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In order to respond to increasing demand for natural language interfaces—
and provide meaningful insight into user query intent—fast, scalable lexical seman-
tic models with flexible representations are needed. Human concept organization
is a rich phenomenon that has yet to be accounted for by a single coherent psy-
chological framework: Concept generalization is captured by a mixture of proto-
type and exemplar models, and local taxonomic information is available through
multiple overlapping organizational systems. Previous work in computational lin-
guistics on extracting lexical semantic information from unannotated corpora does
not provide adequate representational flexibility and hence fails to capture the full
extent of human conceptual knowledge. In this thesis I outline a family of prob-
abilistic models capable of capturing important aspects of the rich organizational
structure found in human language that can predict contextual variation, selectional

preference and feature-saliency norms to a much higher degree of accuracy than
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previous approaches. These models account for cross-cutting structure of concept
organization—i.e. selective attention, or the notion that humans make use of differ-
ent categorization systems for different kinds of generalization tasks—and can be
applied to Web-scale corpora. Using these models, natural language systems will
be able to infer a more comprehensive semantic relations, which in turn may yield
improved systems for question answering, text classification, machine translation,

and information retrieval.
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Chapter 1

Introduction

This thesis is concerned with the foundational Natural Language Processing
task of lexical semantics, or “the study of how and what the words of a language
denote” (Pustejovsky, 1995). Lexical semantics can be viewed as an interstitial field
between the study of syntax, or the structure of language, and semantics the study of
meaning. The question of what words mean is also closely related to the question
of what concepts can have names, suggesting approaches motivated by cognitive

science (Murphy, 2002).

One particularly compelling lexical semantic theory is the distributional hy-
pothesis, which states that the observed pattern of word co-occurrence in text cap-
tures elements of word meaning. This hypothesis suggests a “theory of meaning”
that can be operationalized into an empirical procedure for obtaining semantic rep-
resentations directly from large textual corpora (Cruse, 1986). Given the availability
of massive textual corpora e.g. from the Web, a significant amount of recent work
in empirical Natural Language Processing (NLP) seeks to leverage this hypothesis

(see e.g. (Turney and Pantel, 2010) for a recent overview).

Distributional lexical semantics arose at the confluence of distributional

analysis in structuralist linguistics (Harris, 1954), British corpus linguistics (Firth,



1957) and psychology (Miller and Charles, 1991). In particular, Firth’s “context of

situation” theory succinctly captures the context-dependent nature of meaning:

You shall know a word by the company it keeps

(Firth, 1957), cf. (Palmer, 1976). This notion of collocation captures predictable
aspects (in the statistical sense) of word usage and hence may be potentially applied

for insight into the underlying meaning.

Nida (1975) demonstrates the power of context with a thought experiment

involving the artificial word rezgiiino:

A bottle of fezgiiino is on the table.

Everyone likes tezgiiino.

Tezgiiino makes you drunk.

We make fezgiiino out of corn.

Taking this contextual evidence together, it can be inferred that zezgiiino is an alco-

holic beverage made out of corn mash (cf. Lin, 1998).

In humans, such contextual priming often takes place given only a single
example occurrence of a new word. McDonald and Ramscar (2001) propose the

example:

e He filled the wampimuk with the substance, passed it around and we all drunk

some.



e We found a little, hairy wampimuk sleeping behind the tree.

In this case, the sentential context surrounding wapimuk is sufficient to capture fine-
grained details about its meaning: either (1) a kind of drinking container or (2) a
small mammal. Given the considerable amount of information contained within
such word occurrence contexts, modern modern sources of textual data such as the
Web pose a tremendous opportunity, since they contain easily hundreds of billions

of such examples.

1.1 Distributional Lexical Semantics

Drawing features from local occurrence contexts (e.g. wapimuk might have
a feature indicating that it is the object of the verb filled, or the subject of the verb
sleep), word meaning can be represented as high-dimensional vectors inhabiting
a common space, where each (sparse) feature dimension captures a semantic or
syntactic property of interest (e.g. Erk and Pado, 2008; Lowe, 2001; Turney and
Pantel, 2010). Such distributional representations of meaning can be used to induce
measures of word similarity that are useful in a variety of tasks such as information
retrieval (Manning et al., 2008), large-scale taxonomy induction (Snow et al., 2006),

and knowledge acquisition (Van Durme and Pagca, 2008).

Although they lack proper formal logical semantics (cf. Montague, 1973),
distributional methods have been adopted widely due to their relative simplicity and
high scalability (Gorman and Curran, 2006; Curran, 2004a; Pad6 and Lapata, 2007,
Pereira et al., 1993; Schiitze, 1998a; Turney, 2006; Thater et al., 2010), trading off



representational precision and formal consistency for improved coverage and appli-
cability. Indeed early approaches to distributional lexical semantics did not take into
account compositionality (Landauer and Dumais, 1997; Lund and Burgess, 1996)

or lexical ambiguity.

Typical approaches to distributional lexical semantics generate word repre-
sentations that conflate multiple senses and usages. In recent work, there have been
numerous approaches for addressing these shortcomings. For example, Schiitze
(1998b) and McCarthy and Carroll (2003a) use unsupervised clustering methods
to perform word-sense disambiguation, and contextual dependence has been ad-
dressed using context word-priming (McDonald and Brew, 2004), direct vector
composition (Mitchell and Lapata, 2008), exemplar activation (Erk and Pado6, 2010),

and syntactically-enriched vector spaces (Thater et al., 2010).

In this thesis I argue for a more general synthesis of psychological mod-
els of concept organization and computational linguistic models of distributional
lexical semantics, focusing particularly on modeling context-dependence in word
meaning. In particular, I draw parallels between the role of context-dependence in
determining word meaning and selective attention in models of concept organiza-
tion (Ross and Murphy, 1999). Selective attention refers to the observation that
humans attend to different features of a stimuli in different contexts and categorize

objects differently depending on which features are actively attended to.

Towards this end, I introduce a progression of probabilistic latent variable
models whose underlying structure can be used to model selective attention, while

preserving the simplicity and scalability of traditional distributional approaches.



1.2 Latent Variable Models of Lexical Semantics

The primary goal of this thesis is to introduce scalable lexical semantic mod-
els that can account for the fine-grained structure of word relatedness, capturing
the multidimensional nature of relations between lexical units and their context-
dependence. For example, computing the semantic similarity between wine and
vinegar should only take into account a small number salient features of those con-
cepts (in line with theories of selective attention), and those features should be quite
different from those determining the similarity between wine and bottle, despite the

fact that all three words occur in similar contexts.

Concepts and meanings in human language are organized in terms of com-
plex assemblies of properties or features and exhibit rich structure (Ross and Mur-
phy, 1999). Humans categorize objects using multiple orthogonal taxonomic struc-
tures, where generalization depends critically on what features are relevant to the
particular structure (Smith and Shafto, 2011). For example, foods can be orga-
nized in terms of their nutritional value (high in fiber) or situationally (commonly
eaten for Thanksgiving). Furthermore there is significant evidence for overlapping
categorization systems in Wikipedia and WordNet (e.g. people are organized by oc-
cupation or by nationality). The effects of these overlapping categorization systems
manifest themselves at the lexical semantic level (Murphy, 2002), implying that
lexicographical word senses and traditional computational models of word-sense
based on clustering or exemplar activation are too impoverished to capture the rich

dynamics of word usage.

To model selective attention in a lexical semantic context, I introduce a uni-



fied set of probabilistic models based on multi-view clustering (e.g. Cross-cutting
categorization Shafto et al., 2006), generalizing work on context-dependent distri-
butional lexical semantics. Multiple clustering finds feature subsets (categorization
systems) that produce high quality clusterings of the data. For example words might
be clustered based on their syntactic (syntagmatic) or thematic (paradigmatic) us-
age, exposing multiple dimensions of word-relatedness. In particular, such models
can be used to capture the microstructure of word relatedness, breaking up word
features into multiple categorization systems and then computing similarity sepa-
rately for each system. Furthermore, context-dependent variation in word usage can
be accounted for naturally in these models by computing the joint likelihood of a

term and its context given each cluster (Dinu and Lapata, 2010).

Capturing the multiple overlapping clustering structure of natural concepts
could improve a range of Natural Language Processing (NLP) tasks: question an-
swering (Tokunaga et al., 2005), unsupervised semantic parsing (Poon and Domin-
gos, 2009), query intent classification and expansion (Jansen et al., 2007), coref-
erence resolution (Haghighi and Klein, 2007) and textual entailment (Tatu and

Moldovan, 2005).

1.3 Thesis Organization

Chapter 3 introduces the corpora and evaluation methodology employed in
this thesis. In addition to various human-studies evaluations, four main empirical

problems from lexical semantics are considered:



1. Modeling word association and typicality norms (WS-353 §3.2.1 and McRae
§3.2.3).

2. Modeling the selectional preference of verbs (Selectional Preference §3.2.2).

3. Modeling word relations in general (BLESS; 3.2.4).

4. Identifying suitable replacements for a target word in a given sentence (Lexical

Substitution; §3.2.5).

Distributional models of lexical semantics typically create a single “proto-
type” vector to represent the meaning of a word. However, due to lexical ambiguity,
encoding word meaning with a single vector is problematic. Chapter 4 introduces
the family of multi-prototype models, which extend such models by first breaking
word occurrences up over latent senses. Such models are capable of accounting for
homonymy, as well as other forms of variation in word usage, like similar context-
dependent methods (Erk and Pado, 2008). The set of vectors for a word is deter-
mined by unsupervised word sense discovery (Schiitze, 1998a), which clusters the
contexts in which a word appears. Average prototype vectors are then computed
separately for each cluster, producing a distributed representation for each word.
Multi-prototype models outperform standard single-prototype models on common

lexical semantic tasks such as modeling word similarity and paraphrase prediction.

Although multi-prototype models can address context-dependence and am-
biguity due to homonymy, they break down in cases where words are polysemous,

or when capturing the shared structure between individual senses is important, e.g.



in tasks such as modeling the selectional preference of verbs (§4.5.3). To address
this issue, I introduce a tiered clustering model (§4.1.2) that separates the features
common to each word sense from the features that are most discriminative for that

sense.

Moving beyond approaches based on multiple prototypes, I introduce a
Multi-view model of lexical semantics capable fo capturing the full spectrum of
relations between words and word-senses (Chapter 5). Such models can partition
the space of word contexts across multiple clusterings, leading to more fine-grained
models of contextual dependence, as well as vector-valued word relatedness. Sense
proliferation itself may be in part due to the conflation of multiple organizational
systems linking the target word to other similar words, leading to a large number of
partially overlapping senses. By treating word sense in a multiple clustering frame-
work, these organizational systems can be uncovered and leveraged to build models
of per-word semantic generalization. Word senses can be organized along topical,
syntactic or operational lines, and different organizational systems account for dif-
ferent subsets of the full set of lexicographical senses. Furthermore, each clustering
defines a subset of the available features that are deemed salient, allowing models
of lexical semantics the freedom to choose between several relevant subspaces and

ignore irrelevant features.

Compared to simpler models, multi-view models of lexical semantics can
account for context-dependent feature saliency and multiple dimensions of related-

ness, leading to better performance on semantic similarity tasks.



1.4 Summary of Contributions

This thesis introduces and comprehensively evaluates three new classes of

latent variable models for lexical semantics:

e Multi-Prototype Model — A model explicitly accounting for ambiguity in

homonymous words based on clustering individual occurrences (Chapter 4).

e Tiered Clustering Model — An extension of the multi-prototype model ca-
pable of accounting for shared structure between word senses in polysemous

words (Chapter 4).

e Multi-View Model — A model of selective attention in concepts capturing
multiple feature subsets corresponding to different latent relational subspaces

between words (Chapter 5).
Systematic evaluation of these models yields three main empirical results:

e Multi-prototype models outperforms single-prototype models on several word

similarity tasks (§4.5).

e The tiered model outperforms the multi-prototype model for selectional pref-

erence, a task where modeling shared structured explicitly is necessary (§4.5.3).

e Several variants of the multi-view model outperform simpler baseline models
on attribute, event, and hypernym recall as well as modeling lexical substitu-

tion for adverbs and adjectives (§5.3.3).



Chapter 2

Background and Related Work

This chapter summarizes relevant background work from distributional lexi-

cal semantics (§2.1), latent variable modeling (§2.2) and the psychology of concepts

(§2.3).

2.1 Distributional Lexical Semantics

Word meaning can be represented as high-dimensional vectors inhabiting
a common space whose feature dimensions capture semantic or syntactic proper-
ties of interest (e.g. Harper, 1965; Pad6 and Lapata, 2007; Schiitze, 1998a; Spirck
Jones, 1964; Turney, 2006). Such distributional (or vector-space) representations
of meaning induce measures of word similarity that can be tuned to correlate well

with measurements made by humans.

Much previous work has focused on designing feature representations and
semantic spaces that capture salient properties of word meaning (Agirre et al., 2009;
Gabrilovich and Markovitch, 2007; Curran, 2004b), directly leveraging the distri-
butional hypothesis, 1.e. that similar words appear in similar contexts (Harris, 1954;
Miller and Charles, 1991; Lin and Pantel, 2002; Pereira et al., 1993). Features

are collected form a variety sources, for example: (1) word collocations (Schiitze,
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1998a), (2) syntactic relations (Padé and Lapata, 2007), (3) structured corpora such
as Wikipedia (e.g. Gabrilovich and Markovitch (2007)) or (4) latent semantic spaces
(Finkelstein et al., 2001; Landauer and Dumais, 1997; Turian et al., 2010).

Once the feature space has been fixed, similarity between word vectors can
be used to address a variety of problems, ranging from modeling human word-
association norms (Curran, 2004a; Miller and Charles, 1991; Schiitze, 1998a; Tur-
ney, 2006), to text classification (Baker and McCallum, 1998), to selectional pref-
erence (Resnik, 1997) and lexical substitution (McCarthy and Navigli, 2007).

Using distributional models to capture similarity relations between docu-
ments dates back to Salton et al. (1975), who developed a system for document
retrieval based on vector-space embedding. User queries are embedded as points in
the same space and documents are sorted in order of increasing distance from the
query. Due to their scalability there has been significant subsequent work applying
distributional lexical semantics to information retrieval (Gorman and Curran, 2006;

Manning et al., 2008; Sanderson, 1994),

Erk (2007) introduces a system for computing the selectional preference of
semantic roles, marking sentence constituents based on the role they play in relation
to the main verb. Pennacchiotti et al. (2008) use a distributional representation to

induce the semantic frames for unknown lexical units in a sentence.

Distributional methods have also been applied extensively in guery expan-
sion: adding additional terms to a search query in order to broaden the potential set

of matches. Approaches range from modeling query semantics (Cao et al., 2008),
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to mining user session contexts (Huang et al., 2003; Jones et al., 2006), and click
contexts, (Wen et al., 2001). Such approaches also are relevant to computational
advertising, where advertisers buy keywords from search engines in order to target
their ads. Several approaches have been proposed in the literature for broadening

advertising keyword matches (Chang et al., 2009b; Gleich and Zhukov, 2004).

Finally, distributional methods have been applied to several information ex-
traction and knowledge acquisition tasks such as large-scale taxonomy induction
(Snow et al., 2006), attribute extraction (Van Durme and Pasca, 2008) and named

entity recognition (Pasca et al., 2006; Vyas et al., 2009).

2.1.1 Distributional Similarity

One of the main results of this thesis is a model-based approach to lexical
semantics capable of capturing multiple types of semantic relations. Following
Baroni and Lenci (2011), the vague notion of “semantic similarity” can be refined

into multiple high level relations:

e Coordinate — The degree to which pairs of words have similar meaning;
ranging from complete contextual substitutability (absolute synonymy), truth
preserving synonymy (propositional synonymy) to near synonymy (plesionymy).
Rapp (2003) applied a distributional model of word similarity to Test of En-
glish as a Foreign Language (TOEFL) questions (Deerwester et al., 1990),
achieving 92.5% accuracy vs. a human baseline of 64.5%. Furthermore, Rapp
(2003) was able to demonstrate that context features from a small window

around the word outperforms more distant features, at least for determining
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synonyms in TOEFL. In similar work, Turney (2006) achieve near-human

results on SAT analogies, 56% vs. 57%.

e Hyponymy — Or subsumption, the degree to which one word denotes a con-
cept that is a subset of another (e.g. animals — tigers). Large-scale induction

of hyponyms from unstructured text has been proposed by Hearst (1992).

e Hypernymy — The inverse of hyponymy, i.e. the Is-A or relation (e.g. people
< architects). Snow et al. (2006) propose a method for large-scale instru-

mentation of WordNet with automatically induced hypernyms.

e Meronym — Part, or component relation, e.g. leopards have fur. Reisinger
and Pasca (2009) combine WordNet with a hierarchical model of attribute

generation in order to extract high precision meronym (attribute) sets.

e Event — Noun-verb relations, selectional preference, or “slot-filling.” The
selectional preference of a verb is the set of nouns that it can act on, for

example hamburgers can be eaten (Resnik, 1997).

Words that share similar collocations are often topically related. For ex-
ample football, season, fans, games, nfl are often collocated because they occur
commonly in sports related discourse, despite being semantically quite distinct.
Such topical lexical relations are said to be syntagmatic. In contrast, it is often the
case for words to rarely co-occur, but to share contextual usage, e.g. milkman and

fireman; such relations are called paradigmatic.

13



2.1.2 Word Sense Induction

Lexical semantic models are also useful for performing word sense disam-
biguation, i.e. given two occurrence of the same word, along with their contexts,
determine whether they refer to the same sense or not (Schiitze, 1998a; Agirre et al.,

2009; Pedersen and Kulkarni, 2006).

Word sense relations are typically divided into:

e Homonymy — Two words that are the same but which denote different mean-

ings (e.g. the river bank and the investment bank).

e Polysemy — Different senses of the same word that share some underlying
commonalities (e.g. an academic journal and a child’s journal; or “walk the

line” vs. “line up”).

Pereira et al. (1993) induce word senses based on minimum-distortion hi-
erarchical clustering. Latent classes based on these clusters are shown to capture
generalizable verb-noun selectional preferences. Pantel and Lin (2002) use soft
clustering of words based on features derived from parsed text, and demonstrate
that such an approach is capable of discovering the senses of polysemous words.
Word sense disambiguation is potentially important for, e.g. understanding search
queries (Reisinger and Pasca, 2011), because there is little explicit discourse context

and mistakes can potentially cause user frustration.
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2.1.3 Contrasts with Resource-based Approaches

Outside of distributional approaches, previous work on lexical semantic re-
latedness has also focused on mining monolingual or bilingual dictionaries or other
pre-existing resources to construct networks of related words (Agirre and Edmonds,
2006; Ramage et al., 2009b). This approach tends to have greater precision, but de-
pends on hand-crafted dictionaries and cannot, in general, model sense frequency
(Budanitsky and Hirst, 2006). The vector-space approach is fundamentally more
scalable as it does not rely on specific resources and can model corpus-specific
sense distributions. However, it can suffer from poor precision, as thematically
similar words (e.g., singer and actor) and antonyms often occur in similar contexts
(Lin et al., 2003). Thus, vector-space models are typically posed as identifying

thematically related words, rather than synonyms (Agirre et al., 2009).

Logical approaches to machine translation (Emele et al., 1996) or seman-
tic parsing (Bayer et al., 2004; Joshi and Vijay-Shanker, 1999; Zettlemoyer and
Collins, 2005) historically have required hand-specification of rules and other se-
mantic resources. Hand specified models can be extremely accurate, but are often
brittle and inflexible with respect to ambiguity, scaling poorly to larger and more
open domains. More recent work overcomes these constraints by learning logical
formalism from observational data (e.g. Artzi and Zettlemoyer, 2011; Chen and

Mooney, 2011; Liang et al., 2011).

The most comprehensive and influential approach to resource-based lexi-
cal semantics is WordNet, an electronic resource generalizing and codifying word

meaning and relations between words, and inspired by psycholinguistic theories of
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human lexical organization (Fellbaum, 1998b). WordNet consists of English nouns,
verbs, adjectives and adverbs organised into synsets corresponding to individual
conceptual units (generalizing word senses). Synsets are linked into overlapping

hierarchies (directed acyclic graphs) based on hypernymy and hyponymy.

Although WordNet has found significant use in computational linguistics,
the main issues precluding more widespread use of such resource-based approaches
is lack of coverage and high-cost of resource construction (due to the involvement of
human editors and staff). Distributional approaches have been applied to automate
construction of lexical semantic resources (Curran and Moens, 2002; Grefenstette,
1994; Pantel and Lin, 2002; Snow et al., 2006). Furthermore recent advances in
crowd-sourcing promise much cheaper and more comprehensive lexical resources,
however controlling for quality is not necessarily straightforward (Biemann and

Nygaard, 2010; Ma et al., 2009; Snow et al., 2006).

2.1.4 Limitations of Distributional Models

Standard implementations of distributional models fail to capture the rich-
ness of word meaning, since similarity is not a globally consistent metric over word-
types. In particular it violates both symmetry: e.g. people have the intuition that
North Korea is more similar to China than China is to North Korea and the triangle
inequality: e.g., the sum of distances from bat to club and club to association is
less than the distance from bat to association due to ambiguity in the word-type bat

(Griffiths et al., 2007b; Tversky and Gati, 1982).

Violations of the triangle inequality can be resolved by first breaking up
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word types across their component senses (i.e. multiple prototype models Agirre
and Edmonds, 2006; Reisinger and Mooney, 2010; Schiitze, 1998a), or using ex-
emplar models of meaning (Erk, 2007), which represent words as collections of

multiple word occurrences.!

Multiple prototype models capture the underlying concept associate with
each word sense as an abstract prototypical instance, similar to a cluster centroid
in parametric density estimation (Anderson, 1990). Chapter 4 introduces several

model-based approaches to representing words with multiple prototypes.

Exemplar models represent concepts by a concrete set of observed instances,
similar to nonparametric approaches to density estimation in statistics (Ashby and
Alfonso-Reese, 1995). For example, Erk (2007) represents words as multiple exem-
plars derived directly from word occurrences embedded in a common vector space,
and demonstrate how such a model is capable of capturing context-dependent us-

age.

Voorspoels et al. (2009) demonstrate the superior performance of exemplar
models for concept combination (e.g. “metal spoon”), suggesting their use in com-
putational lexical semantics when contextual information is available. In general
exemplar models are better suited to address polysemy and contextual variation
than prototype models. Indeed, experimental evidence suggests that although pol-
ysemous words share the same lexical representation, their underlying senses are

represented separately, as priming a word in one sense interferes with using it in

! Asymmetry, however, can only be resolved through the use of multiple conditional similarity
metrics.
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another, even when the senses are related (Klein and Murphy, 2001, 2002).

Moving beyond consistency violations, word relatedness for a given pair
implicitly defines a typed relation between that pair that may not at all be similar
to the relations between similar words. For example wine and bottle are similar
and wine and vinegar are similar, but it would not be reasonable to expect that the
features governing such similarity computations to overlap much, despite all three
words occurring in similar documents. The aim of this thesis is to study the ap-
plication of cross-categorization (Smith and Shafto, 2011) to find coherent feature
subsets that implicitly define meaningful relations, resulting in vector-valued word

relatedness.

The main contribution of this thesis (Chapter 5) is to explore the degree to
which the overlapping categorization structure of concepts can account for general-

ization and variation in word meaning and help overcome feature noise.

2.2 Types of Distributional Models

In this thesis, I will divide distributional lexical semantics models into two

categories based on the source data type:

1. Word Occurrence models, e.g. exemplar or prototype models, which seek to
capture the empirical distribution of individual word occurrences in context.
The defining feature of such models is the ability to build representations
independently for each word type. Operationally, such models are trained on

contextual occurrences of each word-type. Such models will be discussed in
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Chapter 4 and include multi-prototype and tiered clustering.

2. Word Type models, including most latent variable model-based approaches.
These models construct representational vectors at the level of word-types,
conflating the contribution of each individual word occurrence (and thus senses).
Models are trained over all words in the corpus jointly, potentially allowing
latent variables to “pick apart” the conflated vectors and retrieve senses. An
example is fitting a dimensionality reduction model such as Latent Dirichlet
Allocation (LDA) to a set of word-types and treating each topic as a latent
sense. Such models will be discussed in Chapter 5 and include MVM and

LDA.

These two classes of models are treated separately in this thesis because the under-
lying data requirements differ: word type models can be trained on both occurrence-
level (such as raw text) and aggregate features (such as the Google n-gram corpora);

however, word occurrence models can only be trained on word occurrence data.

At first glance, it would seem that word type models would not be able to
capture contextual dependence or ambiguity since they conflate individual occur-
rence vectors; however, this is indeed not the case, as particular forms of latent

variable modeling can reconstruct polysemous usages.

Word-occurrence models are more computationally tractable and can be par-
allelized naively by word-type. However, since this method treats each word type
independently, the usages discovered for w cannot influence the usages discovered

for w’ # w. Sharing statistical strength across similar words could yield better re-
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sults for rarer words, in addition to providing a more coherent model of human
conceptual organization. Furthermore, the joint word-type model automatically
computes inter-word similarity, obviating the need for defining similarity metrics

on multiple clusterings.

In latent variable word-type models, such as those based on LDA, the latent
topics can be used to de-aggregate the underlying context vectors, accounting for
polysemy even when multiple senses have been encoded in the same feature vec-
tor. For example, when clustering apple with other fruits, LDA might find certain

features such as stock or company to be irrelevant, ignoring the homonymous usage.

2.2.1 Word-Occurrence Models

For addressing context-dependence, Schiitze (1998a) introduce a second-
order vector space model where each word in context is represented by a convex
combination of the distributional vectors for nearby terms. The first-order vectors
are in turn are constructed by combining local bag-of-words features across all word

occurrences.

Mitchell and Lapata (2008) argue that such approaches which explicitly ig-
nore the contribution of syntactic structure are impoverished. To address this, they
introduce a notion of vector composition in terms of additive and multiplicative
functions, capturing the effects of syntactic structure. Although the composition
methods they propose are inspired by the effects of syntax, the actual vector compo-
sition methods are insensitive to syntactic relations and word-order (Erk and Pado,

2008).
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Erk and Pad6 (2010) introduces a structured vector space model, using a set
of occurrence exemplars as the underlying representation for each word instead of
a single vector. The interpretation of a word in a given context is a combination of
the word’s meaning vector with the inverse selection preference of of its context,
avoiding conflating meaning vectors from nouns and their verbs directly. Such
methods are prone to overfitting and noise, however, as individual word occurrences

are sparse, and activating too many exemplar introduces irrelevant features.

Thater et al. (2010) introduce a notion of “syntactically informed contextu-
alization” combining the second-order vector representations from Schiitze (1998a)
with the selectional preference constraints introduced by Erk and Pado (2008).
Their distributional vectors are composed of “words typically co-occurring with
the contexts in which a word typically appears” (Thater et al., 2010). For example,
to derive a representation for “acquire knowledge,” their model would combine the
first-order vector of “knowledge” with the second-order vector for “acquire” using
point-wise multiplication. This operation has the effect of filtering the second-order

vector of “acquire,” refining the meaning representation.

Higher order compositional vector spaces based on tensor algebra have also
been proposed, dating back to Smolensky (1990)(see e.g. Baroni et al., 2010;
Baroni and Zamparelli, 2010; Rudolph and Giesbrecht, 2010; Grefenstette et al.,
2011); although they allow richer semantics to captured in a uniform way, these
methods currently scale poorly with corpus size, as storage overhead increases ex-

ponentially with each dimension.
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2.2.2 Word-Type Models

Pereira et al. (1993) introduce an approach to word-type distributional lex-
ical semantics based on minimum-distortion hierarchical clustering. Word clusters
are used to construct a class model for tagging words with their latent semantic
class. These classes are shown to capture generalizable verb-noun selectional pref-

erences.

Landauer and Dumais (1997) use Latent Semantic Analysis (LSA) to per-
form dimensionality reduction on co-occurrence vectors, demonstrating good gen-
eralization performance completing English analogies. For contextualization, how-
ever, they sum the latent vector representations of each context word, following
Schiitze (1998a). LSA and its probabilistic extension Latent Dirichlet Allocation
(LDA; Blei et al., 2003b) have been demonstrated to yield generalizations that cor-

relate well with human production norms (Griffiths et al., 2007a).

Dinu and Lapata (2010) fit LDA to first-order word co-occurrence vectors,
similar to Landauer and Dumais (1997), and then derive probabilistic machinery
for combining head word vectors with vectors from their local contexts. The main
assumption driving this work is that word meaning can be represented as a proba-
bility distribution over a set of latent senses modulated by context. Topic models
like LDA have also been used for other lexical semantic tasks, such as word sense

induction (Brody and Lapata, 2009; Li et al., 2010; Yao and Durme, 2011).

Rooth et al. (1999) apply latent variable modeling to lexical substitution,

modeling slots as joint multinomial distributions over arguments and relations. Sev-
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eral authors have recently revisited this model, casting it in the Bayesian LDA

framework:

e Ritter et al. (2010) demonstrated significant gains from applying a relational
extension of LDA to jointly model the selectional preference of a large subset

of TextRunner relations (Banko et al., 2007), e.g.
André Gide — died in — Paris.

Latent distributions over target words are coupled with latent distributions
over local syntactic relations, yielding a model of verb-slots suitable for mod-

eling selectional preference.

e O Séaghdha (2010) derive a substantially similar approach, and train on a
much smaller data set. Their results are competitive with the state of the art,

especially for infrequent verb-argument pairs.

o} Séaghdha and Korhonen (2011) extend their previous latent variable work
with additional syntactic information, using the probabilistic machinery from Dinu
and Lapata (2010) to incorporate local dependency contexts instead of co-occurrence

windows.

The related work outlined in this section will constitute the baseline models
when empirically evaluating the cross-cutting distributional models. In particu-
lar, the probabilistic contextualization methodology introduced in Dinu and Lapata
(2010) and extended in O Séaghdha and Korhonen (2011) will be generalized and

adapted to cross-cutting models. In the next section I will introduce the empirical
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evidence for cross-cutting models themselves, in the context of human conceptual

organization.

Van de Cruys et al. (2011) introduce a latent variable model based on matrix
factorization for capturing word meaning in context. Word types, along with their
window-based contexts and dependency relations are linked to latent dimensions,
which capture what dimensions are important for a particular context. Evaluation in
both English and French shows that the results exceed the previous state-of-the-art

for lexical substitution.

Thater et al. (2011) that represents contextualized words based on their local
syntactic context. Features in the global word-type vector are reweighted based on
distributional information of the context words. This model outperforms previous
models on the SemEval 2007 Lexical Substitution task (§3.2.5), achieving state of

the art performance.

2.3 Cross-cutting Models of Conceptual Organization

Psychological models of concept categorization have been motivated from

a large variety of approaches, including:

e Synthesizing category members into abstract conceptual prototypes (Ander-

son, 1990; Posner and Keele, 1968),

e Identifying exemplar members for each category (Ashby and Alfonso-Reese,

1995; Kruschke, 1992; Medin and Schaffer, 1978; Nosofsky, 1986),
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e [earning categorization rules (Nosofsky et al., 1994; Goodman et al., 2008),

e Achieving parsimony or simple models (Pothos and Chater, 2002; Pothos and

Close, 2007),

e Hybrid approaches generalizing prototype and exemplar methods (Anderson,

1990; Love et al., 2004).

In this thesis I focus on models capable of capturing context-dependent selective
attention, which requires multiple systems of categories. Studies from multiple
real-world domains have demonstrated evidence for rich category structure, includ-

ing multiple cross-cutting categorization systems (Smith and Shafto, 2011).

Cross-categorization of concepts arises due to context-dependence: humans
attend to different features of a stimuli in different contexts, and categorize objects
differently depending on the set of active features (Smith and Shafto, 2011). Mod-
els of selective attention typically account for cross-categorization in a stage-wise
manner: concepts are categorized based all available features and then additional
models are fit to capture feature variance that is not explained well by the previ-
ous models (Love et al., 2004; Medin and Schaffer, 1978; Nosofsky, 1986; Shepard
et al., 1961). The result of this process is multiple systems of categories that apply
in different contexts. Smith and Shafto (2011) point out that a priori fixing feature
groups before learning categories is somewhat cumbersome, and instead propose an
alternative approach that allows feature subsets and categories to mutually constrain

themselves, leading to the formation of more parsimonious categories.
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2.3.1 Model Specification

The basic Cross-cat model consists of:

e d € [l...D] F-dimensional data vectors w = [wy,...,wp]'.

e m € [1...M] views defined by Z. View m is a binary vector specifying

which features are included in the mth clustering.

o ke ll...K,]clusters in clustering m € [1... M], c}.

Define the unary factorial feature projection operator
(xZ.1n) : RE — RIIZmlln, (2.1)
mapping data vectors of dimension F' to vectors with dimension equal to the number

of nonzero entries of the column-vector Z. ,,, (i.e. ||Z. ,,,||1). Let

d

S jije.. Fl[Zlm=1} (2.2)

)

)\m

be the ordered indices of the nonzero entries of Z. ,,, and let L™ & A = |Z. |1

be the number of nonzero entries. Then define

def T
W *x Z.’m = (w)\gn, c. ,UJ)\ZLM) s (23)

1.e. the projection of w onto the lower-dimensional subspace specified by the nonzero
entries of Z. ,,,. Finally w*(™) will be used as shorthand for w x Z. ,,, when the view

assignment matrix 7 is unambiguous.
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Cross-cat is defined as

P(Z,clw) « P(Z, {cm} w) (2.4)

HP M) ™) P(c™). (2.5)

where P(Z) is the prior distribution on views and P(c™) is a prior on the cluster-
ing for view m, e.g. the DPMM, and P(w*("™|c™) is the likelihood of the data w
restricted to the feature subset Z. ,,, given the corresponding clustering ¢ (Shafto

et al., 2000).

P(Z) is constructed by first drawing the vector z ~ CRP(«), i.e. assigning
each feature to some view via the Chinese Restaurant Process (Pitman, 1995). Z
is then derived from Z in the obvious way: each feature (row vector of Z) has only
a single nonzero entry corresponding to the column index of the view it is assigned
to via z:

. 1 2}0 =m,
2] m = { 0 otherwise. (2.6)

The cross-cat model is capable of finding disjoint views with maximally probable
clusterings. The Dirichlet Process parameter v on view assignment controls the
trade-off between the fit of any one clustering and the cost of adding an addition
clustering, taking features away from the others. Because views form hard parti-
tions of features, cross-cat is not capable of representing all of the most probable
clusterings simultaneously, i.e. features cannot be shared across views. The Multi-

view clustering model (MV-C) introduced in Chapter 5 addresses exactly this issue.
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2.3.2 Evidence for Cross-cutting Categorization

Humans use overlapping taxonomies to organize conceptual information in
many domains (Ross and Murphy, 1999); i.e. foods can be organized situationally,
breakfast food, dinner food, snack, etc, or by their type, dairy, meat, etc. Each
organization system may have different salient features and hence yield different
patterns of similarity generalization (cf. Heit and Rubinstein, 1994). For example,
Shafto and Coley (2003) find that when reasoning about the anatomical properties
of animals relies on taxonomic categories such as mammals or reptiles whereas rea-
soning about disease transmission relies on ecological categories such as predator

and prey.

Several studies provide experimental evidence for multiple categorization
across a number of different domains. Ross and Murphy (1999) demonstrate peo-
ples’ use of both taxonomic (e.g. grain) and situational categories (e.g. eaten for
breakfast) when make inferences about food. In particular, when presented with
individual foods and asked to categorize them, people list ~50% taxonomic cat-
egories and ~42% situational categories. Furthermore, both situational and tax-
onomic category labels prime retrieval of category members and guide inductive

inference.

Building on previous work in folk-taxonomic categorization in biology (Boster
and Johnson, 1989; Medin et al., 2006), Shafto and Coley (2003) find evidence for
multiple categorization systems in marine creatures. Novices were found to classify

fish based on appearance, while experts relied more on ecological niche.

28



In related work, Heit and Rubinstein (1994) demonstrate that people use tax-
onomic knowledge when reasoning about anatomical properties, but use ecological
knowledge when reasoning about behavioral properties. They draw the conclusion

that:

prior knowledge could be used dynamically to focus on certain features
when similarity is evaluated. In this conception, inductive reasoning is
an active process in which people identify features in the premise and

conclusion categories that are relevant to the property being inferred.

i.e. that people focus on specific, not general, ways in which concepts are related
(Murphy, 2002). Conceptual similarity is determined contextually and inference is

relative to a subset of active features, not the total set of available features.

In studying amateur and expert physics students, Chi et al. (1981) provide
evidence for multiple categorization systems: expert students augment similarity-
based event categories with categories based on abstract physical principles, and

these abstract categories play an important role in expert problem solving.

Multiple organizational systems are also used in categorical models of so-
cial perception, i.e. people can be categorized by gender, age, race, or occupa-
tion; further, categories toward which people have highly accessible attitudes (i.e.
have strongest polarity sentiment) are preferentially applied to multiply categoriz-
able objects (Smith et al., 1996). Zarate and Smith (1990) demonstrate gender and
racial differences in categorization speed when faced with overlapping social cat-

egories, indicating a potential biological basis for category priming. Nelson and
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Miller (1995) demonstrate similar results for a more general class of distinctive

traits, showing differences in feature salience in the perception of social similarity.

Finally, Cross-categorization is also apparent in goal-driven behavior, where
categories may be derived on-the-fly while planning (Barsalou, 1991). For example,
when planning for a vacation in SF, people may form the categories “departure

times that minimize work disruption”, “people who live in California”, and “things

to pack in a small suitcase.”

30



Chapter 3

Evaluating Lexical Semantic Models

This chapter introduces the textual corpora used to train the various lexical
semantics models (§3.1), and describes the set of evaluation tasks employed in the

subsequent chapters (§3.2).

3.1 Corpora and Features

Models introduced in the subsequent chapters can be divided into two groups

based on the way in which the base data is used:

e Models based on word-occurrence, e.g. multi-prototype and tiered cluster-
ing, where each unique occurrence of a word-type in context is included as a

separate data point; and

e Models based on word-type features, e.g. MVM, where word-type feature

vectors are collapsed across all occurrences, yielding one data point per word

type.

Word vectors are derived from four corpora: (1) the Google Web n-gram corpus
(word-type), (2) the Google Books n-gram corpus (word-type), (3) a 10/2010 snap-
shot of the English Wikipedia (word-occurence) and (4) the English Gigaword cor-
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pus (word-occurrence). Features are collected for 42K target words ranked by ab-

solute term frequency in the combined Google corpora.

3.1.1 Word-Occurrence Features

The Multi-prototype and tiered clustering models assign individual word
occurrences in context to clusters representing their sense. The base data for these
models is raw bag-of-words occurrence data for a set of target head words (see

Table 3.1 for an example from Wikipedia).

Word occurrence data is derived from two corpora:

1. Wikipedia — A snapshot of English Wikipedia taken on October. 11th, 2010.
Wikitext markup is removed, as are articles with fewer than 100 words, leav-

ing 2.8M articles with a total of 2.05B words.

2. Gigaword — The third edition English Gigaword corpus, with articles con-
taining fewer than 100 words removed, leaving 6.6M articles and 3.9B words

(Graft, 2003).

Wikipedia covers a wider range of sense distributions, whereas Gigaword contains

only news-wire text and tends to employ fewer senses of most ambiguous words.
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Head Word

Features

board on all Baptie people Charles All Airlines four

can Of accurate but historical hindsight aid notability more

current and form Spoken of literary including previous

elected and of Strategy as Marsh Chairman Doug steering Resources

following and Ashley turn see Laurel’s Doug Andrea

game good forage fair mule as rates wild such

give gist don’t of separate but needed done Related think

have use philosophy that of regional commitment committed such
impose government’s

horse eventually use be wooden Greeks construct proposes of on
left

include picnic that of modern sewer variety campsites

long doesn’t use anything prefer but actually break as inherit

over blue triumphed Award present crab team red

problem reset full ways of There this various fixing Doing

release on After takes material long time new with

slightly be mainspace work should edits want you might

talk on page Jul Sat

that maybe move Merge with correct Isn’t

time and constitutions provisions of could draft new meet until

type scaled essentially that of value fixed-point have specific data
by

under and present

Table 3.1: Example head words and bag-of-words features for a single occurrence,
collected using Wikipedia.
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3.1.2 Word-Type Features

In order to test their scalability, the word-type models (e.g. MVM) are
trained on a combination of the publicly available Google Books n-gram data', the
Google Web 5-gram data available from LDC,? and Wikipedia article occurrence

counts.

The Google corpora consist of n-gram contexts and associated frequency

counts, e.g.:
not get a chance to 137788
actually have a chance of 1890
ya get a chance 3071
cloudy with a chance 317793

Two types are features are extracted from this data:

1. Context Features — All n-gram contexts containing an instance of a target
word are collected. These contexts are then converted into general slots in
which the target word has been removed. E.g., for the target chance and the

context set above the following features are generated:

cloudy witha ___ 317793
notgeta __ to 137788
yageta___ 3071

actually havea __ of 1890

'The Google books data contains additional yearly frequency data; we sum all occurrences over
all years. http://books.google.com/ngrams

http://www.ldc.upenn.edu/Catalog/CatalogEntry. jsp?cataloglds=
LDC2006T13
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2. Unigram Co-occurrence Features — In addition to context features, uni-
grams appearing in the same context window (up to 5-gram) as a target word
are also collected. E.g., for the target chance and the context set above, the

following features are generated:

a 458652
cloudy 317793
with 317793

get 140859
not 137788
to 137788
ya 3071
actually 1890
have 1890

In addition, Wikipedia article occurrence counts are collected for each head word,
corresponding to a semantic as opposed to syntactic context. Article occurrence
counts are derived simply from counting the number of times a head word appears

in each article. For example, the headword chance contains features such as

o0

Infinite monkey theorem

Houston Astros

North Melbourne Football Club

Cousin marriage

Charles Sanders Peirce

African-American Civil Rights Movement (1955-1968)
Starscream (Transformers)

Star Trek VI: The Undiscovered Country

O O N NG N NG R

English Wikipedia articles with fewer than 1000 words or less than 5 incoming links

are discarded, leaving a total of 113K documents.

Table 3.2 breaks down the total number of features collected across all 42K

target words. In the final base data, each target word was limited to a maximum

35



source feature type unique count
Google Web  2-gram context 3.9M

Google Books 2-gram context 1.3M

Google Web  3-gram context 118.7M
Google Books 3-gram context 38.4M
Google Web  4-gram context 431.2M
Google Books 4-gram context 160.8M
Google Web  5-gram context 651.4M
Google Books 5-gram context 244.3M
Google Web  unigram co-occurrence 1.7M

Google Books unigram co-occurrence 362K

Wikipedia

article occurrence 113K

Table 3.2: Unique feature counts for the word-type data broken down across feature
type and source corpus.

of 20k unique features, ranked by ¢-fest score. Furthermore, features co-occurring
with less than 100 target head words were discarded (for Wikipedia article features

this limit was set to 4 head words).

3.2 Lexical Semantic Tasks

This section describes the five lexical semantics tasks used to evaluate the

proposed models.

3.2.1 Semantic Similarity

The most basic approach to evaluating distributional lexical semantic mod-
els is comparing their predicted pairwise similarity scores to a set of similarity

measurements collected from human raters. In this thesis I make use of two such

36
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Figure 3.1: (top) The distribution of ratings (scaled [0,1]) on WS-353, WN-
Evocation and Padé datasets. (bottom) The distribution of sense counts for each
data set (log-domain), collected from WordNet 3.0.

test collections:

1. WS-353 contains between 13 and 16 human similarity judgements for each

of 353 word pairs, rated on a 1-10 integer scale (Finkelstein et al., 2001).2

2. The Princeton WN-Evocation contains over 100k similarity comparisons

collected from both trained human raters (WN-Evocation-Controlled) and

3(Similarity vs. Relatedness) One issue with measuring semantic similarity is that it conflates
various types of relations, e.g. hyponymy, synonymy or metonymy. In order to better analyze the
various components of attributional similarity, Agirre et al. (2009) divide the WS-353 dataset into
separate similarity and relatedness judgements. Similar pairs include synonyms, antonyms and
hyponym-hypernyms; related pairs consist of meronym-holonyms and others that do not fit the
previous relations. The analyses presented here are extended to these subsets.
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participants on Amazon’s Mechanical Turk (WN-Evocation-MT; Ma et al.,
2009). WN-Evocation comparisons are assigned to only 3-5 human raters on
average and contain a significant fraction of zero- and low-similarity items
compared to WS-353 (Figure 3.1), reflecting more accurately real-world lex-
ical semantics settings. In these experiments I discard all comparisons with
fewer than 5 ratings and then sample 10% of the remaining pairs uniformly

at random, resulting in a test set with 1317 comparisons.

Evaluation: Each model is used to generate a similarity measures between each
pair of words in the corpus. Spearman’s Rank Correlation Coefficient (Spear-
man’s p) is then used to measure the correlation between the human ratings and the
model-produced ratings: Given a list of items w with gold standard ranks g¢,, and
model-produced ranks m,,, Spearman’s nonparametric rank correlation coefficient

is defined as
S mu = m)(gw — 9)
V(M = m)?(gw — )7

i.e., Pearson’s p over the ranks of items (Agirre et al., 2009).

P 3.1)

3.2.2 Selectional Preference

Selectional preference is the task of predicting the typical filler of an argu-
ment slot of a verb (Resnik, 1997; Pantel et al., 2007); e.g., the set of things that can
be eaten or thrown. Distributional methods have proven to be a powerful approach
to modeling selectional preference (Pado et al., 2007; Pantel et al., 2007), rivaling
methods based on existing semantic resources such as WordNet (Clark and Weir,

2002; Resnik, 1997) and FrameNet (Padd, 2007) and performing nearly as well as
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supervised methods (Herdagdelen and Baroni, 2009). Selectional preference has
been shown to be useful for, e.g., resolving ambiguous attachments (Hindle and
Rooth, 1991), word sense disambiguation (McCarthy and Carroll, 2003b) and se-

mantic role labeling (Gildea and Jurafsky, 2002).

In order to evaluate selectional preference models, I employ the Pado dataset,
which contains 211 verb-noun pairs with human similarity judgements for how
plausible the noun is for each argument of the verb (2 arguments per verb, corre-
sponding roughly to subject and object; see Table 3.3). Results are averaged across

20 raters; typical inter-rater agreement is p = 0.7 (Pad¢ et al., 2007).

Evaluation: Each model is used to generate a similarity measures between each
verb-noun pair in the corpus. Spearman’s p is then used to measure the correla-
tion between the human argument typicality ratings and the model-produced ratings

(Equation 3.1).

3.2.3 McRae Typicality Norms

Models of conceptual organization are ultimately grounded in some feature
space as with vector-space lexical semantic models. Semantic feature production
norms—i.e., what features people most often report as salient to a given stimulus
concept— have been studied extensively in psychology as one way to understand
human concept organization and categorization. McRae et al. (2005) introduce a
large, balanced set of human feature production norms covering 541 living and
non-living things in order to study concept organization and categorization. This

data set consists of class-attribute pairs, e.g. reptile and lives in jungle, or device
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Table 3.3: Padé Selectional Preference Dataset: Example verb-noun pairs and
associated typicality scores. Nouns are associated with either the agent or patient

slot of the verb.

Verb Slot Noun Typicality
hear agent  ear 6.8
ask patient doctor 6.7
ask agent  prosecutor 6.6
ask patient  police 6.2
advise agent  designer 5.8
hit agent  opponent 5.3
tell patient department 5.0
caution patient friend 5.0
embarrass patient executive 4.9
raise agent  question 4.2
encourage agent company 4.0
advise patient doctor 4.0
see patient viewer 3.8
see patient drop 3.8
inform agent  public 3.8
confuse agent  shareholder 33
increase patient industry 3.0
resent agent  transfer 1.3
embarrass patient revelation 1.2
eat patient  group 1.1
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category exemplar typicality
fruit plum 6.5
utensil ladle 6.2
storage  shelves 6.0
mammal leopard 6.0
vehicle bus 5.6
mammal hamster 5.6
fish goldfish 5.6
rodent chipmunk 5.5
thing doll 5.3
building cabin 4.8
utensil whip 4.7
tools blender 4.6
bird flamingo 4.6
storage  bottle 4.4
device couch 4.2
weapon  crossbow 3.8
tools tomahawk 3.7
animal walrus 3.2
housing  beehive 3.1
tools stereo 2.6
animal prune 1.9

and contains machinery.
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Table 3.4: McRae Typicality Norms: Examples of category labels and associated
exemplars ranked by typicality score.

Fountain and Lapata (2010) extend this data set with category typicality in-
formation, e.g. when asked to give examples of the class reptile, humans are more
likely to respond with rattlesnake than leopard. Participants on Amazon’s Me-
chanical Turk were presented with concepts and asked to label them with the most

appropriate category (free-form), yielding 541 exemplars for 41 total categories. A



second set of participants were asked to numerically gauge the typicality of each

category-exemplar pair. Sample typicality pairs and scores are shown in Table 3.4.*

Evaluation: The performance of each model is evaluated on the McRae typicality

data set using three tasks:

1. Category naming — Can the concept representation for each exemplar be
used to predict its category label? All concept labels from the entire set are
pooled and ranked by similarity score to the target exemplar. Performance is

summarized by gold category label Recall:

Given a list of ranked results r and an unranked set of gold queries
q, the recall at n (R,,) is computed as:

def |{TZ|Z < n} ﬂq|

: (3.2)
lq|

R,.(r,q)

where r; is the ith ranked result in r and |{r;|i < n} N q| is the

number of elements in ¢ also in the first n elements of r.
and Mean Reciprocal Rank:

Given a list of ranked results r and an unranked set of gold queries

q, the Mean Reciprocal Rank (MRR) score is computed as:

1

1
MRR(r,q) = — > —
() = 1 2 okl )

(3.3)

where rank(g;, r) is the rank of the ith gold query in r (or zero if
TET).

‘http://homepages.inf.ed.ac.uk/s0897549/data/
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2. Exemplar generation — Can the concept representation be used to predict
additional (unseen) exemplars? All exemplars across all categories are pooled
together as an in-domain set and ranked based on their semantic similarity to
the concept. The model’s ability to produce correct exemplars is summarized

using recall and MRR (Equation 3.3).
For each evaluation, two concept representations are considered:?

1. Category Label — The concept is represented by the feature vector corre-
sponding to its label (e.g. the concept bird is represented by the distributional

vector for the word bird).

2. Cateory Constituent — The concept is represented by the typicality-weighted
centroid of the feature vectors of its constituent exemplars; e.g. the concept
bird is represented by the weighted vector centroid of falcon, oriole, etc. For
the exemplar generation, the target exemplar is removed before performing

the weighted average.

3.2.4 Baroni and Lenci Evaluation of Semantic Spaces

Baroni and Lenci (2011) introduce a unified data set for systematic, intrin-
sic evaluation of semantic spaces (the Baroni and Lenci Evaluation of Semantic

Spaces; BLESS). In particular, the goal of the BLESS task is to generalize several

3In the original paper, Fountain and Lapata (2010) term these prototype and exemplar concept
representations. However, such double usage of the terms is confusing in this context, and I adopt a
different set of names.

®http://clic.cimec.unitn.it/distsem
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concept class relation argument
ant-n insect mero antenna-n
cabbage-n vegetable mero head-n
cannon-n  weapon attri large-j
car-n vehicle mero brake-n
castle-n building mero furniture-n
cat-n ground_mammal coord rabbit-n
cello-n musical_instrument event practice-v
dress-n clothing coord shirt-n
fox-n ground_mammal mero mouth-n
hospital-n  building mero doctor-n
knife-n tool attri old-j
lime-n fruit attri sour-j
onion-n vegetable coord leek-n
owl-n bird event inhabit-v
sofa-n furniture attri comfortable-]
tiger-n ground_mammal mero claw-n
trumpet-n musical_instrument coord harmonica-n
trumpet-n musical_instrument event listen-v
yacht-n vehicle event leave-v
yacht-n vehicle mero fin-n

Table 3.5: (BLESS) Examples of relations between concepts and arguments, in-
cluding the concept class.
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commonly studied semantic similarity tasks, e.g. WS-353 (§3.2.1; Finkelstein et al.

(2001)) and the McRae production norms (§3.2.3; McRae et al. (2005)).

The BLESS data set consists of 200 distinct English concrete nouns di-
vided into 17 categories: amphibian-reptile, appliance, bird, building, clothing,
container, fruit, furniture, ground-mammal, insect, musical-instrument, tool,
tree, vegetable, vehicle, water-animal, and weapon (with on average 11.76 con-
cepts per class). Related terms are collected for each concept noun following one

of five relations:

1. coord — The related word is a coordinate term or co-hyponym; i.e. the two

concepts belong to the same semantic class (e.g. alligator and lizard).

2. hyper — The related word is a hypernym of the concept, i.e. is a more seman-

tically broad class (e.g. alligator and animal).

3. mero — The related word is a meronym of the concept, i.e. is a part, compo-

nent or member of the concept (e.g. alligator and mouth).

4. attrib — The related word is an attribute of the concept (e.g. alligator and

aquatic).

5. event — The related word is an activity, action or event related to the concept

(e.g. alligator and swim).

Table 3.5 lists 20 example relations. The stated goal of the task is to provide a
common platform for comparing semantic spaces and models, in particular elicit-

ing differences in their predictive performance across the five relation types.
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Evaluation: All target attributes for a particular concept are collected into an in-
domain set { D..} and augmented with an additional 60 random terms to act as con-
founders. Recall and MRR (Equation 3.3) are then computed for each concept-
relation pair (c,r), yielding insight into which relations are preferred by which

models.

3.2.5 Lexical Substitution

Lexical substitution is the task of identifying suitable replacements for a

target word in a given sentence. For example in the sentence

Vincent van Gogh in 1880 was a 27-year-old failure: a despised and

rejected clergyman in a grim backwater mining town in Belgium.

human evaluators may suggest that the head word grim can be replaced with gloomy,

harsh, horrid, depressing or bleak. In the sentence

When Time magazine’s cover portrays millennium nuts as deranged,
crazy Christians holding a cross as it did last month, boycott their mag-

azine and the products it advertises.

however, evaluators may only suggest one potential substitution: crucifix. Potential
substitutes can be collected from expert human evaluators (such as in the LexSub07
dataset described below) or crowdsourced from sites like Amazon’s Mechnical Turk

(as in the TWSII dataset).
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3.2.5.1 Datasets

Sis:

Two collections of lexical substitution problems are considered in this the-

1. LexSub07 — The English Lexical Substitution task (part of SemEval 2007)

consists of 2010 sentences over 205 unique target words annotated for con-
textual paraphrases (McCarthy and Navigli, 2007). See Table 3.6 for example

sentences and potential substitutes.

. TWSI1 — The Turk bootstrap Word Sense Inventory (TWSI) consists of 51.8k

occurrences of 397 frequent target nouns drawn from Wikipedia. Each occur-
rence is sense-labeled and each sense is paired with plausible substitutions
collected using a Mechanical Turk-based bootstrapping technique (Biemann
and Nygaard, 2010). Unlike WordNet, the TWSI sense inventory is deter-
mined by common substitutions rather than psychologically motivated con-
cepts. See Table 3.7 for example sentences and word sense substitutes. For
evaluation purposes, a random 10% sample of the TWSI data (5191 sen-

tences) is used.

In both tasks, potential replacement words for each head word are ranked by a

numeric score determined by human evaluators. The LexSub07 data set contains

ranked replacements unique for each context, while TWSI contains replacements

only for each word sense. Furthermore, TWSI only contains concrete nouns as

target words, while LexSub07 contains a mix of different parts of speech.
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Following previous work, we focused on the subtask of ranking contextual
substitutes drawn from the closed vocabulary of human annotations with multi-
word substitutions removed (Dinu and Lapata, 2010; O Séaghdha and Korhonen,

2011; Thater et al., 2010).

Evaluation: Models are scored using Generalized Average Precision (GAP; Kishida,

2005), a robust measure of overlap between ranked lists based on average precision:

G = ((91,a1), -, (gm,am)) is a list of gold paraphrases and associ-
ated weights for a given sentence. P = ((p1,91,01),- -, (P, Yn, bn))
is a list of model predictions ranked by model score y;, with associated
gold weights b; (b; = 0if p; € ).

Let I(p;) = 1if p; € G, zero otherwise. b; &of Sy ka is the average
gold weight of the first  model predictions, and likewise @; o 211 %
for the first ¢ gold predictions. GAP is defined as

det iy L(pi)bs
GAP(G, P) & S e (3.4)

GAP is sensitive to the absolute ranked order of the candidate results unlike average

precision, which is only sensitive to relative rank.

48



id

context

replacements

211

217

233

238

236

239

248

256

294

296

1731

1767

1771

Galls indeed arise from the stinging of the
plant tissues by the ovipositors of female gall
wasps, and the egg laid in the plant tissues de-
velops inside the gall into a grub, which even-
tually emerges full-grown and transformed
into a mature gall wasp.

And the morans have the gall to ruin
Beethoven’s 6th in the process, too.

I lie down on my futon -bed with a tiny bean-
filled pillow under my neck.

Grabbed the blaster lying on the seat next to
her and fired up at him.

“You can’t lie in front of the bulldozer indef-
initely” I’'m game... “Zaphod, you look good
Whether it’s lying through omission, lying
through misdirection, or outright lies, it’s aw-
fully hard to extract nuggets of truth from the
noise.

I would like a big, nasty, mean, ugly auto-
matic rifle or grenade launcher that I could
fire at any car whose alarm blares repeatedly.
I hadn’t nearly finished the work at hand.

Chapters from this book by Paul Collins have
run in McSweeney’s Quarterly Concern.
Anyway here are some static pictures of the
boat - it is driven by a brushless motor driving
a prop - but when it’ss running you can’t see
it.

The worm could gave done truly random IP
generation and that would have allowed it to
infect many more systems much faster.

We have not yet found any MUD/MOO envi-
ronments that handle NL processing.

You can now deliver a heavy right-handed
blow with your fist upon his chin, or over his
heart, which will render him unconscious.

pn (2), secretion producing (1)

cheek (3), audacity (2), nerve (2),
effrontery (1), temerity (1)

stretch out (2), rest (1), recline
horizontally (1), get (1), recline
(1)

resting (2), sit (1), that was (1),
place (1), position (1)

recline (2), stay (2), recline hori-
zontally (1), stretch out (1)

fib (2), fibbing (1), falsify (1),
telling untruths (1), telling false-
hoods (1), deceive (1)

mean (2), vicious (1), dirty (1), un-
pleasant (1), formidable (1), horri-
ble (1), dangerous (1)

almost (2), anyway (1), anywhere
near (1), remotely (1), even ap-
proximately (1)

appear (3), appear in sequence (1),
be serialised (1), be published (1)
operate (2), go (2), function (1),
work (1)

genuinely (4), strictly (1), un-
equivocally (1), actually (1)

so far (1), hitherto (1), to date (1),
until now (1), thus far (1), still (1)
hit (2), strike (1), knock (1), set-
back (1), criticism (1), punch (1),
reverse (1)

Table 3.6: Example contextual occurrences and substitutions from the LexSub07

task.
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context

replacements

It dispenses with plot and unlike her earlier work, with
its highly specific stage directions, gives no indica-
tion what actions, if any, the actors should perform
on stage, nor does it give any setting for the play.

Violence struck the campaign almost as soon as it
started.

From 1380 to 1382 Louis served as regent for his
nephew, King Charles VI of France, but left France in
the latter year to claim the throne of Naples following
the death of Queen Joanna 1.

9 Any attack in an officer ’ s field of command triggers
a full mobilization, which shall be done in the swiftest
possible manner.

Together with Earth ’ s orbital motion of 18 miles per
second ( 29 km per second ) speeds can reach 44 miles
per second ( 71 kilometers per second ) in head - on
collisions.

We are not left with many options, & high - ranking
defense official told The Jerusalem Post on Tuesday.

There are other combinations depending on the vac-
uum quality desired.

In 1054 he was sent to the emperor Henry II to ob-
tain that monarch ’ s influence in securing the return to
England of Edward the Exile, son of Edmund Ironside,
who was in Hungary with King Andrew 1.

activity (16), movement (16), mo-
tion (12), force (6), behavior (5),
maneuver (4), process (4), act (3),
function (3), battle (2), conducted
activity (2), energy (2), exercise (2),
military action (2), operation (2),
power (2), service (2)

movement (24), crusade (21), push
(16), fight (12), drive (10), operation
(8), contest (6), strategy (5), election
(4), battle plan (3), election strategy
(3), military action (3), plan (3), po-
litical campaign (3)

demise (97), passing (84), end (34),
decease (22), fatality (15), expira-
tion (14), passing away (14), termi-
nation (13), departure (11), dying
(11), mortality (11)

area (19), range (11), scope (10),
compass (7), space (5), reach (4),
force field (3), region (3), ground(s)
(2), site (2), span (2), specialty (2),
territory (2)

skull (6), crown (4), noggin (4),
scalp (4), cranium (2), top (2)

officer (11), authority (4), leader (4),
executive (3), office holder (3), per-
sonage (3), administrator (2), gov-
ernment official (2)

caliber (11), excellence (11), quality
level (11), standard (11), value (9),
superiority (6), class (4), grade (4),
workmanship (4), worth (4)

child (59), boy (52), male child (43),
offspring (43), heir (23), male off-
spring (22), kid (13), descendant
(10), male heir (10), male progeny
(10)

Table 3.7: Example contextual occurrences and substitutions from the TWSI1 task.
Head words are denoted in bold, potential substitutes are ranked by human raters
for each sense.
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Chapter 4

Multi-Prototype Models via Contextual Clustering

4.1 Introduction

Traditionally, word meaning is represented by a single vector of contextual
features derived from co-occurrence information, and semantic similarity is com-
puted using some measure of vector distance (Lee, 1999; Lowe, 2001). However,
due to homonymy and polysemy, capturing the semantics of a word with a single
vector is problematic. For example, the word club is similar to both bat and asso-
ciation, which are not at all similar to each other. Furthermore, most vector-space
models are context independent, while the meaning of a word clearly depends on
context. The word club in “The caveman picked up the club” is similar to bat in
“John hit the robber with a bat,” but not in “The bat flew out of the cave.” For-
mally, these problems arise because word meaning violates the triangle inequality
when viewed at the level of word types (Tversky and Gati, 1982). A single “pro-
totype” vector is simply incapable of capturing phenomena such as homonymy and

polysemy.

This section describes the multi-prototype and tiered clustering models,
which enrich the standard vector-space word representations, allowing multiple

“sense specific” vectors.
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4.1.1 Multi-prototype Model

Since vector-space representations are constructed at the lexical level, they
conflate multiple word meanings into the same vector, e.g. collapsing occurrences
of bank;ngiwion and banke,. Multi-prototype representations address this issue by
clustering the contexts in which words occur (similar to unsupervised word sense
discovery (Schiitze, 1998a)) and then building meaning vectors from the disam-

biguated words. More specifically:

e First, a word’s occurrence contexts are clustered to produce groups of similar

context vectors.

e An average “prototype” vector is then computed separately for each cluster,

producing a set of vectors for each word.

e Finally, these cluster vectors can be used to determine the semantic similarity

of both isolated words and words in context.

The approach is completely modular, and can integrate any clustering method with
any traditional vector-space model. Two variants are explored: (1) a finite clustering
version based on the mixture of von Mises-Fisher distributions (§4.2.1), and (2) an

infinite version based on the Dirichlet Process Mixture (§4.2.2).

4.1.2 Tiered Clustering Model

Tiered clustering extends the multi-prototype approach with the ability to
account for varying degrees of shared (context-independent) feature structure. Al-

though the multi-prototype model can readily capture the structure of homonymous
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LIFE
my, you, real, about, your, would
years, spent, rest, lived, last
sentenced, imprisonment, sentence, prison
years, cycle, life, all, expectancy, other
all, life, way, people, human, social, many
RADIO
station, FM, broadcasting, format, AM
radio, station, stations, amateur,
show, station, host, program, radio
stations, song, single, released, airplay
station, operator, radio, equipment, contact
WIZARD
evil, magic, powerful, named, world
Merlin, King, Arthur, powerful, court
spells, magic, cast, wizard, spell, witch
Harry, Dresden, series, Potter, character
STOCK
market, price, stock, company, value, crash
housing, breeding, all, large, stock, many
car, racing, company, cars, summer, NASCAR
stock, extended, folded, card, barrel, cards
rolling, locomotives, new, character, line

Table 4.1: Example DPMM multi-prototype representation of words with varying
degrees of polysemy. Each line represents the most common features associated
with an inferred word sense. Compared to the tiered clustering results in Table 4.2
the multi-prototype clusters are significantly less pure for thematically polysemous
words such as radio and wizard.
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words with several unrelated meanings (e.g. bat and club), it is not suitable for rep-
resenting the common metaphor structure found in highly polysemous words such

as line or run.

In order to address this problem, I introduce tiered clustering, a novel proba-
bilistic model of the shared structure often neglected in clustering problems. Tiered
clustering performs soft feature selection, allocating features between a Dirichlet
Process clustering model and a background model consisting of a single component.
The background model accounts for features commonly shared by all occurrences
(i.e. context-independent feature variation), while the clustering model accounts
for variation in word usage (i.e. context-dependent variation, or word senses; Table

4.2).

Common tasks in lexical semantics such as word relatedness or selectional
preference can benefit from modeling shared structure: Polysemous word usage
is often governed by some common background metaphoric usage (e.g. the senses
of line or run), and likewise modeling the selectional preference of verbs relies
on identifying commonalities shared by their typical arguments. Tiered clustering
can also be viewed as a form of soft feature selection, where features that do not
contribute meaningfully to the clustering can be excluded. We demonstrate the ap-
plicability of tiered clustering, highlighting particular cases where modeling shared

structure is beneficial and where it can be detrimental.
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LIFE
all, about, life, would, death
my, you, real, your, about
spent, years, rest, lived, last
sentenced, imprisonment, sentence, prison
insurance, peer, Baron, member, company
Guru, Rabbi, Baba, la, teachings
RADIO
station, radio, stations, television
amateur, frequency, waves, system
show, host, personality, American
song, single, released, airplay
operator, contact, communications, message
WIZARD
evil, powerful, magic, wizard
Merlin, King, Arthur, Arthurian
fairy, wicked, scene, tale
Harry, Potter, Voldemort, Dumbledore
STOCK
stock, all, other, company, new
market, crash, markets, price, prices
housing, breeding, fish, water, horses
car, racing, cars, NASCAR, race, engine
card, cards, player, pile, game, paper
rolling, locomotives, line, new, railway

Table 4.2: Example tiered clustering representation of words with varying degrees
of polysemy. Each boxed set shows the most common background (shared) features
(top line), and each additional line lists the top features of an inferred prototype
vector. Features are depicted ordered by their posterior probability in the trained
model given the target word and cluster id. For example, wizard is broken up into
a background cluster describing features common to all usages of the word (e.g.,
magic and evil) and several genre-specific usages (e.g. Merlin, fairy tales and Harry
Potter).
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4.1.3 Evaluations

The multi-prototype and tiered clustering models are evaluated on a collec-

tion of lexical semantic tasks:

e Paraphrase — Predicting the most similar words to a given target, both with
and without sentential context. The results demonstrate the superiority of a
clustered approach over both traditional prototype and exemplar-based vector-
space models. For example, given the isolated target word singer the multi-
prototype method produces the most similar word vocalist, while using a sin-
gle prototype gives musician. Given the word cell in the context: “The book
was published while Piasecki was still in prison, and a copy was delivered to
his cell.” the standard approach produces protein while the multi-prototype

method yields incarcerated.

e Semantic Similarity — Two test collections: WS-353, which consists of
353 word pairs each with 13-16 human similarity judgements (Finkelstein
et al., 2001) and WN-Evocation, which contains over 100k similarity com-
parisons over a much wider vocabulary (§3.2). When combined with aggres-
sive feature pruning, the multi-prototype approach outperforms state-of-the-
art vector space models such as Explicit Semantic Analysis (Gabrilovich and
Markovitch, 2007) on WS-353, achieving rank correlation of p=0.77. This
result rivals average human performance, obtaining correlation near that of

the supervised oracle approach of Agirre et al. (2009).
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This chapter also demonstrates that feature pruning is one of the most sig-
nificant factors in obtaining high correlation with human similarity judge-
ments using vector-space models. Three approaches are evaluated: (1) ba-
sic weighted unigram collocations, (2) Explicit Semantic Analysis (ESA;
Gabrilovich and Markovitch, 2007), and (3) the multi-prototype model. In all
three cases we show that feature pruning can be used to significantly improve

correlation, in particular reaching the limit of human and oracle performance

on WS-353.

Selectional Preference — Predicting the typical filler of an argument slot of a
verb (Resnik, 1997; Pantel et al., 2007). In this problem, I show that the tiered
clustering model outperforms the other models due to its ability to capture
shared structure, particularly in the case of selectionally restrictive verbs (e.g.

the set of things that can be eaten or can shoot).

McRae Categorization Norms — On the McRae category naming task, the
multi-prototype model and single prototype models are indistinguishable.
However, on the exemplar generation task, the tiered clustering model out-

performs the other two.

BLESS - Since it contains multiple similarity relations, the BLESS dataset
can help elucidate which axes of similarity different models prefer. The multi-
prototype model is biased more towards attributes, events, hypernyms and
meronyms, while the single-prototype model and tiered clustering model pre-

fer coordinate terms.
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(cluster#1)

location
importance
... chose Zbigniew Brzezinski bombing
for the position of ... —
... thus the symbol s position (cluster#2)
on his clothing was ... post
... writes call options against appointme
the stock position ... nt, role, job

... offered a position with ...
... a position he would hold

single (cluster#3)

until his retirement in ... : )

... endanger their position as *prototype :Ir;itrt?gssny,

a cultural group... ’

... on the chart of the vessel s o hour, gust

current position ... (] * ° (cluster#4)

... hot in a position to help... lineman
tackle, role,
scorer

(collect contexts) (cluster) (similarity)

Figure 4.1: Overview of the multi-prototype approach to paraphrase discovery for
a single target word independent of context. Occurrences are clustered and cluster
centroids are used as prototype vectors. Note the “hurricane” sense of position
(cluster 3) is not typically considered appropriate in WSD.

4.2 Multi-Prototype Vector-Space Models

The multi-prototype model is similar to standard vector-space models of
word meaning, with the addition of a per-word-type clustering step: Occurrences
for a specific word type are collected from the corpus and clustered using any ap-
propriate method (§4.2.1). This approach is commonly employed in unsupervised
word sense discovery; however, clusters are not intended to correspond to tradi-
tional word senses. Rather, clustering is used only to capture meaningful variation
in word usage. Similarity between two word types is then computed as a function of
their cluster centroids (§4.4.3), instead of the centroid of all the word’s occurrences.

Figure 4.1 gives an overview of this process.
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4.2.1 Spherical Mixture Multi-Prototype Models

Multiple prototypes for each word w are generated by clustering feature
vectors v(c) derived from each occurrence ¢ € C(w) in a large textual corpus and
collecting the resulting cluster centroids 7, (w), k € [1, K|. Multiple values of K

are evaluated experimentally.

Our experiments employ a mixture of von Mises-Fisher distributions (movMF)
clustering method with first-order unigram contexts (Banerjee et al., 2005). Fea-
ture vectors v(c) are composed of individual features /(c, f), taken as all unigrams

f € Fin a 10-word window around w.

Like spherical k-means (Dhillon and Modha, 2001), movMF models se-
mantic relatedness using cosine similarity, a standard measure of textual similar-
ity. However, movMF introduces an additional per-cluster concentration param-
eter controlling its semantic breadth, allowing it to more accurately model non-
uniformities in the distribution of cluster sizes. Based on preliminary experiments

comparing various clustering methods, movMF was found to give the best results.

4.2.2 Dirichlet-Process Multi-Prototype Models

One potential issue with the previous model is that A" must be chosen and
fixed a priori. A heuristic solution might be to scale K" with the log of the number
of word occurrences in the corpus. However, this can be misleading as the total
number of occurrences of a word is heavily corpus-dependent, and in particular
semantically “tight” corpora such as WSJ high frequency words may have only a

small number of senses actually expressed. Furthermore, the number of clusters
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should most likely depend on the variance of the occurrences, not just the total

number.

A more principled, data-driven approach to selecting the number of pro-
totypes per word is to employ a clustering model with infinite capacity, e.g. the

Dirichlet Process Mixture Model (DPMM; Neal, 2000; Rasmussen, 2000). The

DPMM assigns positive mass to a variable, but finite number of clusters z,

< ifn >0
P(z = k|z_y) = { Symtte K (4.1)
S ira k is a new class.

with probability of assignment to cluster £ proportional to the number of data points
previously assigned to k, ng. In this case, the number of clusters no longer needs
to be fixed a priori, allowing the model to allocate expressivity dynamically to con-
cepts with richer structure. Such a model would allow naturally more polysemous

words to adopt more flexible representations.

Instead of assuming all words can be represented by the same number of
clusters, representational flexibility can be allocated dynamically using the DPMM.
The DPMM is an infinite capacity model capable of assigning data to a variable,
but finite number of clusters K, with probability of assignment to cluster k£ pro-
portional to the number of data points previously assigned to k. A single parameter
7 controls the degree of smoothing, producing more uniform clusterings as n — oo.
Using this model, the number of clusters no longer needs to be fixed a priori, al-
lowing the model to allocate expressivity dynamically to concepts with richer struc-
ture. Such a model naturally allows the word representation to allocate additional

capacity for highly polysemous words, with the number of clusters growing loga-
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rithmically with the number of occurrences. The DPMM has been used for rational
models of concept organization (Sanborn et al., 2006), but to our knowledge has

not yet been applied directly to lexical semantics.

4.3 Tiered Clustering: Multi-Prototype Models with Shared Struc-
ture

Tiered clustering implements feature selective clustering by allocating fea-
tures between two submodels: a (context-dependent) DPMM and a single (context-
independent) background component. This model is similar structurally to the fea-
ture selective clustering model proposed by Law et al. (2002). However, instead of
allocating entire feature dimensions between model and background components,
assignment is done at the level of individual feature occurrences, much like topic
assignment in Latent Dirichlet Allocation (LDA; Griffiths et al., 2007b). At a high
level, the tiered model can be viewed as a combination of a multi-prototype model
and a single-prototype back-off model. However, by leveraging both representa-
tions in a joint framework, uninformative features can be removed from the cluster-

ing, resulting in more semantically tight clusters.

4.3.1 Generative Model

Concretely, each word occurrence w first selects a cluster ¢, from the
DPMM; then each feature w; 4 is generated from either the background model ¢y,

or the selected cluster ¢,, determined by the tier indicator z; 4. The full generative
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noise
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Figure 4.2: Schematic of word occurrences being generated by the tiered clustering
model. Each context feature comes from either from the word-dependent cluster
component or from the word-independent background component.

background
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2CnCh
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clusters

Figure 4.3: Plate diagram for the tiered clustering model with cluster indicators
drawn from the Chinese Restaurant Process.
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model for tiered clustering is given by

04| ~ Beta(a) de D,
¢d|ﬁ7 GO ~ DP(BvGO) de Dv
¢back ’B back ~ Dil‘iCh]Ct(,@ back)
i d|0d ~ Bernoulli(6,) i€ |wql,
Mult if z,4g=1 .
Wi d ¢d7 Zi,d { (¢ba0k) bd (S ‘Wd|7

Mult(¢,) otherwise
where o controls the per-data tier distribution smoothing and 3 controls the unifor-
mity of the DP cluster allocation. The DP is parameterized by a base measure Gy,
controlling the per-cluster term distribution smoothing; which use a Dirichlet with

hyperparameter 7, as is common (Figure 4.3).

Since the background topic is shared across all occurrences, it can account
for features with context-independent variance, such as stop words and other high-
frequency noise, as well as the central tendency of the collection (Table 4.2). Fur-
thermore, it is possible to put an asymmetric prior on 7, yielding more fine-grained
control over the assumed uniformity of the occurrence of noisy features, unlike in

the model proposed by Law et al. (2002).

4.3.2 Collapsed Gibbs Sampler

Since there is no closed form for the posterior distribution of the Tiered
Clustering model, sampling is necessary to perform model inference. By exploit-
ing conjugacy, the latent variables @, ¢ and 7, can be integrated out, yielding an

efficient collapsed Gibbs sampler. The likelihood of document d is given by

P(Wd|z7 Cd, ¢) = HP(wi,d|¢cd)6(Zd’i:0)P<wi,d|¢backgr0und)5(2d7i:1)' (42)
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Hence, this model can be viewed as a two-topic variant of LDA with the addition
of a per-document cluster indicator.! The update rule for the latent tier indicator z
is similar to the update rule for 2-topic LDA, with the background component as
the first topic and the second topic being determined by the per-document cluster

indicator c.

We can efficiently approximate p(z|w) via Gibbs sampling, which requires

the complete conditional posteriors for all z; 4. These are

n\" 4 B n? +a
ra
S+ 8) 3, + a)

P(Zi,d - t|z—(i,d)7 W, «, ﬁ) - (43)

)

where z_; 4y is shorthand for the set z — {#ia} nﬁw is the number of occurrences

of word w in topic ¢ not counting w; 4 and ngd) is the number of words in document

d assigned to topic ¢, not counting wj 4.

Likewise sampling the cluster indicators conditioned on the data p(c,|w, c_g4, a, 1)
decomposes into the DP posterior over cluster assignments and the cluster-conditional

Multinomial-Dirichlet document likelihood p(cy|w, c_g, &, ) = p(cq|c_q, n)p(Wa|W_q4, €, Z, )

given by
(=d) (=d) (d)

m Cla+m Y +7
P(cq = koule—g, ;) = ( e e ) (4.4)

s 7 Cla+ ﬁk )

P(Cdrcr—dﬂ?) p(Wd‘Wtd,C,Z,O()

C ﬁ(d)

P(cqg = kpew|C_a, ,n) ¢ 1 (ot ma’) 4.5)

mfd) +1n C(a)

!Effectively, the tiered clustering model is a special case of the nested Chinese Restaurant Pro-
cess with the tree depth fixed to two (Blei et al., 2003a).
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(=) is the number of documents assigned to £ not including d, ﬁ,(cd) is the

where m
vector of counts of words from document w, assigned to cluster k (i.e. words with

z;4 = 0) and C(-) is the normalizing constant for the Dirichlet

m

C(a) = F(Z aj)~! HF(%’)

operating over vectors of counts a.

4.3.3 Combined Multi-Prototype and Single Prototype

Tiered clustering’s ability to model both shared and idiosyncratic structure
can be easily approximated by using the single prototype model as the shared com-
ponent and multi-prototype model as the clustering. Such an MP+SP model is
conceptually simpler than Tiered clustering and hence easier to implement. How-
ever, unlike in the tiered model, all features are assigned to both components. This

simplification actually hurts performance (§4.5).

4.4 Measuring Semantic Similarity

Computing semantic similarity between multi-prototype and tiered cluster-
ing representations is less straightforward than for the single prototype model. This
section introduces several simple compound metrics suitable for comparing words

with multiple senses.
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4.4.1 Multi-prototype Similarity

Due to its richer representational structure, computing similarity in the multi-
prototype model is less straightforward than in the single prototype case. One sim-
ple approach that performs well and is robust to noise is to average the base sim-
ilarity scores over all pairs of prototypes (sampled from the cluster distributions)

Given two words w and w’, this AvgSim metric is

Ky Kw/

o 1 ,
AvgSim(w, w') & R DO d(mi(w), mi(w')) (4.6)

j=1 k=1
K, and K, are the number of clusters for w and w’ respectively, and d(-,-) is a
standard distributional similarity measure (e.g. cosine distance). As cluster sizes be-
come more uniform, AvgSim tends towards the single prototype similarity,> hence

the effectiveness of AvgSim stems from boosting the influence of small clusters.

As a point of comparison, a second noncontextual similarity metric is

: def
MaxSim(w,w') = 1<j<1}{1%)<(k<1(d(ﬂ-k(w>7ﬂ-j(w/))

where d(-, -) is a standard distributional similarity measure. In MaxSim the similar-

ity is the maximum over all pairwise prototype similarities.

In AvgSim, all prototype pairs contribute equally to the similarity computa-
tion, thus two words are judged as similar if many of their senses are similar. Note
that if all clusters (senses) have equal weight and feature weights are purely addi-

tive, then AvgSim devolves into just applying the baseline similarity metric. Since

>This can be problematic for certain clustering methods that specify uniform priors over
cluster sizes; however the DPMM naturally exhibits a linear decay in cluster sizes with the
E|[# clusters of size M| = n/M.
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it weights all senses equally, AvgSim can be seen as a method for increasing the

contribution of minority senses to the overall similarity score.

In contrast to AvgSim, MaxSim only requires a single pair of prototypes to
be close for the words to be judged similar. Thus, MaxSim models the similarity
of words that share only a single sense (e.g. bat and club) at the cost of lower

robustness to noisy clusters that might be introduced when K is large.

A priori one might expect MaxSim to outperform AvgSim, since it compares
only the prototypes that are most similar. That is, it would be expected that the tool
sense of bat would be the most similar prototype to the tool sense of c/ub. However,
due to e.g. clustering noise and high-frequency head word dependent stopwords,

this is not always the case empirically.

4.4.2 Contextual Similarity

When contextual information is available, AvgSim and MaxSim can be

modified to produce more precise similarity computations:

K K

e 1
AvgSimC(w,w') £ — 3"
=1k

K2 dc,w,kdc’,w’,jd(ﬂ-k(w)? 5 (w/>>
j=1 k=1

MaxSimC(w,w') = d(7(w),7(w"))

def

where d. . = d(v(c), m(w)) is the likelihood of context ¢ belonging to cluster

. f . _—
me(w), and #(w) € Targ maxi << i de.w (W), the maximum likelihood cluster for w
in context c. Thus, AvgSimC corresponds to soft cluster assignment, weighting
each similarity term in AvgSim by the likelihood of the word contexts appearing in

their respective clusters. MaxSimC corresponds to hard assignment, using only the
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most probable cluster assignment. Note that AvgSim and MaxSim can be thought
of as special cases of AvgSimC and MaxSimC with uniform weight to each cluster;
hence AvgSimC and MaxSimC can be used to compare words in context to isolated

words as well.

4.4.3 Tiered Clustering Similarity

Tiered clustering representations offer more possibilities for computing se-
mantic similarity than multi-prototype, as the background prototype can be treated
separately from the other prototypes. I make use of a simple convex combination of
the distance between the two background components, and the AvgSim of the two

sets of clustering components.
TieredAvgSim(w, w') £ aAvgSim(w, ') + (1 — o) d(Tpaer (W), Toaer (W) (4.7)

where a € [0, 1] controls the tradeoff between the two base similarity measures. In
all experiments here we will simply use o = 0.5, although tuning « can potentially

yield improved results.

4.5 Experimental Results

This section compares four models: (1) the standard single-prototype ap-
proach, (2) the multi-prototype approach outlined in §4.2.2, (3) a simple combina-
tion of the multi-prototype and single-prototype approaches (MP+SP) and (4) the

tiered clustering approach (§4.3.1). Each data set is divided into 5 quantiles based
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WordSim-353

stock-live, start-match, line-insurance, game-round, street-place, company-stock
Evocation

break-fire, clear-pass, take-call, break-tin, charge-charge, run-heat, social-play
Pado

see-drop, see-return, hit-stock, raise-bank, see-face, raise-firm, raise-question

Table 4.3: Examples of highly polysemous pairs from each data set using sense
counts from WordNet.

homonymous

carrier, crane, cell, company, issue, interest, match, media, nature, party, practice,
plant, racket, recess, reservation, rock, space, value

polysemous

cause, chance, journal, market, network, policy, power, production, series, trading,
train

Table 4.4: Words used in predicting paraphrases.

on per-pair average sense counts,’ collected from WordNet 3.0 (Fellbaum, 1998a);
examples of pairs in the high-polysemy quantile are shown in Table 4.3. Unless oth-
erwise specified, both DPMM multi-prototype and tiered clustering use symmetric
Dirichlet hyperparameters, 5=0.1, n=0.1, and tiered clustering uses a=10 for the

background/clustering allocation smoother.

4.5.1 Predicting Paraphrases

In the following analyses, word occurrences are represented using unordered

unigrams collected from a window of size T'=10 centered around the occurrence,

3Despite many skewed pairs (e.g. line has 36 senses while insurance has 3), I found that arith-
metic average and geometric average perform the same.
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represented using either #f-idf weighting or x? weighting (Agirre et al., 2009; Cur-
ran, 2004b). Feature vectors are pruned to a fixed length f, discarding all but the
highest-weight features (f is selected via empirical validation, as described in the
next section). Finally, the baseline semantic similarity between word pairs is com-

puted using cosine distance (/,-normalized dot-product).*

The multi-prototype model is next evaluated on on its ability to determine
the most closely related words for a given target word (using the Wikipedia corpus
with #f-idf features). The top k£ most similar words were computed for each proto-
type of each target word. Using a forced-choice setup, human subjects were asked
to evaluate the quality of these paraphrases relative to those produced by a single
prototype. Participants on Amazon’s Mechanical Turk® (Snow et al., 2008) were
asked to choose between two possible alternatives (one from a prototype model and
one from a multi-prototype model) as being most similar to a given target word. The
target words were presented either in isolation or in a sentential context randomly
selected from the corpus. Table 4.4 lists the ambiguous words used for this task.
They are grouped into homonyms (words with very distinct senses) and polysemes
(words with related senses). All words were chosen such that their usages occur

within the same part of speech.

In the non-contextual task, 79 unique raters completed 7,620 comparisons

4(Parameter robustness) We observe lower correlations on average for T'=25 and T=5 and
therefore observe T'=10 to be near-optimal. Substituting weighted Jaccard similarity for cosine
does not significantly affect the results in this chapter.

Shttp://mturk.com
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Figure 4.4: (left) Paraphrase evaluation for isolated words showing fraction of raters
preferring multi-prototype results vs. number of clusters. Colored squares indicate
performance when combining across clusterings. 95% confidence intervals com-
puted using the Wald test. (right) Paraphrase evaluation for words in a sentential
context chosen either from the minority sense or the majority sense.

of which 72 were discarded due to poor performance on a known test set.® In the
contextual task, 127 raters completed 9,930 comparisons of which 87 were dis-

carded.

S(Rater reliability) The reliability of Mechanical Turk raters is quite variable, so rater quality
was evaluated by including control questions with a known correct answers in each HIT. Control
questions were generated by selecting a random word from WordNet 3.0 and including as possible
choices a word in the same synset (correct answer) and a word in a synset with a high path distance
(incorrect answer). Raters who got less than 50% of these control questions correct, or spent too
little time on the HIT were discarded.
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For the non-contextual case, Figure 4.4 left plots the fraction of raters prefer-
ring the multi-prototype prediction (using AvgSim) over that of a single prototype
as the number of clusters is varied. When asked to choose between the single best
word for each method (top word), the multi-prototype prediction is chosen signifi-
cantly more frequently (i.e. the result is above 0.5) when the number of clusters is
small, but the two methods perform similarly for larger numbers of clusters (Wald
test, « = 0.05.) Clustering more accurately identifies homonyms’ clearly distinct
senses and produces prototypes that better capture the different uses of these words.
As aresult, compared to using a single prototype, the multi-prototype approach pro-
duces better paraphrases for homonyms compared to polysemes. However, given

the right number of clusters, it also produces better results for polysemous words.

The paraphrase prediction task highlights one of the weaknesses of the
multi-prototype approach: as the number of clusters increases, the number of oc-
currences assigned to each cluster decreases, increasing noise and resulting in some
poor prototypes that mainly cover outliers. The word similarity task is somewhat
robust to this phenomenon, but synonym prediction is more affected since only the
top predicted choice is used. When raters are forced to chose between the top three
predictions for each method (presented as top set in Figure 4.4 left), the effect of
this noise is reduced and the multi-prototype approach remains dominant even for
a large number of clusters. This indicates that although more clusters can capture

finer-grained sense distinctions, they also can introduce noise.

When presented with words in context (Figure 4.4 right),” raters found no

"Results for the multi-prototype method are generated using AvgSimC (soft assignment) as this
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significant difference in the two methods for words used in their majority sense.®
However, when a minority sense is presented (e.g. the “prison” sense of cell), raters
prefer the choice predicted by the multi-prototype approach. This result is to be
expected since the single prototype mainly reflects the majority sense, preventing
it from predicting appropriate synonyms for a minority sense. Also, once again,
the performance of the multi-prototype approach is better for homonyms than pol-

ysemes.

4.5.2 Semantic Similarity: WordSim-353 and Evocation

Figure 4.5 plots Spearman’s p on WordSim-353 against the number of clus-
ters (K) for Wikipedia and Gigaword corpora, using pruned #f-idf and y? features.’
In general pruned tf-idf features yield higher correlation than y? features. Using
AvgSim, the multi-prototype approach (K > 1) yields higher correlation than the
single-prototype approach (/{ = 1) across all corpora and feature types, achieving
state-of-the-art results (p = 0.77) with pruned #f-idf features. This result is statisti-
cally significant in all cases for #f-idf and for K € [2,10] on Wikipedia and K > 4
on Gigaword for y? features.!® MaxSim yields similar performance when K < 10

but performance degrades as K increases.

was found to significantly outperform MaxSimC.

8Sense frequency determined using Google; senses labeled manually by trained human evalua-
tors.

°(Feature pruning) Results using #f-idf features are extremely sensitive to feature pruning while
x? features are more robust. In all experiments #f-idf features are pruned by their overall weight,
taking the top 5000. This setting was found to optimize the performance of the single-prototype
approach.

10Significance is calculated using the large-sample approximation of the Spearman rank fest;
(p < 0.05).
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Spearman’s p prototype exemplar vMF multi-prototype (AvgSim) MP+SP
K=5 K =20 K =50

Wikipedia #f-idf 0.53+0.02 0.60+0.06 0.69+0.02 0.76+0.01 0.76+£0.01 0.77+£0.01

Wikipedia x? 0.54+0.03 0.65+£0.07 0.58+0.02 0.56+0.02 0.52+0.03 0.5940.04

Gigaword #f-idf  0.49+0.02 0.48£0.10 0.644+0.02 0.61+0.02 0.61£0.02 0.6240.02

Gigaword \? 0.25+£0.03 0.41£0.14 0.324+0.03 0.354+0.03 0.33+0.03  0.3440.03

Table 4.5: Spearman correlation on the WordSim-353 dataset broken down by cor-
pus and feature type. Results are shown for the vVMF multi-prototype model.

Wikipedia Gigaword
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Figure 4.5: WordSim-353 rank correlation vs. number of clusters (log scale) using
AvgSim and MaxSim on both the Wikipedia (left) and Gigaword (right) corpora.
Horizontal bars show the performance of single-prototype. Squares indicate per-
formance when combining across clusterings. Error bars depict 95% confidence
intervals using the Spearman test. Squares indicate performance when combining

across clusterings.
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It is possible to circumvent the model-selection problem (choosing the best
value of K') by simply combining the prototypes from clusterings of different sizes.
This approach represents words using both semantically broad and semantically
tight prototypes, similar to hierarchical clustering. Table 4.5 and Figure 4.5 (squares)
show the result of such a MP+SP approach, where the prototypes for clusterings of
size 1-5, 10, 20, 50, and 100 are unioned to form a single large prototype set. In
general, this approach works about as well as picking the optimal value of K, even
outperforming the single best cluster size for Wikipedia.

Finally, the multi-prototype approach is also compared to a pure exemplar

I Table 4.5 summa-

approach, averaging similarity across all occurrence pairs.!
rizes the results. The exemplar approach yields significantly higher correlation
than the single prototype approach in all cases except Gigaword with ¢f-idf features
(p < 0.05). Furthermore, it performs significantly worse than MP+SP for #f-idf fea-
tures, and does not differ significantly for x? features. Overall this result indicates

that multi-prototype performs at least as well as exemplar in the worst case, and

significantly outperforms when using the best feature representation / corpus pair.

4.5.2.1 Effects of Pruning

Feature pruning is one of the most significant factors in obtaining high cor-
relation with human similarity judgements using vector-space models, and has been

suggested as one way to improve sense disambiguation for polysemous verbs (Xue

1 Averaging across all pairs was found to yield higher correlation than averaging over the most
similar pairs.
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Method WordSim-353 WN-Evocation
Sim. Rel. Both Controlled Turk

Human* 0.78 0.74 0.75 0.02 0.37
Agirre et al. (2009)
best unsup.” 0.72 0.56 0.66 - -
best oracle® 0.83 0.71 0.78 - -
Single Prototype
all 026 0.29 0.25 0.10 0.10
f=1000 0.76 0.72 0.73 0.21 0.16
f =15000 0.65 0.55 0.59 0.15 0.13
f = 10000 0.56 0.46 0.52 0.14 0.12
vMF Multi-Prototype (50 clusters)?
all 0.07 0.17 0.07 0.05 0.08
f* = 1000 0.78 0.70 0.74 0.25 0.16
f*=5000 0.81 0.76 0.77 0.24 0.16
f*=10000 0.79 0.74 0.74 0.24 0.15
Explicit Semantic Analysis
all 0.58 0.59 0.56 - -
f =1000 0.75 0.66 0.70 - -
f =15000 0.77 0.73 0.74 - -
f = 10000 0.77 0.74 0.74 - -

¢ Surrogate human performance computed using leave-one-out Spearman’s p averaged across
raters for WS-353 and randomized for WN-Evocation. In WN-Evocation, the small number of
ratings per pair and randomization makes LOO an unreliable estimator and thus should be
interpreted as a rough lower bound.

b WordNet-based multilingual approach.

¢ Supervised combination of b, context-window features and syntactic features.

def

. f S . .
 Effective number of features, f* = f/K is given in order to enforce a fair comparison.

Table 4.6: Correlation results on WS-353 and WN-Evocation comparing previous
studies and surrogate human performance to weighted unigram collocations with
feature pruning. Prototype and ESA-based approaches shown use #f-idf weighting
and cosine distance. Multi-prototype results are given for 50 clusters (K = 50).
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Figure 4.6: Effects of feature pruning and representation on WS-353 correlation
broken down across multi-prototype representation size. In general tf-idf features
are the most sensitive to pruning level, yielding the highest correlation for moder-
ate levels of pruning and significantly lower correlation than other representations
without pruning. The optimal amount of pruning varies with the number of proto-
types used, with fewer features being optimal for more clusters. Error bars show
95% confidence intervals.

et al., 2006). In this section, the single prototype and multi-prototype methods are
calibrated on WS-353, reaching the limit of human and oracle performance and
demonstrating robust performance gains even with semantically impoverished fea-
tures. In particular we obtain p=0.75 correlation on WS-353 using only unigram
collocations and p=0.77 using a fixed-K multi-prototype representation (Figure
4.6; Reisinger and Mooney, 2010). This result rivals average human performance,
obtaining correlation near that of the supervised oracle approach of Agirre et al.

(2009).

In addition to feature weighting, adequate pruning of irrelevant features is
critical when computing semantic relatedness. Table 4.6 summarizes the results of
using a simple fixed window pruning scheme, keeping a fixed number of features

(ordered by weight) for each term. Several different feature weighting are evalu-
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ated: tf, tf-idf, t-test, and x? (Curran and Moens, 2002). Feature vectors are pruned

to a fixed length f, discarding all but the highest-weight features.

For WS-353, unigram collocations perform the worst without pruning (p=0.25
for multi-prototype and p=0.25 for single prototype), followed by ESA (p=0.59),
but that with optimal pruning both methods perform about the same (p=0.73 and
p=0.74 respectively). The unpruned multi-prototype approach does poorly with -
idf features because it amplifies feature noise by partitioning the raw occurrences.
When employing feature pruning, however, unigram collocations outperform ESA
across a wide range of pruning levels. Note that pruning clearly helps in all three

test cases and across a wide range of settings for f (cf. Figure 4.6 and Figure 4.7).

For WN-Evocation, there is significant benefit to feature pruning in both the
single-prototype and multi-prototype case. The best correlation results are again
obtained using pruned #f-idf with multiple-prototypes (p=0.25 for controlled and
p=0.16 for Mechanical Turk), although #-fest features also perform well and benefit

from pruning.

The optimal pruning cutoff depends on the feature weighting and number of
prototypes (Figure 4.6) as well as the feature representation (Figure 4.7). t-test and
x? features are most robust to feature noise and perform well even with no pruning;
tf-idf yields the best results but is sensitive to the pruning parameter. As the number

of increases, more pruning is required to combat feature noise.

Figure 4.7 breaks down the similarity pairs into four quantiles for each data

set and then shows correlation separately for each quantile. In general the more po-
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Figure 4.7: (left) Effects of feature pruning using ESA on WS-353; more features
are required to attain high correlation compared to unigram collocations. (right)
Correlation results on WS-353 broken down over quantiles in the human ratings.
Quantile ranges are shown in Figure 3.1. In general ratings for highly similar (dis-
similar) pairs are more predictable (quantiles 1 and 4) than middle similarity pairs
(quantiles 2, 3). ESA shows results for a more semantically rich feature set derived
using Explicit Semantic Analysis (Gabrilovich and Markovitch, 2007).

larized data quantiles (1 and 4) have higher correlation, indicating that fine-grained
distinctions in semantic distance are easier for those sets. The fact that the per-
quantile correlation is significantly lower than the full correlation e.g. in the human
case means that fine-grained ordering (within quantile) is more difficult than coarse-
grained (between quantile). Feature pruning improves correlations in quantiles 2—4
while reducing correlation in quantile 1 (lowest similarity). This result is to be
expected as more features are necessary to make fine-grained distinctions between

dissimilar pairs.

4.5.2.2 Tiered Clustering and DPMM Multi-Prototype

Correlation results for the tiered clustering model and DPMM multi-prototype

model on WS-353 are shown in Table 4.7. In general the approaches incorporating
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Method p-100 E[C] background

Single prototype 73.4+£0.5 1.0 -
high polysemy 76.0+£09 1.0 -
DPMM Multi-prototype 76.84+0.4 14.8 -
high polysemy 793£1.3 125 -
MP+SP 75.4+0.5 148 -
high polysemy 80.1+1.0 12.5 -
Tiered 76.9+£0.5 27.2 43.0%
high polysemy 83.1+1.0 242 43.0%

Table 4.7: Spearman’s correlation on the WS-353 data set. All refers to the full
set of pairs, high polysemy refers to the top 20% of pairs, ranked by sense count.
E[C] is the average number of clusters employed by each method and background is
the average percentage of features allocated by the tiered model to the background
cluster (more features allocated to the background might indicate a higher degree of
overlap between senses). 95% confidence intervals are computed via bootstrapping.

multiple prototypes outperform single prototype (p = 0.768 vs. p = 0.734). The
tiered clustering model does not significantly outperform either the multi-prototype
or MP+SP models on the full set, but yields significantly higher correlation on the

high-polysemy set.

The tiered model generates more clusters than DPMM multi-prototype (27.2
vs. 14.8), despite using the same hyperparameter settings: Since words commonly
shared across clusters have been allocated to the background component, the cluster
components have less in common and hence the model splits the data up more

finely.

Examples of the tiered clusterings for several words from WS-353 are shown

in Table 4.2 and corresponding clusters from the multi-prototype approach are
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Method p-100 E[C] background

Single prototype 19.8£0.6 1.0 -
high similarity 239+1.1 1.0 -
high polysemy 11.5+£1.2 1.0 -

DPMM Multi-prototype 20.1+0.5 14.8 -
high similarity 22712 14.1 -
high polysemy 13.0£1.3 132 -

MP+SP 17.6+0.5 14.8 -
high similarity 23.5+1.2 141 -
high polysemy 11.4+1.0 13.2 -

Tiered 22.4+0.6 29.7 46.6%
high similarity 27713 299 47.2%
high polysemy 154+1.1 274 46.6%

Table 4.8: Spearman’s correlation on the Evocation data set. The high similarity
subset contains the top 20% of pairs sorted by average rater score.

shown in Table 4.1. In general the background component does indeed capture
commonalities between all the sense clusters (e.g. all wizards use magic) and hence
the tiered clusters are more semantically pure. This effect is most visible in themat-

ically polysemous words, e.g. radio and wizard.

Compared to WS-353, the WN-Evocation pair set is sampled more uni-
formly from English word pairs and hence contains a significantly larger fraction of
unrelated words, reflecting the fact that word similarity is a sparse relation (Figure
3.1 top). Furthermore, it contains proportionally more highly polysemous words

relative to WS-353 (Figure 3.1 bottom).

On WN-Evocation, the single prototype and multi-prototype do not differ

significantly in terms of correlation (p=0.198 and p=0.201 respectively; Table 4.8),
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Method p-100 E[C] background

Single prototype 25.8+0.8 1.0 -
high polysemy 17.3£1.7 1.0 -
DPMM Multi-prototype 20.2+1.0 18.5 -
high polysemy 14.1+£24 174 -
MP+SP 19.741.0 18.5 -
high polysemy 10.5+£25 174 -
Tiered 29.4+1.0 379 41.7%
high polysemy 28.5+24 374 43.2%

Table 4.9: Spearman’s correlation on the Pado data set.

while SP+MP yields significantly lower correlation (p=0.176), and the tiered model
yields significantly higher correlation (p=0.224). Restricting to the top 20% of
pairs with highest human similarity judgements yields similar outcomes, with sin-
gle prototype, multi-prototype and SP+MP statistically indistinguishable (p=0.239,
p=0.227 and p=0.235), and tiered clustering yielding significantly higher correla-
tion (p=0.277). Likewise tiered clustering achieves the most significant gains on

the high polysemy subset.

4.5.3 Selectional Preference

Tiered clustering is a natural model for verb selectional preference, espe-
cially for more selectionally restrictive verbs: the set of words that appear in a
particular argument slot naturally have some kind of commonality (i.e. they can be
eaten or can promise). The background component of the tiered clustering model

can capture such general argument structure. We model each verb argument slot in
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the Pado6 set with a separate tiered clustering model, separating terms co-occurring

with the target verb according to which slot they fill.

On the Pado set, the performance of the DPMM multi-prototype approach
breaks down and it yields significantly lower correlation with human norms than
the single prototype (p=0.202 vs. p=0.258; Table 4.9), due to its inability to cap-
ture the shared structure among verb arguments. Furthermore combining with the
single prototype does not significantly change its performance (p=0.197). Moving
to the tiered model, however, yields significant improvements in correlation over
the other models (p=0.294), primarily improving correlation in the case of highly

polysemous verbs and arguments.

4.5.4 McRae Categorization Norms

In this section and the following sections, five model settings are compared:

1. sp — Single prototype model combining all contextual occurrences.

2. mp n = 0.75 — Multi-prototype model with DP concentration n = 0.75

(fewer clusters).

3. mp 1 = 0.1 — Multi-prototype model with DP concentration 7 = 0.1 (more

clusters).

4. tiered n = 0.75 — Tiered clustering model with DP concentration n = 0.75

(fewer clusters).
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(b) Exemplar Generation Recall at rank 20 on the exemplar prediction
task (given the category representation, predict individual exemplars) bro-
ken down across the 5 models and 2 category representation types.

Figure 4.8
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5. tiered n = 0.1 — Tiered clustering model with DP concentration n = 0.1

(more clusters).

On the McRae dataset, concept-label representations significantly outper-
form concept-constituent representations on the category naming task, except in
the case of tiered clustering with 7 = 0.1 (more clusters; Figure 4.8). The best
performing models for category naming are the single prototype model and the
multi-prototype model with n = 0.75 (fewer clusters; 0.351 for single prototype
vs. 0.365 for multi-prototype). As the number of clusters decreases, the perfor-
mance of tiered clustering approaches the performance of single prototype. This
result indicates that category labels themselves are either homonymous, or else un-
ambiguous; in either case, there is no meaningful shared structure between their

constituent senses.

For the exemplar generation task, both the concept-label and concept-constituent
representations perform the same, except in the case of tiered clustering where the
constituent representation performs significantly better (recall at 20; 0.274 vs. 0.226
for n = 0.1 and 0.240 vs. 0.197 for n = 0.75). The best performing model on this
task variant is tiered clustering using = 0.1 (more clusters; recall of 0.274). The
higher performance of tiered clustering on this setup indicates that capturing shared
structure between individual exemplar senses is important for capturing how each

exemplar relates to the category as whole.

In general, the models capable of capturing background variation (single-

prototype and tiered clustering) are better at the exemplar generation task, while
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the multi-prototype model is slightly better at category naming.

4.5.5 BLESS

Since it contains multiple axes of similarity relations (attribute, coordinate
term, event, hypernym and meronym), the Bless data set is useful for comparing the

notion of similarity encoded by each model.

The leftmost panel in Figure 4.9 shows the overall recall across all non-
confounder relations (i.e. all relations whose target words were not randomly cho-
sen). Although all three models perform the same in terms of overall recall (recall
at 20 of 0.281 for single prototype, 0.271 for multi-prototype, and 0.274 for tiered
clustering; Figure 4.9), there are significant differences in what types of related

words they prefer.

Recall in the multi-prototype model is biased more towards attributes (recall
0.263 for n = 0.75 vs. 0.187 for single prototype), events (recall 0.228 for n = 0.75
vs. 0.178 for single prototype), hypernyms (recall 0.316 for n = 0.1 vs. 0.271
for single prototype) and meronyms (recall 0.197 for n = 0.1 vs. 0.134 for single

prototype) than either single prototype or tiered clustering.

The single prototype and tiered clustering model overwhelmingly prefer co-
ordinate terms (coordinate recall of 0.516 for single prototype and 0.510 for tiered

clustering with n = 0.1).

The multi-prototype model with more clusters (n = 0.1) prefers hypernyms

(recall 0.316) and meronyms (recall 0.196) more and attributes (recall 0.203) sig-
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Figure 4.9
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nificantly less than the same model with fewer clusters (n = 0.75; hypernym recall

0.292, meronym recall 0.132 and attribute recall 0.216).

These results indicate that coordinate terms are more likely to share similar
cooccurrence features than other relation types. Hence, when employing either
the single prototype or tiered clustering model, which pool across such features,
coordinate recall will be high. In contrast, when used with the AvgSim metric, the
multi-prototype model allows for less common features to expressed more strongly,

biasing recall towards attributes, events, hypernyms and meronyms.

4.6 Discussion

This chapter introduced two resource-light models for vector-space word
meaning that represents words as structured collections of prototype vectors, natu-

rally accounting for lexical ambiguity.

The multi-prototype approach uses word sense discovery to partition a word’s
contexts and construct “sense specific”” prototypes for each cluster. Doing so sig-
nificantly increases the accuracy of lexical-similarity computation as demonstrated
by improved correlation with human similarity judgements and generation of better
paraphrases according to human evaluators. Furthermore, although performance is
sensitive to the number of prototypes, combining prototypes across a large range of

clusterings performs nearly as well as the ex-post best clustering.

Compared to WordNet, the best-performing clusterings are significantly

more fine-grained. Furthermore, they often do not correspond to agreed upon se-
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mantic distinctions (e.g., the “hurricane” sense of position in Fig. 4.1). The finer-
grained senses are posited to actually capture useful aspects of word meaning, lead-

ing to better correlation with WordSim-353.

Feature pruning can significantly improve correlation with human similarity
and relatedness judgements. Feature selection combined with the multi-prototype
representation achieves state-of-the-art results on the WordSim-353 task, beating
a measure of human performance, and performing nearly as well as a supervised
oracle approach. The complexity of the interaction between feature weighting and
pruning and magnitude of their combined effect on correlation strongly suggests
that they should be studied in greater detail, and form a major component of the

future work in this thesis.

The multi-prototype model does not lead to improved performance over the
single prototype baseline on either McRae category naming or exemplar generation.
However, on the BLESS dataset, it yields significantly higher recall for attributes,

events, hypernyms and meronyms at the expense of recall on coordinate terms.

The tiered clustering model extends the multi-prototype model with addi-
tional structure for capturing shared (context-independent) variation in word occur-
rence features. The ability to model background variation, or shared structure, is
shown to be beneficial for modeling words with high polysemy, yielding increased
correlation with human similarity judgements modeling word relatedness and selec-
tional preference. Furthermore, the tiered clustering model is shown to significantly

outperform related models, yielding qualitatively more precise clusters.
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The benefits of this tiered model are most pronounced on a selectional pref-
erence task, where there is significant shared structure imposed by conditioning on
the verb. Although the results on the Padé are not state of the art,'? I believe this to
be due to the impoverished vector-space design; tiered clustering can be applied to
more expressive vector spaces, such as those incorporating dependency parse and

FrameNet features.

The tiered clustering model outperforms both other models on the exem-
plar generation task on the McRae dataset, suggesting that it is a better model of
the exemplar structure of human concepts. However, on the BLESS data, tiered
clustering performance is similar to the single-prototype model, implying that the
existence of the background component has a significant effect on the types of re-

lations captured.

One potential explanation for the superior performance of the tiered model
vs. the DPMM multi-prototype model is simply that it allocates more clusters to rep-
resent each word (Reisinger and Mooney, 2010). However, decreasing the hyper-
parameter 3 (decreasing vocabulary smoothing and hence increasing the effective
number of clusters) beyond S = 0.1 actually hurts multi-prototype performance.
The additional clusters do not provide more semantic content due to significant

background similarity.

12E.g., Padé et al. (2007) report p=0.515 on the same data.
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Chapter 5

Cross-Cutting Models of Lexical Semantics

5.1 Introduction

Humans categorize objects using multiple orthogonal taxonomic systems,
where category generalization depends critically on what features are relevant to
one particular system. For example, foods can be organized in terms of their nu-
tritional value (high in fiber) or situationally (commonly eaten for Thanksgiving;
Shafto et al. (2006)). Human knowledge-bases such as Wikipedia also exhibit such
cross-cutting taxonomic structure (e.g. people are organized by occupation or by

nationality).

The existence of cross-cutting structure can be explained by multiple com-
peting subsets of salient features: As feature dimensionality increases, the number
of ways the data can exhibit interesting structure goes up exponentially. Models
such as Cross-Cutting Categorization (Cross-cat; (Mansinghka et al., 2006, 2009))
account for this structure by assigning concept features to one of several views, and
then clustering the data separately with each view. This approach yields multiple

orthogonal clusterings and isolates the effects of noisy features.

This thesis posits that, since the effects of overlapping categorization sys-

tems are apparent at the lexical semantic level (Murphy, 2002) as well, lexico-
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graphical word senses and traditional computational models of word-sense based
on clustering or exemplar activation are potentially too impoverished to capture
the rich dynamics of word usage. Different subsets of features may yield different
sense views; e.g. clustering using only syntactic features vs. clustering using only

document co-occurrence features.

In lexical semantics, context-dependent word similarity can be computed
over multiple cross-cutting dimensions. For example, lung and breath are similar
thematically, while authoritative and superficial occur in similar syntactic contexts,
but share little semantic similarity. Both of these notions of similarity play a role in
determining word meaning, and hence lexical semantic models should ideally take

them both into account.

This chapter introduces a set of novel probabilistic lexical semantics models
based on Latent Dirichlet Allocation (LDA) that find multiple overlapping feature
subsets, corresponding to principle axes of variation in concepts (Griffiths et al.,
2007b). Such Multi-view models (MVM) are flexible enough to capture both varia-
tion due to syntactic context features as well as higher level thematic features, e.g.,
be used to capture both syntagmatic and paradigmatic notions of word meaning.
The end result is a model capable of representing multiple, overlapping similarity

metrics that result in disparate valid clusterings leveraging the

Subspace Hypothesis: For any pair of words, the set of “active” fea-
tures governing their apparent similarity differs. For example wine and

bottle are similar and wine and vinegar are similar, but it would not be
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reasonable to expect that the features governing such similarity com-

putations to overlap much, despite occurring in similar documents.

MVM can extract multiple competing notions of similarity, for example both paradig-
matic, or thematic similarity, and syntagmatic or syntactic similarity, in addition to

more fine grained relations.

In this chapter I introduce three Multi-View models that encode similarity
across multiple overlapping dimensions, and demonstrate ways in which such mod-

els can capture context-dependent variation in word usage can be accounted:

1. Multi-View Assignment (MV-A) — Words features are distributed across
multiple views using LDA capturing broad patterns in their syntactic or se-

mantic usage (§5.2.1).

2. Multi-View Clustering (MV-C) — Words are assigned to multiple clusterings
(views) based on different subsets of features, subject to the marginal con-
straint that feature subsets are distributed according to LDA (§5.2.2). MV-C
combines primitives from Dirichlet-Process Mixture Models (DPMMs) and
LDA. Each clustering in MV-C consists of a distribution over features and
data and views are further subdivided into clusters based on a DPMM. Hence,
each view produces a clustering based on a weighted subset of the available
features, allowing more flexibility and robustness than traditional clustering

methods.

3. Multi-View Vector Space (MV-VS) — Each view is used to contribute a copy

of each word feature with weight determined by the underlying Multi-View
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model. Hence, the model is responsible for producing multiple senses of each

feature, increasing the representational power of the vector space (§5.2.3).

The three MVM models are evaluated both

1. According to the human-interpretability of their internal structure; directly

measuring their purity as clustering methods (§5.3), and

2. As word representations in the battery of common lexical semantic tasks in-

troduced in §3.2 (§5.4).

In the human-interpretability studies, MV-C is shown to find more semantically and
syntactically coherent fine-grained structure, using both common and rare n-gram
contexts. Furthermore, MV-A is shown to yield better recall for events, hypernyms,
meronyms and attributes, while MV-VS is shown to yield significant improvements

over the baseline vector-space model in lexical substitution.

5.2 Multi-View Lexical Semantic Models

This section introduces the basic Latent Dirichlet Allocation structure un-
derlying Multi-view models (MV-A) and then derives two additional sub-models:
(1) the Multi-view Clustering Model (MV-C), where words are clustered within
each view, and (2) Multi-view Vector Space Model (MV-VS), where views are used

to augment the number of features in the model.
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5.2.1 Multi-View Model

The basis for Multi-view lexical semantics models is Latent Dirichlet Allo-
cation (LDA) a fully Bayesian extension of LSA (Deerwester et al., 1990). In LDA,
a set of data D = {wy|d € [1... D]} is projected onto | M| disparate views, which

capture the major axes of variation in the features.

Each data vector w, consists of context features and associated frequen-
cies collected for word d, for example unigram co-occurrences 3.1.2 or Wikipedia
document names. Data vectors are associated with a probability distribution over
views 0|dM|. Empirically, OldMl is represented as a set of feature-view assignments

z4, sampled via the standard LDA collapsed Gibbs sampler.

Each view maintains a separate distribution over features. The generative

model for feature-view assignment is given by

6o ~ Dirichlet(a), de D,
b..18 ~ Dirichlet(3), m € | M|,
Zan|04 ~ Discrete(8,), n e |wyl,

wdn|q’>2dnm ~ Discrete(¢,, ,,), n€ |wql,
where o and 3 are hyperparameters smoothing the per-document topic distributions

and per-topic word distributions respectively.

Intuitively, each ¢ vector encodes a coherent feature view, or principle com-
ponent of the original feature space. Likewise, since the cardinality of the latent z
assignments is significantly smaller than the original feature vocabulary, they in-
duce a soft clustering of the features. Dinu and Lapata (2010) term the z assign-

ments the latent senses of the features. The sections will build on this notion, intro-
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ducing a multiple clustering procedure (MV-C) and vector space model (MV-VA)

that makes explicit use of these latent sense groupings.

5.2.1.1 Contextual Representation

In order to incorporate contextual information into the vector space, the

word-conditional probabilities p(z|w) can be replaced with p(z|w, {c,})

v(wl{ew}) = (p(21|w, {cw}), -, p(zm|w, {cw}))- (5.1)

Two derivations of p(z,,|w, {c,}) are considered in this thesis:

e DL10: Dinu and Lapata (2010)

The probabilities p(z,,|w, {c,}) for m € [1..M] can be factorized into the
product of the join probability of the target word w and each view z,,, p(w, z,,,)

and the conditional probability of context set {¢,, } given w and z,,, p({cy }|2m, W):

Zm|W, {cw}) = (W, 2im)p({cw }Hzm, W)
Plemlwodend) = 5= S en o W) (5.2)

Since p({¢y }|2zm, W) is high-dimensional and hence difficult to estimate, fol-

lowing Dinu and Lapata (2010), by making the simplifying assumption that
the target words w and context words {c, } are conditionally independent

given the view z,,, i.e. p({cy }|2m, W) can be approximated by p({c, }|zm):

- p(w]zm)p({cw}|zm)

p(zm|w, {cu}) = S (W2 )p({cw k)

(5.3)
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Equation 5.3 embedded in the vector space from equation 5.1 forms the basis

of the DL10 model-based contextualization method.

e OKI11: O Séaghdha and Korhonen (2011)

Starting with modeling p({c, }|w), the conditional probability of the context
set {c,, } given the target word w can be broken out over the latent views to

yield a vector space model similar to DL10:

p({cw}tlw)

> p({cwtlzn)p(zilw) (5.4)

dw fey = _PEwp{cs}w)
p(zlw,{cw}) S o wip({wtIw) (5.5)

where p({cu}|2k) = [l.nfe,) P(cl2k) (making use of the assumption that
context words are independent given the view assignments). Equation 5.5 can
be viewed as a product of experts model (Hinton, 2002), with each additional

context word contributing multiplicatively to the conditional likelihood.

The main difference in DL10 and OK11 is that the latter makes use of the marginal
probability of the context set {c,} given the target word w, p({c,}|w), while
the former makes the simplifying assumption that this can be approximated by
p({cw}|zm). In practice the difference between these two contextualization strate-

gies are not statistically significant, so all results presented will be using OK11.

5.2.2 Multi-View Clustering

MV-A embeds all words in a single metric space and hence posits a globally

consistent metric that captures word similarity. Rather than assuming such a global
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metric embedding exists, MV-C leverages the cluster assumption, e.g. that similar
words should appear in the same clusters, in particular extending it to multiple
clusterings. The cluster assumption is a natural fit for lexical semantics, as partitions

can account for metric violations.

Clustering is commonly used to explain data, but often there are several
equally valid, competing clusterings, keying off of different subsets of features, es-
pecially in high-dimensional settings such as text mining (Niu et al., 2010). For
example, company websites can be clustered by sector or by geographic location,
with one particular clustering becoming predominant when a majority of features
correlate with it. In fact, informative features in one clustering may be noise in an-
other, e.g. the occurrence of CEO is not necessarily discriminative when clustering
companies by industry sector, but may be useful in other clusterings. Multiple clus-
tering is one approach to inferring feature subspaces that lead to high quality data
partitions. Multiple clustering also improves the flexibility of generative clustering
models, as a single model is no longer required to explain all the variance in the

feature dimensions (Mansinghka et al., 2009).

MV-C is a multinomial-Dirichlet multiple clustering procedure for distri-
butional lexical semantics that fits multiple, overlapping Dirichlet Process Mixture
Models (DPMM) to a set of word data. Features are distributed across the set of
clusterings (views) using LDA (as in MV-A), and each DPMM is fit using a subset
of the features. This reduces clustering noise and allows MV-C to capture multiple
ways in which the data can be partitioned. Figure 5.1 shows a simple example, and

Figure 5.2 shows a larger sample of feature-view assignments from a 3-view MV-C
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andis and are
we are whichwas
heis who are
unwilling exceedingly
willing smqerely about
reluctant logically
: ; because
refusing justly
glad appropriately
brand new ____ results for
selectionof _ the latest
___ forsale tobuy
samsung toyota dunlop
panasonic nissan yokohama
toshiba mercedes toyo
sony volvo uniroyal
epson audi michelin

Figure 5.1: Example clusterings from MV-C applied to Google n-gram data. Top
contexts (features) for each view are shown, along with examples of word clus-
ters. The top view contains syntactic features that yield personal attributes (e.g.
adjectives and adverbs), while the bottom view contains patterns for online con-
sumer goods. Although these particular examples are interpretable, in general the
relationship captured by the view’s context subspace is not easily summarized.
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fit to contexts drawn from the Google n-gram corpus.

MV-C can be implemented using generative model primitives drawn from
Latent Dirichlet Allocation (LDA) and the Dirichlet Process (DP). Conditional on
the feature-view assignment {z}, a clustering is inferred for each view using the
Chinese Restaurant Process representation of the DP. The clustering probability is
given by

p(C‘Z,W) X p({Cm},Z,W)
M |D|

=TT ITewi ™" e 2p(enlz).

m=1d=1

where p(c,,|z) is a prior on the clustering for view m, i.e. the DPMM, and p(vv([;:m

e, )
is the likelihood of the clustering c,, given the data point w restricted to the fea-

tures assigned to view m:

—m] def
w&z m] &t {wid|zig = m}.

Thus, the m clusterings c,, are treated as conditionally independent given the feature-

view assignments.

The feature-view assignments {z} act as a set of marginal constraints on the
multiple clusterings, and the impact that each data point can have on each cluster-
ing is limited by the number of features assigned to it. For example, in a two-view
model, z;; = 1 might be set for all syntactic features (yielding a syntagmatic clus-

tering) while z;; = 2 is set for document features (paradigmatic clustering).

By allowing the clustering model capacity to vary via the DPMM, MV-C

can naturally account for the semantic variance of the view. This provides a novel
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Figure 5.2: Topics with Senses: A 3-view MV-C model fit to the Google n-gram
context data. Columns show the top 20% of features across all views, while rows
show individual data points (words) divided by cluster and view.

Different views place different mass on different sets of features. For exam-
ple, view 1 puts most of its mass on the first half of the syntactic features shown,
while view 3 spreads its mass out over move features.

Words are clustered based on these overlapping subsets. For example, view
1 cluster 2 and View 3 cluster 1 both contain past-tense verbs, but only overlap on
a subset of syntactic features.

mechanism for handling feature noise: noisy features can be assigned to a separate
view with potentially a small number of clusters. This phenomenon is apparent in
cluster 1, view 1 in the example in figure 5.2, where place names and adjectives are

clustered together using rare contexts

From a topic modeling perspective, MV-C finds topic refinements within
each view, similar to hierarchical methods such as the nested Chinese Restaurant
Process (Blei et al., 2003a). The main difference is that the features assigned to the
second “refined topics” level are constrained by the higher level, similar to hierar-
chical clustering. Unlike hierarchical clustering, however, the top level topics/views
form an admixture, allowing individual features from a single data point to be as-

signed to multiple views.

The most similar model to MV-C is Cross-cutting categorization, which
fits multiple DPMMs to non-overlapping partitions of features (Mansinghka et al.,
2009; Shafto et al., 2006). Unlike MV-C, Cross-cat partitions features among mul-

tiple DPMMs, hence all occurrences of a particular feature will end up in a single
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clustering, instead of assigning them softly using LDA. Such hard feature partition-
ing does not admit an efficient sampling procedure, and hence Shafto et al. (2006)
rely on Metropolis-Hastings steps to perform feature assignment, making the model

less scalable.

MV-C is also similar to the multiple disparate clusterings framework pro-
posed by Jain et al. (2008). In that work, all clusterings use all features, and hence
robustness to feature noise is not treated. MV-C is more similar to the model pro-
posed by Cui et al. (2007), which generates a maximally orthogonal cluster ensem-
ble (cf. Azimi and Fern, 2009; Strehl and Ghosh, 2003). The data are repeatedly
projected onto the space most orthogonal to the current clustering and then reclus-

tered.

Given such word representation data, MV-C generates a fixed set of M con-
text views corresponding to dominant eigenvectors in local syntactic or semantic
space. Within each view, MV-C partitions words into clusters based on each word’s
local representation in that view; that is, based on the set of context features it al-
locates to the view. Words have a non-uniform affinity for each view, and hence
may not be present in every clustering (Figure 5.2). This is important as different
ways of drawing distinctions between words do not necessarily apply to all words.
In contrast, LDA finds locally consistent collections of contexts but does not further
subdivide words into clusters given that set of contexts. Hence, it may miss more

fine-grained structure, even with increased model complexity.
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5.2.2.1 Inference

In order to approximate MV-C, we derive a two-stage sampling process,
enforcing independence between the LDA component and the clustering compo-
nents. Although this assumption violates the generative semantics of the model and
potentially leads to inconsistent conditional distributions, we find that in practice
this does not adversely affect clustering quality. Relaxing these assumptions is one

active area of future work.

Inference by collapsed Gibbs sampling proceeds in rounds, alternatingly
sampling from p(z|w) and p(c|w,z). p(z|w) is approximated using the stan-
dard LDA collapsed Gibbs sampler, exploiting Multinomial-Dirichlet conjugacy,
marginalizing out c:

niwid) 4 g n? + a
S +B8) (0 + a)

P(zig=m|z_ga, W, ) =

)

where z_; 4) is shorthand for the set z — {zia} ngﬁ" is the number of occurrences of

. . . d) . .
word w in view ¢ not counting w; 4 and ngn) is the number of features in occurrence

d assigned to view m, not counting w; 4.

Conditional on the feature-view assignments z, word-cluster assignments
via the Chinese Restaurant Process view of the DP; p(c,|w, c_4, v, 7) decomposes
into the DP posterior over cluster assignments and the cluster-conditional Multinomial-

Dirichlet word-occurrence likelihood p(cy|w, c_q, @, ) = p(cq|c_q,n)p(Wa|W_q4, C, Z, )
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given by

(—d) (—=d) (d)

m Cla+nt Y +7

P(Cd = k01d|c—du 05’77) X (—d) ( L (—d) = ))
me 47N C(a + ﬁk )

N AN
-~ ~~

p(eale_am) P(Walw_ 4,¢,2,0)
n o Cla+nd)
my ™ +n  Cla)

P(Cd - knew|c—da a?”) X

(—d)

where m is the number of occurrences assigned to k£ not including d, ﬁ,(cd)

is the vector of counts of words from occurrence w, assigned to cluster & (i.e.
words with z; ; = 0) and C/(+) is the normalizing constant for the Dirichlet C'(a) =

(370, a;) ' TT;%, T'(ay) operating over vectors of counts a.

5.2.2.2 Vector Space Representations
Following Dinu and Lapata (2010) and O Séaghdha and Korhonen (2011),
the word-conditional view assignment probabilities can be cast into a vector space
v(w) = (p(z1|w), ..., p(zm|W)) (5.6)

1.e. the vector of LDA topic proportions conditioned on w. Since the total condi-
tional probabilities sum to one, Bhattacharyya distance is a natural choice of metric

on this space:

dic(w, w') & /(W) VW) = Y VGWIpGEW) 5

Bhattacharyya distance is an approximation of the relative similarity of two distri-

butions and is closely related to the Hellinger distance (Bhattacharyya, 1943).

For typical settings of M, this representation is significantly more compact

than the underlying raw vector space, and hence it can be considered a form of lossy
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compression. Indeed, as demonstrated in §5.4, this representation performs poorly
compared to the raw vector space, although similarity computation is significantly
faster given a trained model. The MV-VS model described in §5.2.3 addresses this

issue.

5.2.3 Multi-View Vector Space Model

This section introduces the multi-view vector space model (MV-VS), com-
bining the fine-grained features representation of first-order vector space models

with MVM’s ability to identify multiple feature subspaces.

5.2.3.1 Basic Model

In MV-VS, word data is fit using MV-A (§5.2.1), resulting in latent view
assignments z;4 for each feature w;; € w,. An augmented vector representation of
w is constructed by duplicating each word feature once per view weighted by the

probability of being generated by each view p(wg;| 2, Wq). That is

Vmvvs(Wa) = (f(wai)p(z1| W), ..., fwa)p(2m |W)|wae € W) (5.8)

where f(wg;) is the original weight of feature wy; (e.g. tf-idf). For example, in
a two-view model, each base feature wy would get included twice in the result-
ing vector representation, once with weight f(wy;)p(|z1|w) and once with weight
f(wgi)p(z2|w). In order to control the effects of noisy features, the resulting vec-
tors are pruned back down to the same number of features as the original, resulting

in some loss of base features.
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5.2.3.2 Contextualization

There are two main strategies for contextualization in MV-VS:

e model-based — As with the basic MV-A vector representation, in MV-VS
the non-contextual feature weighting p(z;|w) can be replaced with a con-

textualized version p(z;|w, c) using either of the contextualization strategies

discussed in §5.2.1.1.

e vector-centroid — The simplest way to combine MV-VS vectors to form con-
textual representations is second-order vector averaging. Each word w with
vector representation v(*) and context vector set {v(?|c € C(w)} can be

represented as
1
ICl+1

V(w,c) —

ceC

5.3 Human Evaluation of MV-C Word Representations
5.3.1 Word Representation

The base corpora introduced in §3 are divided into two experimental groups:

1. Syntax-only — Words are represented using only the Google n-gram context

features set. Two versions of this feature set are explored:

(a) the common subset contains all syntactic contexts appearing more than

200 times in the combined corpus, and

(b) the rare subset, containing only contexts that appear 50 times or fewer.
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Context Intrusion

___is characterized top of the countryto

symptoms of ___ of __ understood __orless

cases of along the ___ayear

in cases of ___ portion of the __ ___perday

real estate in __ side of the ___or more
Word Intrusion

metal dues humor

floral premiums ingenuity

nylon pensions advertisers

what did delight

ruby damages astonishment

Document Intrusion

Puerto Rican cuisine
Greek cuisine
ThinkPad

Palestinian cuisine
Field ration

Adolf Hitler

List of General Hospital characters

History of France
Joachim von Ribbentrop
World War |

History of the Han Dy-
nasty

Romance of the Three
Kingdoms

List of dog diseases
Conquest of Wu by Jin
Mongolia

Table 5.1: Example questions from the three intrusion tasks, in order of difficulty
(left to right, easy to hard; computed from inter-annotator agreement). Italics show

intruder items.
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2. Syntax+Documents — Words are represented using a combination of context

features and Wikipedia article occurrence features.

Models trained on the syntax-only set are only capable of capturing syntagmatic
similarity relations, that is, words that tend to appear in similar contexts. In contrast,
the syntax+documents set broadens the scope of modelable similarity relations,
allowing for paradigmatic similarity (e.g. words that are topically related, but do

not necessarily share common syntactic contexts).

5.3.2 Evaluation Procedure

Our main goal in this work is to find models that capture aspects of the
syntactic and semantic organization of word in text that are intuitive to humans.
According to the use theory of meaning, lexical semantic knowledge is equivalent to
knowing the contexts that words appear in, and hence being able to form reasonable

hypotheses about the relatedness of syntactic contexts.

Vector space models are commonly evaluated by comparing their similar-
ity predictions to a nominal set of human similarity judgments (Curran, 2004a;
Padé and Lapata, 2007; Schiitze, 1998a; Turney, 2006). In this work, since we are
evaluating models that potentially yield many different similarity scores, we take a
different approach, scoring clusters on their semantic and syntactic coherence using

a set intrusion task (Chang et al., 2009a).

In set intrusion, human raters are shown a set of options from a coherent

group and asked to identify a single intruder drawn from a different group. We ex-
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tend intrusion to three different lexical semantic tasks: (1) context intrusion, where
the top contexts from each cluster are used, (3) document intrusion, where the top
document contexts from each cluster are used, and (2) word intrusion, where the
top words from each cluster are used. For each cluster, the top four contexts/words
are selected and appended with another context/word from a different cluster.! The
resulting set is then shuffled, and the human raters are asked to identify the intruder,
after being given a short introduction (with common examples) to the task. Ta-
ble 5.1 shows sample questions of varying degrees of difficulty. As the semantic

coherence and distinctness from other clusters increases, this task becomes easier.

Set intrusion is a more robust way to account for human similarity judg-
ments than asking directly for a numeric score (e.g., the Miller and Charles (1991)
set) as less calibration is required across raters. Furthermore, the additional cluster

context significantly reduces the variability of responses.

Human raters were recruited from Amazon’s Mechanical Turk. A total of
1256 raters completed 30438 evaluations for 5780 unique intrusion tasks (5 eval-
uations per task). 2736 potentially fraudulent evaluations from 11 raters were re-
jected.? Table 5.3 summarizes inter-annotator agreement. Overall we found x ~ 0.4
for most tasks; a set of comments about the task difficulty is given in Table 5.2,

drawn from an anonymous public message board.

!Choosing four elements from the cluster uniformly at random instead of the top by probability
led to lower performance across all models.

2(Rater Quality) Fraudulent Turkers were identified using a combination of average answer
time, answer entropy, average agreement with other raters, and adjusted answer accuracy.
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Ul 1 just tried 30 of the what doesn’t belong ones. They took
about 30 seconds each due to thinking time so not worth it
for me.

U2 I don’t understand the fill in the blank ones to be honest. I
just kinda pick one,since I don’t know what’s expected lol

U3 Your not filling in the blank just ignore the blank and think
about how the words they show relate to each other and
choose the one that relates least. Some have just words and
no blanks.

U4 These seem very subjective to mw. i hope there isn’t definite
correct answers because some of them make me go [emoti-
con of head-scratching]

US Ilooked and have no idea. I guess I'm a word idiot because I
don’t see the relation between the words in the preview HIT
- too scared to try any of these.

U6 1didn’t dive in but I did more than I should have they were
just too easy. Most of them I could tell what did not belong,
some were pretty iffy though.

Table 5.2: Sample of comments about the task taken verbatim from a public Me-
chanical Turk user message board (TurkerNation). Overall the raters report the task
to be difficult, but engaging.

5.3.3 Results

DPMM, MV-A and MV-C models were trained on the syntax-only and syn-

tax+documents data across a wide range of settings for
M € {3,5,7,10, 20, 30, 50, 100, 200, 300, 500, 1000},

a € {0.1,0.01},and $ € {0.1,0.05,0.01} in order to understand how they perform

relatively on the intrusion tasks and also how sensitive they are to various parameter
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Figure 5.3: (Caption next page)
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Figure 5.3: Average scores for each model broken down by parameterization and
base features. Error bars depict 95% confidence intervals. X-axis labels show
Model-views-a-(3. Dots show average rater scores; bar-charts show standard quan-
tile ranges and median score.

Model Syntax Syntax+Documents Overall

DPMM  0.30 0.40 0.33
MV-A 0.33 0.39 0.35
MV-C 0.44 0.49 0.46
Overall  0.37 0.43 0.39

Table 5.3: Fleiss’  scores for the intrusion detection task across various model
and data combinations. Results from MV-C have higher x scores than MV-A or
DPMM; likewise Syntax+Documents data yields higher agreement, primarily due
to the relative ease of the document intrusion task. Overall refers to the row- or
column-marginals (e.g. the overall  for the syntax models, or the overall x for
DPMM across all data types). Fleiss’ x was chosen as it is a standard measure of
inter-annotator agreement.
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Figure 5.4: Scatterplot of model size vs. avg score for MV-C (dashed, purple) and
MV-A (dotted, orange).
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settings.> MV-A is run on a different range of M settings from MV-C (50-1000 vs
3-100) in order to keep the effective number of clusters (and hence model capacity)

roughly comparable.

Models were run until convergence, defined as no increase in log-likelihood
on the training set for 100 Gibbs samples. Average runtimes varied from a few
hours to a few days, depending on the number of clusters or topics. There is little
computational overhead for MV-C compared to MV-A or DPMM with a similar

number of clusters.

Overall, MV-C significantly outperforms both MV-A and DPMM (mea-
sured as % of intruders correctly identified) as the number of clusters increases.
Coarse-grained lexical semantic distinctions are easy for humans to make, and
hence models with fewer clusters tend to outperform models with more clusters.
Since high granularity predictions are more useful for downstream tasks, we focus

on the interplay between model complexity and performance.

5.3.3.1 Syntax-only Model

For common n-gram context features, MV-C performance is significantly
less variable than MV-A on both the word intrusion and context intrusion tasks, and
furthermore significantly outperforms DPMM (Figure 5.3a). For context intrusion,
DPMM, MV-A, and MV-C average 57.4%, 49.5% and 64.5% accuracy respectively;
for word intrusion, DPMM, MV-A, and MV-C average 66.7%, 66.1% and 73.6%

3We did not compare directly to Cross-cutting categorization, as the Metropolis-Hasting steps
required that model were too prohibitively expensive to scale to the Google n-gram data.
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accuracy respectively (averaged over all parameter settings). These models vary
significantly in the average number of clusters used: 373.5 for DPMM, 358.3 for
MV-A and 639.8 for MV-C, i.e. the MV-C model is significantly more granular.
Figure 5.4a breaks out model performance by model complexity, demonstrating

that MV-C has a significant edge over MV-A as model complexity increases.

For rare n-gram contexts, we obtain similar results, with MV-C scores be-
ing less variable across model parameterizations and complexity (Figure 5.3b). In
general, MV-A performance degrades faster as model complexity increases for rare
contexts, due to the increased data sparsity (Figure 5.4b). For context intrusion,
DPMM, MV-A, and MV-C average 45.9%, 36.1% and 50.9% accuracy respectively;
for word intrusion, DPMM, MV-A, and MV-C average 67.4%, 45.6% and 67.9%
accuracy; MV-C performance does not differ significantly from DPMM, but both
outperform MV-A. Average cluster sizes are more uniform across model types for

rare contexts: 384.0 for DPMM, 358.3 for MV-A and 391 for MV-C.

Human performance on the context intrusion task is significantly more vari-
able than on the word-intrusion task, reflecting the additional complexity. In all
models, there is a high correlation between rater scores and per-cluster likelihood,

indicating that model confidence reflects noise in the data.

5.3.3.2 Syntax+Documents Model

With the syntax+documents training set, MV-C significantly outperforms
MV-A across a wide range of model settings. MV-C also outperforms DPMM for

word and document intrusion. For context intrusion, DPMM, MV-A, and MV-C av-
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erage 68.0%, 51.3% and 66.9% respectively;* for word intrusion, DPMM, MV-A,
and MV-C average 56.3%, 64.0% and 74.9% respectively; for document intrusion,
DPMM, MV-A, and MV-C average 41.5%, 49.7% and 60.6% respectively. Qualita-
tively, models trained on syntax+document yield a higher degree of paradigmatic
clusters which have intuitive thematic structure. Performance on document intru-
sion is significantly lower and more variable, reflecting the higher degree of world
knowledge required. As with the previous data set, performance of MV-C models
trained on syntax+documents data degrades less slowly as the cluster granularity

increases (Figure 5.5).

One interesting question is to what degree MV-C views partition syntax and
document features versus MV-A topics. That is, to what degree do the MV-C views
capture purely syntagmatic or purely paradigmatic variation? We measured view
entropy for all three models, treating syntactic features and document features as
different class labels. MV-C with M = 50 views obtained an entropy score of
0.045, while MV-A with M = 50 obtained 0.073, and the best DPMM model
0.082.> Thus MV-C views may indeed capture pure syntactic or thematic cluster-

ings.

5.3.4 Discussion

As cluster granularity increases, we find that MV-C accounts for feature

noise better than either MV-A or DPMM, yielding more coherent clusters. (Chang

“High DPMM accuracy is driven by the low number of clusters: 46.5 for DPMM vs. 358.3 for
MV-A and 725.6 for MV-C.
>The low entropy scores reflect the higher percentage of syntactic contexts overall.
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et al., 2009a) note that MV-A performance degrades significantly on a related task
as the number of topics increases, reflecting the increasing difficulty for humans
in grasping the connection between terms in the same topic. This suggests that
as topics become more fine-grained in models with larger number of topics, they
are less useful for humans. In this work, we find that although MV-C and MV-A
perform similarity on average, MV-C clusters are significantly more interpretable
than MV-A clusters as the granularity increases (Figures ?? and 5.5). We argue
that models capable of making such fine-grained semantic distinctions are more

desirable.

The results presented in the previous two sections hold both for unbiased
cluster selection (e.g. where clusters are drawn uniformly at random from the model)
and when cluster selection is biased based on model probability (results shown). Bi-
ased selection potentially gives an advantage to MV-C, which generates many more

small clusters than either MV-A or DPMM, helping it account for noise.

5.4 Lexical Semantic Evaluation

This section compares the performance of MV-A and MV-VS to the baseline
single-prototype model (VS) on various lexical semantic tasks. In order to simplify
presentation of the results, MV-C was excluded, as it does not significantly outper-

form MV-A on these tasks.
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5.4.1 McRae

On the McRae categorization norms, for both the category naming and ex-
emplar generation subtasks, the category-constituent representation significantly
outperforms the category-label representation across all models and settings. Fur-

thermore, this effect is stronger for category naming than for exemplar generation.

In general, MV-VS outperforms MV-A, with performance similar to, and
in some cases better than, VS. Furthermore, MV-VS-V and MV-VS-M are nearly

identical in terms of performance.

54.1.1 Category Naming

On the category naming subtask, the best performing results are found us-
ing the category-constituent representation, contexts training data, and either VS
or MV-VS with low number of views (fewer than 100; MRR =~ 0.498; Figure 5.6).
This result may potentially indicate that local syntactic structure is more predic-
tive of category labels. Using unigrams features, MV-VS with a high number of
views (100-1000) significantly outperforms VS (MRR =~ 0.426 vs. MRR ~ 0.361;

although the results are worse than when using contexts features).

For MV-A, across all datasets, MRR increases as the number of views is in-
creased. However for MV-VS, MRR increases only for all and unigrams features,

but decreases for contexts and wikipedia features.
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5.4.1.2 Exemplar Generation

For the exemplar generation task, again the category-constituent represen-
tation generally outperforms the category-label representation across all models,
except in the case of VS with all features, where recall is the same (Figure 5.7).
The best MV-VS recall does not differ significantly from the VS baseline (Recall ~
0.273 vs. Recall ~ 0.277 using contexts features). As the number of views in-
creases, however, MV-VS recall falls significantly across all cases. In terms of fea-

tures, contexts again yield the best recall (0.277), followed closely by all (0.252).

5.4.1.3 Discussion

Unlike in the case of the word-occurrence models (§4.5.4), the category-
constituent representation in the word-type models is found to significantly out-
perform the category-label representation for category naming. It is interesting
that performance is sensitive to category representation for category naming, but
is significantly less so for exemplar generation (MV-VS is the most sensitive to the
underlying category representation). Given the fact that the category-constituent
representation makes use of the remaining category exemplars, a less surprising

result would be for the category-constituent representation to perform better.

5.4.2 BLESS
5.4.2.1 Overall GAP

Averaged over all BLESS relation types (attribute, coordinate, event, hy-

pernym, and meronym), the best performance is achieved using the baseline VS
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model trained on either unigrams or all features (GAP ~ 86.68; Figure 5.8). In
contrast, the best performing MV-VS models achieve GAP ~ 83.16, and the best
performing MV-A models achieve GAP ~ 80.48.

Moving to contexts or wikipedia features, however, the best performing
MV-A beats both MV-VS and VS (contexts: GAP ~ 69.38 for MV-A T = 20 vs.
GAP =~ 50.93 for MV-VS T' = 3 and GAP ~ 51.0 for VS; wikipedia: GAP ~
73.53 for MV-A T" = 100 vs. GAP ~ 47.87 for MV-VS T' = 2 and GAP =~
48.03 for VS). MV-A performance peaks around 200-400 views, while MV-VS

performance drops off significantly after 100 views.

Finally, as with the McRae categorization task, there is no significant differ-

ence between MV-VS-V and MV-VS-M.

5.4.2.2 Per-Relation GAP

GAP scores broken down by feature type and relation are summarized in

Figure 5.9.

e attribute relations: MV-A with fewer than 200 views performs the best
across all data sets (peaking around 20 views), beating MV-VS and VS (GAP =~
17.21 vs. GAP = 14.89 and GAP = 14.4). Using all or contexts features

slightly outperforms using unigrams or wikipedia features.

e coordinate relations: MV-VS with a low number of views (< 10) outper-
forms the baseline VS on all, contexts and unigrams features, however these

results are not statistically significant (GAP ~ 73.17 vs. GAP ~ 72.42). Us-
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ing all or contexts features yields the highest coordinate term GAP across all
models. Features from wikipedia yield the lowest coordinate term GAP (im-
proving GAP on other relations). Across all relations coordinate term GAP

is the highest.

event relations: The highest GAP scores on event relations are obtained by
MV-A trained on wikipedia features (GAP ~ 22.28 vs. GAP ~ 13.75 for
MV-VS and GAP ~ 12.71 for baseline VS). Indeed, MV-A outperforms both
VS and MV-VS on all feature types except all, where VS outperforms all
other models (GAP = 18.33).

hypernym relations: Similar to event relations, the best GAP scores for hy-
pernym relations are achieved by MV-A on the wikipedia feature set (GAP ~

15.44 vs. GAP = 12.45 for MV-VS and GAP = 12.32 for baseline VS).

meronym relations: The best GAP performance for meronym relations is
achieved by MV-A on the unigrams feature set (GAP ~ 21.17 vs. GAP =~
17.47 for MV-VS and GAP =~ 18.84 for baseline VS). In general for meronyms,
the model-based approaches outperform the baseline VS model, except in the

case of unigrams features.

Overall, taking these results together, both the feature space and model type con-

tribute significantly to the types of relations recalled. Compared to other feature

types, wikipedia features are significantly worse at yielding coordinate terms, but

yield correspondingly more lexical items following the other relation types.
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When using contexts data as a vector space (e.g. VS and MV-VS), GAP
scores stay near zero for attri, event and mero relations. In other words, almost
all recalled lexical items follow a coordinate relation. This makes sense, given
that vectors which share many local syntactic features most likely have syntagmatic
relations. Hence, in order to generalize to other relation types using purely contexts

data, higher order model structure (e.g. that found in MV-A) is necessary.

5.4.3 Lexical Substitution

For the lexical substitution tasks, we follow the evaluation procedure of
Dinu and Lapata (2010), where only the target word is represented in context. Leav-
ing the representations for the paraphrase candidates uncontextualized resulted in

significantly higher performance across all task settings.

5.4.3.1 LexSub07

On the LexSub07 evaluation set, the best performing model is the base-
line VS using 1 word context windows (vector centroid) trained using all features
(GAP =~ 48.27) followed by unigrams features (GAP ~ 47.32; Figure 5.10).
The corresponding MV-VS models achieve GAP ~ 46.83 for all features and
GAP =~ 46.77 for unigrams features. In general across all models evaluated, using
all features yields the highest GAP scores, indicating potential for further improv-

ing performance by including more features.

In the case of wikipedia features, the best performing MV-VS models achieve

higher GAP scores than the baseline VS (GAP ~ 44.23 with 7" = 2 vs. GAP =~
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43.57). However, using wikipedia features alone results in the worst performance

overall.

MV-VS performance decreases as the number of views is increased, whereas
MV-A performance increases. Unlike in O Séaghdha and Korhonen (2011), using
the experimental setup here, there was no significant difference between the DL10
and OK11 contextualization strategies. Unlike on the McRae or BLESS test sets,
in LexSub07, there is some substantial difference in the performance of MV-VS-M
and MV-VS-V. MV-VS-V GAP scores are significantly less variable, and perfor-
mance does not degrade as much as the number of views is increased (this effect is

most pronounced for the unigrams feature set).

Finally, the GAP scores achieved by the standard vector space model using
first-order centroid contextualization outperform many more complex approaches
presented in the literature for LexSub07, including both models presented by Thater
et al. (2010) as well as the W5 model from 0 Séaghdha and Korhonen (2011)
(which in turn was shown to outperform Dinu and Lapata (2010)). Given the in-
herent noise in the human evaluation data (Table 3.6), it is most likely that any

additional improvement above GAP =~ 50.0 is due to random chance.

Figure 5.11 shows GAP scores broken down by the part-of-speech of the
target word. For adjectives (a) and adverbs (r), MV-VS with a low number of views
T = 2 significantly outperforms the baseline VS model using all features (GAP ~
49.33 vs. GAP ~ 47.59 for adjectives and GAP ~ 59.12 vs. GAP ~ 57.48 for
adverbs). Indeed, nouns are the only part of speech type for which VS performance

is similar to MV-VS (GAP = 48.61 for VS vs. GAP = 48.55 for MV-VS). In terms
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of absolute performance, adverb GAP is the highest across all models, while verb

GAP is the lowest.

5432 TwSIl

In general, the results on the TWSI! lexical substitution task are similar to
those obtained for LexSub07. However, the best performing model on TWSII is
MV-VS with 7" = 2 using all features (GAP ~ 61.29 vs. GAP ~ 60.58 for the VS
baseline). Unlike in LexSub07, GAP performance on the wikipedia feature set is

not significantly lower than the other feature sets.

5.5 Discussion

This chapter introduced three multi-view models of lexical semantics: (1)
MV-A where word features are assigned across multiple views using LDA, (2) MV-
C, an extension to MV-A where word features are further clustered within each
view, capturing multiple lexical similarity relations jointly in the same model, and
(3) MV-VS, a vector-space model that accounts for the “senses” (view-assignments)
of individual word features. As demonstrated in the empirical results, MVM natu-
rally captures both syntagmatic and paradigmatic notions of word similarity. Fur-
thermore MVM-based models perform favorably compared to other generative lex-
ical semantic models on a set of human evaluations: concept categorization, multi-

relational word-similarity and lexical substitution.
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Chapter 6

Future Work

6.1 Multi-Prototype and Tiered Clustering
6.1.1 Scaling Representational Capacity

The success of the combined multi-prototype approach (§4.5.2; combin-
ing prototypes across multiple clustering scales) indicates that the optimal number
of clusters may vary per word. The DPMM-based model addresses this directly,
however there are several other principled approaches to automatically assessing

clustering capacity:

1. Kilgarriff (2004) demonstrate that word sense frequency distributions are
Zipfian word-frequency (Zipf, 1935). Hence, simply allocating representa-
tional capacity in the form of additional prototypes proportional to the total
number of occurrences may yield optimal meaning representations, trading

off expressivity and robustness.

2. The two-parameter Pitman-Yor generalization of the Dirichlet Process (Pit-

man and Yor, 1997) yields power-law distributed cluster sizes,

_mtmd if ng, > 0
P(zi =k|z_;) = Zja’:{;;ra . 6.1)
T, m-1ta k is a new class.
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with rate proportional to the free parameter d. Since naturally occurring sense
frequencies are also roughly power-law distributed (Kilgarriff, 2004), such a

model may prove to be a better fit representationally.

6.1.2 Deeper Tiered Structure

The basic tiered clustering model (§4.3.1) can be extended with additional
background tiers, allocating more expressivity to model background feature vari-
ation. This class of models covers the spectrum between a pure topic model (all
background tiers) and a pure clustering model and may be reasonable when there
is believed to be more background structure (e.g. when jointly modeling all verb
arguments). Furthermore, it is straightforward to extend the model to a two-tier,
two-clustering structure capable of additionally accounting for commonalities be-

tween arguments.

6.1.3 Dense Feature Selection via Bayesian Co-clustering

The textual features employed when clustering word occurrences are high-
dimensional and sparse and hence noisy. Feature selection and weighting methods
like those proposed in the previous sections address the issue of noise, but do not
help combat sparsity, and hence many occurrences can end up with few activated
features when using feature selection. However, by performing simultaneous di-
mensionality reduction and feature selection, both issues can be addressed in a co-
herent framework. This section outlines a simple Bayesian co-clustering approach

for simultaneously reducing feature dimensionality and clustering data and shows
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how it can be combined with the tiered clustering model.

Co-clustering procedures simultaneously find clusterings of both the rows
and the columns of the data matrix, reducing feature dimensionality while grouping
data points. Shan and Banerjee (2010) introduce a Bayesian co-clustering approach
based on LDA that allows mixed-membership in both the row and column cluster-
ing.

One potential simplification of Shan and Banerjee (2010)’s model is to only
perform overlap clustering on the features simultaneously with partitioned cluster-
ing on the data. The following Bayesian dense clustering model clusters documents

based on their topic membership proportions:

Y|vo ~ Dirichlet(~y,), (cluster proportions b
0| ~ Dirichlet(ex), k€ K, (topic proportions) ®—_>@
b,|8 ~ Dirichlet(3), teT, (topics) @_ ) Yé?
baly ~  Mult(v), de D, (cluster indicator) K

%.d|0a,bq ~ Mult(6y,), i € |wyl, (topic indicator) @--T» o) ,O

wi,d‘d)zi’d ~ MUIt(¢Zi7d)7 Z € |Wd|7 (Words)

In this model K groups of documents share the same topic proportions ¢, (i.e.
cluster centroids), corresponding to hard-clustering. This model reduces to LDA
when K' — D, i.e. each document is assigned to its own cluster, and hence is
more computationally efficient than LDA, despite performing clustering and topic-

modeling jointly.

Combining the dense clustering model with the tiered clustering model
would yield a coherent framework for joint dimensionality reduction, feature se-

lection and clustering, i.e. dense feature-selective clustering.
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Figure 6.1: Progression of proposed feature selection and multi-view models. Hor-
izontal vectors indicate data; circled numbers and letters represent disparate views;
grayed boxes indicate features not present in that particular view; and vertical lines
represent features removed from all views. Clustering occurs separately within each
view. In the case of shared feature views, features assigned to view (a) are present
in all views.

6.2 Multi-View Models

MV-C uses LDA to discover overlapping subsets of features with coherent
clusterings, allowing features to be naturally shared between subsets. Cross-cat per-
forms a similar multiple clustering procedure, but features can only be assigned to
a single view, limiting its ability to model real-world data. This section derives a set
of extensions to Cross-cat building on the Indian Buffet Process primitive (Griffiths

and Ghahramani, 2006) for multiple assignment, overcoming this limitation.

These models are aimed at overcoming the main limitation of cross-cat,
allowing informative features to be shared by several views. The first extension,
multiple-views with shared features, allows each view to inherit a set of shared

features in addition to its view-specific features. The second extension, factorial
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feature allocation (FFA), puts the entire binary feature assignment matrix Z under
the control of the model, treating it as a random variable. Figures 6.1, 6.2, and 6.3

summarize the various model combinations considered.

6.2.1 Shared Feature Partitions

The first novel extension of cross-cat adds an additional shared view that
specifies features conserved across all views (Figure 6.1). This puts pressure on the
model to identify the most information / most generic features to conserve across
clusterings. The shared features themselves do not constitute a separate clustering,
and hence do not necessarily need to yield good views on their own. The remaining

view-specific features capture the individual idiosyncrasies of each clustering.

The shared feature model is capable of identifying features that contribute
to multiple clusterings of the data and hence may find exactly the features that
characterize the strongest sense distinctions. For example, features that contribute
both to syntactic sense clustering and topical sense clustering. Thus the shared
feature model can be viewed a form of robust clustering, finding the commonalities

between an ensemble of orthogonal clusterings.

Recalling the notation from §2.3.1 The shared view is encoded using an
additional random binary vector u with one entry per feature, indicating whether
that feature should be included in all views or not. The resulting construction for Z

is then

. 1 Zf =m
Z]m = { uy otherwise. (6.2)
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where, again Z ~ CRP(«), and e.g.,

uf|lpy ~ Bernoulli(py) (6.3)

prle ~ Beta(€). (6.4)

A similar result could be realized by reserving one cluster in z to indicate whether
the feature is shared or not, however the likelihood structure of this model may
cause the sampler not to mix well. However, it may be possible to implement this
model using the colored stick-breaking process which allows for both exchangeable

and non-exchangeable partitions, improving efficiency (Green, 2010).

From a data-analytic perspective this model is interesting because the shared
features may capture some intuitive basic structure specific to the particular word,
e.g., some notion of the underlying metaphor structure of /ine independent of topical

variation.

Klein and Murphy (2001) find no psychological evidence for shared struc-
ture linking different senses of polysemous words, indicating that the shared struc-
ture model may not perform well relative to the other models proposed here. How-
ever, their experiments were not focused on fine-grained sense distinctions such as
those present in WordNet, and furthermore this does not necessarily indicate that
such models are not applicable to lexical semantics: when deriving occurrence fea-
tures from raw text, it is expected that there is some feature overlap attributable to

the “background” meaning of the word.
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cled numbers represent disparate views; grayed boxes indicate features not present
in that particular view; and vertical lines represent features removed from all views.
The F' x K dimensional matrix Z specifies what features are present in what view.

6.2.2 Factorial Feature Allocation

Factorial feature allocation puts the full feature-to-view map Z under the
control of the model (Figure 6.2). With FFA each feature is assigned to some subset
of the available views, with some probability. The Indian Buffet Process provides a
suitable nonparametric prior for FFA, where draws are random binary matrices with
a fixed number of rows (features) and possibly an infinite number of columns (Grif-
fiths and Ghahramani, 2006). Note that in our case the “latent” feature dimensions

inferred by the IBP correspond to feature views in the original clustering problem.

7|0 ~ IBP(07) (6.5)
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which yields feature-to-view assignments where each feature occurs in A; ~ Poisson()

views (E[A;] = 0), and the total number of views M ~ Poisson (6 Hw)'

The main benefit of factorial feature allocation over the simpler models is
that features can be shared arbitrarily between views, with the IBP specifying only
a prior on the number of features active in any one view. Concretely, this allows the
model to simultaneously represent the most probable clusterings using E[0 F] fea-
tures. Since M is low for most applications considered, factorial feature allocation

is not significantly more complex computationally than the shared feature model.

Finally, I propose to explore to what extent to which topic models are simi-
lar to factorial feature allocation; at a high level, factorial feature allocation can be
viewed as a type of topic model where each topic has only a single word/feature,
and may be related to the class of Focused Topic Models (Williamson et al., 2010).
Exploring this duality should lead to more efficient sampling methods for FFA, as
well as topic models better able to capture latent feature structures. Also, it would
allow the development of FFA models with latent hierarchical structure, based on
e.g. the nested Chinese Restaurant Process (Blei et al., 2003a), labeled LDA (Ram-
age et al., 2009a) or the Kingman’s coalescent (Teh et al., 2007).

6.2.3 Joint Factorial Feature and Data Allocation

The dual problem to feature selection is determining data relevance, i.e. re-

moving outliers or irrelevant data points. Previous lexical semantic models such as

def . .
'H,, = Y. | 1 is the nth harmonic number.
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Clustering by Committee use ad-hoc criteria for improving robustness to outliers
(Pantel, 2003); in Statistics, outliers are treated in density estimation using robust
distributions, e.g. Laplace (Cord et al., 2006). In addition to studying the appli-
cability of background cluster models such as the colored stick-breaking process
to clustering word occurrences (Green, 2010), I propose extending the FFA model

described in §6.2 to jointly model feature and data allocation (FFDA; Figure 6.3)).

FFDA allocates features and data jointly among disparate views, leveraging
the assumption that subsets of the data are better fit by subsets of the available
features. From the standpoint of concept organization, this corresponds to different
organizational schemes acting on different subsets of the available concepts (i.e.

not all concepts are shared across all organizational schemes). For example, when
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organizing animals by their scientific properties (e.g., habitat, taxonomy, gestation
period) it makes sense to exclude fictional counterparts (e.g., fictional ducks such
as Donald); however, when organizing them by their apparent physical properties

(flies, quacks, has feathers), perhaps fictional animals should be included.

In the context of lexical semantics, FFDA can be motivated by considering
differential feature noise: i.e. assumption that some features are content bearing for
some subsets of data, but not for others. Identifying when a particular feature is
spurious requires considering it in the context of the other features, and this is not a

strongpoint of traditional clustering analysis.

FFDA can be defined by simply augmenting FFA with an additional random

binary matrix U specifying which data points are included in which views:

Z|0; ~ IBP(6) (6.6)

Uldy ~ IBP(6y) (6.7)

where U has dimension D x M. Ensuring that Z and U have the same column
dimensionality (number of views) can be achieved by drawing a larger matrix of
dimension (D + F') x M from the IBP and partitioning it into Z and U. Note
that joint data and feature allocation does not significantly raise the computational

complexity of the model above that of factorial feature allocation.

FFDA also requires redefining the projection operator in Equation 2.1 to
operate over both the rows and columns of the data matrix, which can be realized

in the obvious way. The joint operator will be written as w ® (Z. ,,,, U.,,,) with
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the shorthand w®("™) when the feature allocation and data allocation matrices are

unambiguous.

Finally, the form of the general probabilistic model must be extended to

include U and the dependence of c on the data partition:

P(Z,U,clw) « P(Z,U,{c"},w) (6.8)

M
= P(Z)P(U) [] P(w*™[c*™)P(c*™).  (6.9)
m=1

There are several ways to account for the fact that ¢ depends on U. The sim-
plest to extend the prior P(c) to the entire data set, but to restrict the likelihood

P(w®m)|c®(m)) to only the data contained in the view.

6.2.4 Hierarchical Cross-Categorization

Human concept organization consists of multiple overlapping local ontolo-
gies, similar to the loose ontological structure of Wikipedia. Furthermore, each
ontological system has a different set of salient properties. It would be interesting
to extend MVM to model hierarchy explicitly, and compare against baselines such
as Brown clustering (Brown et al., 1992), the nested Chinese Restaurant Process
(Blei et al., 2003a) and the hierarchical Pachinko Allocation Model (Mimno et al.,
2007).

Understanding the internal feature representations of concepts and how it
comes to bear on conceptual organization and pragmatics is important for com-
putational linguistic tasks that require a high degree of semantic knowledge: e.g.

information retrieval, machine translation, and unsupervised semantic parsing. Fur-
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thermore, feature norms have been used to understand the conceptual information

people possess for the thematic roles of verbs (Ferretti, 2001).

Current fixed ontology models of conceptual organization such as Word-
Net cannot easily capture such phenomena (Reisinger and Pasca, 2009), although
there is significant evidence for multiple organizational principles in Wikipedia cat-
egories (Chambers et al., 2010); for example people are organized by their oc-
cupation (e.g. American politicians), their location (e.g. People from Queens), or
chronology (e.g. 1943 births). Likewise, most ducks can fly and quack but only
fictional ducks appear in cartoons or have nephews; does this mean fictional ducks
can be blanched in water and air dried? Accounting for the structure of such natural

“tangled hierarchies,” or “folksonomies,” requires significantly richer models.

The cross-categorization model can be extended to latent hierarchical data,
which requires defining a consistent model of multiple overlapping local catego-
rizations within a larger hierarchical structure. Preliminary work on this model
suggests that it better separates attributes according to their usage domains (Li and
Shafto, 2011). Practical applications include noise-filtering for open-domain cate-
gory and attribute extraction, as well as determining what terms/features are most
relevant to certain query modes (classifying query intent). Evaluation of the under-
lying prediction models can be carried out using human annotators recruited from

Mechanical Turk.

Hierarchical cross-categorization would also benefit significantly from data
partitioning, as one would not expect every feature view to be relevant to all con-

cepts in Wikipedia. Instead, organizational frames have a native level of generality
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over which they operate, controlling what concepts are relevant to include.

6.3 Applications
6.3.1 Latent Relation Modeling

Clusterings formed from feature partitions in MVM can be viewed as a form
of implicit relation extraction; that is, instead of relying on explicit surface patterns
in text, relations between words or concepts are identified indirectly based on com-
mon syntactic patterns. For example, clusterings that divide cities by geography or

clusterings partition adjectives by their polarity.

One interesting area for future work would be to characterize these latent
relations in terms of their ability to suggest coherent features for relation extraction.
Another possibility it to generalize the notion of selectional preference to full frame
semantics, and evaluate how well the MVM views capture usages across different

frames.

6.3.2 Latent Semantic Language Modeling

Generative models such as MVM can be used to build better priors for class-
based language modeling (Brown et al., 1992). The rare n-gram results demonstrate
that MVM is potentially useful for tail contexts; i.e. inferring tail probabilities from

low counts.
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6.3.3 Associative Anaphora Resolution

Associative anaphora®: are a type of bridging anaphora with the property

that the anaphor and its antecedent are not coreferent, e.g.,

I. Once she saw that all the tables,..,) were taken and the bar ..,y was crowded,

she left the restaurant,).

2. Shares of AAPLy closed at $241.19. Volatility .o, was below the 10-day

moving average.

where tables and bar in example as aspects of the restaurant and volatility in ex-
ample 2 is an aspect of AAPL (Charolles, 1999). Resolving associative anaphora
naturally requires access to richer semantic knowledge than resolving e.g. indi-
rect anaphora, where the anaphor and its antecedent differ only by reference and
can be resolved syntactically (Bunescu, 2003; Sasano and Kurohashi, 2009). The
smoothed property extraction methods proposed by Reisinger and Pasca (2009)
could provide a basis for performing associative anaphora resolution, hence it would
be interested to do an evaluation combining it with existing coreference resolution

systems (e.g. Haghighi and Klein, 2007).

Resolving associative anaphora is another domain that might potentially
benefit from multi-language models. The fundamental semantic (mereological)
relationships are conserved across languages, and hence resource-rich languages

could be adapted for use in resource-poor languages. Note how this contrasts

2 Also referred to as mereological anaphora, cf. Poesio et al. (2004).
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sharply with purely syntax-level tasks, such as coreference resolution, where knowl-

edge of the particular language structure is necessary.

6.3.4 Knowledge Acquisition

Vector-space models are commonly used in knowledge acquisition (KA),
e.g. for attribute and class-instance acquisition (Lin et al., 2003; Pantel and Pennac-
chiotti, 2006; Van Durme and Pasca, 2008), and hence could benefit from multi-
prototype and multi-view extensions, identifying relevant axes of variation along
which additional high-quality data can be extracted. The current state of the art
in KA ignores the downstream uses of its data, likewise, machine learning (ML)
models are typically unaware of the details of the upstream KA system that gener-
ated the data. Although such functional modularity greatly simplifies system-level
development, a significant amount of information is discarded that could greatly
improve both systems. Several general-purpose frameworks for integrating KA and
ML have been recently proposed, relying on particular model- (McCallum, 2003)
or structural assumptions (Bunescu, 2008). For this project, I propose a much sim-
pler approach: leveraging generative models of the data to predict the likelihood
of specific instances or features being outliers. Such approaches are common in
the statistics literature (Hoff, 2006; Verdinelli and Wasserman, 1991) but find little

traction in KA.
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6.3.5 Text Classification and Prediction

One straightforward way to evaluate lexical semantics models is to embed
features derived from them in existing text classification and prediction problems.
Comparing results to existing baselines gives a rough measure of how much ad-
ditional useful semantic content is captured for that domain. Towards this end I
propose evaluating the lexical semantics models on sentiment analysis (Pang et al.,

2002) and predicting properties of financial text (Kogan et al., 2009).

6.3.6 Cross-Lingual Property Generation

Section 3.2.3 introduced salient property prediction as a specific application
of structured lexical semantic models. Such properties are useful in downstream
applications such as associative anaphora resolution (§6.3.3), but can also be evalu-
ated on their own, e.g. comparing against human property generation norms McRae
et al. (2005). Extending these models with multiple prototypes and factorial feature
association is a logical next step, and would provide a coherent framework for ad-

dressing cross-language differences in concept organization.

Modeling concept structure across multiple languages simultaneously would
help mitigate the noise introduced by per-language extraction idiosyncrasies and
leveraging resource-rich languages to improve inference for resource-poor languages.
Furthermore a large-scale comparison of concept organization norms across lan-
guages would shed light on important aspects of cross-cultural pragmatics (Wierzbicka,

1991).

149



6.3.7 Twitter

Twitter is a rich testbed for identifying and understanding the root causes
of modern language evolution: Denotative shifts in meaning can be correlated with
current events and tracked in real time. Furthermore, standardized internet-specific
language features such as topical hash-tags are developing at a rapid pace, incubated

primarily on Internet blogs and Twitter.

Due to its high degree of fluidity in term usage and unusually short context
lengths (Phan et al., 2008; Ramage et al., 2010), traditional lexical semantics mod-
els may fail to capture interesting phenomena on Twitter. I propose applying the
robust, structured models developed in this thesis to modeling the real-time lexical
semantic development of Twitter hashtags. In particular, models based on DPMMs
can adapt to form new clusters in real time when new data is added that does not
fit well with the existing inferred structure. This ability is important since it is im-
possible to fix the capacity of lexical semantic models a priori, as new concepts

(denoting current events) are constantly being added to the lexicon.
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Chapter 7

Conclusion

This thesis introduced three new classes latent variable models for lexical

semantics:

e The Multi-Prototype Model which explicitly captures ambiguity in word
meaning due to homonymy by clustering individual word occurrences. The
multi-prototype model is shown to perform well in cases where word senses
are clearly separable, such as in generic word similarity tasks and paraphrase

prediction.

e The Tiered Clustering Model which instruments the multi-prototype model
with an additional background component capable of capturing word fea-
tures that are shared between senses. The tiered clustering model is shown to
be more suitable for modeling polysemy, or ambiguity with common shared
structure (e.g. as in words such as line or raise) and the selectional preference

of verbs.

e The Multi-View Model which divides word features up among multiple fea-
ture subsets, capturing selective attention, or the notion that different subsets

of features are active in different word relations. The multi-view model is
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shown to outperform simpler models on attribute, event, and hypernym recall

as well as modeling lexical substitution for adverbs and adjectives.

The application of multi-view clustering models to distributional lexical semantics
focused on its ability to (1) account for feature noise and (2) model selective attenu-
ation by extracting coherent feature subsets that define similarity relations between
words. Multi-view models are able to succinctly account for the notion that humans
rely on different categorization systems for making different kinds of generaliza-
tions. These latent categorization systems underly lexical semantic phenomenon
such as contextual and selectional preference, and hence may yield significant fur-
ther improvements in machine translation and information retrieval. Furthermore,
multi-view models can be naturally extended to model hierarchical data, inferring
multiple overlapping ontologies. Such structures can be leveraged to improve, e.g.,

open-domain attribute and relation extraction.

152



Chapter 8

Bibliography

Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Pasca, M., and Soroa, A. (2009).
A study on similarity and relatedness using distributional and Wordnet-based

approaches. In Proc. of NAACL-HLT-09, pages 19-27.

Agirre, E. and Edmonds, P. (2006). Word Sense Disambiguation: Algorithms and
Applications (Text, Speech and Language Technology). Springer-Verlag New
York, Inc., Secaucus, NJ, USA.

Anderson, J. (1990). The adaptive character of thought. Lawrence Erlbaum Asso-

ciates, Hillsdale, New Jersey.

Artzi, Y. and Zettlemoyer, L. (2011). Bootstrapping semantic parsers from conver-
sations. In Proceedings of the 2011 Conference on Empirical Methods in Natural
Language Processing, pages 421-432. Association for Computational Linguis-

tics.

Ashby, F. G. and Alfonso-Reese, L. A. (1995). Categorization as probability density
estimation. J. Math. Psychol., 39(2):216-233.

Azimi, J. and Fern, X. (2009). Adaptive cluster ensemble selection. In IJCAI’09:

153



Proceedings of the 21st international jont conference on Artifical intelligence,

pages 992-997, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Baker, L. D. and McCallum, A. K. (1998). Distributional clustering of words
for text classification. In Proceedings of 21st International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, pages 96—103,

Melbourne, Australia.

Banerjee, A., Dhillon, I., Ghosh, J., and Sra, S. (2005). Clustering on the unit
hypersphere using von Mises-Fisher distributions. Journal of Machine Learning

Research, 6:1345-1382.

Banko, M., Cafarella, M. J., Soderland, S., Broadhead, M., and Etzioni, O. (2007).
Open information extraction from the web. In Proceedings of the 20th interna-

tional joint conference on Artifical intelligence.

Baroni, M. and Lenci, A. (2011). How we blessed distributional semantic evalu-
ation. In Proceedings of the GEMS 2011 Workshop on GEometrical Models of

Natural Language Semantics. Association for Computational Linguistics.

Baroni, M., Murphy, B., Barbu, E., and Poesio, M. (2010). Strudel: A corpus-based

semantic model based on properties and types. Cognitive Science, 34.

Baroni, M. and Zamparelli, R. (2010). Nouns are vectors, adjectives are matrices:
representing adjective-noun constructions in semantic space. In Proceedings of
the 2010 Conference on Empirical Methods in Natural Language Processing,

EMNLP ’10, pages 1183-1193. Association for Computational Linguistics.

154



Barsalou, L. W. (1991). Deriving categories to achieve goals. Psychology of Learn-

ing and Motivation-Advances in Research and Theory, 27:1-64.

Bayer, S., Burger, J., Greiff, J., and Wellner, B. (2004). The mitre logical form
generation system. In Mihalcea, R. and Edmonds, P., editors, Senseval-3: Third
International Workshop on the Evaluation of Systems for the Semantic Analysis of

Text, pages 6972, Barcelona, Spain. Association for Computational Linguistics.

Bhattacharyya, A. (1943). On a measure of divergence between two statistical
populations defined by their probability distributions. Bulletin of the Calcutta

Mathematical Society, 35:99—-1009.

Biemann, C. and Nygaard, V. (2010). Crowdsourcing wordnet. In Proceedings of
the 5th Global WordNet conference. ACL Data and Code Repository.

Blei, D., Griffiths, T., Jordan, M., and Tenenbaum, J. (2003a). Hierarchical topic
models and the nested Chinese restaurant process. In Proceedings of the 17th
Conference on Neural Information Processing Systems (NIPS-2003), pages 17—

24, Vancouver, British Columbia.

Blei, D., Ng, A., and Jordan, M. (2003b). Latent Dirichlet allocation. Journal of
Machine Learning Research, 3:2003.

Boster, J. S. and Johnson, J. C. (1989). Form or function: A comparison of ex-

pert and novice judgments of similarity among fish. American Anthropologist,

91(4):866—889.

155



Brody, S. and Lapata, M. (2009). Bayesian word sense induction. In Proceedings
of the 12th Conference of the European Chapter of the Association for Compu-
tational Linguistics, EACL ’09, pages 103—111. Association for Computational

Linguistics.

Brown, P. F.,, deSouza, P. V., Mercer, R. L., Pietra, V. J. D., and Lai, J. C. (1992).
Class-based n-gram models of natural language. Computational Linguistics,

18:467-479.

Budanitsky, A. and Hirst, G. (2006). Evaluating wordnet-based measures of lexical

semantic relatedness. Computational Linguistics, 32(1):13-47.

Bunescu, R. (2003). Associative anaphora resolution: A web-based approach. In
In Proceedings of the EACL2003 Workshop on the Computational Treatment of

Anaphora, pages 47-52.

Bunescu, R. (2008). Learning with probabilistic features for improved pipeline

models. In Proceedings of the Conference on Empirical Methods in Natural

Language Processing (EMNLP-08).

Cao, H., Jiang, D., Pei, J., He, Q., Liao, Z., Chen, E., and Li, H. (2008). Context-
aware query suggestion by mining click-through and session data. In Proceedings
of the 14th ACM SIGKDD international conference on Knowledge discovery and
data mining. ACM.

Chambers, A., Smyth, P., and Steyvers, M. (2010). Learning concept graphs from

text with stick-breaking priors. In Proceedings of NIPS.

156



Chang, J., Boyd-Graber, J., Wang, C., Gerrish, S., and Blei, D. M. (2009a). Reading

tea leaves: How humans interpret topic models. In NIPS.

Chang, W., Pantel, P., Popescu, A.-M., and Gabrilovich, E. (2009b). Towards intent-
driven bidterm suggestion. In Proceedings of the 18th international conference

on World wide web, WWW ’09. ACM.

Charolles, M. (1999). Associative anaphora and its interpretation. In Journal of

pragmatics, volume 31.

Chen, D. L. and Mooney, R. J. (2011). Learning to interpret natural language navi-

gation instructions from observations. pages 859—-865.

Chi, M. T., Feltovich, P. J., and Glaser, R. (1981). Categorization and representation

of physics problems by experts and novices. Cognitive Science, 5(2):121-152.

Clark, S. and Weir, D. (2002). Class-based probability estimation using a semantic

hierarchy. Computational Linguistics, 28(2):187-206.

Cord, A., Ambroise, C., and Cocquerez, J.-P. (2006). Feature selection in robust

clustering based on laplace mixture. Pattern Recogn. Lett., 27(6):627-635.

Cruse, D. A. (1986). Lexical Semantics. Cambridge University Press,, Cambridge.

Cui, Y., Fern, X. Z., and Dy, J. G. (2007). Non-redundant multi-view clustering
via orthogonalization. In ICDM °07: Proceedings of the 2007 Seventh IEEE In-
ternational Conference on Data Mining, pages 133—142, Washington, DC, USA.
IEEE Computer Society.

157



Curran, J. (2004a). From Distributional to Semantic Similarity. PhD thesis, Uni-

versity of Edinburgh.

Curran, J. R. (2004b). From Distributional to Semantic Similarity. PhD thesis,

University of Edinburgh. College of Science.

Curran, J. R. and Moens, M. (2002). Improvements in automatic thesaurus ex-
traction. In Proceedings of the ACL-02 workshop on Unsupervised lexical ac-
quisition, pages 59—66, Morristown, NJ, USA. Association for Computational

Linguistics.

Deerwester, S. C., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman,
R. A. (1990). Indexing by latent semantic analysis. Journal of the American

Society for Information Science, 41:391-407.

Dhillon, I. S. and Modha, D. S. (2001). Concept decompositions for large sparse

text data using clustering. Machine Learning, 42:143-175.

Dinu, G. and Lapata, M. (2010). Measuring distributional similarity in context. In
Proceedings of the 2010 Conference on Empirical Methods in Natural Language

Processing. Association for Computational Linguistics.

Emele, M. C., Dorna, M., Ldeling, A., Zinsmeister, H., and Rohrer, C. (1996).
Semantic-based transfer. In In Proceedings of the 16th International Conference

on Computational Linguistics (COLING ’96), pages 359-376.

158



Erk, K. (2007). A simple, similarity-based model for selectional preferences. In
Proceedings of the 45th Annual Meeting of the Association for Computational

Linguistics. Association for Computer Linguistics.

Erk, K. and Pado, S. (2008). A structured vector space model for word meaning in

context. In Proceedings of EMNLP 2008.

Erk, K. and Pado, S. (2010). Exemplar-based models for word meaning in context.

In Proceedings of ACL.

Fellbaum, C., editor (1998a). WordNet: An Electronic Lexical Database and Some

of its Applications. MIT Press.

Fellbaum, C. (1998b). WordNet: An Electronic Lexical Database (Language,

Speech, and Communication). The MIT Press.

Ferretti, T. (2001). Integrating verbs, situation schemas, and thematic role concepts.

Journal of Memory and Language, 44(4):516-547.

Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G., and
Ruppin, E. (2001). Placing search in context: the concept revisited. In Proc. of

the 10th international conference on World Wide Web.

Firth, J. R. (1957). Papers in Linguistics. Oxford University Press.

Fountain, T. and Lapata, M. (2010). Meaning representation in natural language
categories. In Proceedings of the 32nd Annual Conference of the Cognitive Sci-

ence Society. Cognitive Science Society.

159



Gabrilovich, E. and Markovitch, S. (2007). Computing semantic relatedness using
Wikipedia-based explicit semantic analysis. In Proc. of IJCAI-07, pages 1606—
1611.

Gildea, D. and Jurafsky, D. (2002). Automatic labeling of semantic roles. Compu-
tational Linguistics, 28(3):245-288.

Gleich, D. F. and Zhukov, L. (2004). An SVD based term suggestion and ranking
system. In ICDM ’04: Proceedings of the Fourth IEEE International Conference
on Data Mining (ICDM’04), pages 391-394. IEEE Computer Society.

Goodman, N. D., Tenenbaum, J. B., Feldman, J., and Griffiths, T. L. (2008). A
rational analysis of Rule-Based concept learning. Cognitive Science, 32(1):108—

154.

Gorman, J. and Curran, J. R. (2006). Scaling distributional similarity to large cor-

pora. In Proc. of ACL 2006.

Graff, D. (2003). English Gigaword. Linguistic Data Consortium, Philadephia.

Green, P. J. (2010). Colouring and breaking sticks: Random distributions and het-

erogeneous clustering. In arXiv:1003.3988.

Grefenstette, E., Sadrzadeh, M., Clark, S., Coecke, B., and Pulman, S. (2011).
Concrete sentence spaces for compositional distributional models of meaning.

Proceedings of the 9th International Conference on Computational Semantics

(IWCS11), pages 125-134.

160



Grefenstette, G. (1994). Explorations in Automatic Thesaurus Discovery. Kluwer

Academic Publishers, Boston, Massachusetts.

Griffiths, T. and Ghahramani, Z. (2006). Infinite latent feature models and the
Indian buffet process. In Advances in Neural Information Processing Systems

18, pages 475-482. MIT Press, Cambridge, MA.

Griffiths, T. L., Canini, K. R., Sanborn, A. N., and Navarro, D. J. (2007a). Unifying
rational models of categorization via the hierarchical Dirichlet process. In Proc.

of CogSci-07.

Griffiths, T. L., Steyvers, M., and Tenenbaum, J. B. (2007b). Topics in semantic

representation. Psychological Review, 114:2007.

Haghighi, A. and Klein, D. (2007). Unsupervised coreference resolution in a non-
parametric Bayesian model. In Proc. ACL 2007, pages 848—855. Association for

Computational Linguistics.

Harper, K. E. (1965). Measurement of similarity between nouns. In Proceedings
of the 1965 conference on Computational linguistics, COLING ’65, pages 1-23.

Association for Computational Linguistics.
Harris, Z. (1954). Distributional structure. Word, 10(23):146—-162.

Hearst, M. A. (1992). Automatic acquisition of hyponyms from large text corpora.
In Proceedings of the 14th conference on Computational linguistics - Volume 2.

Association for Computational Linguistics.

161



Heit, E. and Rubinstein, J. (1994). Similarity and property effects in inductive rea-
soning. Journal of Experimental Psychology: Learning, Memory, and Cognition,

20(2):411-422.

Herdagdelen, A. and Baroni, M. (2009). Bagpack: A general framework to repre-

sent semantic relations. In Proc. of GEMS 2009.

Hindle, D. and Rooth, M. (1991). Structural ambiguity and lexical relations. In

Proc. of ACL 1991.

Hinton, G. E. (2002). Training products of experts by minimizing contrastive di-

vergence. Neural Computation, 14(8).

Hoff, P. D. (2006). Model-based subspace clustering. Bayesian Analysis, 1(2):321—
344,

Huang, C.-K., Chien, L.-F.,, and Oyang, Y.-J. (2003). Relevant term suggestion
in interactive web search based on contextual information in query session logs.

Journal of the American Society for Information Science and Technology, 54(7).

Jain, P., Meka, R., and Dhillon, I. S. (2008). Simultaneous unsupervised learning
of disparate clusterings. In SDM, pages 858—869. SIAM.

Jansen, B. J., Booth, D. L., and Spink, A. (2007). Determining the user intent of
web search engine queries. In Proc. of WWW 2007. ACM.

Jones, R., Rey, B., Madani, O., and Greiner, W. (2006). Generating query substitu-

tions. In Proceedings of the 15th international conference on World Wide Web.

ACM.

162



Joshi, A. K. and Vijay-Shanker, K. (1999). Compositional semantics with lexi-
calized tree-adjoining grammar (LTAG): How much underspecification is neces-

sary? In Bunt, H. and Thijsse, E., editors, Proc. IWCS-3, pages 131-145.

Kilgarriff, A. (2004). How dominant is the commonest sense of a word. In In

Proceedings of Text, Speech, Dialogue, pages 1-9. Springer-Verlag.

Kishida, K. (2005). Property of average precision and its generalization: An exam-
ination of evaluation indicator for information retrieval experiments. Technical

report, NII.

Klein, D. E. and Murphy, G. L. (2001). The representation of polysemous words.
Journal of Memory and Language, 45:259-282.

Klein, D. E. and Murphy, G. L. (2002). Paper has been my ruin: Conceptual rela-

tions of polysemous senses. Journal of Memory and Language, 47:548570.

Kogan, S., Levin, D., Routledge, B. R., Sagi, J. S., and Smith, N. A. (2009). Pre-
dicting risk from financial reports with regression. In NAACL °09: Proceedings
of Human Language Technologies: The 2009 Annual Conference of the North
American Chapter of the Association for Computational Linguistics, pages 272—

280, Morristown, NJ, USA. Association for Computational Linguistics.

Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist model of

category learning. Psychological Review, 99:22-44.

163



Landauer, T. and Dumais, S. (1997). A solution to Plato’s problem: The latent se-
mantic analysis theory of acquisition, induction and representation of knowledge.

Psychological Review, 104(2):211-240.

Law, M. H. C., Jain, A. K., and Figueiredo, M. A. T. (2002). Feature selection in
mixture-based clustering. In Advances in Neural Information Processing Systems

15, pages 625-632.

Lee, L. (1999). Measures of distributional similarity. In 37th Annual Meeting of the

Association for Computational Linguistics, pages 25-32.

Li, D. and Shafto, P. (2011). Bayesian hierarchical cross-clustering. Proceedings

of AISTATS, 15:443-451.

Li, L., Roth, B., and Sporleder, C. (2010). Topic models for word sense disam-
biguation and token-based idiom detection. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics, ACL 10, pages 1138—

1147. Association for Computational Linguistics.

Liang, P., Jordan, M. 1., and Klein, D. (2011). Learning dependency-based com-
positional semantics. In Proceedings of ACL, Portland, Oregon. Association for

Computational Linguistics.

Lin, D. (1998). Automatic retrieval and clustering of similar words. In Proceedings
of the 36th Annual Meeting of the Association for Computational Linguistics and
17th International Conference on Computational Linguistics - Volume 2, pages

768-774. Association for Computational Linguistics.

164



Lin, D. and Pantel, P. (2002). Concept discovery from text. In Proceedings of
the 19th International Conference on Computational linguistics (COLING-02),

pages 1-7, Taipei, Taiwan.

Lin, D., Zhao, S., Qin, L., and Zhou, M. (2003). Identifying synonyms among dis-
tributionally similar words. In Proceedings of the Interational Joint Conference

on Artificial Intelligence, pages 1492—-1493. Morgan Kaufmann.

Love, B. C., Medin, D. L., and Gureckis, T. M. (2004). SUSTAIN: A network

model of category learning. Psych. Review, 111(2):309-332.

Lowe, W. (2001). Towards a theory of semantic space. In Proceedings of the 23rd

Annual Meeting of the Cognitive Science Society, pages 576-581.

Lund, K. and Burgess, C. (1996). Producing high-dimensional semantic spaces
from lexical co-occurrence. Behavior Research Methods, Instruments & Com-

puters.

Ma, X., Boyd-Graber, J., Nikolova, S. S., and Cook, P. (2009). Speaking through

pictures: Images vs. icons. In ACM Conference on Computers and Accessibility.

Manning, C. D., Raghavan, P., and Schiitze, H. (2008). Introduction to Information

Retrieval. Cambridge University Press.

Mansinghka, V. K., Jonas, E., Petschulat, C., Cronin, B., Shafto, P., and Tenen-
baum, J. B. (2009). Cross-categorization: A method for discovering multiple

overlapping clusterings. In Proceedings of the Nonparametric Bayes Workshop

at NIPS 2009.

165



Mansinghka, V. K., Kemp, C., and Tenenbaum, J. B. (2006). Structured priors for
structure learning. In Proc. UAI 2006. AUAI Press.

McCallum, A. (2003). A note on the unification of information extraction and data
mining using conditional-probability, relational models. In In Proceedings of the

1JCAI-2003 Workshop on Learning Statistical Models from Relational Data.

McCarthy, D. and Carroll, J. (2003a). Disambiguating nouns, verbs, and adjectives
using automatically acquired selectional preferences. Computational Linguistics,

pages 639-654.

McCarthy, D. and Carroll, J. (2003b). Disambiguating nouns, verbs, and adjectives
using automatically acquired selectional preferences. Computational Linguistics,

29(4):639-654.

McCarthy, D. and Navigli, R. (2007). SemEval-2007 task 10: English lexical sub-
stitution task. In SemEval *07: Proceedings of the 4th International Workshop
on Semantic Evaluations, pages 48-53, Morristown, NJ, USA. Association for

Computational Linguistics.

McDonald, S. and Brew, C. (2004). A distributional model of semantic context
effects in lexical processing. In Proceedings of the 42nd Annual Meeting on As-
sociation for Computational Linguistics, ACL *04, Stroudsburg, PA, USA. As-

sociation for Computational Linguistics.

McDonald, S. and Ramscar, M. (2001). Testing the distributional hypothesis: The

166



influence of context on judgements of semantic similarity. In In Proceedings of

the 23rd Annual Conference of the Cognitive Science Society.

McRae, K., Cree, G. S., Seidenberg, M. S., and McNorgan, C. (2005). Semantic
feature production norms for a large set of living and nonliving things. Behav-

ioral Research Methods, 37(4):547-559.

Medin, D., Ross, N., Atran, S., Cox, D., Coley, J., Proffitt, J., and Blok, S. (2006).
Folkbiology of freshwater fish. Cognition, 99(3):237-273.

Medin, D. L. and Schaffer, M. M. (1978). Context theory of classification learning.
Psychological Review, 85(3):207-238.

Miller, G. A. and Charles, W. G. (1991). Contextual correlates of semantic similar-

ity. Language and Cognitive Processes, 6(1):1-28.

Mimno, D., Li, W., and McCallum, A. (2007). Mixtures of hierarchical topics with

pachinko allocation. In ICML.

Mitchell, J. and Lapata, M. (2008). Vector-based models of semantic composition.
In Proceedings of ACL-08: HLT, pages 236-244, Columbus, Ohio. Association

for Computational Linguistics.

Montague, R. (1973). The proper treatment of quantication in ordinary English.
In Hintikka, J., Moravcsik, J., and Suppes, P., editors, Approaches to Natural

Language, pages 221-242.

Murphy, G. L. (2002). The Big Book of Concepts. The MIT Press.

167



Neal, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture

models. Journal of Computational and Graphical Statistics, 9(2):249-265.

Nelson, L. J. and Miller, D. T. (1995). The distinctiveness effect in social catego-

rization: You are what makes you unusual. Psychological Science, 6:246-249.

Nida, E. A. (1975). Componential Analysis of Meaning: An Introduction to Seman-

tic Structures. Mouton, The Hague.

Niu, D., Dy, J. G., and Jordan, M. 1. (2010). Multiple non-redundant spectral clus-
tering views. In Fiirnkranz, J. and Joachims, T., editors, Proceedings of the 27th

International Conference on Machine Learning (ICML-10), pages 831-838.

Nosofsky, R. M. (1986). Attention, similarity and the identication categorization

relationship. Journal of Experimental Psychology: General, 115:39-57.

Nosofsky, R. M., Palmeri, T. J., and McKinley, S. C. (1994). Rule-plus-exception

model of classification learning. Psychological Review, 101(1):53-79.

0 Séaghdha, D. (2010). Latent variable models of selectional preference. In Pro-
ceedings of the 48th Annual Meeting of the Association for Computational Lin-

guistics (ACL-10), Uppsala, Sweden.

0 Séaghdha, D. and Korhonen, A. (2011). Probabilistic models of similarity in
syntactic context. In Proceedings of the 2011 Conference on Empirical Methods

in Natural Language Processing (EMNLP-11), Edinburgh, UK.

168



Pasca, M., Lin, D., Bigham, J., Lifchits, A., and Jain, A. (2006). Names and similar-
ities on the web: fact extraction in the fast lane. In Proceedings of the 21st Inter-
national Conference on Computational Linguistics and the 44th annual meeting
of the Association for Computational Linguistics. Association for Computational

Linguistics.

Pado, S. and Lapata, M. (2007). Dependency-based construction of semantic space

models. Computational Linguistics, 33(2):161-199.

Pado, S., Pado, U., and Erk, K. (2007). Flexible, corpus-based modelling of hu-
man plausibility judgements. In Proceedings of the 2007 Joint Conference on
Empirical Methods in Natural Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL), pages 400-409, Prague, Czech Republic.

Association for Computational Linguistics.

Pado, U. (2007). The Integration of Syntax and Semantic Plausibility in a Wide-
Coverage Model of Sentence Processing. PhD thesis, Saarland University,

Saarbriicken.

Palmer, F. R. (1976). Semantics. Cambridge University Press.

Pang, B., Lee, L., and Vaithyanathan, S. (2002). Thumbs up? Sentiment classifica-
tion using machine learning techniques. In Proceedings of the 2002 Conference

on Empirical Methods in Natural Language Processing (EMNLP), pages 79-86.

Pantel, P., Bhagat, R., Chklovski, T., and Hovy, E. (2007). ISP: Learning inferential

selectional preferences. In In Proceedings of NAACL 2007.

169



Pantel, P. and Lin, D. (2002). Discovering word senses from text. In KDD ’02:
Proceedings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 613-619, New York, NY, USA. ACM.

Pantel, P. and Pennacchiotti, M. (2006). Espresso: leveraging generic patterns for
automatically harvesting semantic relations. In ACL ’06: Proceedings of the
21st International Conference on Computational Linguistics and the 44th an-
nual meeting of the ACL, pages 113-120, Morristown, NJ, USA. Association for

Computational Linguistics.

Pantel, P. A. (2003). Clustering by committee. PhD thesis, Edmonton, Alta.,

Canada.

Pedersen, T. and Kulkarni, A. (2006). Automatic cluster stopping with criterion
functions and the gap statistic. In Proceedings of the 2006 Conference of the
North American Chapter of the Association for Computational Linguistics on
Human Language Technology, pages 276-279, Morristown, NJ, USA. Associa-

tion for Computational Linguistics.

Pennacchiotti, M., De Cao, D., Basili, R., Croce, D., and Roth, M. (2008). Auto-
matic induction of framenet lexical units. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing. Association for Computa-

tional Linguistics.

Pereira, F., Tishby, N., and Lee, L. (1993). Distributional clustering of English
words. In Proceedings of the 31st Annual Meeting of the Association for Com-

putational Linguistics (ACL-93), pages 183—190, Columbus, Ohio.

170



Phan, X.-H., Nguyen, L.-M., and Horiguchi, S. (2008). Learning to classify short
and sparse text & web with hidden topics from large-scale data collections. In
WWW °08: Proceeding of the 17th international conference on World Wide Web,
pages 91-100, New York, NY, USA. ACM.

Pitman, J. (1995). Exchangeable and partially exchangeable random partitions.

Probab. Theory Related Fields, 102(2):145-1358.

Pitman, J. and Yor, M. (1997). The two-parameter Poisson-Dirichlet distribution

derived from a stable subordinator. Annals of Probability, 25(2):855-900.

Poesio, M., Mehta, R., Maroudas, A., and Hitzeman, J. (2004). Learning to re-
solve bridging references. In ACL ’04: Proceedings of the 42nd Annual Meeting
on Association for Computational Linguistics, page 143, Morristown, NJ, USA.

Association for Computational Linguistics.

Poon, H. and Domingos, P. (2009). Unsupervised semantic parsing. In Proc. of

EMNLP 2009. Association for Computational Linguistics.

Posner, M. 1. and Keele, S. W. (1968). On the genesis of abstract ideas. Journal of
Experimental Psychology, 77(3):353-363.

Pothos, E. and Chater, N. (2002). A simplicity principle in unsupervised human

categorization. Cognitive Science, 26(3):303-343.

Pothos, E. M. M. and Close, J. (2007). One or two dimensions in spontaneous

classification: A simplicity approach. Cognition.

171



Pustejovsky, J. (1995). The generative lexicon. Computational Linguistics, 17.

Ramage, D., Dumais, S., and Liebling, D. (2010). Characterizing microblogs with
topic models. In ICWSM.

Ramage, D., Hall, D., Nallapati, R., and Manning, C. D. (2009a). Labeled LDA:
A supervised topic model for credit attribution in multi-labeled corpora. In Pro-
ceedings of the 2009 Conference on Empirical Methods in Natural Language
Processing, pages 248-256, Singapore. Association for Computational Linguis-

tics.

Ramage, D., Rafferty, A. N., and Manning, C. D. (2009b). Random walks for text
semantic similarity. In Proc. of the 2009 Workshop on Graph-based Methods for

Natural Language Processing (TextGraphs-4), pages 23-31.

Rapp, R. (2003). Word sense discovery based on sense descriptor dissimilarity. In

Proceedings of the Ninth Machine Translation Summit.

Rasmussen, C. E. (2000). The infinite Gaussian mixture model. In Advances in

Neural Information Processing Systems, pages 554-560. MIT Press.

Reisinger, J. and Mooney, R. (2010). Multi-prototype vector-space models of word

meaning. In Proc. of NAACL 2010. Association for Computational Linguistics.

Reisinger, J. and Pagca, M. (2009). Latent variable models of concept-attribute at-
tachment. In Proc. of ACL 2009, pages 620-628. Association for Computational

Linguistics.

172



Reisinger, J. and Pasca, M. (2011). Fine-grained class label markup of search

queries. The Association for Computer Linguistics.

Resnik, P. (1997). Selectional preference and sense disambiguation. In Proceedings
of ACL SIGLEX Workshop on Tagging Text with Lexical Semantics, pages 52-57,
Washington, D.C. ACL.

Ritter, A., Mausam, and Etzioni, O. (2010). A latent Dirichlet allocation method

for selectional preferences. In In Proceedings of ACL 2010.

Rooth, M., Riezler, S., Prescher, D., Carroll, G., and Beil, F. (1999). Inducing
a semantically annotated lexicon via EM-based clustering. In Proceedings of
the 37th Annual Meeting of the Association for Computational Linguistics on
Computational Linguistics, pages 104—111, Stroudsburg, PA, USA. Association

for Computational Linguistics.

Ross, B. H. and Murphy, G. L. (1999). Food for thought: Cross-classification and
category organization in a complex real-world domain. Cognitive Psychology,

38:495-553.

Rudolph, S. and Giesbrecht, E. (2010). Compositional matrix-space models of
language. In Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics, pages 907-916, Uppsala, Sweden. Association for

Computational Linguistics.

Salton, G., Wong, A., and Yang, C.-S. (1975). A vector space model for automatic
indexing. Communications of the ACM, 18(11):613-620.

173



Sanborn, A. N., Griffiths, T. L., and Navarro, D. J. (2006). A more rational model
of categorization. In Proceedings of the 28th Annual Conference of the Cognitive

Science Society.

Sanderson, M. (1994). Word sense disambiguation and information retrieval. In
SIGIR ’94: Proceedings of the 17th annual international ACM SIGIR confer-
ence on Research and development in information retrieval, pages 142—151, New

York, NY, USA. Springer-Verlag New York, Inc.

Sasano, R. and Kurohashi, S. (2009). A probabilistic model for associative anaphora
resolution. In EMNLP ’09: Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing, pages 1455-1464, Morristown, NJ,

USA. Association for Computational Linguistics.

Schiitze, H. (1998a). Automatic word sense discrimination. Computational Lin-

guistics, 24(1):97-123.

Schiitze, H. (1998b). Automatic word sense discrimination. Comput. Linguist.,

24(1):97-123.

Shafto, P. and Coley, J. D. (2003). Development of categorization and reasoning in
the natural world: Novices to experts, naive similarity to ecological knowledge.

Journal of Experimental Psychology: Learning, Memory, and Cognition.

Shafto, P., Kemp, C., Mansinghka, V., Gordon, M., and Tenenbaum, J. B. (2006).

Learning cross-cutting systems of categories. In Proc. CogSci 2006.

174



Shan, H. and Banerjee, A. (2010). Residual Bayesian co-clustering for matrix ap-

proximation. In SIAM International Conference on Data Mining (SDM) 2010.

Shepard, R. N., Hovland, C. L., and Jenkins, H. M. (1961). Learning and memo-

rization of classifications. Psychological Monographs, 57.

Smith, E. R., Fazio, R. H., and Cejka, M. A. (1996). Accessible attitudes influ-
ence categorization of multiply categorizable objects. Journal of personality and

social psychology, 71(5):888-98.

Smith, N. A. and Shafto, P. (2011). The role of cross-cutting systems of categories
in category-based induction. In Proceedings of the 33rd Annual conference of

the Cognitive Science Society.

Smolensky, P. (1990). Tensor product variable binding and the representation of

symbolic structures in connectionist systems. Artificial Intelligence, 46:159-216.

Snow, R., Jurafsky, D., and Ng, A. (2006). Semantic taxonomy induction from

heterogenous evidence. In Proc. of ACL 2006.

Snow, R., O’Connor, Jurafsky, D., and Ng, A. (2008). Cheap and fast—but is it
good? evaluating non-expert annotations for natural language tasks. In Proceed-

ings of Empirical Methods in Natural Language Processing.

Spirck Jones, K. (1964). Synonymy and Semantic Classification. PhD thesis, Uni-

versity of Cambridge.

175



Strehl, A. and Ghosh, J. (2003). Cluster ensembles — a knowledge reuse frame-

work for combining multiple partitions. Journal of Machine Learning Research,

3:583-617.

Tatu, M. and Moldovan, D. (2005). A semantic approach to recognizing textual
entailment. In Proc. of HLT-EMNLP 2005. Association for Computational Lin-

guistics.

Teh, Y. W., Daumé III, H., and Roy, D. (2007). Bayesian agglomerative cluster-
ing with coalescents. In Proceedings of the Conference on Neural Information

Processing Systems (NIPS), Vancouver, Canada.

Thater, S., Fiirstenau, H., and Pinkal, M. (2010). Contextualizing semantic repre-
sentations using syntactically enriched vector models. In Proceedings of the 48th
Annual Meeting of the Association for Computational Linguistics. Association

for Computational Linguistics.

Thater, S., Fiirstenau, H., and Pinkal, M. (2011). Word meaning in context: A
simple and effective vector model. In Proceedings of 5th International Joint

Conference on Natural Language Processing, pages 1134-1143.

Tokunaga, K., Kazama, J., and Torisawa, K. (2005). Automatic discovery of at-
tribute words from Web documents. In Proceedings of the 2nd International Joint
Conference on Natural Language Processing (IJCNLP-05), pages 106-118, Jeju

Island, Korea.

176



Turian, J., Ratinov, L., and Bengio, Y. (2010). Word representations: a simple and

general method for semi-supervised learning. In Proc. of the ACL.

Turney, P. D. (2006). Similarity of semantic relations. Computational Linguistics,

32(3):379-416.

Turney, P. D. and Pantel, P. (2010). From frequency to meaning: vector space

models of semantics. Journal of Artificial Intelligence Research, 37(1).

Tversky, A. and Gati, 1. (1982). Similarity, separability, and the triangle inequality.
Psychological Review, 89(2):123—-154.

Van de Cruys, T., Poibeau, T., and Korhonen, A. (2011). Latent vector weight-
ing for word meaning in context. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing, pages 1012—1022. Association for

Computational Linguistics.

Van Durme, B. and Pasca, M. (2008). Finding cars, goddesses and enzymes:
Parametrizable acquisition of labeled instances for open-domain information ex-

traction. In Proc. of AAAI 2008.

Verdinelli, I. and Wasserman, L. (1991). Bayesian analysis of outlier problems

using the Gibbs sampler. Statistics and Computing, 1(2).

Voorspoels, W., Vanpaemel, W., and Storms, G. (2009). The role of extensional
information in conceptual combination. In Proceedings of the 31th Annual Con-

ference of the Cognitive Science Society.

177



Vyas, V., Pantel, P, and Crestan, E. (2009). Helping editors choose better seed
sets for entity set expansion. In Proceedings of the 18th ACM conference on

Information and knowledge management.

Wen, J.-R., Nie, J.-Y., and Zhang, H.-J. (2001). Clustering user queries of a search
engine. In Proceedings of the 10th international conference on World Wide Web.

ACM.

Wierzbicka, A. (1991). Cross-cultural pragmatics : The semantics of human inter-

action. Mouton de Gruyter, Berlin ; New York.

Williamson, S., Wang, C., Heller, K. A., and Blei, D. M. (2010). The IBP-
compound Dirichlet process and its application to focused topic modeling. In

Proceedings of the 27th International Conference on Machine Learning.

Xue, N., Chen, J., and Palmer, M. (2006). Aligning features with sense distinction
dimensions. In Proceedings of the COLING/ACL on Main conference poster
sessions, pages 921-928, Morristown, NJ, USA. Association for Computational

Linguistics.

Yao, X. and Durme, B. V. (2011). Nonparametric Bayesian word sense induction.
In Proceedings of TextGraphs-6: Graph-based Methods for Natural Language

Processing, pages 10-14. Association for Computational Linguistics.

Zarate, M. A. and Smith, E. R. (1990). Person categorization and stereotyping.
Social Cognition, 8(2):161-185.

178



Zettlemoyer, L. S. and Collins, M. (2005). Learning to map sentences to logical
form: Structured classification with probabilistic categorial grammars. In Pro-
ceedings of 21st Conference on Uncertainty in Artificial Intelligence (UAI-2005),
Edinburgh, Scotland.

Zipf, G. (1935). The Psycho-Biology of Language. Houghton Mifflin, Boston, MA.

179



	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Distributional Lexical Semantics
	Latent Variable Models of Lexical Semantics
	Thesis Organization
	Summary of Contributions

	Chapter 2. Background and Related Work
	Distributional Lexical Semantics
	Distributional Similarity
	Word Sense Induction
	Contrasts with Resource-based Approaches
	Limitations of Distributional Models

	Types of Distributional Models
	Word-Occurrence Models
	Word-Type Models

	Cross-cutting Models of Conceptual Organization
	Model Specification
	Evidence for Cross-cutting Categorization


	Chapter 3. Evaluating Lexical Semantic Models
	Corpora and Features
	Word-Occurrence Features
	Word-Type Features

	Lexical Semantic Tasks
	Semantic Similarity
	Selectional Preference
	McRae Typicality Norms
	Baroni and Lenci Evaluation of Semantic Spaces
	Lexical Substitution


	Chapter 4. Multi-Prototype Models
	Introduction
	Multi-prototype Model
	Tiered Clustering Model
	Evaluations

	Multi-Prototype Vector-Space Models
	Spherical Mixture Multi-Prototype Models
	Dirichlet-Process Multi-Prototype Models

	Tiered Clustering: Multi-Prototype Models with Shared Structure
	Generative Model
	Collapsed Gibbs Sampler
	Combined Multi-Prototype and Single Prototype

	Measuring Semantic Similarity
	Multi-prototype Similarity
	Contextual Similarity
	Tiered Clustering Similarity

	Experimental Results
	Predicting Paraphrases
	Semantic Similarity: WordSim-353 and Evocation
	Selectional Preference
	McRae Categorization Norms
	BLESS

	Discussion

	Chapter 5. Cross-Cutting Models
	Introduction
	Multi-View Lexical Semantic Models
	Multi-View Model
	Multi-View Clustering
	Multi-View Vector Space Model

	Human Evaluation of MV-C Word Representations
	Word Representation
	Evaluation Procedure
	Results
	Discussion

	Lexical Semantic Evaluation
	McRae
	BLESS
	Lexical Substitution

	Discussion

	Chapter 6. Future Work
	Multi-Prototype and Tiered Clustering
	Scaling Representational Capacity
	Deeper Tiered Structure
	Dense Feature Selection via Bayesian Co-clustering

	Multi-View Models
	Shared Feature Partitions
	Factorial Feature Allocation
	Joint Factorial Feature and Data Allocation
	Hierarchical Cross-Categorization

	Applications
	Latent Relation Modeling
	Latent Semantic Language Modeling
	Associative Anaphora Resolution
	Knowledge Acquisition
	Text Classification and Prediction
	Cross-Lingual Property Generation
	Twitter


	Chapter 7. Conclusion
	Chapter 8. Bibliography

