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Abstract

In order to respond to increasing demand for natural language interfaces—and pro-
vide meaningful insight into user query intent—fast, scalable lexical semantic models
with flexible representations are needed. Human concept organization is a rich epiphe-
nomenon that has yet to be accounted for by a single coherent psychological frame-
work: Concept generalization is captured by a mixture of prototype and exemplar
models, and local taxonomic information is available through multiple overlapping
organizational systems. Previous work in computational linguistics on extracting lex-
ical semantic information from the Web does not provide adequate representational
flexibility and hence fails to capture the full extent of human conceptual knowledge.
In this proposal I will outline a family of probabilistic models capable of accounting
for the rich organizational structure found in human language that can predict con-
textual variation, selectional preference and feature-saliency norms to a much higher
degree of accuracy than previous approaches. These models account for cross-cutting
structure of concept organization—i.e. the notion that humans make use of different
categorization systems for different kinds of generalization tasks—and can be applied
to Web-scale corpora. Using these models, natural language systems will be able to
infer a more comprehensive semantic relations, in turn improving question answering,
text classification, machine translation, and information retrieval.

�This work was supported by an NSF Graduate Research Fellowship and a Google Research Award. Ex-
periments were run on the Mastodon Cluster, provided by NSF Grant EIA-0303609.
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CHAPTER 1

Background and Related Work

In this proposal I argue for a strong synthesis of psychological models of concept organiza-
tion and computational linguistic models of distributional lexical semantics, focusing partic-
ularly on modeling context-dependent variation in word meaning. Concepts and meanings
in human language are organized in terms of complex assemblies of properties or features
and exhibit significantly richer structure than can be accounted for with traditional lexical
semantics models [93].

Humans categorize objects using multiple orthogonal taxonomic structures, where gen-
eralization depends critically on what features are relevant to the particular structure. For
example, foods can be organized in terms of their nutritional value (high in fiber) or situa-
tionally (commonly eaten for Thanksgiving). Furthermore there is significant evidence for
overlapping categorization systems in Wikipedia and WordNet (e.g. people are organized
by occupation or by nationality). The effects of these overlapping categorization systems
manifest themselves at the lexical semantic level [63], implying that lexicographical word
senses and traditional computational models of word-sense based on clustering or exemplar
activation are too impoverished to capture the rich dynamics of word usage.

To model these phenomena, I introduce a unified set of probabilistic methods based on
cross-cutting categorization [100], using them to generalize traditional vector-space or dis-
tributional models of lexical semantics [18, 26, 68, 98, 109]. Cross-cutting categorization
finds multiple feature subsets (categorization systems) that produce high quality clusterings
of the data. For example words might be clustered based on their part of speech, or based on
their thematic usage. Context-dependent variation in word usage can be accounted for by
leveraging multiple latent categorization systems. In particular, cross-cutting models can
be used to capture the microstructure of word relatedness, breaking up word features into
multiple categorization systems and then computing similarity separately for each system.

Computing semantic relatedness is an important foundational task in distributional lex-
ical semantics, underlying models of word similarity [18], selectional preference [91] and
lexical substitution [59]. However, the relatedness is not a globally consistent metric as it
violates symmetry (e.g. people have the intution that China is more similar to North Korea
than North Korea is to China) as well as the triangle inequality (e.g. the sum of distances
from bat to club and club to association is less than the distance from bat to association)
[32, 110]. Violations of the triangle inequality can be resolved by first breaking up words
into senses [88], or using exemplar models of meaning [22], but asymmetry can only be
resolved through the use of multiple conditional similarity metrics.

Moving beyond consistency violations, word relatedness for a given pair implicitly de-
fines a typed relation between that pair that may not at all be similar to the relations between
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1.1. Psychological Models of Concepts

similar words. For example wine and bottle are similar and wine and vinegar are similar,
but it would not be reasonable to expect that the features governing such similarity compu-
tations to overlap much, despite all three words occurring in similar documents. The aim
of this proposal is to study the application of cross-categorization to find coherent feature
subsets that implicitly define meaningful relations, resulting in vector-valued word related-
ness.

The particular cross-categorization models proposed here build on my previous work on
(1) multi-prototype models of lexical semantics [88] and (2) model-based feature weight-
ing [89]. The proposed work focuses on two areas: (1) fitting cross-cutting categorization
models [57, 100] with overlapping clustering structures word occurrence data, determining
which subsets of a word’s features account for significant variation in meaning, and (2)
identifying and removing irrelevant features and occurrences on a per-word basis, yielding
robust models. Capturing the multiple overlapping clustering structure of natural concepts
leads to improvements on a range of Natural Language Processing (NLP) tasks: question
answering [108], unsupervised semantic parsing [82], query intent classification and expan-
sion [41], coreference resolution [34] and textual entailment [106].

The remainder of this chapter summarizes relevant background work in Pyschology
(§1.1) and Linguistics (§1.2).

1.1 Psychological Models of Concepts

Psychological models of concepts can be roughly divided into two classes [63]:

1. Prototype models represented concepts by an abstract prototypical instance, similar
to a cluster centroid in parametric density estimation [3].

2. Exemplar models represent concepts by a concrete set of observed instances, similar
to nonparametric approaches to density estimation in statistics [4].

Tversky and Gati [110] famously showed that conceptual similarity violates the triangle
inequality in the case of polysemous words; e.g. the pair batÑassociation is farther apart
than the sum of batÑclub and clubÑassociation, lending evidence for exemplar models in
psychology [33, 53, 94]. Exemplar models have been previously used for lexical semantics
problems such as selectional preference [22] and thematic fit [112]. Individual exemplars
can be quite noisy and hence it is common to average over a set of activated exemplars in
order to improve robustness. However, activating too many exemplars also increases noise
by introducing irrelevant features [23].

Voorspoels et al. [115] demonstrate the surperior performance of exemplar models for
concept combination (e.g. “metal spoon”), suggesting their use in computational lexical se-
mantics when contextual information is available. In general exemplar models are better
suited to address polysemy and contextual variation than prototype models. Indeed, experi-
mental evidence suggests that although polysemous words share the same lexical represen-
tation, their underlying senses are represented separately, as priming a word in one sense
interferes with using it in another, even when the senses are related [44, 45].

Models of conceptual organization are ultimately grounded in some feature space as
with vector-space lexical semantic models. Semantic feature production norms—i.e., what
features people most often report as salient to a given stimulus concept— have been studied
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1.2. Distributional Lexical Semantics

extensively in psychology as one way to understand human concept organization and cate-
gorization [60]. However, asking people to report on salient features of specific categories
exhibits obvious bias towards discriminative properties that are easy to articulate (e.g. “lions
are ferocious” rather than “lions are typically more heavily built than leopards”). Never-
theless without direct access to actual features used in mental representations of concepts,
human production norms are the best way to evaluate automatic property generation in
terms of relevance.

Moving beyond simple prototype or exemplar models, humans use overlapping tax-
onomies to organize conceptual information in many domains [93]; i.e. foods can be or-
ganized situationally, breakfast food, dinner food, snack, etc, or by their type, dairy, meat,
etc. Each organization system may have different salient features and hence yield different
patterns of similarity generalization [cf. 37]. For example, Shafto and Coley [99] find that
when reasoning about the anatomical properties of animals relies on taxonomic categories
such as mammals or reptiles whereas reasoning about disease transmission relies on eco-
logical categories such as predator and prey. One of the main contribution of this proposal
will be to explore the degree to which the overlapping categorization structure of concepts
can account for generalization and variation in word meaning and help overcome feature
noise.

1.2 Distributional Lexical Semantics

Word meaning can be represented as high-dimensional vectors inhabiting a common space
whose dimensions capture semantic or syntactic properties of interest [e.g. 68, 98, 109].
Such vector-space representations of meaning induce measures of word similarity that can
be tuned to correlate well with measurements made by humans. Previous work has focused
on designing feature representations and semantic spaces that capture salient properties of
word meaning [2, 26, 19], directly leveraging the distributional hypothesis, i.e. that similar
words appear in similar contexts [35, 62, 50, 76]. Vector spaces are commonly derived
from (1) word collocations [98], (2) syntactic relations [68], (3) structured corpora (e.g.
Gabrilovich and Markovitch [26]) or (4) latent semantic spaces [25]. Automatically judging
the degree of semantic similarity between words is an important task useful in text classi-
fication [6], information retrieval [96], textual entailment, and other language processing
tasks.

In addition to leveraging the distributional hypothesis, previous work on lexical se-
mantic relatedness has focused on mining monolingual or bilingual dictionaries or other
pre-existing resources to construct networks of related words [1, 84]. This approach tends
to have greater precision, but depends on hand-crafted dictionaries and cannot, in general,
model sense frequency [12]. The vector-space approach is fundamentally more scalable
as it does not rely on specific resources and can model corpus-specific sense distributions.
However, it can suffer from poor precision, as thematically similar words (e.g., singer and
actor) and antonyms often occur in similar contexts [51]. Thus, vector-space models are
typically posed as identifying thematically related words, rather than synonyms [2].

Recently Reisinger and Mooney [88] used unsupervised word-sense discovery cou-
pled with traditional measures of semantic similarity to derive a multi-prototype model of
word meaning. Word-sense discovery has been studied by number of researchers [1, 98].
Most work has also focused on corpus-based distributional approaches, varying the vector-
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space representation, e.g. by incorporating syntactic and co-occurrence information from
the words surrounding the target term [77, 71]. By employing multiple prototypes per
word, vector space models can account for homonymy, polysemy and thematic variation in
word usage, like exemplar models, while limiting noise. The main limitation this model is
that it is not capable of capturing more fine-grained aspects of conceptual similarity, e.g. the
relation between wine, bottle and vinegar. Capturing more fine-grained semantic relations
is a major motivation for models of lexical semantics based on cross-categorization

1.3 Paper Organization

The remainder of this paper is organized into three chapters: Chapter 2 introduces the ba-
sic multi-prototype model of lexical semantics and demonstrates its sensitivity to feature
noise; Chapter 3 outlines a set of Bayesian approaches based on Latent Dirichlet Allocation
for automatically determining feature relevance given a set of organizational constraints;
Chapter 4 details my proposed work, showing how the two models can be combined, yield-
ing a coherent lexical semantic model capable of capturing multiple definitions of semantic
relatedness guided by latent conceptual structure inferred from the data.
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CHAPTER 2

Multi-Prototype Models of Vector-Space Lexical Semantics

Current vector-space models of lexical semantics create a single “prototype” vector to rep-
resent the meaning of a word.1 However, due to lexical ambiguity, encoding word meaning
with a single vector is problematic. This chapter outlines a method that uses clustering to
produce multiple “sense-specific” vectors for each word. This approach provides a context-
dependent vector representation of word meaning that naturally accommodates homonymy
and polysemy. Experimental comparisons to human judgements of semantic similarity for
both isolated words as well as words in sentential contexts demonstrate the superiority of
this approach over both prototype and exemplar based vector-space models. Furthermore,
state-of-the-art results on the WordSim-353 test collection using simple unigram features
and tf-idf weighting are obtained. Exploring the combination of feature pruning with multi-
prototype vector representations will form the basis of this thesis.

2.1 Introduction

Traditionally, word meaning is represented by a single vector of contextual features derived
from co-occurrence information, and semantic similarity is computed using some measure
of vector distance [48, 54]. However, due to homonymy and polysemy, capturing the se-
mantics of a word with a single vector is problematic. For example, the word club is similar
to both bat and association, which are not at all similar to each other. Word meaning vio-
lates the triangle inequality when viewed at the level of word types, posing a problem for
vector-space models [110]. A single “prototype” vector is simply incapable of capturing
phenomena such as homonymy and polysemy. Also, most vector-space models are context
independent, while the meaning of a word clearly depends on context. The word club in
“The caveman picked up the club” is similar to bat in “John hit the robber with a bat,” but
not in “The bat flew out of the cave.”

This section describes the multi-prototype model, a resource-lean vector-space model
that represents a word’s meaning by a set of distinct “sense specific” vectors. The set of
vectors for a word is determined by unsupervised word sense discovery (WSD) [98], which
clusters the contexts in which a word appears. In previous work, vector-space lexical sim-
ilarity and word sense discovery have been treated as two separate tasks. This proposal
shows how they can be combined to create an improved vector-space model of lexical se-
mantics. First, a word’s contexts are clustered to produce groups of similar context vectors.
An average “prototype” vector is then computed separately for each cluster, producing a
set of vectors for each word. Finally, these cluster vectors can be used to determine the se-
mantic similarity of both isolated words and words in context. The approach is completely

1The content of this chapter is derived primarily from Reisinger and Mooney [88].
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2.2. Multi-Prototype Vector-Space Models

... chose Zbigniew Brzezinski 
for the position of ...
... thus the symbol s position 
on his clothing was ...
... writes call options against 
the stock position ...
... offered a position with ...
... a position he would hold 
until his retirement in ...
... endanger their position as 
a cultural group...
... on the chart of the vessel s 
current position ...
... not in a position to help...

(cluster#2) 
post
appointme
nt, role, job

(cluster#4) 
lineman, 
tackle, role, 
scorer

(cluster#1) 
location
importance 
bombing

(collect contexts) (cluster)

(cluster#3) 
intensity, 
winds, 
hour, gust

(similarity)

single
prototype

Figure 2.1: Overview of the multi-prototype approach to near synonym discovery for a
single target word independent of context. Occurrences are clustered and cluster centroids
are used as prototype vectors. Note the “hurricane” sense of position (cluster 3) is not
typically considered appropriate in WSD.

modular, and can integrate any clustering method with any traditional vector-space model.
The multi-prototype model is evaluated on the WordSim-353 test collection (WS-353)

which consists of 353 word pairs each with 13-16 human similarity judgements [25]. When
combined with aggressive feature pruning, the multi-prototype approach outperforms state-
of-the-art vector space models such as Explicit Semantic Analysis [26] on WS-353, achiev-
ing rank correlation of ρ�0.77. This result rivals average human performance, obtaining
correlation near that of the supervised oracle approach of Agirre et al. [2].

In addition to semantic similarity, the multi-prototype approach is also evaluated on its
ability to predict the most similar words to a given target, both with and without sentential
context. The results demonstrate the superiority of a clustered approach over both tradi-
tional prototype and exemplar-based vector-space models. For example, given the isolated
target word singer the multi-prototype method produces the most similar word vocalist,
while using a single prototype gives musician. Given the word cell in the context: “The
book was published while Piasecki was still in prison, and a copy was delivered to his cell.”
the standard approach produces protein while the multi-prototype method yields incarcer-
ated.

Finally, I demonstrate that feature pruning is one of the most significant factors in
obtaining high correlation with human similarity judgements using vector-space models.
Three approaches are evaluated: (1) basic weighted unigram collocations, (2) Explicit Se-
mantic Analysis [ESA; 26], and (3) the multi-prototype model. In all three cases we show
that feature pruning can be used to significantly improve correlation, in particular reaching
the limit of human and oracle performance on WS-353.

2.2 Multi-Prototype Vector-Space Models

The multi-prototype model is similar to standard vector-space models of word meaning,
with the addition of a per-word-type clustering step: Occurrences for a specific word type
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2.2. Multi-Prototype Vector-Space Models

are collected from the corpus and clustered using any appropriate method (§2.2.1). Sim-
ilarity between two word types is then computed as a function of their cluster centroids
(§2.2.2), instead of the centroid of all the word’s occurrences. Figure 2.1 gives an overview
of this process.

2.2.1 Clustering Occurrences

Multiple prototypes for each word w are generated by clustering feature vectors vpcq de-
rived from each occurrence c P Cpwq in a large textual corpus and collecting the resulting
cluster centroids πkpwq, k P r1,Ks. This approach is commonly employed in unsupervised
word sense discovery; however, clusters are not intended to correspond to traditional word
senses. Rather, clustering is used only to capture meaningful variation in word usage.

Our experiments employ a mixture of von Mises-Fisher distributions (movMF) cluster-
ing method with first-order unigram contexts [7]. Feature vectors vpcq are composed of
individual features Ipc, fq, taken as all unigrams f P F in a 10-word window around w.

Like spherical k-means [21], movMF models semantic relatedness using cosine simi-
larity, a standard measure of textual similarity. However, movMF introduces an additional
per-cluster concentration parameter controlling its semantic breadth, allowing it to more
accurately model non-uniformities in the distribution of cluster sizes. Based on prelim-
inary experiments comparing various clustering methods, movMF was found to give the
best results.

2.2.2 Measuring Semantic Similarity
The similarity between two words in a multi-prototype model can be computed straightfor-
wardly, requiring only simple modifications to standard distributional similarity methods
such as those presented by Curran [19]. The similarity of isolated words can be measured
using one of two noncontextual clustered similarity metrics:

AvgSimpw,w1q
def
�

1
K2

Ķ

j�1

Ķ

k�1

dpπkpwq, πjpw
1qq

MaxSimpw,w1q
def
� max

1¤j¤K,1¤k¤K
dpπkpwq, πjpw

1qq

where dp�, �q is a standard distributional similarity measure. In AvgSim, word similarity
is computed as the average similarity of all pairs of prototype vectors; In MaxSim the
similarity is the maximum over all pairwise prototype similarities. All results reported in
this paper use cosine similarity, 2

Cospw,w1q �

°
fPF Ipw, fq � Ipw

1, fqb°
fPF Ipw, fq

2
b°

fPF Ipw
1, fq2

Both tf-idf feature weighting and χ2 weighting are compared, chosen due to their ubiquity
in the literature [2, 19].

In AvgSim, all prototype pairs contribute equally to the similarity computation, thus
two words are judged as similar if many of their senses are similar. MaxSim, on the other
hand, only requires a single pair of prototypes to be close for the words to be judged similar.

2 The main results also hold for weighted Jaccard similarity.
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2.3. Experimental Evaluation

Thus, MaxSim models the similarity of words that share only a single sense (e.g. bat and
club) at the cost of lower robustness to noisy clusters that might be introduced when K is
large.

When contextual information is available, AvgSim and MaxSim can be modified to
produce more precise similarity computations:

AvgSimCpw,w1q
def
�

1
K2

Ķ

j�1

Ķ

k�1

dc,w,kdc1,w1,jdpπkpwq, πjpw
1qq

MaxSimCpw,w1q
def
� dpπ̂pwq, π̂pw1qq

where dc,w,k
def
� dpvpcq, πkpwqq is the likelihood of context c belonging to cluster πkpwq,

and π̂pwq
def
� πarg max1¤k¤K dc,w,k

pwq, the maximum likelihood cluster for w in context
c. Thus, AvgSimC corresponds to soft cluster assignment, weighting each similarity term
in AvgSim by the likelihood of the word contexts appearing in their respective clusters.
MaxSimC corresponds to hard assignment, using only the most probable cluster assign-
ment. Note that AvgSim and MaxSim can be thought of as special cases of AvgSimC and
MaxSimC with uniform weight to each cluster; hence AvgSimC and MaxSimC can be used
to compare words in context to isolated words as well.

2.3 Experimental Evaluation
2.3.1 Corpora

Two corpora are employed to train the models:

1. A snapshot of English Wikipedia taken on Sept. 29th, 2009. Wikitext markup is
removed, as are articles with fewer than 100 words, leaving 2.8M articles with a total
of 2.05B words.

2. The third edition English Gigaword corpus, with articles containing fewer than 100
words removed, leaving 6.6M articles and 3.9B words [28].

Wikipedia covers a wider range of sense distributions, whereas Gigaword contains only
newswire text and tends to employ fewer senses of most ambiguous words. Our method
outperforms baseline methods even on Gigaword, indicating its advantages even when the
corpus covers few senses.

2.3.2 Test Collections

To evaluate the quality of various models, the automatically generated lexical similarity
measurements are compared to two collections of human similarity judgements:

1. WS-353 contains between 13 and 16 human similarity judgements for each of 353
word pairs, rated on a 1–10 integer scale [25].3

3(Similarity vs. Relatedness) One issue with measuring semantic similarity is that it conflates various
types of relations, e.g. hyponymy, synonymy or metonymy. In order to better analyze the various components
of attributional similarity, Agirre et al. [2] divide the WS-353 dataset into separate similarity and relatedness
judgements. Similar pairs include synonyms, antonyms and hyponym-hypernyms; related pairs consist of
meronym-holonyms and others that do not fit the previous relations. The analyses presented here are extended
to these subsets.
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2.4. Judging Semantic Similarity

WordSim-353 WN-Evocation 
(controlled) 3,5

WN-Evocation 
(mechnical turk) 3,5

0

1

0.5

Figure 2.2: The distribution of ratings (scaled [0,1]) on WS-353 and WN-Evocation
datasets. WN-Evocation consists of more low similarity pairs, even with zero-similarity
pairs removed. Pairs are thresholded whether they have ¡ 3 or ¡ 5 ratings.

2. WN-Evocation contains over 100k similarity comparisons collected from both trained
human raters (WN-Evocation-Controlled) and participants on Amazon’s Mechanical
Turk [WN-Evocation-MT; 55]. WN-Evocation comparisons are assigned to only 3-5
human raters on average and contain a significant fraction of zero- and low-similarity
items compared to WS-353 (Figure 2.2). All comparisons with fewer than 3 ratings
are discarded, leaving 40k pairs in WN-Evocation-Controlled with an average of 4.1
comparisons per pair and 78k pairs in WN-Evocation-MT with an average of 7.5
comparisons.

Correlation is computed using Spearman’s nonparametric rank correlation (ρ) with average
human judgements [2].

2.4 Judging Semantic Similarity

Figure 2.3 plots Spearman’s ρ on WordSim-353 against the number of clusters (K) for
Wikipedia and Gigaword corpora, using pruned tf-idf and χ2 features.4 In general pruned
tf-idf features yield higher correlation than χ2 features. Using AvgSim, the multi-prototype
approach (K ¡ 1) yields higher correlation than the single-prototype approach (K � 1)
across all corpora and feature types, achieving state-of-the-art results (ρ � 0.77) with
pruned tf-idf features. This result is statistically significant in all cases for tf-idf and for
K P r2, 10s on Wikipedia and K ¡ 4 on Gigaword for χ2 features.5 MaxSim yields
similar performance when K   10 but performance degrades as K increases.

It is possible to circumvent the model-selection problem (choosing the best value of
K) by simply combining the prototypes from clusterings of different sizes. This approach
represents words using both semantically broad and semantically tight prototypes, similar
to hierarchical clustering. Table 2.1 and Figure 2.3 (squares) show the result of such a
combined approach, where the prototypes for clusterings of size 2-5, 10, 20, 50, and 100
are unioned to form a single large prototype set. In general, this approach works about as
well as picking the optimal value of K, even outperforming the single best cluster size for
Wikipedia.

4(Feature pruning) Results using tf-idf features are extremely sensitive to feature pruning while χ2 fea-
tures are more robust. In all experiments tf-idf features are pruned by their overall weight, taking the top 5000.
This setting was found to optimize the performance of the single-prototype approach.

5Significance is calculated using the large-sample approximation of the Spearman rank test; (p   0.05).
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2.5. Predicting Near-Synonyms

Spearman’s ρ prototype exemplar multi-prototype (AvgSim) combined
K � 5 K � 20 K � 50

Wikipedia tf-idf 0.53�0.02 0.60�0.06 0.69�0.02 0.76�0.01 0.76�0.01 0.77�0.01
Wikipedia χ2 0.54�0.03 0.65�0.07 0.58�0.02 0.56�0.02 0.52�0.03 0.59�0.04
Gigaword tf-idf 0.49�0.02 0.48�0.10 0.64�0.02 0.61�0.02 0.61�0.02 0.62�0.02
Gigaword χ2 0.25�0.03 0.41�0.14 0.32�0.03 0.35�0.03 0.33�0.03 0.34�0.03

Table 2.1: Spearman correlation on the WordSim-353 dataset broken down by corpus and
feature type.

Figure 2.3: WordSim-353 rank correlation vs. number of clusters (log scale) using AvgSim
and MaxSim on both the Wikipedia (left) and Gigaword (right) corpora. Horizontal bars
show the performance of single-prototype. Squares indicate performance when combining
across clusterings. Error bars depict 95% confidence intervals using the Spearman test.
Squares indicate performance when combining across clusterings.

Finally, the multi-prototype approach is also compared to a pure exemplar approach,
averaging similarity across all occurrence pairs.6 Table 2.1 summarizes the results. The ex-
emplar approach yields significantly higher correlation than the single prototype approach
in all cases except Gigaword with tf-idf features (p   0.05). Furthermore, it performs
significantly worse than combined multi-prototype for tf-idf features, and does not differ
significantly for χ2 features. Overall this result indicates that multi-prototype performs at
least as well as exemplar in the worst case, and significantly outperforms when using the
best feature representation / corpus pair.

2.5 Predicting Near-Synonyms

The multi-prototype model is next evaluated on on its ability to determine the most closely
related words for a given target word (using the Wikipedia corpus with tf-idf features).

6Averaging across all pairs was found to yield higher correlation than averaging over the most similar pairs.
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2.5. Predicting Near-Synonyms

homonymous
carrier, crane, cell, company, issue, interest, match, media, nature, party, practice, plant, racket,
recess, reservation, rock, space, value
polysemous
cause, chance, journal, market, network, policy, power, production, series, trading, train

Table 2.2: Words used in predicting near synonyms.

The top k most similar words were computed for each prototype of each target word. Us-
ing a forced-choice setup, human subjects were asked to evaluate the quality of these near
synonyms relative to those produced by a single prototype. Participants on Amazon’s Me-
chanical Turk7 [103] were asked to choose between two possible alternatives (one from a
prototype model and one from a multi-prototype model) as being most similar to a given
target word. The target words were presented either in isolation or in a sentential context
randomly selected from the corpus. Table 2.2 lists the ambiguous words used for this task.
They are grouped into homonyms (words with very distinct senses) and polysemes (words
with related senses). All words were chosen such that their usages occur within the same
part of speech.

In the non-contextual task, 79 unique raters completed 7,620 comparisons of which 72
were discarded due to poor performance on a known test set.8 In the contextual task, 127
raters completed 9,930 comparisons of which 87 were discarded.

For the non-contextual case, Figure 2.4 left plots the fraction of raters preferring the
multi-prototype prediction (using AvgSim) over that of a single prototype as the number of
clusters is varied. When asked to choose between the single best word for each method (top
word), the multi-prototype prediction is chosen significantly more frequently (i.e. the result
is above 0.5) when the number of clusters is small, but the two methods perform similarly
for larger numbers of clusters (Wald test, α � 0.05.) Clustering more accurately identifies
homonyms’ clearly distinct senses and produces prototypes that better capture the different
uses of these words. As a result, compared to using a single prototype, the multi-prototype
approach produces better near synonyms for homonyms compared to polysemes. However,
given the right number of clusters, it also produces better results for polysemous words.

The near synonym prediction task highlights one of the weaknesses of the multi-prototype
approach: as the number of clusters increases, the number of occurrences assigned to each
cluster decreases, increasing noise and resulting in some poor prototypes that mainly cover
outliers. The word similarity task is somewhat robust to this phenomenon, but synonym
prediction is more affected since only the top predicted choice is used. When raters are
forced to chose between the top three predictions for each method (presented as top set in
Figure 2.4 left), the effect of this noise is reduced and the multi-prototype approach remains
dominant even for a large number of clusters. This indicates that although more clusters can
capture finer-grained sense distinctions, they also can introduce noise.

7http://mturk.com
8(Rater reliability) The reliability of Mechanical Turk raters is quite variable, so rater quality was evalu-

ated by including control questions with a known correct answers in each HIT. Control questions were gener-
ated by selecting a random word from WordNet 3.0 and including as possible choices a word in the same synset
(correct answer) and a word in a synset with a high path distance (incorrect answer). Raters who got less than
50% of these control questions correct, or spent too little time on the HIT were discarded.
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2.6. Effects of Pruning

Non-contextual Near-Synonym Prediction Contextual Near-Synonym Prediction

Figure 2.4: (left) Near-synonym evaluation for isolated words showing fraction of raters
preferring multi-prototype results vs. number of clusters. Colored squares indicate perfor-
mance when combining across clusterings. 95% confidence intervals computed using the
Wald test. (right) Near-synonym evaluation for words in a sentential context chosen either
from the minority sense or the majority sense.

When presented with words in context (Figure 2.4 right),9 raters found no significant
difference in the two methods for words used in their majority sense.10 However, when a
minority sense is presented (e.g. the “prison” sense of cell), raters prefer the choice pre-
dicted by the multi-prototype approach. This result is to be expected since the single proto-
type mainly reflects the majority sense, preventing it from predicting appropriate synonyms
for a minority sense. Also, once again, the performance of the multi-prototype approach is
better for homonyms than polysemes.

2.6 Effects of Pruning

In addition to feature weighting, adequate pruning of irrelevant features is critical when
computing semantic relatedness. This section demonstrates basic results using a simple
fixed window pruning scheme [26], keeping a fixed number of features (ordered by weight)
for each term. Table 2.3 summarizes the results. Several different feature weighting are
evaluated: tf, tf-idf, t-test, and χ2 [20]. Feature vectors are pruned to a fixed length f ,

9Results for the multi-prototype method are generated using AvgSimC (soft assignment) as this was found
to significantly outperform MaxSimC.

10Sense frequency determined using Google; senses labeled manually by trained human evaluators.
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Method WordSim-353 WN-Evocation
Sim. Rel. Both Controlled Turk

Humana 0.78 0.74 0.75 0.02 0.37

Agirre et al. [2]
best unsup.b 0.72 0.56 0.66 - -
best oraclec 0.83 0.71 0.78 - -

Single Prototype
all 0.26 0.29 0.25 0.10 0.10
f � 1000 0.76 0.72 0.73 0.21 0.16
f � 5000 0.65 0.55 0.59 0.15 0.13
f � 10000 0.56 0.46 0.52 0.14 0.12

Multi-Prototype (50 clusters)d

all 0.07 0.17 0.07 0.05 0.08
f� � 1000 0.78 0.70 0.74 0.25 0.16
f� � 5000 0.81 0.76 0.77 0.24 0.16
f� � 10000 0.79 0.74 0.74 0.24 0.15

Explicit Semantic Analysis
all 0.58 0.59 0.56 - -
f � 1000 0.75 0.66 0.70 - -
f � 5000 0.77 0.73 0.74 - -
f � 10000 0.77 0.74 0.74 - -

a Surrogate human performance computed using leave-one-out Spearman’s ρ averaged across raters for
WS-353 and randomized for WN-Evocation. In WN-Evocation, the small number of ratings per pair and
randomization makes LOO an unreliable estimator and thus should be interpreted as a rough lower bound.

b WordNet-based multilingual approach.
c Supervised combination of b, context-window features and syntactic features.
d Effective number of features, f� def

� f{K is given in order to enforce a fair comparison.

Table 2.3: Correlation results on WS-353 and WN-Evocation comparing previous stud-
ies and surrogate human performance to weighted unigram collocations with feature prun-
ing. Prototype and ESA-based approaches shown use tf-idf weighting and cosine distance.
Multi-prototype results are given for 50 clusters (K � 50).
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Figure 2.5: Effects of feature pruning and representation on WS-353 correlation broken
down across multi-prototype representation size. In general tf-idf features are the most
sensitive to pruning level, yielding the highest correlation for moderate levels of pruning
and significantly lower correlation than other representations without pruning. The optimal
amount of pruning varies with the number of prototypes used, with fewer features being
optimal for more clusters.

discarding all but the highest-weight features.
For WS-353, unigram collocations perform the worst without pruning (ρ�0.25 for

multi-prototype and ρ�0.25 for single prototype), followed by ESA (ρ�0.59), but that with
optimal pruning both methods perform about the same (ρ�0.73 and ρ�0.74 respectively).
The unpruned multi-prototype approach does poorly with tf-idf features because it ampli-
fies feature noise by partitioning the raw occurrences. When employing feature pruning,
however, unigram collocations outperform ESA and across a wide range of pruning levels.
Note that pruning clearly helps in all three test cases and across a wide range of settings for
f (cf. Figure 2.5 and Figure 2.6).

For WN-Evocation, there is significant benefit to feature pruning in both the single-
prototype and multi-prototype case. The best correlation results are again obtained using
pruned tf-idf with multiple-prototypes (ρ�0.25 for controlled and ρ�0.16 for Mechanical
Turk), although t-test features also perform well and benefit from pruning.

The optimal pruning cutoff depends on the feature weighting and number of prototypes
(Figure 2.5) as well as the feature representation (Figure 2.6). t-test and χ2 features are
most robust to feature noise and perform well even with no pruning; tf-idf yields the best
results but is sensitive to the pruning parameter. As the number of increases, more pruning
is required to combat feature noise.

Figure 2.6 breaks down the similarity pairs into four quantiles for each data set and then
shows correlation separately for each quantile. In general the more polarized data quantiles
(1 and 4) have higher correlation, indicating that fine-grained distinctions in semantic dis-
tance are easier for those sets. The fact that the per-quantile correlation is significantly
lower than the full correlation e.g. in the human case means that fine-grained ordering
(within quantile) is more difficult than coarse-grained (between quantile). Feature prun-
ing improves correlations in quantiles 2–4 while reducing correlation in quantile 1. This
result is to be expected as more features are necessary to make fine-grained distinctions
between dissimilar pairs.
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Figure 2.6: (left) Effects of feature pruning using ESA on WS-353; more features are re-
quired to attain high correlation compared to unigram collocations. (right) Correlation
results on WS-353 broken down over quantiles in the human ratings. Quantile ranges are
shown in Figure 2.2. In general ratings for highly similar (dissimilar) pairs are more pre-
dictable (quantiles 1 and 4) than middle similarity pairs (quantiles 2, 3).

2.7 Discussion

This chapter introduced a resource-light model for vector-space word meaning that repre-
sents words as collections of prototype vectors, naturally accounting for lexical ambiguity.
This multi-prototype approach uses word sense discovery to partition a word’s contexts and
construct “sense specific” prototypes for each cluster. Doing so significantly increases the
accuracy of lexical-similarity computation as demonstrated by improved correlation with
human similarity judgements and generation of better near synonyms according to human
evaluators. Furthermore, although performance is sensitive to the number of prototypes,
combining prototypes across a large range of clusterings performs nearly as well as the
ex-post best clustering.

Compared to WordNet, the best-performing clusterings are significantly more fine-
grained. Furthermore, they often do not correspond to agreed upon semantic distinctions
(e.g., the “hurricane” sense of position in Fig. 2.1). The finer-grained senses are posited to
actually capture useful aspects of word meaning, leading to better correlation with WordSim-
353. In proposed work I will explore multiple simultaneous clusterings, for discovering
even more fine-grained sense distinctions. Although these senses may not be useful from
a lexicographical standpoint, I posit that they nevertheless do capture important semantic
information.

Finally, I have demonstrated that feature pruning for distributional similarity can sig-
nificantly improve correlation with human similarity and relatedness judgements. Feature
selection combined with the multi-prototype representation achieves state-of-the-art results
on the WordSim-353 task, beating a measure of human performance, and performing nearly
as well as a supervised oracle approach. The complexity of the interaction between feature
weighting and pruning and magnitude of their combined effect on correlation strongly sug-
gests that they should be studied in greater detail, and form a major component of my
proposed work: The next chapter discusses model-based strategies for feature weighting
and noise reduction in the context of attribute extraction.
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CHAPTER 3

Determining Feature Relevance with Topic Models

3.1 Introduction

This chapter describes a set of Bayesian methods for automatically filtering noisy features
in the context of attribute extraction, i.e. automatically determining the cognitively salient
attributes for a given set of concepts.1 Examples of attributes include “height” and “eye-
color” for the concept Person or “GDP” and “president” for Country. Identifying and ex-
tracting such attributes relative to a set of flat (i.e., non-hierarchically organized) labeled
classes of instances has been extensively studied, using a variety of data, e.g., Web search
query logs [67], Web documents [122], and Wikipedia [105, 119]. Attributes are useful in a
variety of applications, e.g., question answering [108], unsupervised semantic parsing [82],
query intent classification and expansion [41], automatic infobox generation for Wikipedia
entries [120], and associative anaphora resolution [13, 97].

Attributes are extracted for a set of pre-defined concepts following the open-domain
distributional methods developed by Paşca and Van Durme [67]. Contextual features are
first collected for candidate attributes and then candidate attributes from other classes are
ranked according to their distributional similarity to a small seed set provided for a single
known semantic class. Post-extraction noise filtering and attribute re-ranking is accom-
plished leveraging a set of generative models imposing a variety of structural constraints.
In particular I study the effects of hierarchical constraints both explicitly encoded in the
concept-graph structure of WordNet, and implicitly encoded by hierarchical latent class
models such as the Nested Chinese Restaurant Process [10]. Various assumptions about
feature generalization in the latent concept space are implemented and tested using mod-
els based on Latent Dirichlet Allocation [11]. These models reweight individual attributes
based on their likelihood given the model assumptions, and hence can be used for smooth-
ing or attribute filtering.

Three models were compared: (1) Flat (unstructured) groupings of properties inferred
using Latent Dirichlet Allocation; (2) Fixing the concept structure to conform to WordNet
3.0 categories; (3) Inferring the concept structure automatically assuming a latent hierarchy
constraint based on the nested Chinese Restaurant Process [10]. The structured models are
capable of inferring per-feature concept specificity, allowing them to capture finer-grained
concept structure (e.g. paintings is more specific an attribute for painter than height). Also
the discriminative power of attributes/features is captured directly in the hierarchical struc-
ture, with the least discriminative attributes at the root. This model allows the extraction of
very specific attributes (e.g. that the Rosybill is endemic to South America) while reducing
noise overall.

1The content of this chapter is largely derived from Reisinger and Paşca [89].
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3.2. Attribute Extraction

anticancer drugs: mechanism of action, uses, extravasation, solubility, contraindications, side ef-
fects, chemistry, molecular weight, history, mode of action
bollywood actors: biography, filmography, age, biodata, height, profile, autobiography, new wall-
papers, latest photos, family pictures
citrus fruits: nutrition, health benefits, nutritional value, nutritional information, calories, nutrition
facts, history
european countries: population, flag, climate, president, economy, geography, currency, population
density, topography, vegetation, religion, natural resources
london boroughs: population, taxis, local newspapers, mp, lb, street map, renault connexions, local
history
microorganisms: cell structure, taxonomy, life cycle, reproduction, colony morphology, scientific
name, virulence factors, gram stain, clipart
renaissance painters: early life, bibliography, short biography, the david, bio, painting, techniques,
homosexuality, birthplace, anatomical drawings, famous paintings

Figure 3.1: Examples of labeled attribute sets extracted using the method from [67].

Previous work has maintained the assertion that smoothing directly conflicts with the
task of attribute extraction as psychological saliency is often tied to the feature’s discrim-
inative power, and hence rare features are deemed more salient [8], i.e. “is ferocious” is a
more salient feature for Lion than “is an animal.” However such overly specific features
are often discarded by smoothing. In this work we show a more complex relationship be-
tween smoothing and salient property identification: while standard “flat” smoothing meth-
ods do indeed promote more generic properties over salient ones, we find that hierarchical
smoothing is capable of separating generic and specific features, weighting discriminative
properties more highly.

The resulting models are evaluated along two dimensions: (1) the precision of the
ranked lists of attributes, and (2) the quality of the attribute assignments to WORDNET

concepts. In all cases we find that the principled LDA-based approaches outperform pre-
viously proposed heuristic methods, greatly improving the specificity of attributes at each
concept.

3.2 Attribute Extraction

Input to the model-based smoothing procedure consists of sets of class instances (e.g.,
Pisanello, Hieronymus Bosch) associated with class labels (e.g., renaissance painters) and
attributes (e.g., “birthplace”, “famous works”, “style” and “early life”; Table 3.1). Clusters
of noun phrases (instances) are constructed using distributional similarity [50, 36] and are
labeled by applying “such-as” surface patterns to raw Web text (e.g., “renaissance painters
such as Hieronymous Bosch”), yielding 870K instances in more than 4500 classes [67].

Attributes for each flat labeled class are extracted from anonymized Web search query
logs using the minimally supervised procedure in [65]2. Candidate attributes are ranked
based on their weighted Jaccard similarity to a set of 5 manually provided seed attributes for
the class european countries. Figure 3.1 illustrates several such labeled attribute sets (the
underlying instances are not depicted). Naturally, the attributes extracted are not perfect,
e.g., “lb” and “renault connexions” as attributes for london boroughs.

2Similar query data, including query strings and frequency counts, is available from, e.g., [27]

19



3.3. Topic Models for Feature Weighting

LDA

 

θ
z

α
D

T

w

 

 

θ
z

α
D

T

w

 

c

Fixed Structure LDA

 

θ
z

α
D

∞

w

 

Tc

γ

nCRP

T

ww w

β ββ

! ! !

Figure 3.2: Graphical models for the LDA feature re-ranking models.

3.3 Topic Models for Feature Weighting

This section details application of the LDA-based attribute smoothing/re-ranking models
(§3.3.1-§3.3.3) to the Labeled attribute sets generated using the above extraction procedure,
and an approach for querying the predictive density of the inferred models to get robust
attribute rankings (§3.3.4).

3.3.1 Latent Dirichlet Allocation

The underlying model for attribute re-ranking is LDA [11], a fully Bayesian extension of
probabilistic Latent Semantic Analysis [39]. Given D labeled attribute sets wd, d P D,
LDA infers an unstructured set of T latent annotated concepts over which attribute sets
decompose as mixtures.3 The latent annotated concepts represent semantically coherent
groups of attributes expressed in the data, as shown in Example 1. We choose LDA over
the conceptually simpler LSA as it can be more easily extended to account for hierarchical
latent structure, a fact we will take advantage of here. Furthermore, unlike simply clustering
attribute sets, LDA decomposes attributes into latent “topics” that can be multiply inherited:
e.g. the category Lion could inherit attributes from both from the organism and big-cat
topic, leading to more semantically pure smoothing.

In topic models such as LDA, documents are drawn from a weighted average over a set
of latent topics T . Each document wd maintains a separate multinomial distribution θd over
topics φ. For each word wi,d a topic index zi,d is drawn from θd and then wi,d is drawn
from the corresponding topic multinomial φzi,d

. The generative model is given by

θd|α � Dirichletpαq, d P D, (topic prop.)
φt|β � Dirichletpβq, t P T, (topics)
zid|θd � Multpθdq, i P |wd|, (topic ind.)
wid|φzid

� Multpφzid
q, i P |wd|, (words)

where α and β are hyperparameters smoothing the per-document topic distributions and
per-topic word distributions respectively.

We are interested in the case where w is known and we want to compute the condi-
tional posterior of the remaining random variables ppz,β,θ|wq. This distribution can be
approximated efficiently using Gibbs sampling. See [11] and [31] for more details.

3In topic modeling literature, attributes are words and attribute sets are documents.
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3.3. Topic Models for Feature Weighting

(Example 1) Given 26 labeled attribute sets falling into three broad semantic categories:
philosophers, writers and actors (e.g., attribute sets for contemporary philosophers, women
writers, and bollywood actors), LDA is able to infer a meaningful set of latent annotated con-
cepts without any knowledge of the actual input category labels:

quotations
teachings

virtue ethics
philosophies

biography
sayings

new movies
filmography

official website
biography

email address
autobiography

writing style
influences

achievements
bibliography
family tree

short biography

(philosopher) (writer) (actor)

(labels manually added for the latent annotated concepts are shown in parentheses). Note that
with a flat concept structure, attributes can only be separated into broad clusters, so the gener-
ality/specificity of attributes cannot be inferred. Parameters were α�1, η�0.1, T�3.

3.3.2 Labeled LDA

LDA can be extended to model structural dependencies between latent annotated concepts
(cf. [49, 102]); In particular, we fix the concept structure to correspond to the WORDNET

Is-A hierarchy using Labeled LDA [83]. In Labeled LDA the document to topic mapping is
fixed and specified a priori. This model allows rich categorical structure to be incorporated
into LDA without increasing its computational complexity.

Labeled LDA maintains a vector of topic-proportions θd for each document as in LDA,
as well a fixed binary topic absence/presence vector mask Λd � pl1, l2, � � � , ltq, lt P 0, 1,
indicating whether each topic is considered to be related to that document. By projecting
wd only onto the subset of topics indicated by Λd, the model is forced to generalize in a way
that is consistent with the overlapping topic structure. For example, with a tree structure, cd
would be constrained to correspond to the concept nodes in T on the path from the root to
the leaf containing d. In the case of WORDNET, we can fix Λd to correspond to the set of
nodes from d to WN entity following the Is-A edges. Furthermore, we can easily combine
Labeled LDA with flat LDA, resulting in a hybrid model capable of accounting for explicit
and latent structure.

In order leverage the structure of WORDNET in Labeled LDA, each labeled attribute set
is assigned to a leaf concept in WORDNET based on the edit distance between the WORD-
NET concept label and the attribute set label. Possible latent concepts for this set include
the concepts along all paths from its attachment point to the WORDNET root, following
Is-A relation edges. Therefore, any two labeled attribute sets share a number of latent con-
cepts based on their similarity in WORDNET: all labeled attribute sets share at least the root
concept, and may share more concepts depending on their most specific, common ancestor.
Under such a model, more general attributes naturally attach to latent concept nodes closer
to the root, and more specific attributes attach lower (Example 2). The WORDNET-based
model is referred to as Fixed Structure LDA (fsLDA).
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3.3. Topic Models for Feature Weighting

(Example 2) Fixing the latent concept structure to correspond to WORDNET (dark/purple
nodes), and attaching each labeled attribute set (examples depicted by light/orange nodes) yields
the annotated hierarchy:

works
picture
writings
history

biography

philosophy
natural rights

criticism
ethics
law

literary criticism
books
essays

short stories
novels 

tattoos
funeral

filmography
biographies
net worth

person

philosopher writer actor

scholar

intellectual

performer

entertainerliterate

communicator

bollywood
actors

women
writers

contemporary 
philosophers

Attribute distributions for the small nodes are not shown. Unlike with the flat annotated concept
structure, with a hierarchical concept structure, attributes can be separated by their generality.
Parameters were set at α�1 and η�0.1.

Example 2 shows the property distributions inferred when fixing each topic to corre-
spond to a WORDNET category using fsLDA. At a high level the topics inferred by LDA

correspond roughly to the main categories (Example 1; Actors, Philosophers and Writers),
but fsLDA is better able to capture more fine-grained structure, separating out the attributes
common to all input attribute sets in the root Person node.

3.3.3 Hierarchical LDA

By putting a prior distribution over Λ, it is possible to extend Labeled LDA to automati-
cally infer which subsets of topics a particular document might have affinity. Blei et al.
[10] describe one approach to such hierarchical LDA (hLDA) setting Λ to correspond to a
random fixed-depth tree structure with infinite branching factor, leveraging the nested Chi-
nese Restaurant Process (nCRP) prior. Unlike the fixed-structure approach which uses the
WORDNET hierarchy directly, the nCRP generates its own annotated hierarchy to explain
the data (Example 3).

Operationally, Labeled LDA is extended with Λd|γ � nCRPpγ, Lq, d P D, where γ is
a hyperparameter controlling the probability of branching via a per-node Dirichlet Process,
and L is the fixed tree depth. Each document d maintains a depth L path to the root;
all documents share at least one topic (the root) and possibly more depending on their
similarity. The resulting model infers a hierarchy of topics describing the data, penalizing
attribute generalization that does not conform to the strict tree structure.

22



3.3. Topic Models for Feature Weighting

From a concept organization perspective, each node in this model corresponds to a latent
concept with an arbitrary number of subconcepts. Furthermore, hierarchical LDA differs
from the previous two models in that it can enforce a strict notion of hierarchy, penalizing
attributes that violate the inferred tree structure.

(Example 3) Applying hLDA to the same three semantic categories: philosophers, writers and
actors, yields the model:

biography
date of birth
childhood

picture
family

works
books

quotations
critics
poems

teachings
virtue ethics
structuralism
philosophies 

political theory

criticism
short stories

style
poems 

complete works

accomplishments
official website

profile
life story

achievements

filmography
pictures 

new movies
official site

works

(root)

(philosopher) (writer) (actor)

bollywood
actors

women
writers

contemporary 
philosophers

(manually added labels are shown in parentheses). Unlike in WORDNET, the inferred structure
naturally places philosopher and writer under the same subconcept, which is also separate from
actor. Hyperparameters were α�0.1, η�0.1, γ�1.0.

hLDA is able to infer a latent organizational structure directly from the data which
can differ substantially from fsLDA, e.g. placing Philosophers and Writers under the same
subnode separate from Actors, unifying them based on their shared attributes related to
writing.

3.3.4 Model-based Property Ranking

Inferred models can be queried to provide ranked attribute lists in three ways:
Per-Node Distribution: In fsLDA, attribute rankings can be constructed directly for each
WORDNET concept c, by computing the likelihood of attribute w attaching to c, Lpc|wq �
ppw|cq averaged over all Gibbs samples (discarding a fixed number of samples for burn-
in). Since c’s attribute distribution is not dependent on the distributions of its children, the
resulting distribution is biased towards more specific attributes.
Class-Entropy (CE): In all models, the inferred latent annotated concepts can be used to
smooth the attribute rankings for each labeled attribute set. Each sample from the posterior
is composed of two components: (1) a multinomial distribution over a set of WORDNET

nodes, ppc|wd, αq for each attribute set wd, where the (discrete) values of c are WORDNET

concepts, and (2) a multinomial distribution over attributes ppw|c, ηq for each WORDNET
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concept c. To compute an attribute ranking for wd, we have

ppw|wdq �
¸
c

ppw|c, ηqppc|wd, αq.

Given this new ranking for each attribute set, we can compute new rankings for each
WORDNET concept c by averaging again over all the wd that appear as (possible indi-
rect) descendants of c. Thus, this method uses LDA to first perform reranking on the raw
extractions before applying the baseline ontology induction procedure (§ 3.4.2).4

CE ranking exhibits a “conservation of entropy” effect, whereby the proportion of gen-
eral to specific attributes in each attribute set wd remains the same in the posterior. If set A
contains 10 specific attributes and 30 generic ones, then the latter will be favored over the
former in the resulting distribution 3 to 1. Conservation of entropy is a strong assumption,
and in particular it hinders improving the specificity of attribute rankings.
Class-Entropy+Prior: The LDA-based models do not inherently make use of any ranking
information contained in the original extractions. However, such information can be incor-
porated in the form of a prior. The final ranking method combines CE with an exponential
prior over the attribute rank in the baseline extraction. For each attribute set, we compute
the probability of each attribute

ppw|wdq � pldapw|wdqpbasepw|wdq,

assuming a parametric form for pbasepw|wdq
def
� θrpw,wdq. Here, rpw,wdq is the rank of w

in attribute set d. In all experiments reported, θ=0.9.

3.4 Experimental Setup
3.4.1 Data Analysis

Input labeled attribute sets are derived using the procedure in § 3.2 There are 4502 input
attribute sets with a total of 225K attributes (24K unique), of which 8121 occur only once.
The 10 attributes occurring in the most sets (history, definition, picture(s), images, photos,
clipart, timeline, clip art, types) account for 6% of the total.

3.4.2 Model Settings

Baseline: Each labeled attribute set is mapped to the most common WORDNET concept
with the closest label string distance [65]. Attributes are propagated up the tree, attaching
to node c if they are contained in a majority of c’s children.
LDA: LDA is used to infer a flat set of T � 300 latent annotated concepts describing the
data. The concept selection smoothing parameter is set as α�100. The smoother for the
per-concept multinomial over words is set as η�0.1.5 The effects of concept structure on
attribute precision can be isolated by comparing the structured models to LDA.
Fixed-Structure LDA (fsLDA): The latent concept hierarchy is fixed based on WORDNET

(§ 3.3.2), and labeled attribute sets are mapped into it as in baseline. The concept graph for
4One simple extension is to run LDA again on the CE ranked output, yielding an iterative procedure;

however, this was not found to significantly affect precision.
5(Parameter setting) Across all models, the main results in this paper are robust to changes in α. For

hLDA, changes in η and γ affect the size of the learned model but have less effect on the final precision. Larger
values for L give the model more flexibility, but take longer to train.
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each labeled attribute set wd is decomposed into (possibly overlapping) chains, one for each
unique path from the WORDNET root to wd’s attachment point. Each path is assigned a
copy wd, reducing the bias in attribute sets with many unique ancestor concepts.6 The final
models contain 6566 annotated concepts on average.
Arbitrary hierarchy (hLDA): For the arbitrary hierarchy model (§3.3.3), we set the maxi-
mum tree depthL�5, per-concept attribute smoother η�0.05, concept assignment smoother
α�10 and hLDA branching proportion γ�1.0. The resulting models span 380 annotated
concepts on average.

3.4.3 Evaluating Attribute Attachment

For the WORDNET-based models, in addition to measuring the average precision of the
reranked attributes, it is also useful to evaluate the assignment of attributes to WORDNET

concepts. For this evaluation, human annotators were asked to determine the most appro-
priate WORDNET synset(s) for a set of gold attributes, taking into account polysemous
usage. For each model, ranked lists of possible concept assignments Cpwq are generated
for each attribute w, using Lpc|wq for ranking. The accuracy of a list Cpwq for an attribute
w is measured by a scoring metric that corresponds to a modification [66] of the mean
reciprocal rank score [114]:

DRR � max
1

rankpcq � p1� PathToGoldq

where rankpcq is the rank (from 1 up to 10) of a concept c in Cpwq, and PathToGold is
the length of the minimum path along Is-A edges in the conceptual hierarchies between the
concept c, on one hand, and any of the gold-standard concepts manually identified for the
attribute w, on the other hand. The length PathToGold is 0, if the returned concept is the
same as the gold-standard concept. Conversely, a gold-standard attribute receives no credit
(that is, DRR is 0) if no path is found in the hierarchies between the top 10 concepts of
Cpwq and any of the gold-standard concepts, or if Cpwq is empty. The overall precision of
a given model is the average of the DRR scores of individual attributes, computed over the
gold assignment set [66].

3.5 Results
3.5.1 Attribute Precision

Precision was manually evaluated relative to 23 concepts chosen for broad coverage.7 Ta-
ble 3.1 shows precision at n and the Mean Average Precision (MAP); In all LDA-based
models, the Bayes average posterior is taken over all Gibbs samples after burn-in.8 The
improvements in average precision are important, given the amount of noise in the raw
extracted data.

6Reducing the directed-acyclic graph to a tree ontology did not significantly affect precision.
7(Precision evaluation) Attributes were hand annotated using the procedure in [67] and numerical preci-

sion scores (1.0 for vital, 0.5 for okay and 0.0 for incorrect) were assigned for the top 50 attributes per concept.
25 reference concepts were originally chosen, but 2 were not populated with attributes in any method, and
hence were excluded from the comparison.

8(Bayes average vs. maximum a-posteriori) The full Bayesian average posterior consistently yielded
higher precision than the maximum a-posteriori model. For the per-node distributions, the fsLDA Bayes aver-
age model exhibits a 17% reduction in relative error over the maximum a-posteriori estimate.
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Model Precision @ MAP DRR
5 10 20 50 all (n) found (n)

Base (unranked) 0.45 0.48 0.47 0.44 0.46 0.14 (150) 0.24 (91)
Base (ranked) 0.77 0.77 0.69 0.58 0.67 0.17 (150) 0.21 (123)

LDA: -24 � 105

CE 0.64 0.53 0.52 0.56 0.55
CE+Prior 0.80 0.73 0.74 0.58 0.69

Fixed-structure (fsLDA) -22 � 105

Per-Node 0.43 0.41 0.42 0.41 0.42 0.31 (150) 0.37 (128)
CE 0.75 0.68 0.63 0.55 0.63
CE+Prior 0.78 0.77 0.71 0.59 0.69

hLDA: -14 � 105

CE 0.74 0.76 0.73 0.65 0.72
CE+Prior 0.88 0.85 0.81 0.68 0.78

Table 3.1: Precision at n and mean-average precision for all models and data sets. Inset
plots show log-likelihood of each Gibbs sample, indicating convergence except in the case
of hLDA. † indicates models that do not generate annotated concepts corresponding to
WORDNET nodes and hence have no per-node scores. DRR All measures the DRR score
relative to the entire gold assignment set; found measures DRR only for attributes with
DRRpwq¡0; n is the number of scores averaged.

When prior attribute rank information (Per-Node and CE scores) from the baseline ex-
tractions is not incorporated, all LDA-based models outperform the unranked baseline (Ta-
ble 3.1). In particular, LDA yields a 17% reduction in error (MAP) over the baseline, fsLDA
yields a 31% reduction, and hLDA yields a 48% reduction (24% reduction over fsLDA).
Performance also improves relative to the ranked baseline when prior ranking information
is incorporated in the LDA-based models, as indicated by CE+Prior scores in Table 3.1.
LDA and fsLDA reduce relative error by 6%, and hLDA by 33%. Furthermore, hLDA
precision without ranking information surpasses the baseline with ranking information, in-
dicating robustness to extraction noise. Overall, learning unconstrained hierarchies (hLDA)
increases precision, but as the inferred node distributions do not correspond to WORDNET

concepts they cannot be used for annotation.
One benefit to using an admixture model like LDA is that each concept node in the

resulting model contains a distribution over attributes specific only to that node (in contrast
to, e.g., hierarchical agglomerative clustering). Although absolute precision is lower as
more general attributes have higher average precision (Per-Node scores in Table 3.1), these
distributions are semantically meaningful in many cases and furthermore can be used to
calculate concept assignment precision for each attribute.9

9Per-node distributions (and hence DRR) were not evaluated for LDA or hLDA, because they are not
mapped to WORDNET.
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3.5.2 Concept Assignment Precision

The precision of assigning attributes to various concepts is summarized in Table 3.1. Two
scores are given: all measures DRR relative to the entire gold assignment set, and found
measures DRR only for attributes with DRRpwq¡0. Comparing the scores gives an estimate
of whether coverage or precision is responsible for differences in scores. fsLDA yields
a 20% reduction in relative error (17.2% increase in absolute DRR) over the unranked
baseline and a 17.2% reduction (14.2% absolute increase) over the ranked baseline.

3.6 Discussion

This chapter introduced a set of methods based on Latent Dirichlet Allocation (LDA) for
filtering attributes and using them to annotate the WORDNET ontology. Precision was im-
proved via hierarchical smoothing that takes into account either the local concept structure
of WORDNET or provides a strong latent tree constraint. LDA significantly outperformed a
previous approach both in terms of the concept assignment precision (i.e., determining the
correct level of generality for an attribute) and the mean-average precision of attribute lists
at each concept (i.e., filtering out noisy attributes from the base extraction set).
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CHAPTER 4

Proposed Work

The goal of this proposal is to develop models that can account for the microstructure of
word relatedness, capturing the multidimensional nature of relations between lexical units
and their context-dependence. For example, computing the semantic similarity between
wine and vinegar should only take into account a small number salient features of those
concepts, and those features should be quite different from those determining the similarity
between wine and bottle, despite the fact that all three words occur in similar contexts.

Multi-prototype models are an important first step in this direction, however they (1)
lack the representational flexibility to adequately model feature saliency, (2) can break down
in cases where multiple disparate clusterings of the data are equally feasible and (3) cannot
account for multiple dimensions of relatedness. When building lexical semantics models
from natural corpora, it is important to address feature noise (cf. §2.6). In high-dimensional
clustering problems, a large fraction of features may ultimately be discarded as noise. How-
ever, not all features are uniformly noisy: Most features will be relevant for making sense
distinctions in certain cases and not in others and hence feature pruning may be too heavy-
handed. Xue et al. [121] argue that feature selection should be done per-word in the case
of highly polysemous Chinese verbs. The next few sections outline joint clustering and
feature selection models that can account for such context-dependent feature relevance, in
particular focusing on novel soft feature selection methods.

Moving beyond multi-prototype approaches, I propose modeling the full spectrum of
relations between words and word-senses using cross-cutting categorization models. Such
models can partition the space of word contexts across multiple clusterings, leading to more
fine-grained models of contextual dependence, as well as vector-valued word relatedness.
Multiple clusterings of a data set (views) are generated using disjoint subsets of the avail-
able features (§4.3.3). This model can be extended to jointly partition features and data
into views, allowing the views to vary in terms of content distribution and salient features
(§4.4.1).

Sense proliferation itself may be in part due to the conflation of multiple organizational
systems linking the target word to other similar words, leading to a large number of partially
overlapping senses. By treating word sense in a multiple clustering framework, these orga-
nizational systems can be uncovered and leveraged to build models of per-word semantic
generalization. Word senses can be organized along topical, syntactic or operational lines,
and different organizational systems account for different subsets of the full set of lexico-
graphical senses. Furthermore, each clustering defines a subset of the available features that
are deemed salient, allowing models of lexical semantics the freedom to choose between
several relevant subspaces and ignore irrelevant features.
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4.1. Extending Multi-Prototype Models

The remainder of this chapter is divided into seven main sections: §4.1 describes sev-
eral immediate extensions of the multi-prototype model of word meaning, §4.2 develops a
set of feature selection and dimensionality reduction models based on LDA, §4.3 develops
the suite of novel multi-view models, §4.4 extends the multi-view models to incorporate
outlier detection, §4.5 discusses how the similarity metrics for multi-prototype models can
be enriched and extended to the multi-view case, §4.6 discusses the merits of applying these
models to joint all-words models vs. the word type conditional models previously discusses,
and §4.7 discusses a large range of potential applications.

4.1 Extending Multi-Prototype Models

The multi-prototype model introduced in chapter 2 comprises the underlying framework for
my proposed thesis work. The success of the combined approach (§2.4; combining proto-
types across multiple clustering scales) indicates that the optimal number of clusters may
vary per word. I ropose studying two principled approaches to accounting for automatically
assessing clustering capacity:

1. According to Zipf’s “Law of Meaning” [123], total word senses are distributed roughly
in a power-law, similar to the distribution of word-frequency. Hence, simply allocat-
ing representational capacity in the form of additional prototypes proportional to the
total number of occurrences may yield optimal meaning representations, trading off
expressivity and robustness.

2. Fixing the number of prototypes based on the total number of occurrences can be
misleading as the total number of occurrences of a word is heavily corpus-dependent,
and in particular semantically “tight” corpora such as WSJ high frequency words may
have only a small number of senses actually expressed. Furthermore, the number of
clusters should most likely depend on the variance of the occurrences, not just the
total number.

A more principled, data-driven approach to selecting the number of prototypes per
word is to employ a clustering model with infinite capacity, e.g. the Dirichlet Process
Mixture Model [DPMM; 64, 86]. The DPMM assigns positive mass to a variable,
but finite number of clusters z,

P pzi � k|z�iq �

$&
%

n�i
k°

j nj�1�α if nk ¡ 0
α°

j nj�1�α k is a new class.
(4.1)

with probability of assignment to cluster k proportional to the number of data points
previously assigned to k, nk. In this case, the number of clusters no longer needs to
be fixed a priori, allowing the model to allocate expressivity dynamically to concepts
with richer structure. Such a model would allow naturally more polysemous words
to adopt more flexible representations.

Furthermore, the two-parameter Pitman-Yor generalization of the Dirichlet Process
[80] yields power-law distributed cluster sizes,

P pzi � k|z�iq �

$&
%

n�i
k �d

°
j nj�1�α if nk ¡ 0
α�dK°

j nj�1�α k is a new class.
(4.2)
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4.2. Accounting for Feature Structure

with rate proportional to the free parameter d. Since naturally occurring sense fre-
quences are also roughly power-law distributed [42], such a model may prove to be a
better fit representationally.

4.2 Accounting for Feature Structure

Reisinger and Mooney [88] (chapter 2) demonstrate the importance of feature selection for
modeling human word-similarity judgements, finding that the benefits of feature selection
often far outweigh the benefits of using more expressive feature representations. However
that approach simply discards all but a fixed number of features ordered by weight and does
not perform feature selection jointly with clustering; employing more principled feature
selection approaches may yield more significant performance gains. This section introduces
several such approaches, including two novel unsupervised feature selection procedures
based on LDA.

4.2.1 Feature Selection

Moving beyond simple weight-based pruning, employing a feature selection procedure such
as latent-factor masking or subspace clustering may yield additional performance gains
[38, 43, 47, 75, 95]. Such procedures infer the most likely subset of features given the model
and then perform clustering using only those features. The most fundamental approach is
simply include a model sparsity term in the clustering optimization criterion. A similar
(heuristic) procedure is employed by Pantel and Lin [71], and is shown to be beneficial for
word sense discovery.

In addition to simply filtering noisy features, confidence scores generated by the feature-
selective clustering model can be used to (1) determine concept- and view-specific discrim-
inative attributes (extending the approach outlined in chapter 3) and (2) provide feedback
to upstream information extraction processes, yielding e.g. a measure of precision per ex-
traction pattern (cf. §4.7.4).

Finally, more work should be done exploring the interplay between feature weight-
ing and pruning. Section 2.6 demonstrates how certain feature representations (e.g. χ2)
are more robust to feature noise. However this robustness comes at the cost of being less
sensitive to pruning and hence less capable of representing precise lexical semantics. Fur-
thermore, the interplay between feature pruning and dimensionality reduction should be
explored more; we expect pruning features after dimensionality reduction would have a
significantly smaller impact.

4.2.2 Feature Weighting via Topic Models

Moving beyond simple models of feature selection, it is possible to apply the rich structure
of LDA-based models to the problem of feature weighting in the context of vector space lex-
ical semantics (cf. Chapter 3). LDA weights features highly when they are commonly found
in coherent subsets of the data; such features can be considered sense-specific, and LDA-
based feature weighting would thus provide complementary information to, e.g., feature
weighting based on the t-test or χ2 criterion.

Although it is capable of identifying useful discriminative features, using the LDA like-
lihood for feature weighting fails for common, non-discriminative features such as stop-
words. When topic interpretability is desired, it is common to first remove stopwords, or
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4.2. Accounting for Feature Structure

to employ an asymmetric Dirichlet prior over topic weights, leading to the formation of
a “stopword” topic [116]. However, neither of these approaches addresses the fact that
common words often simply have higher likelihood under LDA.

The rest of this section is develops a set of hybrid topic models that perform soft feature
selection explicitly, resulting in more robust clusterings.

4.2.3 Explicit Feature Selection via Topic Models

I propose a simple feature selective clustering method based on a two-component admixture
model, where a document’s features are drawn from either a data-dependent mixture model
or a single noise component. This model is similar structurally to the model proposed by
Law et al. [47]. However, instead of allocating entire feature dimensions between model
and noise components, assignment is done at the level of individual feature occurrences,
much like topic assignment in LDA. At a high level, this model can be seen as drawing a
document from a combination of a single prix-fixe option coupled with (data-independent)
à la carte choices1 (Figure 4.1).

Adopting the notation from §3.3.1, the prix-fixe topic model can be written as

ηd|η0 � Betapη0q d P D, (noise prop)
φk|β � Dirichletpβq k PK, (clusters)

φnoise|βnoise � Dirichletpβnoiseq (noise)
θd|α � Dirichletpαq d P D, (cluster prop)
cd|θd � Multpθdq d P D, (cluster ind)
zi,d|ηd � Bernoullipηdq i P |wd|, (noise ind)

wi,d|φcd
, zi,d �

$''&
''%

Multpφnoiseq
pzi,d � 1q

Multpφcd
q

potherwiseq

i P |wd|, (words)
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where α and β are hyperparameters smoothing the per-document topic distributions and
per-cluster word distributions respectively, and η0 controls the uniformity of the cluster
weights.

Each document is drawn from a combination of a single cluster component indicated by
cd and the noise topic. Since the noise topic is shared across all documents, it can account
for features with data-independent variance, such as stop words and other high-frequency
noise. Furthermore, putting an asymmetric prior on β yields more fine-grained control over
the assumed uniformity of the occurrence of noisy features, unlike the model proposed by
Law et al. [47]. The likelihood of document d is given by

P pwd|z, cd,φq �
¹
i

P pwi,d|φcdq
δpzd,i�0qP pwi,d|φnoiseq

δpzd,i�1q. (4.3)

This model can be viewed as a two-topic variant of LDA with the addition of a per-document
cluster indicator.2 By exploiting conjugacy, the latent variables θ, φ and η can be integrated
out, yielding an efficient collapsed Gibbs sampler.

1Extension to a nonparametric fancy Chinese restaurant process is, of course, straightforward.
2Specifically, the prix-fixe clustering model is a particular special case of the nested Chinese Restaurant

Process with the tree depth fixed to two [10].
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Figure 4.1: Documents are drawn from the prix-fixe feature selective clustering model
word-by-word, with each word coming either from the document-dependent cluster com-
ponent or from the document-independent noise component.

4.2.4 Dense Feature Selection via Bayesian Co-clustering

The textual features employed when clustering word occurrences are high-dimensional and
sparse and hence noisy. Feature selection and weighting methods like those proposed in
the previous sections address the issue of noise, but do not help combat sparsity, and hence
many occurrences can end up with few activated features when using feature selection.
However, by performing simultaneous dimensionality reduction and feature selection, both
issues can be addressed in a coherent framework. This section outlines a simple Bayesian
co-clustering approach for simultaneously reducing feature dimensionality and clustering
data and shows how it can be combined with the prix-fixe feature-selective model intro-
duced in the previous section.

Coclustering procedures simultaneously find clusterings of both the rows and the columns
of the data matrix, reducing feature dimensionality while grouping data points. Shan
and Banerjee [101] introduce a Bayesian coclustering approach based on LDA that allows
mixed-membership in both the row and column clustering.

One potential simplification of Shan and Banerjee [101]’s model is to only perform
overlap clustering on the features simultaneously with partitioned clustering on the data.
The following Bayesian dense clustering model clustered documents based on their topic
membership proportions:

γ|γ0 � Dirichletpγ0q, (cluster proportions)
θk|α � Dirichletpαq, k PK, (topic proportions)
φt|β � Dirichletpβq, t P T, (topics)
bd|γ � Multpγq, d P D, (cluster indicator)
zi,d|θd, bd � Multpθbd

q, i P |wd|, (topic indicator)
wi,d|φzi,d

� Multpφzi,d
q, i P |wd|, (words)

LDA co-clustering

 

θ zα
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In this model K groups of documents share the same topic proportions φk (i.e. cluster
centroids), corresponding to hard-clustering. This model reduces to LDA whenK Ñ D, i.e.
each document is assigned to its own cluster, and hence is more computationally efficient
than LDA, despite performing clustering and topic-modeling jointly.

Combining the dense clustering model with the prix-fixe feature-selective model pro-
posed in the previous section yields a coherent framework for joint dimensionality reduc-
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tion, feature selection and clustering, i.e. dense feature-selective clustering.

4.3 Feature Partitioning via Cross-cutting Categorization

In addition to feature selection, I propose to study the effects of three multiple-clustering
models based on cross-cutting categorization (cross-cat), which find several clusterings of
the data (views) each using different subsets of features. Cross-cat is an effective way to
control the effects of features unrelated to any one particular clustering scheme [56, 57] and
hence solves one of the basic problems with exemplar and multi-prototype models using
raw textual features.

Different subsets of features may yield different sense views; e.g. clustering using only
syntactic features vs. clustering using only document co-occurrence features. Psycholog-
ically, humans use overlapping taxonomies to organize conceptual information in many
domains; i.e. foods can be organized situationally, breakfast food, dinner food, snack, etc,
or by their type, dairy, meat, etc. Each organization system may have different salient fea-
tures. Cross-cat models account for this structure by assigning concept features to one of
several views, clustering the data separately with each view. This approach yields multiple
orthogonal clusterings and isolates the effects of noisy features.

As feature dimensionality increases, the number of ways the data can exhibit interesting
structure goes up exponentially. Multiple clustering based on cross-cat is one approach to
inferring feature subspaces that lead to high quality data partitions. The cross-cat models
differs significantly from, e.g., the multiple disparate clusterings framework proposed by
Jain et al. [40]. In that work, all clusterings use all features, and hence robustness to feature
noise is not treated. Cross-cat is more similar to the model proposed by Cui et al. [17],
which generates a maximally orthogonal cluster ensemble [cf. 5, 104]. The data are repeat-
edly projected onto the space most orthogonal to the current clustering and then reclustered.

I propose a suite of unsupervised methods for determining feature relevance, extending
model-based feature-selection and cross-cat to account for feature-sharing between multiple
competing categorization models. These models are aimed at overcoming the main limi-
tation of cross-cat, allowing informative features to be shared by several views. The first
extension, multiple-views with shared features, allows each view to inherit a set of shared
features in addition to its view-specific features. The second extension, factorial feature
allocation (FFA), puts the entire binary feature assignment matrix Z under the control of
the model, treating it as a random variable. Figures 4.2, 4.3, and 4.4 summarize the various
model combinations considered.

I first establish some notation and present the original cross-cat model.

• d P r1 . . . Ds F -dimensional data vectors w � rw1, . . . ,wDs
J.

• m P r1 . . .M s views defined by Z. View m is a binary vector specifying which
features are included in the mth clustering.

• k P r1 . . .Kms clusters in clustering m P r1 . . .M s, cmk .

Define the unary factorial feature projection operator

p�Z�,mq : RF Ñ R||Z�,m||1 , (4.4)

33



4.3. Feature Partitioning via Cross-cutting Categorization

all features

multiple views
(cross-cat)

multiple views &
shared features

feature selection

1

2

1

a

a
+

2

a
+

multiple views & 
feature selection

1

2

multiple views,
shared features &
feature selection

1

a

a
+

2

a
+

Figure 4.2: Progression of proposed feature selection and multi-view models. Horizontal
vectors indicate data; circled numbers and letters represent disparate views; grayed boxes
indicate features not present in that particular view; and vertical lines represent features
removed from all views. Clustering occurs separately within each view. In the case of
shared feature views, features assigned to view (a) are present in all views.

mapping data vectors of dimension F to vectors with dimension equal to the number of
nonzero entries of the column-vector Z�,m (i.e. ||Z�,m||1). Let

λm
def
� tj : j P r1 . . . F s, rZsj,m � 1u (4.5)

be the ordered indices of the nonzero entries of Z�,m and let Lm def
� |λm| � ||Z�,m||1 be the

number of nonzero entries. Then define

w � Z�,m
def
� pwλm

1
, . . . , wλm

Lm
qJ, (4.6)

i.e. the projection of w onto the lower-dimensional subspace specified by the nonzero en-
tries of Z�,m. Finally w�pmq will be used as shorthand for w � Z�,m when the view assign-
ment matrix Z is unambiguous.

All models discussed in this section can be written in the form

P pZ, c|wq 9 P pZ, tcmu,wq (4.7)

� P pZq
M¹
m�1

P pw�pmq|cmqP pcmq. (4.8)

where P pZq is the prior distribution on views and P pcmq is a prior on the clustering for
view m, e.g. the DPMM, and P pw�pmq|cmq is the likelihood of the data w restricted to the
feature subset Z�,m given the corresponding clustering cm [100].

4.3.1 Cross-Cat

In the standard cross-cat model, P pZq is constructed by first drawing the vector z̃ �
CRPpαq, i.e. assigning each feature to some view via the Chinese Restaurant Process [79].
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Z is then derived from z̃ in the obvious way: each feature (row vector of Z) has only a
single nonzero entry corresponding to the column index of the view it is assigned to via z̃:

rZsf,m �

"
1 z̃f � m,
0 otherwise.

(4.9)

The cross-cat model is capable of finding disjoint views with maximally probable cluster-
ings. The Dirichlet Process parameter α on view assignment controls the trade-off between
the fit of any one clustering and the cost of adding an addition clustering, taking features
away from the others. Because views form hard partitions of features, cross-cat is not capa-
ble of representing all of the most probable clusterings simultaneously, i.e. features cannot
be shared across views. I address this limitations in the new proposed models.

4.3.2 Shared Feature Partitions

The first novel extension of cross-cat adds an additional shared view that specifies features
conserved across all views (Figure 4.2). This puts pressure on the model to identify the most
information / most generic features to conserve across clusterings. The shared features
themselves do not constitute a separate clustering, and hence do not necessarily need to
yield good views on their own. The remaining view-specific features capture the individual
idiosyncrasies of each clustering.

The shared feature model is capable of identifying features that contribute to multiple
clusterings of the data and hence may find exactly the features that characterize the strongest
sense distinctions. For example, features that contribute both to syntactic sense clustering
and topical sense clustering. Thus the shared feature model can be viewed a form of robust
clustering, finding the commonalities between an ensemble of orthogonal clusterings.

The shared view is encoded using an additional random binary vector u with one entry
per feature, indicating whether that feature should be included in all views or not. The
resulting construction for Z is then

rZsf,m �

"
1 z̃f � m
uf otherwise.

(4.10)

where, again z̃ � CRPpαq, and e.g.,

uf |µf � Bernoullipµf q (4.11)

µf |ξ � Betapξq. (4.12)

A similar result could be realized by reserving one cluster in z̃ to indicate whether the fea-
ture is shared or not, however the likelihood structure of this model may cause the sampler
not to mix well. However, it may be possible to implement this model using the colored
stick-breaking process which allows for both exchangeable and non-exchangeable parti-
tions, improving efficiency [29].

From a data-analytic perspective this model is interesting because the shared features
may capture some intuitive basic structure specific to the particular word, e.g., some notion
of the underlying metaphor structure of line independent of topical variation.

Klein and Murphy [44] find no psychological evidence for shared structure linking dif-
ferent senses of polysemous words, indicating that the shared structure model may not
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factorial feature allocation

2

1

3

Z=

factorial feature allocation
+ feature selection

2

1

3

Z=

Figure 4.3: Factorial feature allocation model. Horizontal vectors indicate data; circled
numbers represent disparate views; grayed boxes indicate features not present in that par-
ticular view; and vertical lines represent features removed from all views. The F � K
dimensional matrix Z specifies what features are present in what view.

perform well relative to the other models proposed here. However, their experiments were
not focused on fine-grained sense distinctions such as those present in WordNet, and fur-
thermore this does not necessarily indicate that such models are not applicable to lexical
semantics: when deriving occurrence features from raw text, it is expected that there is
some feature overlap attributable to the “background” meaning of the word.

4.3.3 Factorial Feature Allocation

Factorial feature allocation puts the full feature-to-view map Z under the control of the
model (Figure 4.3). With FFA each feature is assigned to some subset of the available
views, with some probability. The Indian Buffet Process provides a suitable nonparametric
prior for FFA, where draws are random binary matrices with a fixed number of rows (fea-
tures) and possibly an infinite number of columns [30]. Note that in our case the “latent”
feature dimensions inferred by the IBP correspond to feature views in the original clustering
problem.

Z|θZ � IBPpθZq (4.13)

which yields feature-to-view assignments where each feature occurs in Af � Poissonpθq
views (ErAf s � θ), and the total number of views M � PoissonpθH|w|q

3

The main benefit of factorial feature allocation over the simpler models is that features
can be shared arbitrarily between views, with the IBP specifying only a prior on the num-
ber of features active in any one view. Concretely, this allows the model to simultaneously
represent the most probable clusterings using ErθF s features. Since M is low for most
applications considered, factorial feature allocation is not significantly more complex com-
putationally than the shared feature model.

3Hn
def
�
°n

i�1
1
i

is the nth harmonic number.
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factorial feature allocation
+

factorial data allocation

2

1

3

Z=

U=

Figure 4.4: Factorial feature and data allocation model. The F �K dimensional matrix Z
specifies what features are present in what view; theD�K dimensional matrix U specifies
what data points are allocated to each view.

Finally, I propose to explore to what extent to which topic models are similar to factorial
feature allocation; at a high level, factorial feature allocation can be viewed as a type of
topic model where each topic has only a single word/feature, and may be related to the
class of Focused Topic Models [118]. Exploring this duality should lead to more efficient
sampling methods for FFA, as well as topic models better able to capture latent feature
structures. Also, it would allow the development of FFA models with latent hierarchical
structure, based on e.g. the nested Chinese Restaurant Process [10], labeled LDA [83] or
the Kingman’s coalescent [107].

4.4 Accounting for Data Structure

The dual problem to feature selection is determining data relevance, i.e. removing outliers
or irrelevant data points. Previous lexical semantic models such as Clustering by Committee
use ad-hoc criteria for improving robustness to outliers [74]; in Statistics, outliers are treated
in density estimation using robust distributions, e.g. Laplace [16]. In addition to studying
the applicability of background cluster models such as the colored stick-breaking process
to clustering word occurrences [29], I propose extending the FFA model described in §4.3
to jointly model feature and data allocation (FFDA; Figure 4.4)).

4.4.1 Joint Factorial Feature and Data Allocation

FFDA allocates features and data jointly among disparate views, leveraging the assumption
that subsets of the data are better fit by subsets of the available features. From the standpoint
of concept organization, this corresponds to different organizational schemes acting on dif-
ferent subsets of the available concepts (i.e. not all concepts are shared across all organiza-
tional schemes). For example, when organizing animals by their scientific properties (e.g.,
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habitat, taxonomy, gestation period) it makes sense to exclude fictional counterparts (e.g.,
fictional ducks such as Donald); however, when organizing them by their apparent physical
properties (flies, quacks, has feathers), perhaps fictional animals should be included.

In the context of lexical semantics, FFDA can be motivated by considering differen-
tial feature noise: i.e. assumption that some features are content bearing for some subsets
of data, but not for others. Identifying when a particular feature is spurious requires con-
sidering it in the context of the other features, and this is not a strongpoint of traditional
clustering analysis.

FFDA can be defined by simply augmenting FFA with an additional random binary
matrix U specifying which data points are included in which views:

Z|θZ � IBPpθZq (4.14)

U|θU � IBPpθUq (4.15)

where U has dimensionD�M . Ensuring that Z and U have the same column dimensional-
ity (number of views) can be achieved by drawing a larger matrix of dimension pD�F q�M
from the IBP and partitioning it into Z and U. Note that joint data and feature allocation
does not significantly raise the computational complexity of the model above that of facto-
rial feature allocation.

FFDA also requires redefining the projection operator in Equation 4.4 to operate over
both the rows and columns of the data matrix, which can be realized in the obvious way.
The joint operator will be written as wf pZ�,m,U�,mq with the shorthand wfpmq when the
feature allocation and data allocation matrices are unambiguous.

Finally, the form of the general probabilistic model must be extended to include U and
the dependence of c on the data partition:

P pZ,U, c|wq 9 P pZ,U, tcmu,wq (4.16)

� P pZqP pUq
M¹
m�1

P pwfpmq|cfpmqqP pcfpmqq. (4.17)

There are several ways to account for the fact that c depends on U. The simplest to extend
the prior P pcq to the entire data set, but to restrict the likelihood P pwfpmq|cfpmqq to only
the data contained in the view.

4.5 Multiple Cluster Similarity Metrics

AvgSim and MaxSim (§2.2.2) are conceptually simple methods for computing similarity
between mixture models, however they do not necessarily respect the structure of the un-
derlying probabilistic models, and furthermore present nontrivial difficulties when applied
to multi-view models. I propose to revisit the space of potential similarity metrics defined
over mixture models in order to develop a coherent, tractable notion of similarity for the
structured models introduced above. In particular, building distance metrics based on the
family of f -divergences

Df pP ||Qq �

»
Ω
f

�
dP

dQ



dQ

38



4.6. Word-Joint Models

e.g. discrete KL-divergence [52]

DKLpP ||Qq �
¸
xPΩ

P pxq log
P pxq

Qpxq

or methods based on probability measures such as Bhattacharyya distance

DBpp, qq � � log

�¸
xPΩ

a
ppxqqpxq

�

both of which are related to the class of Renyi divergences [90]. However, these are general
measure of statistical similarity and do not take into account the structure of the proposed
models. For example, in the multi-view model, one potential similarity metric first deter-
mines the most similar views for each word and then computes the mixture distance between
the selected views (i.e. combining both AvgSim and MaxSim). Alternatively, multi-view
clusterings can be collapsed into a single view using standard cluster ensemble methods
[104].

4.6 Word-Joint Models

All of the previously introduced models can be fit to word/phrase occurrence or concept
data either (1) conditional on the word-type, uncovering usage patterns for a single word or
(2) joint across all words, clustering words with similar usages together. The former model
is more computationally tractable and can be parallelized naively by word-type. However,
since this method independently clusters the contexts of each word, the usages discovered
for w cannot influence the usages discovered for w1 � w. Sharing statistical strength across
similar words could yield better results for rarer words, in addition to providing a more co-
herent model of human conceptual organization. Furthermore, the word-joint model auto-
matically computes inter-word similarity, obviating the need for defining similarity metrics
on multiple clusterings.

Another benefit of the cross-cutting model is that it can de-aggregate context vectors,
accounting for polysemy even when multiple senses have been encoded in the same feature
vector. For example, when clustering apple with other fruits, cross-cat might find certain
features such as stock or company to be irrelevant, ignoring the homonymous usage.

4.7 Applications

I propose evaluating cross-cutting models in several downstream applications, including
lexical semantics tasks such as selectional preference and paraphrase identification (§4.7.1),
modeling the overlapping hierarchical structure of “folksonomies” such as Wikipedia (§4.7.2),
associative anaphora resolution (§4.7.3), knowledge acquisition (§4.7.4), and text classifi-
cation (§4.7.5).

4.7.1 Lexical Semantics
Selectional Preference

The selectional preference of verbs has been studied extensively in the context of distribu-
tional lexical semantics [9, 69, 91], including extensions to multi-prototype representations
of arguments [73]. Ritter et al. [92] demonstrated significant gains from applying LDA to
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jointly model the selectional preference of a large subset of TextRunner relations. Mov-
ing beyond LDA, cross-cutting categorization models could potentially improve models of
selectional preference by identifying feature subsets describing the relations governing the
arguments of target word.

Paraphrase Identification

Previous approaches to paraphrase identification (e.g. [61]) can fail because they do not
take into account context-dependence, and often paraphrases are only accurate for a subset
of meanings of the original phrase [59]. Thus, the multi-prototype model could potentially
lead to more robust paraphrase identification (cf. [23]). In particular, identifying when it is
possible to use a paraphrase, i.e. the particular set of valid contexts its inherently a clustering
problem, and only a small percentage of feature dimensions are actually relevant to the task,
suggesting that feature partitioning would be a powerful approach.

4.7.2 Hierarchical Cross-Categorization

Understanding the internal feature representations of concepts and how it comes to bear on
conceptual organization and pragmatics is important for computational linguistic tasks that
require a high degree of semantic knowledge: e.g. information retrieval, machine transla-
tion, and unsupervised semantic parsing. Since reported properties are cognitively salient
and discriminative, extracting them would be helpful for semantic search tasks such as
query disambiguation and user intent modeling. Furthermore, feature norms have been
used to understand the conceptual information people possess for the thematic roles of
verbs [24].

Combining hierarchical topic decompositions introduced in chapter 3 with cross-cat
yields a coherent framework for mixtures of overlapping ontologies. Current fixed ontol-
ogy models of conceptual organization such as WordNet cannot easily capture such phe-
nomena [89], although there is significant evidence for multiple organizational principles
in Wikipedia categories [87]; for example people are organized by their occupation (e.g.
American politicians), their location (e.g. People from Queens), or chronology (e.g. 1943
births). Likewise, most ducks can fly and quack but only fictional ducks appear in cartoons
or have nephews; does this mean fictional ducks can be blanched in water and air dried?
Accounting for the structure of such natural “tangled hierarchies,” or “folksonomies,” re-
quires significantly richer models.

I propose extending the cross-categorization model to latent hierarchical data, which
requires defining a consistent model of multiple overlapping local categorizations within
a larger hierarchical structure. Preliminary work on this model suggests that it better sep-
arates attributes according to their usage domains. Practical applications include noise-
filtering for open-domain category and attribute extraction (Chapter 3), as well as determin-
ing what terms/features are most relevant to certain query modes (classifying query intent).
Evaluation of the underlying prediction models can be carried out using human annotators
recruited from Mechanical Turk.

Hierarchical cross-categorization would also benefit significantly from data partition-
ing, as one would not expect every feature view to be relevant to all concepts in Wikipedia.
Instead, organizational frames have a native level of generality over which they operate,
controlling what concepts are relevant to include.
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4.7.3 Associative Anaphora Resolution

Associative anaphora4: are a type of bridging anaphora with the property that the anaphor
and its antecedent are not coreferent, e.g.,

1. Once she saw that all the tablesp;1q were taken and the barp;1q was crowded, she
left the restaurantp1q.

2. Shares of AAPLp2q closed at $241.19. Volatilityp ;2q was below the 10-day moving
average.

where tables and bar in example as aspects of the restaurant and volatility in example 2
is an aspect of AAPL [15]. Resolving associative anaphora naturally requires access to
richer semantic knowledge than resolving e.g. indirect anaphora, where the anaphor and
its antecedent differ only by reference and can be resolved syntactically [13, 97]. The
smoothed property extraction methods presented in chapter 3 could provide a basis for
performing associative anaphora resolution, hence I propose an evaluation combining it
with existing coreference resolution systems [e.g. 34].

Resolving associative anaphora is another domain that might potentially benefit from
multi-language models. The fundamental semantic (mereological) relationships are con-
served across languages, and hence resource-rich languages could be adapted for use in
resource-poor languages. Note how this contrasts sharply with purely syntax-level tasks,
such as coreference resolution, where knowledge of the particular language structure is
necessary.

4.7.4 Knowledge Acquisition

Vector-space models are commonly used in knowledge acquisition (KA), e.g. for attribute
and class-instance acquisition [51, 72, 111], and hence could benefit from multi-prototype
and multi-view extensions, identifying relevant axes of variation along which additional
high-quality data can be extracted. The current state of the art in KA ignores the down-
stream uses of its data, likewise, machine learning (ML) models are typically unaware of
the details of the upstream KA system that generated the data. Although such functional
modularity greatly simplifies system-level development, a significant amount of informa-
tion is discarded that could greatly improve both systems. Several general-purpose frame-
works for integrating KA and ML have been recently proposed, relying on particular model-
[58] or structural assumptions [14]. For this project, I propose a much simpler approach:
leveraging generative models of the data to predict the likelihood of specific instances or
features being outliers. Such approaches are common in the statistics literature [38, 113]
but find little traction in KA.

4.7.5 Text Classification and Prediction

One straightforward way to evaluate lexical semantics models is to embed features derived
from them in existing text classification and prediction problems. Comparing results to
existing baselines gives a rough measure of how much additional useful semantic content
is captured for that domain. Towards this end I propose evaluating the lexical semantics
models on sentiment analysis [70] and predicting properties of financial text [46].

4Also referred to as mereological anaphora, cf. Poesio et al. [81].
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4.7.6 Speculative Work
Cross-Lingual Property Generation

Chapter 2 introduced salient property prediction as a specific application of structured lex-
ical semantic models. Such properties are useful in downstream applications such as asso-
ciative anaphora resolution (§4.7.3), but can also be evaluated on their own, e.g. comparing
against human property generation norms [60]. Extending these models with multiple pro-
totypes and factorial feature association is a logical next step, and would provide a coherent
framework for addressing cross-language differences in concept organization.

Modeling concept structure across multiple languages simultaneously would help miti-
gate the noise introduced by per-language extraction idiosyncrasies and leveraging resource-
rich languages to improve inference for resource-poor languages. Furthermore a large-scale
comparison of concept organization norms across languages would shed light on important
aspects of cross-cultural pragmatics [117].

Twitter

Twitter is a rich testbed for identifying and understanding the root causes of modern lan-
guage evolution: Denotative shifts in meaning can be correlated with current events and
tracked in real time. Furthermore, standardized internet-specific language features such as
topical hash-tags are developing at a rapid pace, incubated primarily on Internet blogs and
Twitter.

Due to its high degree of fluidity in term usage and unusually short context lengths
[78, 85], traditional lexical semantics models may fail to capture interesting phenomena
on Twitter. I propose applying the robust, structured models developed in this thesis to
modeling the real-time lexical semantic development of Twitter hashtags. In particular,
models based on DPMMs can adapt to form new clusters in real time when new data is
added that does not fit well with the existing inferred structure. This ability is important
since it is impossible to fix the capacity of lexical semantic models a priori, as new concepts
(denoting current events) are constantly being added to the lexicon.
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CHAPTER 5

Conclusion

This proposal has outlined the application of cross-cutting categorization models to distri-
butional lexical semantics, focusing on its ability to (1) account for feature noise and (2) ex-
tract coherent feature subsets that define similarity relations between words. Cross-cutting
models are able to succinctly account for the notion that humans rely on different catego-
rization systems for making different kinds of generalizations. These latent categorization
systems underly lexical semantic phenomenon such as contextual and selectional prefer-
ence, and hence modeling them may yield significant improvements in machine translation
and information retrieval. Furthermore, cross-cutting models can be naturally extended to
model hierarchical data, inferring multiple overlapping ontologies. Such structures can be
leveraged to improve, e.g., open-domain attribute and relation extraction.
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