not improve the results.

4.7.2 Datasets

We created two datasets for experimental evaluation: one for corporate acquisitions,

as shown in Table 4.4, and one for the person-birthplace relation, with the example

pairs from Table 4.5. In both tables, the top part shows the training pairs, while

the bottom part shows the test pairs. In order to evaluate the relation extraction

performance at the sentence level, we manually annotated all instances from the

positive test bags. The last column in Tables 4.4 and 4.5 shows, between parentheses,

how many instances from the positive test bags are real positive instances. The

corporate acquisition test set has a total of 995 instances, out of which 156 are

positive. The person-birthplace test set has a total of 601 instances, and only 45 of

them are positive. Extrapolating from the test set distribution, the positive bags

in the person-birthplace dataset are significantly sparser in real positive instances

4http://www.csie.ntu.edu.tw/˜cjlin/libsvm
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than the positive bags in the corporate acquisition dataset.

Split +/− Arg a1 Arg a2 Bag size

+ Google YouTube 1375
+ Adobe Systems Macromedia 622

T
ra

in
in

g

+ Viacom DreamWorks 323
+ Novartis Eon Labs 311
− Yahoo Microsoft 163
− Pfizer Teva 247

+ Pfizer Rinat Neuroscience 50 (41)
+ Yahoo Inktomi 433 (115)

T
es

ti
n
g

− Google Apple 281
− Viacom NBC 231

Table 4.4: Corporate Acquisition Pairs.

Split +/− Arg a1 Arg a2 Bag size

+ Franz Kafka Prague 552
+ Andre Agassi Las Vegas 386

T
ra

in
in

g

+ Charlie Chaplin London 292
+ George Gershwin New York 260
− Luc Besson New York 74
− Wolfgang A. Mozart Vienna 288

+ Luc Besson Paris 126 (6)
+ Marie Antoinette Vienna 105 (39)

T
es

ti
n
g

− Charlie Chaplin Hollywood 266
− George Gershwin London 104

Table 4.5: Person Birthplace Pairs.

Given a pair of arguments (a1, a2), the corresponding bag of sentences is

created as follows:

� A query string “a1∗∗∗∗∗∗∗a2” containing seven wildcard symbols between

the two arguments is submitted to Google. The preferences are set to search only

for pages written in English, with Safesearch turned on. This type of query will

match documents where an occurrence of a1 is separated from an occurrence of a2
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by at most seven content words. This is an approximation of our actual information

need: “return all documents containing a1 and a2 in the same sentence”.

� The returned documents (limited by Google to the first 1000) are down-

loaded, and then the text is extracted using the HTML parser from the Java Swing

package. Whenever possible, the appropriate HTML tags (e.g. BR, DD, P, etc.)

are used as hard end-of-sentence indicators. The text is further segmented into

sentences with the OpenNLP5 package.

� Sentences that do not contain both arguments a1 and a2 are discarded.

For every remaining sentence, we find the occurrences of a1 and a2 that are closest

to each other, and create a relation example by replacing a1 with 〈e1〉 and a2 with

〈e2〉. All other occurrences of a1 and a2 are replaced with a null token ignored by

the subsequence kernel.

The number of sentences in every bag is shown in the last column of Tables 4.4

& 4.5. Because Google also counts pages that are deemed too similar in the first

1000, some of the bags can be relatively small.

As described in Section 4.6.4, the word-argument correlations are modeled

through the quantity P (w|a) = C(w, a)/C(a), estimated as the ratio between the

number of sentences containing w and a, and the number of sentences containing a.

These counts are computed over a bag of sentences containing a, which is created by

querying Google for the argument a, and then by processing the results as described

above.

4.7.3 Results and Discussion

Experimental results are shown in Figures 4.12 & 4.13, where precision is plotted

against recall by varying a threshold on the value of the SVM decision function. To

avoid clutter, we show only the graphs for the first three systems. The area under

5http://opennlp.sourceforge.net
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the precision recall curve for all systems is shown in Table 4.6.
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Figure 4.12: Precision-Recall graphs for Corporate Acquisitions dataset.

Dataset SSK–MIL SSK–T1 BW–MIL SSK–SIL

Corporate Acquisitions 76.9% 81.1% 45.9% 80.4%
Person Birthplace 72.5% 78.2% 69.2% 73.4%

Table 4.6: Area Under Precision-Recall Curve.

Overall, the learned relation extractors using the subsequence kernel are able

to identify the relationship in novel sentences quite accurately, and significantly out-

perform a bag-of-words baseline. The BW-MIL approach performs surprisingly well

on the Person Birthplace dataset – this might be explained by the relatively small

vocabulary that is generally used for expressing the person-birthplace relationship.

The new version of the subsequence kernel SSK–T1 is significantly more

accurate in the MIL setting than the original subsequence kernel SSK–MIL. This

result empirically demonstrates that the non-uniform word weights approach from
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Figure 4.13: Precision-Recall graphs for Person Birthplace dataset.

Section 4.6.4 is effective at reducing the Type I bias. The approach is also gen-

eral enough to be used in conjunction with other types of kernels, as long as the

corresponding features are based on words or word sequences.

The MIL approach SSK–T1 is also competitive with SSK–SIL, which was

trained in the SIL setting with a reasonable amount of manually labeled sentence

examples. Whereas the only human supervision in the MIL setting consists of 6

pairs of entities (4 positive), the SIL setting is trained on average on 500 manually

labeled sentence examples (78 positive) in the Corporate Acquisitions task, and 300

manually labeled sentence examples (22 positive) in the Person Birthplace task.

4.8 Related Work

The development of our two SIL approaches to RE – the subsequence kernel from

Section 4.3 and the dependency path kernel from Section 4.4 – can be traced back to
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the tree kernels of Zelenko et al. (2003) and Culotta and Sorensen (2004). Zelenko

et al. (2003) define a tree kernel over shallow parse representations of text, together

with an efficient algorithm for computing it. Experiments on extracting Person-

Affiliation and Organization-Location relations from 200 news articles show

the advantage of using this new type of tree kernels over three feature-based algo-

rithms. The same kernel was slightly generalized by Culotta and Sorensen (2004)

and applied on dependency tree representations of sentences, with dependency trees

being created from head-modifier relationships extracted from syntactic parse trees.

Experimental results show a clear advantage of the dependency tree kernel over a

bag-of-words kernel. However, in a bag-of-words approach the word order is lost.

For relation extraction word order is important, and our intuition was that a method

that took into account the order between words could achieve a significantly better

accuracy, even when dependency information was not available. This was empirically

demonstrated by the competitive performance of the subsequence kernel approach,

which preserves the word order observed in the training examples.

The performance of the dependency path kernel is highly dependent on the

accuracy of the dependency parse of the sentence. For sentences with unreliable

syntactic parses, simple word sequences can often provide a good substitute. Conse-

quently, combining dependency information with features based on word sequences

could lead to further improvements in performance, as demonstrated by the more

recent approaches to relation extraction from (Zhao & Grishman, 2005), (Zhang

et al., 2006), and (Jiang & Zhai, 2007).

One of the earliest IE methods designed to work with a reduced amount of

supervision is that of Hearst (1992), where a small set of seed patterns is used in

a bootstrapping fashion to mine pairs of hypernym-hyponym nouns. Bootstrapping

is actually orthogonal to our method, which could be used as the pattern learner in

every bootstrapping iteration. A more recent IE system that works by bootstrapping
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relation extraction patterns from the web is KnowItAll (Etzioni et al., 2005). For

a given target relation, supervision in KnowItAll is provided as a rule template

containing words that describe the class of the arguments (e.g. “company”), and a

small set of seed extraction patterns (e.g. “has acquired”). In the MIL approach

from Section 4.6, the type of supervision is different – we ask only for pairs of

entities known to exhibit the target relation or not. Also, KnowItAll requires

large numbers of search engine queries in order to collect and validate extraction

patterns, therefore experiments can take weeks to complete. Comparatively, our

MIL approach to relation extraction requires only a small number of queries: one

query per relation pair, and one query for each relation argument.

Craven and Kumlien (1999) create a noisy training set for the subcellular-

localization relation by mining Medline for sentences that contain tuples extracted

from relevant medical databases. To our knowledge, this is the first approach that

is using a “weakly” labeled dataset for relation extraction. The resulting bags

however are very dense in positive examples, and they are also many and small –

consequently, the two types of bias are not likely to have significant impact on their

system’s performance.

4.9 Chapter Summary

In this chapter we have introduced three learning approaches to relation extraction.

Two of them – the subsequence kernel and the dependency kernel – are trained in

a single instance learning setting where the supervision is provided as a dataset of

labeled sentence examples. In the subsequence kernel approach, each example is

represented using sequences of words and word classes anchored at the two entities

as implicit features. In the dependency kernel approach, the set of implicit features

is based on the shortest path between the two relation arguments in the dependency

graph of the sentence. Experiments on biomedical and news corpora demonstrate

124



that the two methods obtain improved performance when compared with previous

relation extraction systems. In the third approach to relation extraction, the only

supervision provided is a handful of pairs of entities known to belong or not belong

to the desired relationship. The entity pairs are used in conjunction with a very

large corpus in order to automatically extract positive and negative bags of sen-

tences. The resulting multiple instance learning approach can sometimes be misled

by textual features correlated with the specific entities in the few training pairs

provided. Therefore, we have extended the subsequence kernel with a weighting

scheme that enables it to focus on features correlated with the target relation rather

than with the individual entities. Experiments on extracting two types of relations

from web documents show that the new weighting scheme is effective at reducing

the number of extraction errors. The overall MIL system is also competitive with

its SIL counterpart, which requires significantly more human supervision.
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Chapter 5

Future Work

In this chapter we outline potential future work for each of the three basic IE tasks:

named entity recognition, named entity disambiguation, and relation extraction. We

conclude with a proposal for an integrated approach to IE that aims to solve all

subtasks at once, in which improved extraction performance is obtained as a result

of exploiting dependencies among the outputs of the three tasks.

5.1 Named Entity Recognition

In Section 4.4 we have argued for the utility of word-word dependencies in the

context of relation extraction. A similar argument can also be made in the context

of named entity recognition. By abstracting away from the surface structure of text,

the graph of word-word dependencies could help in providing more discriminative

features for named entity recognition. For example, if Musicians is one of the target

named entity categories, then the name Gil Shaham shown in the context from

Figure 5.1 should be recognized as belonging to this category. However, the actual

text of the name is only indicative of the general category of People, and words

that are very informative such as play and music are, on the surface, very far from
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and  his  sister  Orli Shaham  will  play  together  music  featured  on  the  Prokofiev  album.Gil Shaham

Figure 5.1: Dependency Graph Example.

the name occurrence. The distance between the cue words and the candidate name

can be reduced by considering the dependency graph of the sentence, as illustrated

in Figure 5.1. Instead of using features based on n-grams around the candidate

name, one could use dependency trees of increasing depth rooted at the candidate

name, as shown below:

• Gil Shaham → play

• Gil Shaham → play → music

The verb play in the first dependency path is a useful context word for the Mu-

sicians category; however, play is an ambiguous word that can also refer to other

categories, such as Sports. The second dependency path helps in establishing the

meaning of the verb play and thus offers a more discriminative context for disam-

biguating the name. Words in the dependency tree nodes can also be replaced with

word classes such as part-of-speech tags, as done in the two SIL approaches to rela-

tion extraction from Chapter 4. Enumerating the large number of resulting features

can be avoided by using them only implicitly in a kernel method.

In Chapter 3 we have shown how a dataset of disambiguated named entities

can be automatically extracted from Wikipedia articles. Using a similar approach,

one could also create a very large training dataset for named entity recognition,

thus obviating the need for manually annotated corpora. This can be done as long

as the target named entity types can be mapped to categories from the Wikipedia

taxonomy. For example, the entity types considered in this thesis – Proteins,

Companies, People, Cities – all correspond to categories in Wikipedia. A proper
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name that appears in a Wikipedia article hyperlinked to its corresponding entity

article will be considered as a positive example for a predefined entity type C if the

corresponding entity belongs to the category C. However, most entities are linked

directly only to low level categories such as American Film Score Composers,

or North American Cities. Their membership into higher level categories such

as People, or Cities can be decided by navigating the Wikipedia taxonomy graph

towards the high level categories. Because there are many types of links, other than

IS-A, between Wikipedia categories, one needs first to extract an IS-A hierarchy

from the Wikipedia taxonomy, a task that has been recently addressed by Strube

and Ponzetto (2007).

5.2 Named Entity Disambiguation

The same entity can be mentioned multiple times in the same document, using its

most popular name (e.g. Bill Clinton), alternate names (e.g. Clinton), coreferential

nouns (e.g. The President) or pronouns (e.g. he, him, his). Collectively disam-

biguating all named entities in a document could lead to further improvements in

performance by exploiting soft global constraints such as the one-sense-per-discourse

effect observed by Gale et al. (1992). Coreference decisions could also help in enrich-

ing the context information associated with each name occurrence, as demonstrated

in the name discrimination approach of Bagga and Baldwin (1998). As mentioned in

Section 3.6, disambiguation accuracy could be further improved by incorporating al-

ternative semantic similarity measures through Latent Semantic Kernels (Cristianini

et al., 2001).

Bekkerman and McCallum (2005) have proposed a collective approach to

disambiguating web appearances of names that refer to entities known to belong

to the same group. For example, the co-authors of a paper form a group, and this

information can be used to disambiguate the corresponding name occurrences in
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arbitrary web documents. The method could be generalized to work with arbitrary

named entities by replacing the social network extracted from paper citations with

the network of named entities extracted from each test document. Two named enti-

ties that appear in the same sentences would be linked by an edge in the document

network. The edges could be associated with predefined relationships, as output by

a relation extraction system, or they could be associated simply with the sentence

dependency structure anchored at the two names.

5.3 Relation Extraction

The dependency path kernel approach from Section 4.4 is based on the observation

that most of the information that is relevant for asserting a relationship between

two entity mentions is concentrated in the shortest path between the two mentions

in the word-word dependency graph of the sentence. However, sometimes elements

that are not on the path, such as negative polarity adverbs, are also essential for the

relationship. Our initial solution was to annotate path elements that were linked to

negative polarity adverbs. A more principled approach is to augment the shortest

dependency path with dependency trees rooted at each content word along the

path, and treat them as additional word classes. For example, given the following

sentence:

• “John wants to travel to Europe this summer.”

, the corresponding augmented dependency path between John and Europe is shown

in Figure 5.2. To avoid clutter we show only the dependency tree rooted at the word

travel on the dependency path.

The set of word classes associated with travel is extended to contain, besides

the original stem and the part-of-speech tags {travel, V BD, V erb}, all possible de-

pendency trees rooted at travel. These will include for instance the paths below:
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travel to

to

wants

summer

this

John

. . .

Europe

. . .

Figure 5.2: Augmented Dependency Path Example.

• travel → to

• VBZ → to

• travel → to → wants

• Verb → to → wants

In the kernel approach from Section 4.4, we needed to compute the number of

common word classes c(xi, yi) between two words xi and yi from two dependency

paths. For augmented paths, this will require computing the number of common

dependency trees rooted at xi and yi, which can be done efficiently using a dynamic

programming algorithm similar to the convolution tree kernels of Collins and Duffy

(2001).

Using augmented dependency paths to create relation extraction features has

two main benefits:

1. The resulting model automatically accounts for words that are not on the

shortest path but that are still relevant to relation extraction, such as negative

polarity adverbs, or control verbs. In the example above, the learned RE

system will use the path features containing the control verb want in order

to decide that John is not actually Located in Europe at the time of the

utterance.
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2. The use of rooted dependency trees as additional word classes will result in

discriminative features that can generalize better over unseen words.

Notice that the shortest dependency path still lies at the core of the RE system. This

approach is highly dependent on the availability of a reliable dependency analysis

of the sentence. A more robust approach would combine surface features with

dependency based features, a simple solution being to sum up the subsequence

kernel from Section 4.3 with the (augmented) dependency kernel from Section 4.4.

Besides named entity disambiguation, another issues that is essential for

a successful integration of relation extraction results is that of time. Relationships

are time dependent, consequently reasoning with relations should also take time into

account. Often the textual assertion of a relation is explicitly qualified with a time

expression (e.g. “this summer” in the example from Figure 5.2). We believe that

identifying time expressions in text and linking them to the extracted relationships

can increase the overall utility of the RE system. Emerging standards for temporal

annotation such as TimeML (Boguraev & Ando, 2005) could be used to provide an

initial framework for this task.

On the MIL side, we are investigating methods for reducing the Type II bias

described in Section 4.6.3, either by modifying the word weights, or by integrating

an appropriate measure of word distribution across positive bags directly in the

objective function for the MIL problem. Alternatively, implicit negative evidence

can be extracted from sentences in positive bags by exploiting the fact that, besides

the two relation arguments, a sentence from a positive bag may contain other entity

mentions. Any pair of entities different from the relation pair is likely to be a negative

example for that relation. For example, the pairs (Google, Yahoo) and (YouTube,

Yahoo) from the sentence below can be treated as implicit negative examples:

• Google bought YouTube not only to keep it away from Yahoo and Microsoft,

but also because it offers a service that’s superior to its own.
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This is similar to the concept of negative neighborhoods introduced by Smith and

Eisner (2005), and has the potential of reducing both Type I and Type II bias.

5.4 Towards and Integrated IE Model

We have described in Chapter 2 a model that obtains improved extraction perfor-

mance by taking into account the interdependencies between candidate extractions

from the same document. Mutual dependencies can also exist between the outputs

of different tasks, such as the three basic IE subtasks: named entity recognition

(NER), named entity disambiguation (NED), and relation extraction (RE). Noun

phrase coreference resolution is another IE task that exhibits mutual interactions

with the three tasks mentioned above. Some of these inter-task influences are enu-

merated below:

• [NER] → [RE]: The entity types of two entity mentions can influence the

type of relationship between the two entities. For example, knowing that e1

is of type People and e2 is of type City increases the likelihood that e1 is

Located at e2. This type of correlations are already captured in the RE

models from Chapter 4.

• [RE] → [NER]: Conversely, the relationship between two entities influences

the types of entities involved. For example, knowing that e1 is a Company

that has Acquired e2 increases the likelihood that e2 is also a Company.

• [NER] → [NED]: NE recognition can reduce the set of potential candidate

entities in NE disambiguation. If a name N is recognized as belonging to a

category C, and if the name N can denote only two distinct entities e1 and e2,

with e2 /∈ C, then N can be disambiguated only to e1. This type of influences

are implicitly exploited by the NE disambiguation model from Chapter 3.
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• [NED] → [RE]: The relation extraction accuracy can be improved by ag-

gregating for each relation instance evidence from multiple documents, as in

(Bunescu et al., 2006). It is essential for a successful aggregation that the two

argument names be disambiguated for each relation instance.

• [RE] → [NED]: When the category of a name is not sufficient for full disam-

biguation, the relations in which the denoted entity participates, as inferred

from the context of the name occurrence, can be used as additional evidence.

Modeling the mutual influence between NE recognition and relation extraction has

been explored by Roth and Yih (2004) with promising results. Modeling the interde-

pendent outputs from all IE subtasks could be achieved either by training one global

Markov Network to solve them simultaneously, or by training a separate model for

each subtask and then integrate the correlated outputs, as proposed by Punyakanok

et al. (2005).
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Chapter 6

Conclusions

The research presented in this thesis has focused on the design and evaluation of ma-

chine learning models for three important tasks in information extraction: named en-

tity recognition, named entity disambiguation, and relation extraction. The learned

extraction models have shown improved extraction performance as a result of their

ability to exploit novel useful types of evidence.

We have first described a collective approach to named entity recognition

that captures global correlations between candidate extractions through an appro-

priate formulation using the expressive framework of Relational Markov Networks.

The complexity of the resulting graphical model allows only for approximate infer-

ence. Motivated by the superior accuracy of exact inference methods, we have also

presented a second approach to named entity recognition, cast as phrase based clas-

sification with local correlations, in which exact inference can be efficiently achieved

in time that is linear in the number of candidate entities. Compared to token clas-

sification approaches, our phrase classification models can easily incorporate phrase

based features.

The classification of textual occurrences of entity names into predefined cate-

gories, as done in named entity recognition, results only in a partial disambiguation
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of the names. We have therefore presented an approach to named entity disam-

biguation that tries to fully disambiguate proper names by linking them to the

appropriate entries in Wikipedia, a large online encyclopedia. We have modeled

disambiguation as a ranking problem, and showed that improved accuracy is ob-

tained by exploiting learned correlations between context words and categories in

the Wikipedia taxonomy.

In the last part of this thesis, we have explored information extraction mod-

els that can be trained to mine text documents for predefined relationships between

relevant entities. Our approaches to the task of relation extraction differ in the type

and the amount of supervision required during training. We have first proposed two

relation extraction methods that are trained on documents in which sentences are

manually annotated for the required relationships. In the first method, the extrac-

tion patterns correspond to sequences of words and word classes anchored at two

entity names occurring in the same sentence. These sequences are used as implicit

features in a generalized subsequence kernel, with weights that are computed by

training in the framework of Support Vector Machines. In the second approach,

the implicit extraction features are focused on the shortest path between the two

entity names in the word-word dependency graph of the sentence. Finally, in a

significant departure from previous learning approaches to relation extraction, we

have proposed an extraction model that learns from a much weaker type of super-

vision. A handful of pairs of entities known to exhibit or not exhibit the desired

relationship are used in conjunction with a very large corpus in order to create a

training set of bags of sentences, and the subsequence kernel method is extended to

handle this special form of supervision. The resulting Multiple Instance Learning

approach can sometimes be misled by textual features correlated with the specific

entities in the few training pairs provided. Consequently, we have also described a

method for weighting features in order to focus on those correlated with the target
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relation rather than with the individual entities.

Overall, the research described in this thesis has contributed with learning

models that leverage useful new types of evidence in order to obtain improved extrac-

tion performance. On a long term scale, we see the proposed methods as a useful

step towards building an integrated information extraction model that is robust,

accurate, and not overly demanding in terms of human supervision.

136



Bibliography

Amitay, E., Har’El, N., Sivan, R., & Soffer, A. (2004). Web-a-Where: Geotagging

web content. In Proceedings of 27th International ACM SIGIR Conference on

Research and Development in Information Retrieval, pp. 273–280.

Andrews, S., Tsochantaridis, I., & Hofmann, T. (2003). Support vector machines

for multiple-instance learning. In Advances in Neural Information Processing

Systems 15, pp. 561–568 Vancouver, BC. MIT Press.

Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern Information Retrieval. ACM

Press, New York.

Bagga, A., & Baldwin, B. (1998). Entity-based cross-document coreferencing using

the vector space model. In Boitet, C., & Whitelock, P. (Eds.), Proceedings of

the Thirty-Sixth Annual Meeting of the Association for Computational Lin-

guistics and Seventeenth International Conference on Computational Linguis-

tics, pp. 79–85 San Francisco, California. Morgan Kaufmann Publishers.

Baker, C. F., Fillmore, C. J., & Lowe, J. B. (1998). The Berkeley FrameNet project.

In Proceedings of COLING–ACL ’98, pp. 86–90 San Francisco, CA. Morgan

Kaufmann Publishers.

Bekkerman, R., & McCallum, A. (2005). Disambiguating web appearances of people

137



in a social network. In Proceedings of WWW-05, the 14th International World

Wide Web Conference.

Berger, A. L., Della Pietra, S. A., & Della Pietra, V. J. (1996). A maximum entropy

approach to natural language processing. Computational Linguistics, 22 (1),

39–71.

Bikel, D. M., Schwartz, R., & Weischedel, R. M. (1999). An algorithm that learns

what’s in a name. Machine Learning, 34, 211–232.

Blaschke, C., & Valencia, A. (2001). Can bibliographic pointers for known biological

data be found automatically? Protein interactions as a case study. Compara-

tive and Functional Genomics, 2, 196–206.

Blaschke, C., & Valencia, A. (2002). The frame-based module of the Suiseki infor-

mation extraction system. IEEE Intelligent Systems, 17, 14–20.

Boguraev, B., & Ando, R. K. (2005). TimeML-compliant text analysis for temporal

reasoning. In Proceedings of the Nineteenth International Joint Conference on

Artificial Intelligence (IJCAI’05), pp. 997–1003 Edinburgh, Scotland, UK.

Brill, E. (1995). Transformation-based error-driven learning and natural language

processing: A case study in part-of-speech tagging. Computational Linguistics,

21 (4), 543–565.

Bunescu, R. C., Mooney, R. J., Ramani, A. K., & Marcotte, E. M. (2006). Integrat-

ing co-occurrence statistics with information extraction for robust retrieval of

protein interactions from Medline. In Proceedings of the HLT-NAACL Work-

shop on Linking Natural Language Processing and Biology (BioNLP’06), pp.

49–56 New York, NY.

Bunescu, R., Ge, R., Kate, R. J., Marcotte, E. M., Mooney, R. J., Ramani, A. K.,

& Wong, Y. W. (2005). Comparative experiments on learning information ex-

138



tractors for proteins and their interactions. Artificial Intelligence in Medicine

(special issue on Summarization and Information Extraction from Medical

Documents), 33 (2), 139–155.

Bunescu, R., & Pasca, M. (2006). Using encyclopedic knowledge for named entity

disambiguation. In Proceesings of the 11th Conference of the European Chapter

of the Association for Computational Linguistics (EACL-06), pp. 9–16 Trento,

Italy.

Bunescu, R. C. (2004). Learning for collective information extraction. Tech. rep.

TR-05-02, Department of Computer Sciences, University of Texas at Austin.

Ph.D. proposal.

Bunescu, R. C., & Mooney, R. J. (2004). Collective information extraction with

relational Markov networks. In Proceedings of the 42nd Annual Meeting of the

Association for Computational Linguistics (ACL-04), pp. 439–446 Barcelona,

Spain.

Bunescu, R. C., & Mooney, R. J. (2005a). A shortest path dependency kernel for

relation extraction. In Proceedings of the Human Language Technology Con-

ference and Conference on Empirical Methods in Natural Language Processing

(HLT/EMNLP-05), pp. 724–731 Vancouver, BC.

Bunescu, R. C., & Mooney, R. J. (2005b). Subsequence kernels for relation ex-

traction. In Weiss, Y., Schölkopf, B., & Platt, J. (Eds.), Advances in Neural

Information Processing Systems 18 Vancouver, BC.

Bunescu, R. C., & Mooney, R. J. (2007). Learning to extract relations from the web

using minimal supervision. In Proceedings of the 45th Annual Meeting of the

Association for Computational Linguistics (ACL’07) Prague, Czech Republic.

To appear.

139



Califf, M. E., & Mooney, R. J. (1999). Relational learning of pattern-match rules for

information extraction. In Proceedings of the Sixteenth National Conference

on Artificial Intelligence (AAAI-99), pp. 328–334 Orlando, FL.

Chieu, H. L., & Ng, H. T. (2003). Named entity recognition with a maximum entropy

approach. In Proceedings of the Seventh Conference on Computational Natural

Language Learning (CoNLL-2003), pp. 160–163 Edmonton, Canada.

Cimiano, P., Handschuh, S., & Staab, S. (2004). Towards the self-annotating web.

In Proceedings of the 13th international conference on World Wide Web, pp.

462–471 New York, NY, USA. ACM Press.

Collier, N., Park, H., Ogata, N., Tateisi, Y., Nobata, C., T.Ohta, Sekimizu, T.,

Imai, H., Ibushi, K., & Tsujii, J. (1999). The GENIA project: Corpus-based

knowledge acquisition and information extraction from genome research pa-

pers. In Ninth Conference of the European Chapter of the Association for

Computational Linguistics (EACL-99), pp. 271–272 Bergen.

Collins, M. (1999). Head-driven Statistical Models for Natural Language Parsing.

Ph.D. thesis, University of Pennsylvania.

Collins, M. (2002). Ranking algorithms for named-entity extraction: Boosting and

the voted perceptron. In Proceedings of the 40th Annual Meeting of the Asso-

ciation for Computational Linguistics (ACL-2002), pp. 489–496 Philadelphia,

PA.

Collins, M., & Duffy, N. (2001). Convolution kernels for natural language. In

Proceedings of Neural Information Processing Systems (NIPS 14).

Collins, M. J. (1997). Three generative, lexicalised models for statistical parsing. In

Proceedings of the 35th Annual Meeting of the Association for Computational

Linguistics (ACL-97), pp. 16–23.

140



Cooper, G. (1990). Computational complexity of probabilistic inference using

Bayesian belief networks (research note).. Artificial Intelligence, 42, 393–405.

Cowell, R. G., Dawid, A. P., Lauritzen, S. L., & Spiegelhalter, D. J. (1999). Proba-

bilistic Networks and Expert Systems. Springer Verlag, New York, NY.

Craven, M., & Kumlien, J. (1999). Constructing biological knowledge bases by ex-

tracting information from text sources. In Proceedings of the 7th International

Conference on Intelligent Systems for Molecular Biology (ISMB-1999), pp.

77–86 Heidelberg, Germany.

Cristianini, N., & Shawe-Taylor, J. (2000). An Introduction to Support Vector Ma-

chines and Other Kernel-based Learning Methods. Cambridge University Press.

Cristianini, N., Shawe-Taylor, J., & Lodhi, H. (2001). Latent semantic kernels. In

Proceedings of the Eighteenth International Conference on Machine Learning

(ICML’01), pp. 66–73 San Francisco, CA, USA. Morgan Kaufmann Publishers

Inc.

Culotta, A., & Sorensen, J. (2004). Dependency tree kernels for relation extraction.

In Proceedings of the 42nd Annual Meeting of the Association for Computa-

tional Linguistics (ACL-04), pp. 423–429 Barcelona, Spain.

Dale, R. (2003). Computational linguistics. Special Issue on the Web as a Corpus,

29 (3).

Deerwester, S. C., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman,

R. A. (1990). Indexing by latent semantic analysis. Journal of the American

Society for Information Science, 41, 391–407.

Della Pietra, S., Della Pietra, V. J., & Lafferty, J. D. (1997). Inducing features of

random fields. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 19 (4), 380–393.

141



Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical Society

B, 39, 1–38.

Dietterich, T. G., Lathrop, R. H., & Lozano-Perez, T. (1997). Solving the multiple

instance problem with axis-parallel rectangles. Artificial Intelligence, 89 (1-2),

31–71.

Etzioni, O., Cafarella, M., Downey, D., Popescu, A.-M., Shaked, T., Soderland, S.,

Weld, D. S., & Yates, A. (2005). Unsupervised named-entity extraction from

the web: an experimental study. Artificial Intelligence, 165 (1), 91–134.

Fellbaum, C. D. (1998). WordNet: An Electronic Lexical Database. MIT Press,

Cambridge, MA.

Finkel, J. R., Grenager, T., & Manning, C. D. (2005). Incorporating non-local infor-

mation into information extraction systems by Gibbs sampling. In Proceedings

of the 43nd Annual Meeting of the Association for Computational Linguistics

(ACL-05), pp. 363–370 Ann Arbor, MI.

Fleischman, M., Hovy, E., & Echihabi, A. (2003). Offline strategies for online ques-

tion answering: Answering questions before they are asked. In Hinrichs, E.,

& Roth, D. (Eds.), Proceedings of the 41st Annual Meeting of the Association

for Computational Linguistics, pp. 1–7.

Franzen, K., Eriksson, G., Olsson, F., Asker, L., Liden, P., & Coster, J. (2002).

Protein names and how to find them. International Journal of Medical Infor-

matics, 67 (1-3), 49–61.
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