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Knowledge acquisition is a difficult and time-consuming task, and as
error-prone as any human activity. Thus, knowledge bases must be main-
‘tained, as errors and omissions are discovered. To address this task, recent
Jearning systems have combined inductive and explanation-based technigues
to produce a new class of systems performing theory revision. When errors
are discovered in a knowledge base, theory revision allows automatic self-
repair, eliminating the need to recall the knowledge engineer and domain

expert.

To date, theory revision systems have been limited to propositional
domains. This thesis presents a system, FORTE (First-Order Revision of
Theories from Examples), that performs theory revision in first-order
domains. Moving to a first-order representation creates many new challenges,
such as argument selection and recursion. But it also opens many new
application areas, such as logic programming and qualitative modelling, that

are beyond the reach of propositional systems.
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Chapter 1
INTRODUCTION

The past few years have seen a merger of inductive and explanation-
based 'leérning algorithms into a new class of systems performing theory
revision. The premise of theory revision is that we can obtain a domain
theory, be it from a book or an expert, but we cannot expect that theory to
be entirely complete or correct. Extracting domain knowledge is a time-
. .intensive prdceés [Feigenbaum, 1977}, and as error prone as any human
activity. When errors are discovered in a rule base, theory revision allows
_ automatic self-repair, obviating the need to recall the knowledge engineer and

domain expert.

Theory revision uses pre-classified training data to improve a theory.

Once a theory is known to be faulty, the user gathers examples of the data
that the theory fails on, together with past instances that the theory should
~ continue to work on, and passes fhis, data and the faulty theory to a theory
_. revision system. The system specializes or generalizes various rules, or
creates new 6nes, while preserving as much of the original structure of the

theory as possible. In the extreme case, where the initial theory is empty, a

theory revision system can perform pure inductive learning.

To date, theory revision systems have been limited to propositional
domains.! A propositional representation restricts them to revising theories
that perform classification tasks, such as medical diagnosis or character

recognition. This thesis presents a system, FORTE (First-Order Revision of

1This includes neural networks, which perform theory revision on non-symbolic theories
represented numerically as weights and thresholds.

1



Theories from Examples), that performs theory revision in first-order
domains. Using a first-order representation opens many new problem areas.
For example, FORTE can revise simple logic programs, opening the way to
.~ automatic program debugging. Another first-order domain is that .of
qualitative modelling; FORTE can induce, revise, and diagnose qualitative
models. FORTE can also induce and revise DCG 'grammars. All of these tasks

‘are beyond the reach of a propositional system.

Devising a system to work in first-order logic presents new chailenges
as well. The space of possible theories in a propositional domain is finite,
whereas a first-order theory space is usually infinite. A first-order system
must consider arguments in theory literals, which brings with it: the problems
of unification. Also, first-order theories may be recursive; something that

rarely arises in propositional domains.’

FORTE meets all of these challenges. In order to overcome the prbblems
of an infinite search space, FORTE uses a hill*climbing algorithm; the heuristics
that guide this hill-climbing are effective enough that FORTE does not use
backtracking. Unification is handled through a Prolog-like meta-interpreter.
Lastly, recursive theories are fully supported, although they require special

training sets.

Another challenge to a first-order system is the wide variety of
domains to which it may be applied. Wray Buntine, in [Buntine, 1990], points
out that '

ZRecurrent neural nets are an example of a propositional system that uses recursion.



" There exist universal learning algorithms (and each of us
provides living proof), but these can always be outperformed by
a second class of algorithms better selected and modified for
the particular application.

He goes on to quote [Watermah, 1986] on the "strong knowledge. principle”:

_.to make a program intelligent, provide it with lots of high
quality specific knowledge about some problem area.

One of the objectives of this research has been to discover a set of theory
" revision operators that are general purpose, in that they can be used to revise
theories across a wide range of first-order domains. In addition, FORTE allows
the user to introduce doméin—speciﬁc knowledge into the theory revision
process. Thus, we hope to have the best of both worlds: a general purpose
" theory revision system that can make use of domain-specific knowledge to

improve its performance in particular problem areas.

FORTE allows the introduction -of three types of domain-specific
knowledge: language bias, revision verification, and a fundamental domain
theory. Language bias allows the user to force FORTE to develop certain types
of theories by limiting the types of rules that may appear in the theory.
Revision verification provides a place for domain-dependent consistency
checks. For example, in qualitative modelling the revision verifier ensures
that the dimensions of variables are consistent.” Lastly, the fundamental
domain theory can be used to provide definitions of the basic attributes and
relations in the target domain. For instance, in qualitative modelling the
fundamental domain theory defines the constraints used to construct

gualitative models.

3E.g., one would never add a number representing velocity to a number representing mass.



FORTE's primary contribution to the field of machine learning is that it
is the first theory revision system to operate in first-order logic. In addition,
it breaks new ground in the demonstration domains of logic programming
and qualitative modelling. In logic programming, FORTE provides a unique
capability to automatically revise simple programs. This holds promise, for
example, as an instructional aid for novice programmers. In qualitative
modelling, FORTE can induce and revise qualit'ative models from behavioral

information, even when that information is incomplete.

The next chapter provides a summary of previous work in machine
learning and in the two domains of logic programming . and qualitative
modelling. Chapter 3 describes our objective in developing FORTE and
" presents the formal model on which it is based. Chapter 4 gives an overview
" of FORTE's architecture and operation, and Chapter 5 discusses the FORTE

algorithms in detail. Chapters 6 through 9 present empirical resuits. Chapter
10 compares FORTE to the most ciosely related work in machine learning, logic
programming, and qualitative modelling. Chapter 11 gives our recommenda-
tions for future work, and Chapter 12 concludes the thesis. The appendices
"inciude training data, initial theories, and sample runs for all of the test

' domains discussed in Chapters 6 through 9.



Chapter 2
BACKGROUND

‘This chapter provides background information that may be helpful in
understanding the remainder of the thesis. A discussion of related work, in
which Forte will be compared to closely related work done by other research-

| ers, is left until Chapter 10.

FORTE's development is an outgrowth of related work in propositional

- theory revision, first-order inductive learning, and inverse resolution.
“ ~ Developing a first-order theory revision system would not have been possible
w1thout prior ground- brea}ung work in these areas, and this previous work is

| discussed in the first three sections of this chapter. In addition, FORTE
| represents a contrlbutlon to the fields of logic program synthesis and
| qualltatlve model induction. Hence, the last two sections of this chapter

discuss previous ‘work in these two f1elds

2.1 PROPOSITIONAL THEORY REVISION
A number of researchers have developed propositional theory revision
systems. [Ginsberg, 1990] presents a method of theory revision that involves
"’reducing" a theory into a special form suitable for use by an inductive
1earner, performing induction, and then "retranslating” the resuit back into
the original theory langliage. In [Towell, Shaviik, and Noordewier, 1990],
| 'KBANN translates the initial theory into a neural network, and revises the
network using standard neural network techniques. However, extracting a
revised theory from the trained network is difficult, and the results presented
_in [Towell, Shavlik, and Craven, 1991] are only partially satisfactory. Both of

these represent hybrid approaches, which perform theory revision indirectly,



by translating a theory into a new form for learning, and then extracting a
revised theory from the result. Much of the structural information contained

in the original theory is inevitably lost in the translation process.

KRUST, described in [Craw and Sleeman, 1991], takes the approach of
generating a wide array of possible revisions to a knowledge base, and then
filtering and ranking the revisions to choose the most suitable one. Much of
the filtering depends on the existence of certain canonical "chest--

nut"examples, which must be identified by the human expert.

EITHER, described in [Qurston and Mooney, 1990], performs direct

theory revision. It identifies points in the theoi‘y that cause errors on the

" training set; and uses abduction to determine what theory modifications

would correct each error. It uses greedy search to identify a small set of

modifications that repair all the errors and revises the theory accordingly.

Although EITHER is limited to propositional domains, it is the conceptuai
predecessor to FORTE. '

2.2 FIRST-ORDER INDUCTION

Induction is the process of generating a theory purely from examina-
tion of the training set. In a typical machine learning taék, each instance in
the training set is defined by a list of facts and a classification. In medical
diagnosis, for example, the facts would be a list of symptoms and test results,
and the classification would be the disease indicated by this information. An
induction system creates rules that specify what facts must be present for

- each classification.

One of the standard first-order induction systems is FOIL, described
in [Quinlan, 1990}. FOIL learns binary concepts (i.e., instances are either

"positive,” meaning they are members of the concept set, or they are



“negative,"' meaning they are not members of the set). It works by generaliza-
" tion, beginning with an empty theory (representing an empty concept set),
and constructing a sét of Horn clauses that cover the positive instances while
excluding the negative ones. Each clause is constructed one literal at a time,
choosing at each step the antecedent that best discriminates between the

positive and negative instances.

This hill-climbing technique is efficient, but vulnerable to local maxima.
. In order to reduce this problem, [Quinian, 1991] adds determinate literals to
-~ FOIL. A determinate literal is a literal that has only one possible binding. For
example, suppose we wish to construct a merge-sort predicate from the base
rule '

merge_sort(A, B) :- true.

" Among the literals we can add to the clausé is split(A, C, D). This is a
determinate literal since, for any list A, it produces unigue lists C and D. FOIL
adds all such determinate literals to the clause before beginn'mg the normal
induction process. This is a recursive process, as the new variables intro-
duced by determinate literals can be used to define further determinate
literals; hence, an arbitrary depth-bound is imposed. Excess determinate

literals are deleted after learning is complete.

Although FORTE is a theory revision system, one of its techniques for
building new rules and specializing existing ones is very similar to the basic
FOIL algorithm.

2.3 INVERSE RESOLUTION
Inverse resolution is a generalization technigue that can be used to

’ pe_rform induction. The first system based on this technique was Duce



([Muggleton, 19871. Duce is a propositional system that takes advantage of
" the ease with which resolution steps can be reversed in propositional logic.

For example, suppose we have the resolution step:

« alpha, beta -(goal)
alpha « delta (input clause)

<« delta, beta (resolvent)

If we Lnow the resolvent and either the goal or the input clause, we can

_ abduce the missing element Duce uses an oracle to verify its operations.

From Duce it was a short but important step to CIGOL, a similar
system working in first-order logic ((Muggleton and Buntine, 1988}). However,
CiGOL has substantial limitations. For example, it assumes all input clauses
are unit clauses®, and, like Duce, it depends on an oracle. The next step in
inverse resolution systems was GOLEM, described in [Muggleton and Feng,
19901 GOI.EM is a ver')} capable induction system that learns first-order
theories ;'bottom-up," using inverse resolution techniques to generalize the
positive fraining instances while excluding the negative instances. However,

it still requires input clauses to be unit clauses.

Two of FORTE's theory revision operators are based on inverse
resolution. However, unlike CIGOL and GOLEM, FORTE's operators work on

arbitrary clauses.

44 unit clause is 2 clause with no antecedents. CIGOL and GOLEM require ali background
knowledge to be pre-evaluated into an extensional form consisting only of ground facts.



2.4 LOGIC PROGRAM SYNTHESIS _

| Historically, there have been two major approaches to logic program
synthesis. The first approach is to derive a program from a formal specifica-
tion. Given a correct, possibly non-executable specification of a problem, we
can transform the specification into a logic program via sound transformation
rules [Lloyd and Torpor, 1984] [Tamaki and Sato, 1984], via a proof of the
specification [Bundy, Smaill, and Wiggins, 1990}, or via planning verification

proofs [Kraan, Basin, and Bundy, 1992].

The second approach is to develop a program from a set of input-
output examples. This is the approach used in [Shapire, 1983] for automatic
program debugging. However, Shapiro's approach is intended primarily as a

programmer's aid, and depends heavily on the user as an oracle.

[Fiener and Deville, 1991] attempts to blend these two approaches by
using positive input-output examples along with an informal specification
composed of "properties.” A property is a nonrecursive clause that is a
generalization of one or more given examples. - Properties can be viewed
either as nonground examples or as an initial theory. Flener further abets his
- program synthesis method by using program schemata and by allowing
questions to an oracle. Unfortunately, while Flener's ideas appear promising,

- he provides no results or other means of evaluating their effectiveness.

FORTE can induce simple logic programs from a training set of input-
output tuples, without recourse to an oracle. Results of testing FORTE in the
domain of logic programming appear in Chapter 7.

Since FORTE is a theory revision system, it can also revise incorrect logic
programs. Possibly the most well-known work in logic program debugging
‘is PDS6 'in [Shapiro, 1983]. PDS6 is intended as a programmer's aid, and is
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therefore highly interactive. It traces the execution of a program, and queries
. ‘the user to determine which clauses in the program are incorrect and how
they ought to be revised. Another approach is taken by [Murray, 1986].
Murray's work is in automated tutoring, and he uses a known-correct program
in an interactive system to help a novice programmer debug an incorrect
program. FORTE's application in this area is quite different from either of

these approaches, since FORTE is a fully automatic system.

2.5 QUALITATIVE MODEL BUILDING
. Qualitative modelling attempts to produce models that explain system
behaviors in intuitive terms. For example, when trying to understand the
effect of heating a pot of water, it may be more useful to simply know that
the pot may boil over rather than to understand the numerical thermody-
namic equations. Qualitative models are given to qualitative simulators such
".as QSIM [Kuipers, 1986], and the simulators produce the qualitative behaviors
of the system being modelied.

Traditionaily, gualitative models have been constructed by hand. This
is workable for simple, well-understood systems. For complex systems, the
approach of compositional modelling [Falkenhainer and Forbus, 1990] allows
a system model to be built up from predefined components. Although this
makes constructing models easier, it still requires the user to understand the
system being modelled. Often, however, users want a model precisely

because the target system is not well-understood.

This leads to the approach of building a qualitative model automatical-
ly, purely from observation_s of a systems behavior. [Coiera, 1989] presents
the beginnings of such a inethod; given a qualitative description of one or
° more system behaviors, he derives a qualitative model that reproduces those

behaviors. MISQ, an independently developed system presented in [Richards,
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Kraan, and Kuipers, 1992}, uses some of the same techniques as Coiera, but
can synthesize qualitative models from gqualitative or quantitative behavioral
data. MISQ learns maximally constrained models and can handle incomplete

behavioral descriptions.

FORTE uses components of MISQ to pxjovide the domain knowledge it
needs to work in the domain of qualitative modelling. However, FORTE
substantially extends the capabilities of prior versions of M_ISQS, by allowing
_the invention of new system variables. Results in the_domain of qualitative

modelling appear in Chapter 6.

Swe use MISQ as the general name applied to a set of techniques. MISO has been
implemented in a special- purpose system (see {kraan, Richards, and Kuipers, 1991)) and via FORTE
(as described in this thesis and in {Richards, Kraan, and Kuipers, 1992}).



" Chapter 3
OBJECTIVE AND FORMAL MODEL

3.1 OBJECTIVE

The objective of this research has been to develop methods for revising
first-order theories, and to test these methods by implementing them in the
system FORTE. FORTE represents theories internally in first-order Horn clause
logic, specifically, in Prolog. FORTE can work with non-logic domains through
translator modules that convert between the foreign domain and a first-order

logic representation. In addition, FORTE allows domain-specific knowledge to

“be introduced into the theory revision process. The paragraphs below define

our terminology, and provide a more formal statement of this objective.

3.1.1 Theory

‘ A theory is a set of function-free definite program clauses.® Forte
views theories as pure Prolog programs. In a family domain, for exampie, a
theory would be a set of clauses defining famﬂy relationships.

3.1.2 Concept

A concept is a predicate in a theory for which examples appear in the
training set. Concepts need not be disjoint.” In a family domain, concepts
might inciude father, aunt, and nephew.

®A definite program clause is a clause of the form A « B,, ..., B, where A, B,, ..., B, are atoms -
[Lloyd, 1987). Definite program clauses cannot contain negation. Adding negation does not
increase the expressive power of logic programs.

’Some machine learning systems require concepts 1o be disjoint, or exclusive. This means
that, if we view predicates as relations, the intersection of the relations for different concepts
must be empty. For example, a medical system requiring disjoint concepts would be unable to

~ correctly diagnose a patient who had two simultaneous disorders.

12
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3.1.3 Instance
An instance is a ground instantiation of a concept. For example, an

instance for the family-relation concept father might be father(frank, susan).’
A positive instance is one that is true (e.g., Frank is actually Susan's father),

and a negative instance is one that is false.

3.1.4 Example

An example is a tuple {P, N, F}, where P is a set of positive instances,
N is a set of negative instances, and F is a set of unit clauses (also called
facts). The positive instances should be derivable from the theory augmented
by the facts as additional axioms; the negative instances should not. In the
case of a family domain, the facts would define a particular family, e.g.,

~ parent(frank, susan), gender({frank, male), gender{susan, female).

3.1.5 Correctness
Given a set, P, of positive instances and a set, N, of negative instances,

we say theory t is correct on these instances if

"¥YpeP tUFrp
vne N:- tuFén

where Fis the set of facts associated with Pand N. The set Pu N is consistent

if P~ N=@. A theory can never be correct on an inconsistent set of

instances.

3.1.6 Objective
Given an initial theory and a consistent set of instances, produce an

"appropriately revised" theory that is correct on the given instances.
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3.1.7 Discussion _

What is an "appropriately revised” theory? A correct theory can be
produced trivially by deleting any existing clauses and asserting new clauses
that correspond strictly with individual positive instances, but such a theory
is unlikely to be of interest. We say that a theory is appropriately revised if

it meets certain heuristic criteria, namely

— A revised theory should be semantically and syntactically similar to

the initial theory.
- A theory should be as simple as possible.

— A theory should make meaningful generalizations from the input

instances.

Similarity to initial theory. FORTE attempts to keep the revised theory
both semantically and syntactically similar to the original theory. The
semantic content of a theory is its deductive closure. The syntax of a theory
is its structure, ie., the hierarchy of rules it contains and the antecedents
present in each rule. Semantic and syntactic similarity are often competing
goals; a small syntactic change may cause a dramatic semantic change. For
example, adding a single antecedent to the top-level predicate in a theory can
cause the deductive closure of the theory to be empty.

In order to preserve the semantics of a theory, FORTE restricts its revisions
to parts of the theory that are known to cause errors. In order to preserve
the structure of a theory, many of FORTE's revision operators modify existing
rules rather than constructing new ones. In practice, it is almost always
easier to modify an existing, partially correct clause than to construct a new

one.
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Simplicity. In order to keep a theory as simple as possible, FORTE
scores revisions both on how accurate they are and on how large they make
the theory (the size of a theory is the total number of literals present in the
theory). If two possible revisions are equally accurate, FORTE chooses the one

that keeps the theory the smaliest.

Meaningful generalizations. The bias towards small theories also
helps FORTE make meaningful generalizations. Without a bias to keep the
theory small, it would be possible to create a correct theory by adding a new
clause for each positive instance. A preference for a small theory is also a
preference for general rules that cover many positive instances. The quality
of generalizations can be empirically measured by testing the revised theory

on novel instances taken from the same distribution.

3 2 FORMAL MODEL

This section presents the formal ideas underlymg Forte's basic
algorithm. The objective of the algorithm is to derive a series of theories that
are increasingly accurate on the training set. Forte uses a hill-climbing
algorithm that is guided by a global heuristic based on its accuracy on ail
training instances. This is in contrast to the possibility of using a heuristic
based on only a single instance (e.g., each iteration of back-propagation alters
the settings of a neural network based on the errors generated by a single

instance).

3.2.1 Definitions

let T be a space of possible theories, I an instance space (viz., the
training set), and £ I~ {true, false} a function mapping instances to a boolean
value such that positive instances map to true and negative instances map 10
" false. Let Pbe a program (viz., FORTE) that revises any theory t € T. The goal

of P is to revise t in such a way that, given any i € , t predicts fii) correctly.



16

Program P predicts fli} by attempting to deduce i from t, Le., if iis a logical
consequence of t, P predicts fli) = true, and if i is not a logical consequence
of t, P predicts fli) = false. We say program P, and hence theory_ t, is correct

on iif
tu F i iff fi) = true
and
tU F i iff f) = false
which we denote as correcKt, ).
3.2.2 Two models of learning
let M) represent the set of possible theories P can develop by

performing one revision on theory t. We say P learns (ie, improves the

accuracy of t) if the following two conditions hold:

vite T, ¥l e ;. Vie I correct(t, i) - correci(t, i) (1)
vte T 3¢ ¢ P, i e I =correct(t, D A correc(t’,i)
v Vie I correct(t,)) (2)

The first condition guarantees that P does not lose knowledge as it executes,
i.e., if a theory tis correct on some instance i then any revision t' will also be
correct on i. The second condition states that it is possible for P to execute
in a way that leads to an improvement in its accuracy, unless P has converged
to perfect accuracy. In other words, if a theory t is not perfectly accurate

then some t will be correct on an instance where t was incorrect. ‘While these
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" two conditions form an intuitively pleasing definition, a more general

approach can be represented by the single condition

vieT: 3t e P(t).: 1{i e I3 correctit, l')}l < |{iel 3 correci(t 0 3)

v Vie I correct(t, )

This condition says that, with each change of program state, the program is

a more accurate predictor of ‘f{i) than it was before (i.e., t' is correct on a

| larger number of mstances than t). ThlS may be less cognitively: plaumble,

since it allows P to lose arbitrary amounts of knowledge, but it imposes fewer

* yestrictions on the way P operates. Forte is based on the approach defined

by (3).

3.2.3 Accuracy of Theories
We define accuracy as the number of instances for which a theory

predicts the correct value for f(i). We say theory £ is more accurate than

theory tiff

Vi e 13 correct(t, D}| > |{i e I3 correct(t, i
Wg denote this as

t>t 4)
Finally, we say a theory is completely accurate if

vie I correcit, i)

‘This corresponds to (3) above.
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Accuracy : . Accuracy
4of 4 4 of 4
3of 4 Jof4
20l 4 20f4
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Figure 1. Accuracy graph for the concept 2C’, Figure 2. Accuracy graph for the concept WC,
meaning a circle of any color. meaning a white circle.

Using accuracy as an ordeﬁng relation, the theories describable in the
theory language form nodes in a directed graph, and the edges represent
possible theory revisions. The goal of a learning system is to move upwards
in this graph, ideally reaching the top where the system can predict i) with

-perfect accuracy.

As an example, consider the language consisting of a conjunctive
description using the two attributes: {black, white} and {square, circle}, and
Jet the instance space contain the four instances: black-square, white-square,
black-circle, and white-circle. Thgories are conjunctive, and there are two
revision operators: change a specific value to a variable, and vice versa (hence
all edges in this example are bi-directional). Hence, two sample theories in

this domain would be

positive « coior(black) A shape(square)

positive « color(white) A shape(?)

For convenience, we can refer to a theory by using the first ietter of each
- attribute. These two sample theories would be abbreviated BS and W?

respectively.
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Altogether there are nine [ aAlgorithm forte(t, t)

. . . let C be the instances on which { is correct
p0331ble theories. F;gure 1 shows let I be the instances on which t is incorrect

these nine theories arranged as an | generate_Tevisions(C, I, 4, )
choose the best re R

accuracy graph for the concept | if nt) >, tthen
forte(r(d), U)

circle. The theory correctly de- else /* done */
scribing the concept has an accura- e:;i;

cy of 4, meaning that it correctly end forte

classifies all four instances. The |Algorithm generate revisions(C, I ¢, R)

. for each op € OP :
other theories range in accuracy create a revision r,, € R
end generate_revisions

from O to 3. The edges represent -

. .. Figure 3. Top-level revision algorithm.
the possible transitions from one

theory to another using the two revision operators. Note that there is a direct

‘upwards path from any theory to the correct theory.

Figure 2 shows an accuracy graph for the concept white-circle. This

-graph contains a local maximum. If the initial theory is black-square, all

. possible revisions decrease the accuracy of the theory. If a learning system
is to avoid being trapped by such maxima it must be able to either escape

from them or avoid them in the first place (e.g., Version Space in {Mitchell,

1982] avoids local maxima by maintaining muitiple concepts).

Although any hill-climbing algorithm can be trapped by local maxima,
FORTE reduces its vulnerability by defining a wide variety of revision
operators. Adding operators adds edges to the theory graph, and thereby

eliminates many local maxima.

3.2.4 The FORTE Algorithm
The basic FORTE algorithm is a straightforward application of (3). To
‘ make a transition from tto t' € A0 that satisfies (3), FORTE looks for revisions

it can apply to t to create theory ' such that
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t'>, t

If there are several such revisions, it chooses the best one (see below). This
process iterates until there is no revision that improves the accuracy of the
theory. At this point, either t'is completely accurate or Forte is trapped in a

local maximum.

This algorithm is shown in Figure 3. We can examine this algorithm
in two parts: the hill-climbing that selects a revision to implement, and the

search strategy that composes revisions and leads to a final revised theory.

Hill-climbing. The algorithm generate_revisions represents the fact
that FORTE has a library of several revision operators. When FORTE generates
revisions, every operator is asked to genérate one or more possible revisions
to the theory. All of these revisions are collected, and the best (see below) is
selected for implementation. In essence, the operators are competing to

produce the best revision.

Revisions are evaluated on two criteria: accuracy and simplicity. The
revision that produces the most accurate theory is always preferred. If there
is more than one revision that produces the same accuracy increase, the one

leading to the simplest theory (see Section 3.1.7) is selected.

Search Strategy. There are a number of ways to search the space of
possible theories. FORTE uses the most efficient one possible: depth-first
search without backtracking. This strategy will only produce accurate
theories if local maxima do not pose a significant problem. Since we have a
known goal-state (100% accuracy) backtracking wouid allow Forte to always
escape local maxima, although at a high cost in efficiency. In practice, the
variety and sophistication of revision operators that FORTE uses serve to
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eliminate most local maxima in the theory space, thus allowing us to dispense

with backtracking (see Chapter 6 for empirical verification of this point).

Learning a theory that is accurate on the training instances is only

useful if the theory generalizes well to unseen instances. When learning in

- a finite hypothesis space®, PAC learning theory’ [Haussler, 1988] guarantees

that learning an accurate theory on a training set does lead to learning on

_unseen instances. The hypothesis spaces of many first-order domains are

finite. In a domain where the hypothesis space 'mfihite, the user may be able
to establish some upper bound on the size of a correct theory. This upper
bound serves to make the hypothesis space finite, since the theory language
contains a finite number of symbols. Given a finite hypothesis space of size
H, the number of instances needed to meet PAC requirements is O(log | H).

For languages whose expressiveness is limited, the limit may be much iower.

SThe hypothesis space is the set of distinct concepts expressible in the theory language,
ignoring semanticaily equivalent theories.

9pAC stands for probably approximately correct. PAC learning theory analyzes the
probability that a learned concept approximates the target concept to a specified degree of
accuracy. ' o . -



Chapter 4
FORTE OVERVIEW

This chapter presents an overview of FORTE, The first section looks at
.FORTE's interface to the outside world, including the training examples, the
initial theory, and any aizailable domain knowledge. The second section
exammes the theory revision process itself —how FORTE specializes, generaliz-
. s, and compacts clauses in a theory However, detalled algorithms are left

to Chapter 5.

_ 4 1 EXTERNAL INTERFACES
| Figure 4 shows FORTE's mterface to the outside world. FORTE itself is
~ represented by the center box. The remaining boxes represent auxiliary
modules that vary from domain to domain. They provide for user conve-
nience when working with domains whose native representation differs from
that used by FORTE, they can help limit the search space FORTE must explore,
and in some domains, they can substalitially enhance FORTE's ability to
develop good revisions. All of the auxiliary modules are optional and can be
omitted. In addition to the auxiliary modules shown, the user may specify an

explicit language bias.

4.1.1 Revision verifier

The revision verifier provides a way to introduce domain-dependent
knowledge into the revision process. At various stages of the revision
process, FORTE calls the revision verifier to ensure that it is creating a
potentially useful revision. If the user has no knowledge of special heuristics

~ or requirements in the domain, the revision verifier may be omitted.

22
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Theory
Initial theory _ Translator Revised theary -
Langt@gé bias -
FORTE
Training set Example
Translator
Fundamental Revision
Domain Theory Verifier

Figure 4. External interfaces 10 FORTE

The revision verifier allows the user to insert domain-specific
consistency checks three places in the revision process. First, the revision
verifier can reject data elements constructed by FORTE during the revision
process. This is often useful in domains where atoms contain implicit
function symbols (e.g., when working with lists), as FORTE cannot itself tell

‘when a constructed value is invalid. For example, if FORTE is revising a
predicate to work with lists, the training set may only contain lists of length
four and less. If FORTE adds a literal that would create lists of length eight
(e.g., append), the revision verifier can reject such lists as invalid, and FORTE
will abort the revision. The revision would probably be rejected anyway, since
it would not correspond to any instances in the training set, but doing so

early can save substantial amounts of work.
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Second, the revision verifier may be passed groups of antecedents
intended to appear together in a clause. If it detects any inconsistency in this
set, it may reject it. An example of this is the dimensional analysis per-
formed by the revision verifier for qualitative modelling. Suppose FORTE plans
t0 add the contraints derivative(X, Y) and add(X, Y, Z} to the same clause. The
derivative constraint requires X and Y to have different dimensions, while the
add constraint requires that their dimensions be the same. Consequently, the
revision verifier rejects this combihation, and FORTE rejects the corresponding

revision.

Finally, the revision verifier is given the chance to review complete
revisions before FORTE evaluates them for accuracy and simplicity. If the
revision verifier detects an inconsistency in a revision, it can reject it and
FORTE will delete it from the set of revisions being considered for implementa-

tion.

4.1.2 Fundamental domain theory
" The fundamental domain theory serves two purposes. First, it provides
a place for theory predicates which are known to be correct, and which FORTE
“should not revise. For instance, when working with lists, the user might wish
to provide standard definitions for member/2'° and append/3. Since FORTE
does not revise predicates in the fundamental domain theory, these
predicates may be written using all of the features of Prolog (e.g., functions,
built-in predicates, and cut). Second, the fundamental domain theory can

provide complex definitions for the fundamental relations used to define a

10when discussing first-order theories, we use Prolog mnotation for predicates. Thus,
member/2 refers to a predicate named “member” that takes two arguments, €.g., member(X, Y).
Also in keeping with Prolog notation, "-" is read as an implication arrow pointing to the left, and
variable names are capitalized. :
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domain. Normally, the facts in an example are taken as extensional
definitions! of the corresponding relations appearing in the theory. However,
the user may wish to provide more sophisticated definitions. For example,
when working in a family domain, one of the fundamental relations which
may be used to define a family is married/2. The fundamental domain theory

might provide the following definition for this relation:

married(X, Y) :- example(married(X, Y)}, !.
married(X, Y) :- example(married(Y, X)J.

where example(married(X, Y)) is a reference to a fact defined in an example.

This reflects the fact that marriage is a commutative relation.

-4,1.3 Theory wanslator
The theory translator is an optional module used to translate between
the native representation of a theory and the representation required by
FORTE. The most common use of the theory.transiator is to eliminate function
- symbols from the theory. Theories in FORTE are represented as function-free
definite clauses, and function symbols which appear in instances must be

explicitly interpreted by predicates in the theory.

As an example, when working with lists, it is more convenient for the

user to write and examine theories containing function symbols, ie.,

append([A[B], C, [AID]) :- append(8, C, D).

1 An extensional definition is one that explicitly provides every true instantiation. For
example, in a family domain, parent(X, Y) is assumed to be true for exactly those pairs listed as
facts in the examples (e.g., parent(frank, susan), parent(alice, fred), and so forth).
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The theory translator for list domains converts the functional list construc-
tion into a predicate construction using com ponents/3. Thus, FORTE would

see the equivalent clause

“append(X, C, Y) :- :
components(x A, B), components(Y, A, D),
append(B, C, D). '

After FORTE has revised the theory, the theory translator is called to convert

the result back into functional format.

4,1.4 Example translator

FORTE requires examples to be provided as compiex Prolog terms. As
with theories, the FORTE representation may not be convenient in all domains.
‘The example translator can be used to translate between a native domain

representation and that required by FORTE.

4. 1 5 Language hms
| Another way that domain knowledge can be provided to FORTE is
through an explicit language bias. The language bias contains a number of
elements. First, it tells FORﬁ-: what antecedents are allowed in a theory. For
example. antecedents may include calls to theory predicates, cails 1o
" fundamental relations used to define the domain, or calls to built-in equality
predicates. This allows the user 10 restrict the amount of search done by
restricting the theory space. If in doubt, the user simply allows all possibie

antecedents.

Second, the user may select the options conjunctive and most-specific.
A conjunctive theory is one where there is only a single clause for each
predicate. A most-specific theory is a conjunctive theory where each rule is
made a specific as possible—this aliows FORTE to learn useful theories in the
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absence of any negative instances. These options provide a very strong
" theory bias, and should only be used if the theory is known to be conjunctive.

Third, the user may allow or disallow recursive predicates in the
theory. If the user is not certain that the desired theory is non-recursive, the

user should allow recursion.

Fourth, the language bias allows the user to set the maximum proof-
| depth allowed when attempting to prove instances using the theory. FORTE
‘uses this depth limit to prevent looping in the prover, as well as to limit other
‘search processes in the revision operators. Generally speaking, the user can
set a large limit and be unconcerned with its effect. However, setting
relatively tight limits when working with recursive theories {which are prone

to looping) can make the system substantially more efficient.

Finally, the language bias includes one explicit tuning parameter. The
other elements of the language bias serve to restrict the theory space that
FORTE must search, but the usér can choose "least restrictive” settings. This
last parameter, relation-tuning, has no "least restrictive” setting. Instead, it
provides three distinctly different biases to the way FORTE develops revisions:
highly-relation'al, relational, and non-relational. Details on the effects of these

choices are given in Chapter 4, but a summary is presented here.

Different biases are suited to different domains. Domains where
relations are characterized by relational paths (see relational pathfinding in
Chapter 4), should use a setting of "highly-relational.” This is appropriate, for
example, for family relationships. Selecting any other setting will result in
less accurate revised theories. If a domain is essentially propositionai, then
a setting of "non-relational” shouid be used. The intermediate setting,
relational, is the default, and should be used for all other types of domains.
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4.2 REVISING THEORIES

The top-level algorithm for FORTE presented in the last chapter is a hill-
climbing algorithm. Each iteration FORTE generates a set of possible revisions,
the best of which is chosen and implemented. This process repeats until no
further revisions are possible. This section provides an overview of the
methods FORTE uses to generate revisions; specific algorithmic details are

presented in the next chapter.

FORTE performs three types of revision on theories: specialization,
generalization, and compaction. Specialization and generalization are
performed in hopes of improving the theory's accuracy. Revisions generated
are ranked by how much they improve theory accuracy, and secondarily by
their simplicity. Compaction revisions are only generated when no specializa-

tion or generalization revision improves the theory's accuracy.

The examples in this section maried
Christopher

Penselope
are cast in two domains. The first of

these is the domain of family rela- parent parent

tionships in the family shown in

marmied
Arthur Victoria

James
Figure 5. This is one of the families \
" in Hinton's family data [Hinton, parent parent
1986]. The second domain is a Colin Charlotte

blocks-world consisting of tables (of Figure 5. A family from Hinton's family data.
various colors) and blocks {of vari- |

ous shapes and colors). In this domain, we seek to describe a "likeable”
configuration of tables and blocks, based on celor, shape, and stacking (i.e.,
which blocks are on which table).
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4,2.1 Specializing predicates
FORTE specializes predicates when negative instances are provable by

the current theory. A target clause may be specialized by being deleted, or
" by having antecedents added to it. Deletionis a simple operation; the clause
1s removed from the theory, and all positive and negative instances whose
) proofs made use of the clause are reproven. If the result is a more accurate

theory, then deletion is a possible revision.

On the other hand, deletion is fairly drastic, and likely to make positive
as well as negative instances unprovable. It is much more likely that a clause
can be appropriately specialized by adding new antecedents to it. We may
actually need to produce several specialized clauses in order to cover all of
the positive examples. For example, in the blocks-world domain, suppose we

like round blocks that are either red or green. If we begin with the rule
" likeable(X) :- block(X), shape(X, round).

then we must specialize this rule in two separate ways to obtain the correct

theory

likeable(X) :- block(X), shape(X, round), color(X, red).
likeable(X) :- biock(X), shape(X, round), color(X, green).

In order to specialize a clause, FORTE adds antecedents to it to make all
negative instances unprovable. The goal is to keep as mahy positives
provable as possible, but it may not be possible to retain proofs for all of
them. In this case, FORTE adds the new specialization to the theory and begin
again with the original clause, looking for alternate specializations that will
retain the proofs of the other positive instances. This process repeats until
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we have a set of clauses that retains the provability of a_ll of the originally

‘provable positive instances.

'FORTE provides two separate algorithms for producing a specialized

clause, called hill-climbing antecedent addition and relational pathfinding.

" The interaction of these two algorithms is determined by the relation-tuning
parameter in the language bias. If the relation-tuning is set to "highly-

relational” then clauses developed by relational pathfinding are aiways

preferred. If relation-tuning -is . set .to "non-relational” then relational

 pathfinding is not used.

When relation-tuning is set to "relational” (or omitted, since this is the
defauilt), both hill-climbing antecedent addition and relational pathfinding
develop clauses, and the clause with the best performance (accuracy and
simplicity) is selected. In practice, these two methods of specializing clauses
are complementary; certain types of revisions are performed well by one but

not the other.

The hill-climbing algorithm is reminiscent of FOIL. FORTE considers all
antecedents that could be added to the current clause, scoring each on its
ability to discriminate wositive and negative instances. It selects the best
antecedent and adds it to the clause. This process continues until all
negatives have been eliminated or until no antecedent provides any gain. As

'an'example, suppoée we wish to define the grandfather relation, beginning

with the pverly-general rule
grandfather(X,Y) :- gender(X, male).

and using one positive and two negative instances:
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+ grandfather(christopher, charlotte)
- grandfather(james, charlotte)
- grandfather{colin, charlotte)

One of the antecedents considered is parent(X,Z), which states that X has a
child. This antecedent provides a gain since adding it eliminates the instance
grandfather(colin, chariotte). However, it does not eliminate the other
negative instance, so we continue specializing. The best antecedent to add
next is parent(Z,Y), since it eliminates the remaining negative instance while

still aliowing the positive instance to be proven.

The discrimination measure used to score antecedents is the informa-
tion theoretic measure used by FOIL. However, FORTE considers only the
number of provable positive and negative instances, whereas FOIL's tuple-
based approach counts the number of proofs of positive and negative
instances. FORTE's approach is more efficient since it does not compute all

proofs, but results in a slightly different bias.

The hill-climbing approach is quite effective
in many cases, particularly for developing recur-
sive base-cases and for adding non-relational

antecedents to a rule. However, as with any hill-

climbing method, it can be caught by local maxi-

ma. There is also another type of locality problem, Figure6. A local plateau.
called a local plateau, where there are many
_antecedents that do not decrease accuracy, but in order to actually increase

~accuracy one must add several antecedents at once.

We can see the local plateau problem by trying to define the grandpar-

ent relation using only the instances
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+ grandparent(Christopher, Colin)
- grandparent(Christopher, Arthur)

There is no single antecedent that
Christopher Penelope
we can add which will allow the
‘d
_positive instance to be proven while parent parert
aki i i - rried

making the negative instance un Arthur Victoria — James
provable. Both Colin and Arthur %,

. . th - t
have parents, neither has children, paren pazen
and neither is married. Even deter- Colin Charlotte

minate literals do not help in this Figure 7. Finding the relational path for the
. grandfather relation.

example, since all parents have two

children and all children have two parents. In order to create a correct

theory, we must simuitaneously add both of the required parent relation-

ships, i.e.,
grandparent(x, y) « parent(x, 2) A parent(z, y).

Relational pathfinding is able to do this since it works on the basis of graph-
search, seeking the shortest path of relations joining the constants christo-
pher and colin in the positive example. ‘

Relational pathfinding [Richards and Mooney, 1992] is based on the
assumption that, in relational domains, the ground atoms defining a positive
instances are usually linked by a short fixed path of relations. In the example
above, the grandfather relation is characterized by a fixed path containing
two parent relations. To find such a path, we view the domain as a (possibly
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infinite) graph of constants linked by the relations that hold between them."
| We locate the nodes corresponding to the constants of a positive instance,
and explore paths from ail nodes simultaneously until we find an intersec-
tion. If the positive instance chosen for relational pathfinding was represen-
't'ative of many positive instances, the resulting specialization will discrimi-

nate well between the positive and negative instances.

4.2.2 Generalizing predicates

" FORTE generalizes a predicate when a positive instance is unprovable.
1t uses four operators to perform generalization. Two methods are similar
to methods used in propositional theory revision: adding new rules and
deleting antecedents from existing rules. The second two are variants of the

inverse-resolution techniques absorption and identification.

In order to add a new rule, FORTE first copies the existing (overly-
specialized) rule and deliberately overgeneralizes it. It does so by deleting all
antecedents whose deletion either does not allow any negatives to become
provable or whose deletion allows one or more positives to become provabie.

. This reduces the clause to a core of essential antecedents. FORTE passes this
overly-general rule to the antecedent addition algorithm described in Section
4.2.1, which specializes the rule to eliminate provable negatives. This process
may create several rules, all of which will be added to the theory.

However, FORTE may be able to create a good revision simply by
deleting antecedents from an existing clause. It inciudes two different
methods to do this, just as there were two methods to add antecedents to a

clause; one is a simple hill-climbing method, while the other is well-suited to

12Eor many domains, like that of family relationships, this is a natural representation.
However, any domain can be represented in this way. If we have relations with arity greater than
two, they are simply edges with more than two ends.
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escaping local maxima and local plateaus. ‘Both methods may create several
“different generalizations of the original clause, in order to make as many

positives provable as possible while still excluding the negatives.

The hill-climbing method of antecedent deletion evaluates aH anteced-
ents on the basis of how many positives would be provable if the antecedent
were deleted. It does not consider any antecedent whose deletion would
allow proof of a negative instance. It deletes the best an_tecedent and
recurses. This process terminates either when all positives are provable, or
when no further antecedents can be deleted without allowing proof of a

negative,

This simple approach to deleting antecedents may be unable to create
any useful generalizations of the original clause. For example, it may be
necessary to delete at least two antecedents before any positive wili become
‘provable; this is another version of the local plateau problem. If this occurs,
" FORTE uses a different method, which deletes multiple antecedents.

The method of deleting multiple antecedents is & general one, which
can solve arbitrary "m of n” problems.”* The algorithm uses a guided,
exhaustive depth-first search process, deleting any antecedents it can without
allowing proof of any negatives. Once it has deleted all antecedents possible,
it checks to see if one or more positive instances have become provable. If

so, the newly generalized clause is returned. If not, the algorithm backtracks,

13An m of n problem is one where any subset of the given antecedents is sufficient. For
example, suppose the initial rule is: concept :- a, b, c, d, e. I positives instances may
satisfy any three of the given antecedents, and no negative will satisfy more than two, then a
correct theory consists of ten rules of the form: : ‘
concept :- a, b, ¢. concept :- a, b, d. concept :- a, b, e.
concept :- b, ¢, d. concept :- b, ¢, e. concept :- b, d, e.
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undoing a previous deletion and searching for another combination of

antecedent to delete. This algorithm is described in detail in Chapter 5.

FORTE's third method of generalization is the inverse resolution
operator identification. Identification seeks to construct an alternate
definition for an antecedent that is failing in attempted proofs of positive
instances. It develops an alternate definition by performing an inverse
resolution step using two existing rules in the theory. For example, suppose
a call to predicate x is the failing antecedent. We thus would like to
generalize our definition of X, and we have the following two rules in the

domain theory:

a<« b, x
ae«bcd

_ Identification will replace these two rules with the equivalent pair:

a«b, x
Xec, d

While this has no effect on the deductive closure of these rules alone. we have
now introduced an additional clause for x, and have thus generalized its

definition.

The fourth method of generalization is the inverse resolution operator
| absorption. Absorption is the complement of identification. Rather than

constructing new definitions for intermediate predicates, absorption seeks to
‘allow existing definitions to come into play. Suppose predicate ¢ in the rule

below is a failure point:

a«b,cd ' | (1)



36

Now suppose the theory contains the following rule, as well as other rules

. with consequent X:
X« C d

.ln this_ case, absorption would replace rule (1) with the new rule
a<« b, x

‘thereby possibly allowing alternate definitions of x to be used when proving

predicate a.

4.2.3 Compacting Predicates _

when FORTE is unable to create any useful specializations or generaliza-
tions of the theory, it attempts to compact it. The compaction operators are
designed to change the deductive closure of the theory as little as possible.
However, if FORTE is caught in a local maximum, compaction may alter the
theory in a way that allows it to escape. Otherwise, the compaction factors

out some common antecedents, thereby making the theory more readable.

Revisions proposed by compaction operators are scored in the same
way as revisions proposed by specialization and generalization operators: on
accuracy and simplicity. Compactions are not expected to increase the
accuracy of the theory, but this scoring prevents them from decreasing
accuracy, and ensures that the most beneficial compactions are implemented

first.

Compaction uses two operators: identification and absorption. These

are similar to the generalization operators of the same names, but are driven
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by a requirement to reduce the size of the theory, rather than to increase its

accuracy. For example, if we have the theory

»
1]
o oo
-mn

we can reduce its size using absorption

X oW
noo
o

~ and again by using identification, thus yielding the compacted theory

a:-b, x
x:-¢d
x:-ef

Of course, this may generalize the t'heory, sb we oniy perfori:n these

compactions if doing so does not reduce accuracy on the training set.



Chapter 5
THEORY REVISION ALGORITHMS

This chapter presents the details of FORTE's theory revision algorithms.
The first section discusses the algorithms that drive the overall revision
process, using the revision operators to develop revisions. The second
section explains special provisions that FORTE makes for recursive and most-
specific theories. The third section gives the algorithms for the revision
operators themselves. Finally, the last section briefly discusses the computa-

tional complexity of FORTE.

5.1 TOP-LEVEL ALGORITHM _

FORTE revises theories iteratively, using a hill-climbing approach. Each
iteration identifies points in the theory, called revision points, where a revision
has the potential of improving the theory's accuracy. It then generates a set
of revisions, selects the best one, and implements it. This process continues
until no revision improves the theory. This top-level algorithm is shown in

Figure 8.

In order to generate revision points, the current theory is tested on the
training set. FORTE annotates failed proofs of positive instances and success-
ful proofs of negatives. From these annotations it identifies points in the
theory for possible revision (this is discussed in more detail in Section 5.1.1).
The revision points are sorted according to their potential—the maximum
increase in theory accuracy that could result from a revision of that point.
For example, if a particular clause was used in successful proofs of five

negative instances, then specialization of that clause has a potential of five.

38
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FORTE then generates a set of pro- [ repeat

. . - . Generate revision points

posed revisions from the revision points, Sort revision points by potential

For each revision point, best to worst

beginning with the revision point that o
Generate revisions

has the highest potential and working Update best revision found
) . Until potential of next revision point
down the list (see Section 5.1.2). We -< benefit of best revision to date

. . . hen th ) Implement the best revision
stop generating revisions when {he po~ | ns) no revision improves the theory

tential of the best remaining revision gigmre 8. The top-level FORTE algorithm.
‘point is less than the accuracy increase

- gained by the best revision generated to date. FORTE scores revisions on the
‘change they make to the theory's accuracy on the training set and on the
effect they have on the size of the theory. A revision is said to improve the
theory if it either increases accuracy or has no effect.on accuracy but reduces
the theory's size. The revision that best improves theory accuracy is selected;
‘in case of a tie, the revision that makes the theory the smallest is preferred.

For example, if we have the revision scores

score(3, -4) improves accuracy by three instances
increases size of theory by four literals

score(2, 1) improves accuracy by two instances
o decreases size of theory by 1 literal

score(2, -6) improves accuracy by two instances
increases size of theory by six literals

we would order them as shown, and select the top-most revision. The best

revision is implemented, and the cycle begins again.

This process continues until a cycie produces no revisions that
- improve the theory. At this point, we hope to have developed a theory that
" is correct on the training set. However, since this is a hill-climbing process,
FORTE can be caught in local maxima. We minimize this danger in two ways.

First, revisions are developed and scored using the entire training set, rather
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| than just a single instance; this global vision gives us better direction than we
would have if revisions were developed from single instances. Second, FORTE
uses a variety of different operators to generate possible revisions. Since the
operatbrs have different strengths and weaknesses, they are able to escape

different types of locality probiems.

5.1.1 Generating revision points
Revision points are places in a theory where we suspect that errors

may lie. They are of two types: specialization points and generalization
points. We identify revision points by annotating proofs or attempted proofs
of misclassified instances.”* Points in the theory where proofs of positive

" instances fail are places where we may want to generalize the theory. Rules

- used in successful proofs of negative instances are points where we may want

to specialize the theory. The same revision point may be flagged by several
different instances, and the number of such instances represents its
potential—the maximum increase in theory accuracy that we could possibly

gain by revising the theory at that point. =

Generating specialization revi- | For each provable negative
sion points is simple. We simply note . :gt:‘;!l clauses in the successful proof
which clauses participate in proofs of | For each clause in the theory
potential =
negative instances, and these clauses number of incorrect proofs using it
.. \ . if potential > 0
become revision points. The algorithm record a specialization point
is given in Figure 9. e::i“gi

Figure 9. Generating revision points for
Generating revision points for specialization.
generalization is more complex because we have three kinds of generalization

operators. Some generalization operators are antecedent-based, meaning that

14 A1l proofs are carried out using depth-first SLD resolution with backtracking. This is the
standard Prolog proof technique. A depth bound is used to prevent looping.



41

their revisidns target a particular antecedent in a particular clause; some are
clause-based, and some are predicate-based. We need a revision point for
each of these three operator types. HoWever, all of these revision points are
generated from anndtations made during attempted proofs of failed positive

instances. The algorithm appears in Figure 10.

The annota- [For each unprovable positive
. . mark all failing antecedents in the proof-tree
tion process itself mark all antecedents that may contribute to the failure
is fairly complex. |end for
y P For each marked point in the theory :
Each time we are potential = number of instances marking it
if potential > O

. forced to back- record antecedent-based generalization point
-track, w ot end if N
4 € DNOL€ land for

For each clause with a marked point

potential = number of instances marking a point in the clause
in which clause |end for
. For each predicate in the theory referenced by a marked point
failed and caused potential ~ number of instances marking a call to the predicate
end for '

which antecedent

us to backtrack;

. Figure 10. Creating revision points for generalization.
the failing anteced- T

ent is a "failure point". In addition, we must consider which other anteced-
ents may have contributed to this failure, perhaps by binding variables to
incorrect values. These antecedents are called "contributing points". As an

- example, consider the following program, when called with the goal a(1):

Program Facts
a(Y) :- b(X), ccfY), d(X,Y). bb(1).
b(X) :- bb(X). cc(1).
d(X,Y) :- dd(X,Y). dd(2,2).

In this program we have failure points d(X,Y) and dd(X,Y), since these two
_antecedents fail (i.e., are called but are never successfully proven). Other

. antecedents, such as cc(Y) are not marked as failure points even though they
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do fail on backtracking, since they were successfully proven during the

" original traversal of the proof branch in which they appear.

In addition, we note that X is bound by b(X) and ultimately by bb(X),
so we mark these two antecedents as contributing peints. We do not mark

cc(Y) since it did not instantiate Y. Our final annotations are:

a(Y) :- b(X), c(Y), diX.Y).
b(X) :- bb(X).
d(X,Y) :- dd(X.Y).

No distinction is made between failure points and contributing points. These
marked antecedents become our antecedent-based revision points. They
represent all points in the theory where generalization may improve theory
accuracy. We derive the other types of generalization revision points from

the antecedent-based revision points.

We create clause-based revision poinis for all clauses in which we made
an annotation. The potential of a clause-based revision point is the number
of distinct instances that marked any point within it. These revision points
are used by clause-based operators like add-rule, which generalize a clause
without regard for any particular antecedent. In the above example we would
have three clause-based revision points since all three clauses contain marked

points.

Predicate-based revision points are the next step beyond clause-based
revision points. A predicate-based revision point is created for each theory
~ predicate that appears as a marked antecedent in the annotated theory. In
" other words, since we marked b(X) in the theory, we create a predicate-based
revision point for b/1. However, we do not create a predicate-based revision

point for a/1, since no antecedents referencing a/1 were marked. Predicate-
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based revision points have a potential equal to the number of distinct
instances that annotated a call to the predicate anywhere in the theory.
These revision points are used by the operator identification, which seeks to
generalize the definition of the predicate, without reference to any particular
clause. In the above example, the marked points reference two predicates

defined in the theory, b/1 and d/Z, so we would have two predicate-based

revision points.

5.1.2 Developing revisions

' Once revision points have been generated, they are sorted by
decreasing potential. FORTE then developé revisions for each revision point
in turn, beginning with the revision point that has the highest potential. This
-process is outlined in Figure 11. For a given revision point, FORTE calls all
operators that use that type of revision point to produce proposed revisions
to the theory. It continues developing revisions until one of two things

happens.

If we reach a point [ror each revision point, from best to worst

. . Generate revisions
- "wher - e
e the best revision gener Update best revision found

ated to date increases theory |Until potential of next revision point

< accuracy increase of best revision
accuracy more than the po- or no more revision points ‘
e ) if best revision does not increase accuracy of theory
tential increase in accuracy of | Generate compaction revisions

any remaining revision point, e:;?: te best revision found

best revision proposed for I&ure 1l. Generating revisions.

incorporation into the theory. If, on the other hand, we run out of revision
points and still have no revision that improves the theory, FORTE develops
additional revisions using the compaction operators. If the theory is
completely accurate on the training set, this is the final compaction stage
“before returning the revised theory. If, on the other hand, the theory is not
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completely accurate, FORTE is trapped in a local maximum, and the compac-

tion operators may help it to escape.

5.2 SPECIAL PROVISIONS
There are two types of theories, as specified by the language bias, for
which FORTE makes special provisions: recursive theories and most-specific

theories. These provisions are discussed below.

5.2.1 Recursive theories
Revising a recursive theory is substantially more difficult than revising
- a nonrecursive one. With nonrecursive theories, we can treat the predicate
under revision in isolation from the rest of the theory. If the predicates
appearing as antecedents contain slight errors, we will stifl be able to develop
a revision for the chosen predicate. If the antecedents contain gross errors,
the proposed revision is likely to simply eliminate them as antecedents.
When revising a recursive theory, we inevitably need to evaluate a recursive
call to the very predicate we are revising. "‘And, since we are revising it, we
can be almost certain that the results of evaluating the recursive call will be
‘incorrect. Furthermore, when a recursive definition is wrong, it is usually
catastrophically wrong—misclassifying large numbers of instances due to
looping or other problems. An'd, unlike the nonrecursive case, we do not have

the option of simply eliminating the antecedent.

In order to solve these problems, we must decouple our evaluation of
a recursive call from the definition of the predicate that we are modifying.
The training set provides us with a way to do this; we can use the positive

" instances in the training set as an extensional definition of the predicate.”

15EOIL also uses the training set to provide extensional definitions. When FOIL adds an
antecedent to a clause, the variables in the antecedent receive values from the defined tuples.
The validity of these bindings are checked against the training set. If the antecedent includes
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By using this extensional definition to correctly evaluate recursive calls, we
allow the revision process to work unhindered by the complications of
recursion. And, after the revision has been developed, we can test its actual

effectiveness using normal resolution.

Unfortunately, using the training set as an extensional definition works
only if the training set is in some sense complete. For example, if we are
‘learning a definition of list reversal, and we wish to prove the example
reverse([a,b,c},{c,b,é]), then the training set must contain the examples re-
verse([b,c], [c,b]) and reverse(fc], [c]). If either of these instances is missing,
our proofs will fail and wé will not be able to develep a correct revision.
Hence, when revising recursive predicates, the training set must contain all
examples that will be generated during well-founded recursion from other
examples present. Since the user is not expected to know what recursion
-~ scheme is appropriate for the theory, this means that the training set should

" contain a complete set of examples below a certain size.

If the recursive predicate we wish to revise is not a top-level predicate
for which we have training instances, FORTE derives a temporary training set
for the predicate from the top-level predicates. This process works well if the
higher-level predicates are correctly defined, but may develop different
predicates than expected if the higher-level predicates themselves contain

€ITors.

To see how we derive a training set, suppose we have the (correct)

predicate for a subset predicate, i.e.,

new variables, the tuples are extended using all possible bindings found in the training set.
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subset({l, A).
- subset([EIt|Elts], Set) :- member(Elt, Set), subset(Elts, Set).

and we wish to derive a training set for member. Our training set contains

all positive instances for subsets of a set contain three or fewer elements:

subset({}, [). . . subset([i, [a]).
subset([], [b]). subset({}, [c]).
subset({}, [b,c]). subset({}, [a,c)).
subset({}, {a,b]). _ subset({], [a,b,c]).
subset([a], [a]). subset([bl, Ib)).

" subset([c], [c]). ' _ subset({a), [a,b]).
subset([a], [a,c]). ~ subset({a), [a,b,ch.
subset([bl, [a,bD. - subset([b], Ib,cD.
subset([b}, [a,b,c]}. . subset([c], [a.c]).
subset([c], [b,c]. subset([c], [a,b,c]).

.and so forth. To derive a training set for member, we collect all of the calls to
member made at the top-most level by subset (i.e., we do not descend into the
recursive levels, since the results of doing so depend on the correct
- functioning of member—the predicate we are seeking to revise). We thus
have the following correspondence between subset instances and derived

member instances

subset([a], [a]) — member(a, [a])
subset([a], [a,b]) — member(a, [a,b])
subset([b,c], [b,c]) — member(b, [b,c]
subset([a,b], [a,b,c]) — member(a, [a,b,c])

By collecting all of these instances, we develbp_a training set for member.
The effectiveness of this technique depends on two things. First, if the higher
level predicate is not correct, the process may either fail or else define an
unexpected relation, which happens to be called member. In the latter case,

we will still develop a revision leading to a correct theory; it just may not be
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the expected theory. Second, the type of calls made to the lower level
predicate are important. In the subset example, we generate a complete

training set for member. If, however, we used a definition of the reverse

predicate

reverse([], [D).
reverse([AB], C) :- reverse(B, D), append(D, {Al, C).

to generate a training set for append, the derived training set would never
have more than a single element in the second argument. It would thus
define a predicate that adds one element to the end of a list. This predicate

is correct in the context of reverse/2, but should not be called "append.”

5.2.2 Most-specific Theories

In some domains we wish to make the deductive closure of a theory
fit the known positive instances as tightly as possible. These domains are
usually ones in which we are learning from positive instances only. In order
to prevent simple memorization, where we learn one rule for each positive

instance, FORTE insists that most-specific theories also be conjunctive.

An example of a domain requiring 2 most-specific theory is gualitative
modelling. Given a set of input behaviors, we wish to develop a model that
reproduces those behaviors. Negative behaviors are not readily available. We
could generate an infinite number of them, but which ones we should give to
. a learning system is not immediately clear. Hence, we ask FORTE to develop
the most constrained model that will reproduce all of the input behaviors.
Since this is a single model, it will be represented by a single clause (and,

- hence, it is conjunctive).
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In order to develop a most-specific theory, FORTE follows the normal
revision process to generalize the input theory as necessary to allow all
positives to be provable. It then makes the theory as specific as possible by
adding all possible antecedents (which do not eliminate any positive
instances) to each clause in the theory. In order to ensure that we add a finite
number of antecedents, we do not alldw the hill-climbing version of

antecedent addition to introduce new variables during this process.

5.3 REVISION OPERATORS
Theory revision operators must be able to transform any theory
expressible in the theory language into any other theory in the language. We

can do this with the four basic revision operations:

-- adding a rule
-- deleting a rule .
-- adding an antecedent to a rule

-- deleting an antecedent from a rule

A simple implementation of four operators to perform these basic operations
would produce a workable theory revision system. However, such a system
would often find itself trapped in local maxima or lost on local plateaus.
Also, the system would be inefficient, since a semantically simple revision
may require many applications of the operators. FORTE's operators are
designed to avoid most local maxima and local plateaus, as well as to improve
efficiency. However, they can often best be understood by remembering that

they are ultimately composed of the four basic revision operations.

This section presents the algorithms for FORTE's revision operators.
The algorithms are stated in terms of the changes they make to the theory.
Recall, however, that each operator is developing a proposed revision, and that
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the revision will be implemented only if it is the best revision developed by
any operator for any revision point. The examples in this section are drawn
from two domains. The first is a simple blocks-world consisting of tables
described by color {red, green, blue} and blocks described by shape {round,
square, triangular}. In this domain we seek to describe a "likeable” combina-
tion of blocks and tables. The second example domain is Hinton's family

. data.

Conceptually, each operator develops its revision using the entire
training set. However, in practice, this is unnecessary. For exampie, when
specializing a clause using add-antecedent, we will not change the provability
of any unprovable instance, or of any provable instance whose proof does not

| rely on the clause béing specialized. Hence, add-antecedent develops its

revision using only provable instances whose proofs rely on the target clause.

5.3.1 Delete rule (specialization)

When given a revision point that identifies [|f theory is recursive
If clause is last base case

and recursive cases exist
iinstances, this operator deletes the clause. There ": i’fe‘"m“ possible

, en -

are two restrictions. First, if the clause.is the {endif
. . . delete clause from predicate
only base case of a recursive predicate (i.e., @ |if predicate is empty

. d i
predicate that currently has one or more e:: ifthe failure rule

a clause used in a proof of one or more negative

- recursive clauses), we are not allowed to delete it. Fgyre 12. The ddet¢nﬁe oper-
Second, if this is the only clause for a concept, 2'°F

we delete the clause, but replace it with the rule
concept :- fail.

This has the same effect on the theory as deleting the rule, but we retain a
clause to provide a starting point for later revisions to this predicate.



5.3.2 Delete antecedent (generalization)
This operator uses a clause based revision point, which includes a list

of the positive instances that flagged failure points in the clause. It tries to
find antecedents that can be deleted to allow the instancgs to be proven,
without allowing proofs of any negative instances. If necessary, the original
clause will be generalized in several different ways. For example, suppose we

"like" square blocks on tables and blocks on red tables, and we are given the

overly specific rule

" likeable{(Block, Table) :- )
on{Block, Table), color(Table, red), shape(Block, square).

From this rule, delete-antecedent develops two generalizations to cover the

positive instances:

likeable(Block, Table) :- on(Block, Table), color(Table, red).
likeable(Block, Table) :- on(Block, Tabie), shape(Block, square).

To do this, we gen- {repeat

if we can generaiize the clause by delete-antecedent

eralize the original clause
to cover as many pos-
itives as possible, without
allowing proofs of any
We then add

the generalized clause to

negatives.
the theory. If there are
more positives to be cov-

ered, we begin again with

add generalized clause to the predicate
else if we can generalize the clause by delete-multiple
add generalized clause to the predicate
else
we are unable to generalize the clause
end if
until all positives listed in this revision point are provable
or we were unable to generalize the clause
if we have one or more generalizations
replace the original clause with the generalizations
end if

Figure 13. The delete-antecedent operator.

the original clause and repeat the process. We stop when all of the positive
instances listed in the revision point are provable or we are unable to

generalize the original clause to allow proof of any of the unprovable instances.
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We have two methods of generalization at our disposal. First, we try
a hill-climbing approach to clause generalization. This method deletes one
antecedent at a time, selecting each time the antecedent that allows the most
unprovable positives to be proven. As with any hill-climbing approach, this
is efficient but vulnerable to locality problems. If this approach fails, we use
a more general method that can delete multiple antecedents simultaneously.

Hill-climbing antecedent deletion. This method of deleting anteced-
. ents is iterative. It tries deleting each antecedent in the specified clause, and
notes two things: how many unprovable positives can be proven when the
antecedent is deleted, and whether any negatives become provable as a result
of its deletion. We select the antecedent that allows proof of the largest
number of positives while not allowing any negatives to be proven. This
antecedent is deleted, and the process repeats. We stop when there are no

more antecedents whose deletion gains us anything.

This approach [tepeat

for each antecedent in the clause
if deleting antecedent does not allow provable negatives
count number of positives the deletion makes provable
end if

no antecedent whose end for
. ) delete antecedent atlowing the most provable positives
deletion allows posi- | until we cannot delete any antecedent

tives to be proven but lff:ri? didn't delete any antecedents

end if

Figure 14. Delete antecedent (hill-climbing).

todeleting antecedents

may fail—there may be

does not allow nega-

tives to be proven.
There are two principle causes of this. First, it may be that we need to add
new discriminating antecedents to the clause after generalizing it. In this
case, the add-rule operator is likely to propose a useful revision. Second,
- .there may be many antecedents whose deletion does not appear to‘affe-ct the
provability of any instance—but we may be able to generalize the clause suc-
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'cessfully by deleting several antecedents simultaneously. This local plateau

problem is dealt with by our technique for deleting multiple antecedents.

Deleting multiple antecedents. Our second method of generalizing a
clause deletes multiple antecedents. This method is more computationally
expensive, since it may have to try deleting many different combinations of
antecedents before finding one that is useful. However, it is a highly effective
operator, capable of soiving general "m of n" problems. For exampile, suppose
that we are interested in blue, red, or green blocks on a table. The user may
know the important features, but not the correct combinations, and provide

the initial theory

likeable(Block, Table) :- on(Block, Table),
color(Block, blue), color(Block, green), color(Block, red).

This theory is so overspecialized that no positives are provable (since a block
can only be one color). Further, deletion of any single antecedent will not
allow any positives to be proven. However, the algorithm for deleting

multiple antecedents will correctly generate each of the three clauses

likeabie(Block, Table) :- on(Block, Table), color(Block, red).
likeable(Block, Table) :- on(Biock, Table), color(Block, green).
likeable(Block, Table) :- on(Block, Tabie), color(Biock, blue).

To generalize a clause, we first collect all antecedents whose deletion
does allow any negative instance to be proven. Note that none of these
deletions will allow positive instances to be proven, or else the hill-climbing
approach to antecedent deletion would have found them. We exhaustively
generate combinations of these antecedents, looking for a combination whose

- deletion allows proof of one or more positives but no negatives.
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We build our combination of [dejete-multiple

collect all antecedents whose deletion
does not allow negatives to be proven

working left-to-right through the |repeat

deletions one antecedent at a time,

- repeat
clause. When we delete an anteced- delete an antecedent
. . if negatives are provable
ent, we check to see if any negatives prune this branch of the search space

C ey : end if
have become provable. This allows us | neii no antecedents left in the set

; : : until one or more positives are provable
to substantially prune the search or we have exhausted the search space

‘space, as, if negatives have become iffﬂfil positives became provable
provable, we discard not only this |{end if

particular combination but all super- Figure 15. Delete antecedent (delete-multiple).

‘sets of it. Note that we do not stop
when positives have become provable-we delete as many antecedents as we

can, in an attempt to cover as many positives as possible.

5.3.3 Add antecedent (specialization)
" " If negative examples are provable, the theory must be specialized. The
delete-rule operator is a drastic way to do this. A gentler approach is to
“specialize a clause by adding antecedents to discriminate between positive
and negative instances. In order to retain proofs of all positive instances, we
may need to create several different specializations of the original rule. For

example, if we "like" red or green blocks on tables, then the rule
likeable(Biock, Table) :- on(Block, Table).

is overly general. However, we can specialize it in two ways to produce the

correct theory:

likeable(Block, Table) :- on(Block, Table), color(Block, red).
likeable(Block, Table) :- on(Block, Table), color(Block, green).



clause: a simple hill- choose the smaller clause
e . ) { endif ‘
‘climbing method (sim- add the chosen clause to the proposed revision

‘method we used to
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We have two [repeat

: specialize original clause by hill-climbing
methods of = adding specialize original clause by relational pathfinding

antecedents to a choose the clause covering the most positives
if both cover the same number of positives

. . e 1s until all positives covered by the original clause are covered
llal.' to the hill-climbing or until we are unable to generate & specialization
if we produced one or more speciaiized clauses

reptace the original clause with the specializations
delete antecedents) |endif

Figure 16. The add-antecedent operator.

and a method we call

" relational pathfinding

{Richards and Mooney, 1992]. We always use both methods to specialize the
original clause, and we select the better of the two specializations. If the se-
lected specialization covers all positives, we are finished. Otherwise, we

repeat the process, producing other specializations of the original clause.

" Since our two methods of adding antecedents have very different

capabilities, they are mutually recursive. This means that one method can

~ perform part of a specialization and the other can finish it. For example,

' consider the problem of learning a rule for an uncle who is a blood relative,

Relational pathfinding will readily generate the clause
uncle(X, Y) :- parent(V, X), parent(V, W), parent(W, Y).
This rule will be = good discriminator between positive and negative

instanées, but it is still overly general. Hence, relational pathfinding will call
the hill-climbing method to provide the final two antecedents:

uncle(X, Y) :-
parent(V, X), parent(V, W), parent(W, Y), X\=W, gender(X, male).
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Hill-climbing antecedent addition. The hill-climbing method begins
by generating all variablizations of all antecedents that could be added to the
current rule. The Janguage bias determines which classes of antecedents are
considered, and clearly invalid or redundant antecedents are not generated
(for example, relational antecedents must contain at least one variable that
appears elsewhere in the clause). The collected antecedents are scored on
" their ability to eliminate proofs of negative instances while retaining the
‘provability of positive instances. We add the best antecedent, and iterate.
The process stops when we have eliminated all negative instances or when no

antecedent has a positive score.

The scoring func- [repeat

. s create set of possible antecedents

tion is similar to the one score antecedents on their ability to concentrate

used by FOIL [Quinlan, |Positives

Y [Q ' add the best antecedent

1990]. However, FOIL [{ until all negatives are eliminated

or no antecedent has a positive score

counts the number of |ifwe specialized the rule, but negatives are stili provable

proofs of instances, . :zllifrelatlonal pathfinding with the specialized clause

whereas FORTE counts the Fnye17. Add antecedent (hill-climbing).

number of instances (ig-

noring the fact that one instance may be provable in several different ways).
We believe that this provides a more realistic measure of the benefit of an
antecedent. The scoring function measures the amount of information an
antecedent conveys about the instances. To develop this measure, we
determine how much information we need to correctly partition the instances
both with and without the antecedent. The difference between these amounts

is the information gain of the antecedent.

In order to correctly partition an arbitrary set, we can resort to
appending a flag to each positive instance. The amount of information this

requires is one bit per positive instance. However, if we have a disproportion-
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ate number of positives, we may be able to find a more efficient approach.
Information theory gives us the theoretical limit of this. The minimum

-amount of information we must have for each positive instance is:
information = - log,( pos / (pos + neg) ) bits

where pos and neg are the numbers of positive and negative instances in the

set. If we have equal numbers of positive and negative instances, this gives

‘us the expected result
information = - log,( 1/2) = 1 bit

per positive instance. If we have twice as many positives as negatives, we

need only
information = ~ log2( 2/3 ) = 0.585 bits

per positive instance. On the other hand, if we have twice as many negatives

as positives, we need
information = - log2( 1/3 ) = 1.585 bits

per positive instance. Note that this is an asymmetrical function, since we
only measure the amount of information required to identify the positive
" instances. In theory, we might equally well partition the set by identifying the
negative instances. However, we are writing rules to allow us to prove
positives; hence, antecedents that help us concentrate negatives would only

be useful if we were to introduce negation into our rules.
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As an example, suppose we begin with a set containing eight positives
and eight negatives. To partition this set, we need 1.0 bits of information for
each positive instance. If we have an antecedent that makes four of the
negatives unprovable, leaving us with eight positives and only four negatives,

we need only 0.585 bits per positive instance. The information gain of the

antecedent is
gain = before - after = 1.0 - 0.585 = 0.415 bits

per positive instance. Hence, the total information gain for this antecedent

is
ante_score = gain * pos = 0.415 * 8 = 3.32
" Thus, our final score for this antecedent is 3.32.

It is worth noting that this asymmetrical scoring heuristic allows the
algorithm to terminate when antecedents that eliminate negative instances are
still available. For example, if we begin with eight positive and eight negative
instances as above, and the best antecedent available leaves three positives
and five negatives still provable, this antecedent will have a score of -1.25.
Since it has a negative' score, it will not be selected. In this case, the
algorithm would stop, retaining whatever antecedents had been added up to

this point.

Relational pathfinding. Relational pathfinding is a method of
antecedent addition designed to escape local maxima and local plateaus. The
idea of pathfinding in a relational domain is to view the domain as a (possibly
infinite) graph of constants linked by the relations that hold between the
constants. For example, a portion of the data in Hinton's family domain



[Hinton, 1986] is shown in Figure 18.
Relational pathfinding is particularly | _ . manied
Christopher Penelope
easy to visualize in this domain, %, :
d
since all relations are binary. parent parent
Arthur Victoria marred James
We can see an example of the .

. : 2 parent n
local plateau problem in this domain pare
by trying to define the grandparent " Colin Charlotte
relation using only one positive and

one negative instance: ' Figure 18. A family, showing people as nodes
and relations as edges.

+ grandparent{Christopher, Colin)
- grandparent(Christopher, Arthur)

There is no single antecedent that will discriminate between these instances.
Both Colin and Arthur have parents, neither has children, and neither is
married. In order to create a correct theory, we must simultaneously add

both of the required parent literals, i.e.,
grandparent(X, Y) :- parent(X, Z), parent(Z, Y).

~ Relational pathfinding is based on the assumption that, in most relational
domains, important concepts will be represented by a small number of fixed
paths among the constants defining a positive instance. For example, in this
case, the grandparent relation is defined by a single fixed path consisting of

two . parent relations.

Relational pathfinding can be used anytime a clause needs to be
specialized and does not have relational paths joining all of its variables. If,
-after pathfinding, the rule is still too general, we do further specialization
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requires non-relational antecedents.

Relational pathfinding finds paths by successive expansion around the
nodes associated with the constants in a positive example, in a manner
reminiscent of Quillian's spreading activation [Quillian, 1968]. We arbitrarily
choose a positive instance and use it to instantiate the initial rule. The
constants in the instantiated rule are nodes in the domain graph, possibly
connected by antecedents in the rule. We then identify isolated subgraphs
R among these constants; if the initial rule contains no antecedents, then each

‘constant forms a singular subgraph.

We view a subgfaph as a nexus from which we explore the surrounding
portion of the domain graph. Each exploration that leads to a new node in
~ the domain graph is a path, and the value of the node it has reached is the
" path's end-value. Initially, each constant in a sub-graph is the end-value of

a path of length zero.

Taking each subgraph in turn, we find all new constants that can be
reached by extending any path with any defined relation. These constants
form the new set of path end-values for the subgraph. We check this set
against the sets of end-values for all other subgraphs, looking for an
intersection. If we do not find an intersection, we expand the next node.
This process continues until we either find an intersection or exceed a preset

resource bound.

When we find an intersection, we add the relations in the intersecting
paths to the original instantiated rule. If the new relations have introduced
new constants that appear only once, we complete the rule by adding
relations that hold between these singletons and other constants in the rule.
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If we are unable to use all such singletons, the rule is rejected. Finally, we
replace all constants with unique variables to produce the final, specialized
theory clause. If we simultaneously discover several intersections, we develop

clauses for all of them and choose the one that provides the best accuracy on

the training set.

While the pathfinding algorithm potentially amounts to exhaustive
exponenti'al search, it is generally successful for two reasons. First, by
* searching from all nodes simultaneously, we greatly reduce the total number
of paths explored before we reach an intersection. Second, most meaningful
relations are defined by short paths, which inherently limits the depth of
search. However, a practical implementation of this method includes a

" resgurce bound.

As an example, suppose we want | chrstopher Penelope -

to learn the relationship uncle, given an ‘
parent
initially empty rule and the positive in- | f
stance uncle(Arthur, Charlotte). The Arthur Victoria James
process is illustrated in Figure 12. We x parent
begin by exploring paths from the node Colin Charlotte
labelled Arthur, which leads us to the
new nodes Christopher and Penelope.
marmed
We then expand from the node labelled | Chisiopher——Penelope
Charlotte, leading to the nodes Victoria parent perent
and james. At this point we still do not \ )
) Arthur Victoria James
have an intersection, so we lengthen all o
paths originating from node Arthur. We perert
eliminate any end-values that we have al- Colin Charlotte
Figure 19. Finding the relational path for

ready used (and which, therefore, donot .

give us an intersection). This leaves us -
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with only one path end-value: Victoria. Since Victoria is also an end-value of

one of the paths originating from Charlotte, we recognize an intersection.

There are two paths leading from Arthur to Victoria, but in this case
they are identical (merely leading through different grandparents). If we had
found several paths, we would select the one providing the best overall

accuracy. The final path in this example is
‘uncie(X, Y) :- parent(Z, X), parent(Z, W), parent(W, Y)

The literal male(X), which is required to complete this rule, is not a relation

and is thereforé added by hill-climbing antecedent addition.

5.3.4 Add rule (generalization)

Add rule is a [copyrule to be generalized
K ..._ | overgeneralize the rule to aliow positives to be proven
clause-based generaliza call add-antecedent to eliminate provable negatives

tion operator that devel- if add-antecedent produced one or more specializations
add the specializations to the theory

ops one or more new ver- |end if
sions of an existing rule, Figure 20. The add-rule operator.

whiie leaving the original

rule in the theory. Its objective is to create a new rule that allows proof of
positive instances that identified the original rule as a failure point. Building
this new rule is a three-step process. First, we make a copy of the original
rule. Second, we deliberately overgeneralize it to allow proof of the positives
that failed on the original rule. The goal is to reduce the rule to a core of
antecedents that are essential to keep negatives from being provable, while
not interfering with proofs of positives. To this end, we delete all anteced-
ents whose deletion does not allow any negatives to be prov'en, and we also
delete all antecedents whose deletion allows one or more positives to be

proven (even if doing so allows negatives to be proven). Third, we use the
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add-antecedent operator to specialize the overgeneralized clause to eliminate

any newly provable negatives.

As an example, suppose we "like" red, green, and blue blocks on a

table. Suppose we begin with the correct but insufficient clause
likeable(Block, Table) :- on(Block, Table), color(Block, red).

With this theory, all positive instances with green or blue blocks are
unprovable. Add-rule copies this rule, and overgeneralizes it by deleting the

. antecedent for color. The result is rule
likeable{Block, Table) :- on(Block, Table).

This rule allows all positives to be proven, but also many negatives (for
instance, yellow blocks on tables). Hence, add-rule calls add-antecedent to
specialize the rule and eliminate the negative instances. Add-antecedent

creates the two specializations

likeable(Block, Table) :- on(Block, Table), color{Block, green).
likeable(Biock, Table) :- on(Block, Table), color(Block, blue).

These two new rules are added to the theory, and the original rule is left

intact.

5.3.5 Identification (generalization)

Identification is a predicate-based operétor. It seeks to construct a
riew clause to generalize the definition of an antecedent that caused one or
| more proofs of positive instances to fail. Rather than developing a new

clause from scratch, it performs an inverse resolution step using two existing
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rules in the domain theory. In chapter 3 we saw a simple propositional

“example:

{Goal) (Input Clause)
a<« b, x a:-b,x X:>-¢d
ae<b,cd \ /

a«—b, x
X « ¢, & a-b,cd
(Resoivent)

i . Figure 21. A resolution step,
This has no effect on the deductive _

closure of these rules alone, but we have generalized the theory by adding a
new rule for predicate x. This process essentially reverses one resolution

step; from a goal and a resolvent we have derived an input clause.

Unification makes this a more complex process in first-order domains.
Suppose our initial theory of family relationships includes the following rules,
~ where aunt_uncle is intended to be a general rule for identifying aunts and

uncles without regard to sex.

uncie(A, B) :- gender(A, male), aunt_uncle(A, B).

uncle(C, D) :- gender(C, male), sibling(C, E), parent(E, D).
aunt_uncle(A, B) :- married(A, C), sibling(C, D), parent(D, B).
aunt(A, B) :- gender(A, female), aunt_uncle(A, B).

- When we are presented with an instance of an aunt who is a blood relative,
-this instance will not be provable. One of the failure points is the call to
aunt_uncle clause. Identification looks for ways to provide an alternate

definition of this rule.

Our algorithm works as follows. First, we can only develop a revision
if the predicate identified is one defined in the theory (as opposed to, say, a
predicate in the fundamental domain theory). We then look through all
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predicates in the theory, and within each predicate, we look for pairs of
clauses that meet our criteria (described below). Note that there may be
‘several suitable pairs of clauses in the theory. Identification will propose one
revision for each such pair. In our example, we will derive a clause from the

two rules for uncle/2.

if the predicate identified in the revision point is a theory predicate
for all predicates in the theory
select two clauses
heuristic checks, e.g., goal must call revision-point predicate
unify consequent of goal and consequent of resolvent
find matching antecedents in goal and resolvent
for each antecedent :
goal antecedent more general than resolvent antecedent
unify the antecedents :
end for
if goal has exactly one unmatched term, and it is the predicate we want to generalize
unmatched term in goal is consequent of input clause
unmatched terms in resolvent are antecedents of input clause
if input clause meets fanguage bias .
propose replacing resolvent with input clause
end if '
end if
end for
end if

Figure 22. The identification operator.

Given a pair of clauses, we choose one to be the goal and the other to
be the resolvent. We unify their consequents, requiring the consequent of the
goal to be more general than the consequent of the resolvent. We then scan
their bodies, matching as many antecedents as possible. We unify each
matched pair, again requiring literals from the goal to be more general than
literals from the resolvent. The generality requirement prevents us from
inadvertently reducing the deductive closure of the two rules. When we have
finished the matching process, we must have exactly one unmatched
antecedent left in the goal, and this must be a call to the predicate we want

‘to generalize. There must also be some number of unmatched antecedents
~left in the resolvent. The unmatched antecedent in the goal becomes the
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consequent of the input clause, and the unmatched antecedents in the
‘resolvent become the antecedents. We then check the derived clause to

ensure that it meets the language bias. In our example, we derive the clause
aunt_uncle(A, B) :- sibling(A, E), parent(E, B).

Note that, if we delete the second clause of uncle/2 and add this clause
to the theory, we will still be able to prove all instances of uncle. However,

we have generalized the definition of aunt/2. Our revised theory is:

_uncle(A, B) :- gender(A, male), aunt_uncle(A, B).
aunt_uncle(A, B) :- sibling(A, E), parent(E, B).
- aunt_uncle(A, B) :- married(A, C), sibling(C, D}, parent(D, B).
~aunt(A, B) :- gender(A, female), aunt_uncle(A, B).

3.3.6 Absorpnon (generahzaﬂon) |
Absorptlon is the complement of xdentlflcatlon It uses antecedent-
based revision points. Rather than constructing a new clause for the
predicate corresponding with the failing antecedent, absorption looks for a
predicate that subsumes the failing antecedent (and possibly other anteced-
ents in the rule) and which may already have alternate clauses that will allow

the positive instances to be proven. The propositional example in chapter 3

was
(Goal) (input C:lause)
a<bcd x:-c¢d
Xec, d
a« b, x \ /
Xec d a-becd
(Resolvent)

23. A resoluti -
This generalized the theory by al- Figure resolution step

lowing alternate definitions of x to be used when proving a. As with
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" jdentification, absorption reverses a single resolution step. In this case, we

are deriving a goal from a resolvent and an input clause.

As with identification, in first-order logic we have to choose variable
substitutions in a way that ensures we do not inadvertently specialize the

theory. Suppose our theory includes the rules

uncle(A, B) - gender(A, male), sibling(A, C), parent(C, B).
aunt_uncle(D, F) ;- sibling(D, E), parent(E, F).
aunt_uncle(A, B) :- married(A, C), sibling(C, D), parent(D, B).

When we are presented with an instance of an uncle who is not a blood
relative, we will not be able to prove it using this theoryﬂ ‘'We will have a
failure point either at sibling/2 or parent/2. Abéorption looks for other rules
in the theory that have antecedents similar to the one in the failure point, in
hopes of finding a rule that will subsume some of the antecedents in the
current clause. If there are several candidate rules, absorption will propose
several revisions. In our example, abs'o'rption finds the first clause of

aunt_uncle/2 to be a jaossibility.
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clause identified in the revision point is the resolvent
antecedent identified in the revision point is the target antecedent
for each clause in the theory containing a more general version of the target antecedent
the identified clause is our input clause
find matching antecedents in goal and input clause
for each antecedent
input clause antecedent more general than resolvent antecedent
unify the antecedents
end for
all input clause must be matched
consequent of resolvent is consequent of goal
unmatched terms in resoivent plus call to input clause are antecedents of goal
verify goal {e.g., cannot be recursive uniess language bias allows recursion)
end for

_Figure 24. The absorption operator.

In order to develop a revision, we consiﬁer the original uncle clause to
" be the resolvent, and the aunt_uncle rule to be the input clause. We then
match antecedents between the two clauses. in order to be successful, we
must be able to match every antecedent in the input clause with a corre-
sponding antecedent in the resolvent. Moreover, each antecedent in the input
clause must be more general than its counterpart. If we can match all
antecedents in the input clause, we replace the matched antecedents in the
- resolvent with a call to the input clause, using the variable substitutions
automatically derived through unification. If there is more than one way to
- match the antecedents, absorption will propose one revisior{ for each

mapping. In this case, we have developed the new clause
uncie(A, B) :- gender(A, male), aunt_uncle(A, B).
Hence, the revised theory would be

uncle(A, B) :- gender(A, male), aunt_uncle(A, B).
aunt_uncle(D, F) :- sibling(D, E), parent(E, F).
aunt_uncle(A, B) :- married(A, C), sibling(C, D), parent(D, B).
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5.3.7 Identification (compaction)

Identification can often reduce the size of the theory. Hence, we try
the identification algorithm on all suitable pairs of clauses in the theory. If
it is able to reduce the size of the theory without reducing accuracy, it
proposes the change as a revision. This operator is otherwise identical to the

jdentification operator used for generalization.

5.3.8 Absorption (compaction)

Similarly, absorption can reduce the size of a theory. We try absorp-
tion on all suitable pairs of clauses, and propose a revision whenever
absorption identifies a change that reduces the theory size without reducing
theory accuracy. This operator is otherwise identical to the absorption

operator used for generalization.

5.4 COMPUTATIONAL COMPLEXITY
This section presents a brief look at of FORTE's computational
- complexity, along with empirical verification of that complexity. As one
would expect, FORTE's complexity is exponential in the size of the input theory
and in the arity of the theory predicates. For example, when FORTE is
considering new antecedents for addition to a rule, the number of permuta-
tions of arguments to a predicate is an exponential function of the predicate's
arity. However, FORTE's complexity for a given learning problem, where those
items are fixed, is quadratic in the size of the training set. For sufficiently

large training sets, FORTE's complexity is approximately linear.

A simplified explanation of FORTE's theory revision process reveals the
réason for the quadratic bound. During the theory revision process, FORTE will
have to make at most one revision for each improperly classified instance;
this is one factor of n. Each revision must be developed and evaluated on the

entire training set {and the amount of work to do so is determined exclusively
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by the domain and initial theory); this is the second factor of n. Hence,

‘quadratic complexity'®.

In préctice, however, there is a threshold on the size of the training set.
Once FORTE has enough instances to develop a complete and correct theory,
the number of revisions needed to develop this theory does not increase
" further with larger training sets. Thus, any additional increases in training |

set size produce only a linear increase in execution time.

loooo'éExecution time
10005
1005
L
Training set size

Figure 25. An empirical measurement of FORTE's computational complexity. The upper and lower
lines are quadratic and linear bounds, respectively. Each point was averaged over 30 trials.

15This assumes a constant proof time. Empirical results bear this out as a valid approxima-
tion in the average case. :



70

We ran an experiment to verify this quadratic/linear performance. In
Figure 25 we see a graph of FORTE's execution time while performing inductive
learning in Hinton's family domain. To produce this graph, we recorded
FORTE's average execution time for a variety of training set sizes. The graph
is on a log-log scale, which means that polynomials show up as lines, and the
slope of a line is proportional to the degree of the polynomial. The lower line
" is a linear complexity bound, and the upper line is quadratic. FORTE's
execution time falls between these two bounds. With small training sets the
slope of FORTE's line nearly parallels the quadratic bound, as we expect. As
the number of instances passes the number required for FORTE to produce a
complete and correct theory, the slope of FORTE's line decreases, approaching

‘that of the linear bound.



Chapter 6
RESULTS IN STANDARD LEARNING DOMAINS

In this chapter we look at the results of using FORTE in standard first-
order machine-learning domains, and show that using theory revision with an
approximately correct theory is much more effective than pure induction in
these domains. We apply FORTE to two standard first-order machine learning
problems family relatlons}nps and king-rook-king illegality. These domains
were chosen to be substantldlly different from one another; the family _

_ relatlonshlps domain is hlghly relational, whereas the king-rook-king domain

is nearly nonrelational, and could be solved as a propositional problem.

The learning curves in this chapter represent the accuracy of FORTE's
revised theories on unseen data. Since FORTE's hill-climbing techniques make
it vulnerabie to local maxima, another important aspect of learning is the

" accuracy of revised theories on the training data used for learning. In
practice, FORTE has very little trouble w1th local maxima. During the first
1300 test runs used to generate the learning curves in the chapter, FORTE was
caught in local maxima nine times (0.69%). In all nine cases, the accuracy of

the revised theory on the training data was greater than 98%.

6.1 FAMILY DOMAIN

Many of the illustrative examples in Chapters 3 and 4 made use of
Hinton's family domain, which appeared in {Hinton, 1986] and {Quinlan, 1990]
as a test domain. While Hinton's data is suitable for small demonstrations,
it includes a great deal of artificial structure (for example, all married couples
have two children, one boy and one girl). In order to provide a more realistic
test in a similar domain, we created a large, diverse family composed of 86

71
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people across 5 generations. This domain uses the same twelve concepts as
Hinton's data: husband, wife, mother, father, sister, brother, son, daughter,
aunt, uncle, niece, and nephew. The first subsection below discusses the
training data, the fundamental domain theory, and the test methodology.

- Subsequent sections provide the test results in this domain.

6.1.1 Methodology
The family data set includes 744 positive instances and 1488 randomly

generated negative instances. Each test run uses an independent, randomly
selected subset of these instances as the training set, with the remaining
instances used as the test set. The family data provides the gender of each

person, all marriages, and all parent-child relationships.

The revision verifier is [wife(x, V) ;- gender(X, female), married(X, Y).
_ | husband(X, Y) :- gender(X, male), married(X, Y).
empty. The fundamental do mother(X, Y) :- gender(X, female), parent{X, Y}.
main theory provides a com- father(X, Y) :- gender(X, male}, parent(X, Y).
daughter(X, Y) :- gender(X, female), parent(Y, X).

‘mutative definition for mar- |son(X, V) :~gender(X, male), parent(Y, X).
N . ] sister(X, Y) :- gender(X, female), sibling(X.y).
ried/2. The relation-tuning | brother(X, Y) :- gender(X, maie), sibling(X,y).
parameter in the language bias ::ﬁ't?g‘\;}:_:'gg;::::':(',(:’f?r::ﬁ)e')‘a:axd:oﬁ

as set to hi - i .. | niece(X, Y) :- gender(X, female), au(Y, X).
was set to highly-relational nephew(X. Y) - gender(X, male), au(Y, X).
au(X, Y) :- sibling(X, B), parent(B, Y).
L. au(X, Y) :- married(X, A), sibling(A, C), parent(C, Y).
The theory revisiontests |sibling(X, Y} :- parent(A, X, parent(A, Y), X \= Y.

used randomly corrupted ver- Figure 26. Correct family theory.

sions of the correct theory
shown in Figure 26. The number of errors introduced varied, and is specified
with the test results below. Six possible errors gould be introduced:

 -— Delete rule
— Add rule (1-3 antecedents)
— Delete antecedent
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'— Add antecedent
— Change antecedent (delete-ante plus add-ante)

— Change variable

| When adding a n.ew. antecedent, there was a 50% chance thaf the
antecedent used would be taken from elsewhere in the theory, and a 50%
chance that it would be newly constructed. When changing a variable, there
was a 50% chance that it would be changed to a variable appearing elsewhere

in the same rule and a 50% chance that it would be changed to a new variable.

6.1.2 Theory Revision

One premise of theory revision is that it is easier to revise a theory that
is mostly correct than it is to induce a new theory from scratch. In order to
verify this premise, we generated five corrupted theories, containing an
average of 3.6 errors each. Their average initial accuracy was 91.65%.
Figure 27 shows the revision learning curve, which is averaged across four
runs on each of the five theories, and an induction curve averaged over 20
independent trials (i.e., FORTE learning with no initial theory)'’. The training
set for each test run was independently generated.—--there was no relationship
between the training sets used for revision and induction. nor were larger

training sets supersets of smaller ones.

The difference between the curves at all training-set sizes is statistical-
ly significant®® (p > 0.99). These results show that beginning with an approxi-
mate domain theory not only provides an initial boost in accuracy, but also

175 sample run of FORTE in this domain appears in Appendix B.

Y8statistical significance was established using the standard non-paired t-test. Probabilities

shown indicate the statistical likelihood that the difference is significant. Hence, (p > 0.99)

. indicates that there is less than a 1% chance that the dliference between any pair of pomts in the
learning curves was purely due to chance.
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Training set size
W¥induction @Revision

Figure 27. Induction vs. theory revision in the family domain.

that this advantage is maintained as the training set size increases.

Another performance issue m theory revision is how a system
responds to increasing degradation of the initial theory. A good system will
degrade gracefully as the accuracy of the input theory decreases. To
illustrate this characteristic of FORTE we created five series of increasingly
corrupted theories. Each series contains four theories, which, containing
from two to eight errors each. We fixed the training set size, and ran FORTE
four times on each corrupted theory in each series, and then averaged the
results for each level of corruption (i.e., we averaged together the 20 runs on
theories containing two errors, the 20 runs on theories containing four errors,
and so forth). We repeated this experiment for training set sizes of 50 and

100 instances. The resu]ts appear in Figure 28.
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Figure 28. Revision accuracy for fixed training-set sizes, with increasingly co_rrupted theories.

_ The lowest curve shows the accuracy of the initial corrupted theories.
The center curve shows the accuracy of FORTE's theories when it is given 50
training instances. The highest curve shows FORTE's accuracy when it is given
100 training instances. As expected, increasingly inaccurate initial theories
do lower the accuracy of FORTE's revised theories for a given training set size.
However, the degradation is gradual, and FORTE's output theories are always

significantly better than the input theories (p > 0.99).

6.1.3 Advantage of Relational Pathfinding

The family domain is a prototypical first-order domain, in that it
depends heavily on relations such as parent (X, Y) and married(X, Y) that
cannot easily be translated into a propositional representation. Much of
FORTE's performance in highly relational domains of this sort comes from
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. relational pathfinding [Richards and Mooney, 1992]. To demonstrate this,
Figure 29 shows FORTE performing inductive learning both with and without
relational pathfinding. These curves are averaged over 20 runs for each data
point. The difference between them is sta'gistically significant (p > 0.99) at all

" points.

100 Accuracy

90 |
80 |

70 |

6045 50 100

Training set size
@®Pathfinding WNo Pathfinding JFOIL

50 200

Figure 29. Comparison of FORTE (with and without relational pathfinding) and FOIL

Figure 29 also includes a learning curve for FOIL' {Quinlan, 1990},
averaged over 20 trials. We ran tests on FOIL using determinate literals
{Quinlan, 19911, but the results were not significantly different from the basic
FOIL curve shown; this is to be expected since, in this domain, few determi-
nate literals are available. What is surprising is that FORTE, without using

19The FOIL experiments were run using an implementation of FOIL written by John Zelle.
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relational pathfinding, produces significantly better results than FOIL for
training set sizes 100 and higher. The primary algorithmic difference
between FORTE (without relational pathfinding) and FOIL (without determinate
literals) is that FOIL looks for all proofs of each instance whereas FORTE only
cares whether or not an instance is provable. This leads to a different bias

when selecting literals to add to clauses. In this case, that difference in bias

favors FORTE.

6.2 KING-ROOK-KING ILLEGALITY
The king-rook-king i_llegality problem asks a learner to recognize illegal
chess positions. The board contains a white rook and king, and a black Kking;
white is to move. A position is illegal if two pieces occupy the same square
- or if black's king is in check. This domain is becoming a standard fi_rst-order
test domain; it has been used in {Pazzani and Kibler, 1992], {Bain, 1991],
- [Cohen, 1991], and [Cohen, 1992].

In this domain we ran the tests of theory revision vs. induction and

~ theory revision across increasingly corrupt initial theories. We did not run a

. test comparing FORTE's inductive performance with and without relational

pathfinding, as relational pathfinding does not improve FORTE's performance

in this domain.

6.2.1 Methodology

The KRK data set contains 2000 randomly generafed instances, of
‘which 684 are positive and 1316 are negative. Each test run uses an
independent, randomly selected subset of these instances as the training set,
with the remaining instances used as the test set. An instance in the KRK
data provides the rank and file of each piece. There are no relational facts

associated with the instances.



78

krk(WKR, WKF, WRR, WRF, BKR, BKF) :- same_square(WKR, WKF, WRR, WRF).

1 krk(WKR, WKF, WRR, WRF, BKR, BKF} :- same_square(WKR, WKF, BKR, BKF).
krk(WKR, WKF, WRR, WRF, BKR, BKF) :- same_square(WRR, WRF, BKR, BKF).
krk(WKR, WKF, WRR, WRF, BKR, BKF) :- adjacent_squares(WKR, WKF, BKR, BKF).
krk(WKR, WKEF, Rank, WRF, Rank, BKF) :- line_attack(WKR, Rank, WKF, WRF, BKF).
krk(WKR, WKF, WRR, File, BKR, File) :- line_attack(WKF, File, WKR, WRR, BKR).

same;squdre(A, B, A, B).

adjacent_squares(Rank1, Filel, Rank2, File2) :- adj(Rank1, Rank2), adj(Filel, File2).
adjacent_squares(Rank1, File, Ranke, File) - adi(Rank1, Rank2).
adjacent_squares(Rank, Filel, Rank, File2) :- adj(File1, File2).

line_attack(WK, Others, A, B, C) :- not_equal(WK, Others).
line_attack(Same, Same, WK, WR, BK) :- less(WK, WR), less(WK, BK}.
line_attack(Same, Same, WK, WR, BK} :- less(WR, WK), less(BK, WK).

- Figure 30. Correct theory for the king-rook-king domain.

The reﬁsion verifier is empty. The fundamental domain theory pro-
vides_definitions for rank and file adjacency, meaning that two numbers
differ by exactly 1 (adj/2 and not_adj/2). It also includes definitions for
less/2, not_less/2, equal/2, and not_equal/2. The relation-tuning parameter

in the language bias was set to non-relational.

‘The theory revision tests used randomly corrupted versions of the
correct theory shown in Figure 30. The number of errors introduced varied,
and is specified with the test results below. Six possible errors could be

introduced:

— Delete rule

— Add rule (1-3 antecedents)

— Delete antecedent

— Add antecedent
‘— Change antecedent (delete-ante plus add-ante)
— Change variable o
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When adding a new antecedent, there was a 50% chance that the
antecedent used would be taken from elsewhere in the theory, and a 50%
chance that it would be newly constructed. When changing a variable, there
was a 50% chance that it wouid be changed to a variable appearing elsewhere
in the same rule and a 50% chance that it would be changed to a new variable.

i

6.2.2 Theory Revision vs. nduction

Figure 31 compares inductive and theory revision learning curves in
this domain. The corrupted theories were produced as described in Section
6.2.1; they contained an average of 3.2 errors, and had an average initial
accuracy of 54.70%. As expected, beginning with an initial 'theory provides a
dramatic boost both to the initial accuracy and to the steepness of the
learning curve. This advantage is maintained for all training set sizes tested,

and the difference in accuracy is stati_stica]ly significant (p > 0.99).

We also tested FORTE's response to gradual degradation of the KRK
‘theory. As in the famxly domain, we expect the accuracy of FORTE's revised
theories to drop gradually as the accuracy of the initial theory decreases, for
" a fixed training set size. To illustrate this, we created five series of increas-
ingly corrupted theories. Each series consists of four theories, containing
‘from one to four errors each. We fixed the training set size, and ran FORTE
four times on each corrupted theory in each series, and then averaged the
results for each level of corruption (i.e., we averaged togethér the 20 runs on
theories containing one error, the 20 runs on theories containing two errors,
and so forth). We performed this experiment for training set sizes of 20 and

50 instances. The results appear in Figure 32.

The lowest curve shows the accuracy of the initial corrupted theories.
The center curve shows the accuracy of FORTE's theories when it is given 20
training instances. The highest curve shows FORTE's accuracy when it is given
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Figure 31. lnductlon vs. theoty revision in the lcmg -rook-king domain.

50 training instances. As expected, increasingly inaccurate initial theones do
lower the accuracy of FORTE's revised theories for a given training set size.
However, the degradation is gradual, and FORTE's output theories are always
significantly better than the input theories (p > 0.99).

6.2.3 Comparison to Other Systems
Many researchers have tested their first-order systems on KRK data.
Unfortunately, most such tests have provided only a single data point. This
section summarizes the performance results of other systems and compares
them to FORTE.

CIGOL. [Bain, 1991] presents results for two versions of CIGOL

performing inductive learning on this data. Using a training set of 5000
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Figure 32. Revision accuracy for fixed training-set sizes, with increasingly corrupted theories.

instances, basic CIGOL never achieves an accuracy greater than 90%.
HOWe\}ér, with the introduction of what Bain calls closed-world specialization,
CIGOL is able to achieve an accuracy of 100%. FORTE has not been run on a
trainihg set bf.. that size; however, with a traihing set of 1000 instances it
achieves an accuracy of 99.6%. The missing fraction is caused by the
.relatively rare circumstance of a black king that would be in check by the
white rook, except for the interposition of the white king (this-arises in fewer
than 1 out of 200 instances). It seems likely that 5000 instances would be

sufficient to allow Forte to learn this unusual condition.

FOCL. In [Cohen, 1991] and [Cohen, 1992], Cohen discusses the
performance of FOCL on this data set. When FOCL learns inductively (i.e.,
equivalent to FOIL) using a training set of 100 instances, it develops theories
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that are 96.7% accurate. FORTE averages 95.8% accuracy on the same size

training set. Here, the slight difference in bias that gave FORTE an advantage
in the family domain instead gives an advantage to FOIL and FOCL. Cohen
also presents FOCL results using an initial incorrect theory from [Pazzani and

Kibler, 1992]. Using the initial theory

krk(A,B,C,D,EF) :- same_square(A,B,C,D), adj(B,F).
krk(A,B,C,D,EF) - same_square(A,B,EF).
krk(A,B,C,D,EF) :- same_square(C,D,EF).
krk(A,B,C,D,EF) :- king_attacks_king(A,B,EF).
krk(A,B,C.D.EF) :- rook_attacks_king(A,B,C,D,EF).

king_attacks_king(A,B,EF) :- adj(A,E), adj(B,F).

king_attacks_king(A,B,EF) :- adj(A,E), equal(B,F).
_king_attacks_king(A,B,EF) :- equal(A,E).

king_attacks_king(A,B,EF) :- knight_move(A B,EF).

rook_attacks_king(A,B,C,D,EF) :-
equal(D,F), king_not_between_rank(A,B,C,D,E,F).

king_not_between_rank(A,B,C,D,EF) :- not_equal(B, D).
king_not_between_rank(A,B,C,D,E/F):- equal(B, D), not_between(C, A, E).

king_not_between_file(A,B,C,D,EF) :- not_equal(A, C). ‘
king_not_berween,.file(A,B,C.D,E.F) :- equal(A, C), not_between(D, B, F).

FOCL produces revised theories that average 97.9% accurate. FORTE, using the
same initial theory, averages 95.6% accurate—essentially the same as it

achieves for pure induction. The reason for this poor performance is that the

~corrupted theory contains two overly-general clauses in the same predicate.

Since FORTE cannot correct two clauses simultaneously, it instead inductively
specializes the next-higher-level-level predicate in the theory, thereby losing
the information still available in the overly-general predicate. FORTE's average
theory revision performance for training sets of this size is much higher,

99.1% on the theories in Section 6.2.2.
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An interesting related problem is that of detecting only file attacks in
- the KRK scenario (i.e., when the black king is under attack along a file by the

white rook). A correct theory for this domain is

file_attack(A,B,C,D,E,F) :-

same_file(C,D,E,F), unblocked_king(A,B,C,D,E,F).
same_file(C,D,E,F) :-D = F.
unblocked_king{A,B,C,D,E,F) ;- B\=D. -
unbiocked_king(A,B,C,D<E<F) ;- not_between(C,A,E).

. Cohen uses a non-uniform data set where the rook and black king are on the
same file about two-thirds of the time. When the rule for same_file/4 is
deleted from this theory, FOCL's accuracy (given a training set of 25

instances) averages 93.2%. Cohen presents a theory revision system, SIMPLE,
| that is only capable of adding missing rules, that achieves 100% accuracy on

“this theory. FOCL is unable to use large parts of the initial theory when a
lower-level rule is missing, and must resort to pure inductive learning at the

© top level.

When this problem is given to FORTE, which can add lower-level rules
to a theory, FORTE's average accuracy is 99.4%. This is significantly better
than FOCL, but not as good as SIMPLE. While FORTE can add the missing
lower-level rule, it can also correct the theory at the top level. Which
correction it makes depends on the particular instances present in the
training set.

6.2.4 Differently Structured Theories

One of the important capabilities of FORTE is its ability to modify rules
at any level in a theory. In the corrupted theories of Section 6.2.2, many of
the errors appeared in the predicates same-square, adjacent-squares, and line-

attack. FORTE revised the errors in these predicates as eaéil_y as errors in the
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top-level predicate. To demonstrate that FORTE's revision process is equally
effective at any level in a theory, we created a second correct theory for the

KRK domain. This version, shown in Figure 33, consists solely of top-level

clauses.

krk(Rank, File, Rank, Fiie, BKR, BKF).
krk(Rank, File, WRR, WRF, Rank, File}.
krk(WKR, WKF, Rank, File, Rank, File).

krk(Rank, WKF, WRR, WRF, Rank, BKF) :- adj(WKF, BKF).
krk(WKR, File, WRR, WRF, BKR, File) :- adj(WKR, BKR).
krk{WKR, WKF, WRR, WRF, BKR, BKF) :- adj(WKF, BKF), adj(WKR, BKR).

krk(Rank1, WKF, Rank, WRF, Rank, BKF} :- not_equal(Rank, Rank1).
krk(Rank, WKF, Rank, WRF, Rank, BKF) :- less(WKF, WRF), less(WKF, BKF).
krk(Rank, WKF, Rank, WRF, Rank, BKF) :- less(WRF, WKF), less(BKF, WKF).

krk(WKR, Filel, WRR, File, BKR, File) :- not_equal(File, Filel).
1 krk(WKR, File, WRR, File, BKR, File) :- less(WKR, WRR), less(WKR, BKR).
krk(WKR, File, WRR, File, BKR, File) :- less(WRR, WKR), less(BKR, WKR).

| Figure 33. Correct single-level theory for king-rook-King illegality.

We then created five randomly corrupted version of this theory (with the
same average of 3.2 errors per theory) and ran FORTE on them. Figure 32
' compares the learning results on these theories with the results shown earlier
using the multi-level theory. The average initial accuracies of the two sets of
. corrupted theories are very different (54.7% vs. 81.4%). This is a result of
their different structures. When an over-generalization error is introduced
into the flat theory, it can potentially affect all training instances. In the
multi-level theory, the error may be in one of the lower-level predicates, in
which case it can only affect a small portion of the training set.

In spite of the initial difference in accuracy, the two learning curves
quickly approach each other. For a training set size of 20, the difference
between the two curves is still statistically significant (p > 0.99). However, the

‘revision accuracies continue to approach each other as the size of the training
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Figure 34. Theory revision on multi-level and single-level theories.

" set increases. At a training set size of 200, the average accuracies are equal;
there is no longer any statistical difference between the two curves (p > 0.00).
'Thtis, while the structure of the theory affects Forte's revision 'accuracy for
small theories, as the training set size grows this effect diminishes, and it

ultimately disappears altogether.



Chapter 7
RESULTS IN LOGIC PROGRAMMING

FORTE represents theories as Prolog programs. Hence, any theory
revision is actually an exercise in logic program synthesis or revision. Howev-
er, few of the standard problems in machine learning require recursion,
whereas logic programs written to solve programming problems are almost
always recursive. Further, while we may be satisfied with a highly accurate
classification theory, we expect programs to be completely correct.
Consequently, we view FORTE's operation in this domain differently, and we
test it differently. Instead of producing learriing curves showing increasing
accuracy with larger training sets, we wish to show that, given sufficient

training data, FORTE will produce a completely correct program.

Unfortunately, producing an appropriate training set may be more
work than writing the correct program in the first place. Hence, applying
FORTE to pure program synthesis may not be profitable. However, its ability
" to perform theory revision can be useful. Consider the case of novices
learning to write logic programs. While the instructor may provide mode!l
solutions, there are often many ways to solve a problem, and a model
solution doesn't help the novices understand how to fix their programs.
However, since FORTE tries to correct a theory while preserving as much of the
original structure as possible, it can provide novices with customized
feedback on what changes need to be made to make their programs work. To
test this hypothesis, we presented FORTE with actual programs written by
students learning Prolog in a programming languages course. The results of

this experiment are discussed in Section 7.2.

86
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All of the programs examined in Sections 7.1 and 7.2 are relatively
simple. In particular, FORTE is never asked to revise lower-level recursive
predicates. While FORTE can revise such predicates, doing so is inherently
difficult, as we discuss in Section 7.3. However, FORTE is able to correct
certain types of errors in deéply recursive programs’®, and in Section 7.4 we
look at the problem of rev:smg a realistic loglc program, name]y, a proposi-
tional machine-learning algorithm that builds decision trees. '

7.1 SYNTHESIS OF LOGIC PROGRAMS

Although designed -as a theory reviéion system, FORTE is able to
~inductively synthesize simple logic programs from examples of the desired
behavior. However, as discussed in Section 5.2.1, in order to correctly
synthesize or revise a recursive t'heory, FORTE require_s the training set to
_provide a complete extensional definition for a subset of the probiem domain

. as well as a representative set of negative instances.

Table I presents a summary of several program synthesis problems

that FORTE has been applied to. The first column in the table identifies the

_program. The second column shows the size of the training set that was

provided. The third columns gives the run-time?! required for the synthesis

with relational pathfinding disabled; a dash indicates that FORTE was unable

to synthesize a correct, recursive program®. The fourth column gives the
run-time for the synthesis with relational pathfinding enabled.

2"By deeply recursive we mean theories that contain lower-level recursive predicates.
21 ANl run-times in this chapter were generated using 2 SPARCstation 2.

221 these cases, Forte frequently created a series of nonrecursive clauses that are correct on
" the training data, but do not generalize to unseen instances.
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Table I. Summary of program synthesis resuits.

Program Training Set Size Without Relational j With Relational
Pathfinding Pathfinding

member 21 instances 4 seconds 4 sét:onds

. append 39 instances - 21' séébnds
directed path 121 instances 25 s'econds' 24 seconds
insert after | 35 instances 30 seconds 50 seconds
merge sort 60 instances === 199 seconds
naive reverse 38 instances - | .207 seconds

:
_ The member program is the standard list utility to determine whether
or not the first argument is a member of the list given as the second
argument. Similarly, the append program is the standard list utility that
appends two lists to produce a third. The ﬂireéted-path program determines
whether or not a path exists in a graph from one node to another. Insert-
after inserts an element into a list inmediately following a specified marker
element, and returns the new list. The mei‘ge-sdrt program is the top-level
predicate for a standard merge sort. Finally, the naive reverse program is a
two-place reverse program {(as opposed to the more efficient three-place

reverse that uses an accumulator).

In the sections that follow, we examine the synthesis of the insert-after

and merge-sort programs in more detail.

7.1.1 Synthesis of Insert-After
The first example we will examine in detail is the problem of
- synthesizing a predicate that will insert a new element n into a list immedi-

ately after the first occurrence of a specified mar__ke_f element m. For this
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domain, the fundamental domain theory contains only a definition of the list
constructor predicate components/3. The training set includes the following

positive examples

insert_after(Im], m, n, [m,n))

insert_after([a,m], m, n, {am,n])
insert_after(fm,a}, m, n, {m,n,a])
insert_after(Im,bl, m, n, [m,n,b))
insert_after(Im,m}, m, n, [m,n,m])
insert_after([b,m}], m, n, [b,m,n))

insert_after(a,b,m], m, n, fa,b,m,n]
insert_after([a,m,b}, m, n, [a,m,n,b])
insert_after({m,a,b], m, n, [m,n,a,b])
insert_after{[m,m,m], m, n, [m,n,m,m}))

. Inwhat sense is this a complete extensional definition? Consider the instance
| insert_after({a,b,m], m, n, [a,b,m,n])
When developing a recursive clause in this domain, we may recurse on either
the first or the last argument. The only available destructor is list decomposi-
tion, i.e., components(List, Head, Tail). Since the predicate contains two lists,
we may recurse on either one of them. For recursion on the first argument,
we must provide all positive instances of the form

insert_after([b,m}, m, n, ...)

For recursion on the last argument, we must provide all positive instances of

the form

insert_after(..., m, n, [b,m,n])
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ln this case, both of these requirements are met by the single inst_:an_ce
insert_after([b,m], m, n, [b,m,n)).
In order to evaluate this instance in turn, we also I__leed to p;ovjde
insert_after([m], m, n [rrll,n]).

This last instance represents the base case, where the insertion actually
occurs. Similar paths to base-cases must exist for all instances in the data
set. The simplest way to ensure this is to provide exhaustive examples for

problems below a certain size.

In addition, the training set must include a representative set of
negatives. The simplest way to generate thése is to simply supply all
permutations of the positive instances. If this would result in too large of a
training set, then the user can instead provide a representative selection of
negatives. A representative set of negatives, in this case, includes instances
_ of all sizes for which we have positive instances, and includes all of the
various faults that might occur: failing to insert the new element, inserting
it in the wrong place, inserting it more than once, and so forth. The exact

data set used for these tests appears in the appendices.

When FORTE is presented with these training instances, it first produces the

base-case rule

_ inﬁert_after([AIB], A, C, [A,CIBD.
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The embedded functional list notation is provided by the theory translator for
the lists domain, and is strictly for the user's convenience. Internally, FORTE

uses the function-free notation

insert_after(D, A, C, E) :-
components(D, A, B),
components(E, A, F),
components(F, C, B).

Once FORTE has the base-case, it develops the recursive rule

insert_after([AlB]., C, D, [AIE]D :-
| ARl €.
insert_after(B, C, D, E).

This rule completes the definition of the insert_éfter predicaté. The resulting

program is what we might expect 8 human programmer to write.

7.1.2 Synthesis of Merge_Sort

- Not all automatically synthesized programs look like ones a human
programmer might produce. Consider the problem of writing a merge_sort
predicate, given the standard auxiliary predicates split/3 and merge/3, ie,,

split(List, Split1, Split2) :- List = [_,_|_], split1(List, Split1, Split2).

- spliti(f], 0, ID-
split1([A], [Al, D).
s_pl_itl([A,BlRest], [AlRest1], [BIRest2)) :- split1(Rest, Rest], Rest2).

. ~merge(L1, [], L1).
merge(], L2, L2).
“merge([H1]L1), [H2|L2], [H1IM]) :- H1 < H2, merge(L], [H2{L2], M).
merge({H1{L1], [H2|L2], [H2|M]) :- H1 >= H2, merge([H1{L1], L2, M).



92

The training set provides instances for lists of up to length 4 (see the

appendices). The base-case FORTE creates is
merge_sort(A, A) :- merge(A, B, A).
The base cases that would normally be written by a person are

merge_sort{[}, [}).
merge_sort([X], [XD.

Both of these base-cases are required since split/3 predicate fails if asked to
split a list containing fewer than two elements. FORTE's single base case
subsumes these two clauses. It states that a list is already sorted if it can be
" merged with some other list to return itself (of course, the other list is the
" empty list). Since merge/3 fails if the lists to be merged differ in length by
more than one element, this has the effect of requiring list A to be empty or

contain only a single element.

FORTE generates the recursive clause using relational pathfinding.
Chapter 5 illustrated relational pathfinding on a family domain, where all
 constants were predefined. For the merge_sort problem, relational
pathfinding actually constructs new terms. Suppose relational pathfinding
begins with the instance merge_sort({4,3,2,1 ], 11.2,3,4)). This means that it
begins with the two domain constants [1,2,3,4] and [4,3,2,1]. It explores the
relationai graph by using the relations split/3, merge/3, and merge_sort/2.
For example, one path extending from [4,3,2,1] begins with the relation
split(f4,3,2,1], A, B), where A and B are new variables. The predicate split/3
" jnstantiates these to the values [4,2] and [3,1]. Similarly, one path extending
from [1,2,3,4] begins with merge(i2,4], [1,3], [1,2,3,4).



After expanding each node once, -

" however, relational pathfinding is still unable
to find an intersection. It requires a second

expansion of one of the nodes to develop the

relational 'path shown in Figure 35. While

this path successfully links the two original
constants, it is still not a valid path. Two of
the new constants, [4,2] and [2,4], appear in
only one relation. In order to fora relational
_'path to be valid, FORTE must tie up such
“"loose ends" by adding additional relations.
" In this case, FORTE completes the path by
adding the relation merge_sort({4,2], [2,4]),

" producing the final clause -

merge_sort(A, B) :-
merge(C, D, B),
split(A, E, F),
merge_sort(E, C),
merge_sort(F, D).
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*. Figure 35. Relational pathfinding of
the recursive merge-sort clause.

“Again, this differs from what a human might write. The order chosen for the

antecedents is efficient for FORTE, which works with all ground instances,

since it maximizes the number of bound variables at each antecedent. How-

ever, a human programmer would know that a sorting predicate is most often

called with the second argument unbound, and would therefore place the

merge antecedent last rather than first.
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7.2 DEBUGGING STUDENT PROGRAMS

Given an incorrect program and a training set containing sufficient
positive and negative examples, FORTE should correct the bugs in the
program. Working with logic programs provides an opportunity to glve FORTE
realistic incorrect programs. We asked students in an undergraduate class on
programming languages to hand in their first attempts at writing Prolog
programs. They gave us their programs after they had satisfied themselves

that the programs were correct, but before they tried to run them.

The student programs were distributed among three problems: find

a path through a directéd graph, insert an element into a list, and merge-sort

" a list. We collected 23 distinctly different buggy programs, representing a
wide variety of errors ranging from simple typographical mistakes to
complete misunderstandings of recursion. FORTE was able to debug all of
these programs (see Table Il and Appendices D-F). The trainihg sets were the

same as those used to synthesize these programs in Section 7.1.

Table II. Summary of program revision results.

# of Programs | Train-Set Size | Revision Time

Program

87 seconds

_directed path 121 instances

insert after ] 35 instances 82 seconds 100%

merge sort 10 60 instances 437 seconds 100%

#

Since FORTE is able to synthesize all of these programs from scratch
(see Section 7.1), it is not surprising that FORTE can correct bugs in incorrect
versions of these programs. However, the sequence of revisions FORTE makes

can be instructive to the novice. Furthermore, since FORTE tries to minimize



95

the changes it makes to a theory, it essentially tries to revise a program along

the lines the author intended.

These features make FORTE well-suited for integration into an
‘automated tutoring system for programming languages. The instructor
would provide FORTE with suitable training sets _foi' simple programming
assignments, and students could ask FORTE to s_ug_'ge'st'revisiqns to _their
programs. It would provide an individualized critique, suggesting only those
changes necessary to make their program work correctly—even if it the result

differs from the model solution the instructbr had in mind.

In the following sections, we discuss a sample revision of each of the

student programs. Revisions for all programs appear in the appendices.

7.2.1 Directed Path

To begin, consider the simple'case .
®B—m © ©—H

of finding a path through a directed

graph. The students were provided with 0 e o
the graph in Figure 36. FORTE was given
~ an exhaustive list of positive and negative o o G

instances for this graph. Most of the Fo;e36. Directed graph given to stu-

incorrect student programs for this exam- dents and to FORTE.

ple were close to the correct program

path(A, B) :- edge(A, B).
“path(A, B) :- edge(A, C), path(C, B).

Hence, FORTE's revisions to them often produce this model program.

However, one student's program was
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path(A, B) :- edge(B, A).
path(A, B) :- edge(A, B).
path(A, B) :- edge(A, C), edge(D, B), path(C, D).

in this case, FORTE develops a different revised program. The first clause
allows undirected paths; hence it covers a number of negatives and no
- positives. FORTE retraets this clause es its first revision. Next, the initial
_' program does not work for paths of length 2. Hence, FORTE adds the new rule

path(A, B) :- edge(A, C), edge(C, B).

to cover these paths. FORTE leaves the recursive rule intact, since it is correct.

The final, correct program is

path(A, B) :- edge(A, B).
path(A, B) :- edge(A, C), edge(C, B). -
path(A, B) :- edge(A, C), edge(D, B}, path(C, D).

This is not the eimple program that FORTE would induce. This revised
program has two base cases instead of just one. Both base cases are required
since the recursive clause performs a two-step recursion. FORTE preserved the
| author's original induction scheme, and corrected the erroneous clauses to

provide valid base cases.

7.2.2 Merge-Sort

The second type of student program is a merge-sort. The students
were asked to write the top-level predicate, given the definitions of split/3
and merge/3 shown in Section 7.1.2. The predicate FORTE synthesizes is
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merge_sort(A, B) :- merge(A, B, A).
merge_sort(A, B) :- .
merge(C, D, B),
split(A, E, F),
merge_sort(E, C),
merge_sort(F, D).

While FORTE's base case is correct, it is hardly intuitive. However, when asked

1o revise a novice program containing a deficient base case, such as

merge_sort([], [}).

merge_sort(A, B) :-
split(A, E, F),
merge_sort(E, C),
merge_sort(F, D),
merge(C, D, B).

FORTE produces the simplest revision pos_sible, namely, adding the missing

clause
merge_sort{[A], [A].
to develop a correct program.

7.2.3 Insert-After

The third type of student program was a list-manipulation predicate.
Consider the problem of inserting a new element in a list, following a
specified marker element. The element may only be inserted once, and only
after the first occurrence of the marker (i.e, it is not resatisfiable). The
students needed no auxiliary predicates to solve this problem. FORTE, in the
fundamental domain theory, used only its standard components/3 list

constructor.
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The most common error the students made on this program was to
forget about the possibility of resatisfaction. A program that will produce a

correct result on the first call is

insert_after([AIB], A, C, [A,CIB}). _
insert_after([AIB], C, D, [AIE]) :- insert_after(B, C, D, b).

However, on backtracking, this program can be resatisfied if the marker
element occurs more than once in the input list, and the new element will
then be inserted in the wrong position. Correcting this error only requires

the addition of a single antecedent, to produce the program

insert_after([AIB], A, C, {A,CIB].
insert_after(JAIB], C, D, [AIE]) :- A \= C, insert_after(B, C, D, E).

One student turned in the program

insert_after({{AIB], C, D, [AIE]) :- insert_after(B, C, D, E).
insert_after([A|B], A, C. [A,CID)) :- insert_after(B, A, C, D).

This program is both erroneously resatisfiable, and is missing a base case.

The first revision FORTE makes is to add the clause
insert_after([AIB], A, C, [A,CIBD.

Next, the system adds the antecedent A \= C to the first rule, as discussed
‘above. Finally, the last clause is deleted, as it would allow the new element

to be inserted more than once in the list.
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7.3 REVISION OF DFEPLY RECURSIVE PROGRAMS
_ When a logic program contains more than one recursive predicate, it is
-often difficult to assign the blame for failure to one particular predicate. The
problem is that an error in a recursive predicate often has a catastrophic
effect on theory accuracy. FORTE is able to repair top-level recursive
predicates effectively by treating the positive instances in the training set as
" an extensional definition of the correct predicate, and using this extensional
definition to evaluate recursive calls while the predicate is being revised. In
" order to use the same technique on lower-level recursive predicates, FORTE
derives temporary extensional definitions from proofs (or attempted proofs)
of the positive instances in the training set, collecting the first call made by

each proof to the predicate under revision.

An example using this technique is the following example of the subset
predicate, in which we have left the member predicate completely undefined:

subset({], A). : :
subset({Al8], C) :- member(A, C), subset(B, C).

member(A, B).

FORTE derives examples for member from the positive instances of subset.
Using the resulting set of examples as an extensional definition, FORTE is able
to derive the expected definition for member, producing the correct program

subset([], A).
subset([AlB], C) :- member(A, (), subset(B, ().

member(A, [A|B].
member(A, [BIC}) :- member(A, C).
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The approach of deriving extensional definitions is not foolproof, but
" is often effective. The method fails in three primary circumstances. The first
occurs when the top-level predicate is itself so incorrect that it does not
provide a meaningful set of calls to the lower-level predicate. For example,
proofs of positives might usually fail before the target predicate is even
called. In this case, the extensional definition for the lower-level predicate
" will be too small and incomplete to be of any use. Or the call to the lower-
‘level predicate may be incorrect in a way that prevents FORTE from developing

" any reasonable definition for it, even an unintended one. An example of this

* problem occurs with the following incorrect program for subset:

subset([l, A).
subset(JAIB], C) :- member(A, B), subset(B, Q.

member(A, B).

in this case, member is being called with the head and tail of the same list.
Since it doesn't even have access to the second list, any predicate FORTE
develops for member can only reflect spurious correlations in the structure
of the first list. In this example, FORTE actually decides not to use member at

all, but to develop a correct but incomplete definition for subset alone:

subset([], A).
subset(A, [BIA).
subset(JAIB], [AIC)) :- subset(B, [AIC]).

The second common case in which our method of deriving extensional
definitions fails is when the calls to the lower level predicate are not ground.
In this case, the derived extensional definition is overly general, and FORTE is
likely to develop an unintended definition for the lower-level predicate. This

occurs when revising the following program, where sublist/2 is a predicate
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de_signed to succeed when the first argument is.a sublist of the second

argument.

sublist(A, B) :- append(A, C, B).
sublist(A, [BIC]) :- sublist(A, C).

append(ll, A, A).
- append({AlB], C, [AID]).

‘The top-level call to append contains an u_ninsta_nﬁtiated arg_uinent, leading to
extensional facts of the form append({a,b], X, [a,b,c]). Nonetheless, FORTE is
" able to revise the definition of appg_nd to produce a working subiist predicate:

append([], A, A).
append([AlB], C, [AIDD) :- append(B, D, D).

This predicate has the required capabilities for its role in the sublist
predicate, namely, it succeeds whenever the first argument is a prefix of the
third. However, it should not be called append. Since the second argument
was unconstrained, it took on a meaning different from what one expects in

an append predicate.

Another common cause of uninstantiated calls to a lower-level
predicate is a procedural program where one predicate produces a value
which is later consumed by another predicate. ‘For example, consider the

merge_sort predicate

merge_sort(A, B) :-
split(A, C, D),
“merge_sort(C, E),
merge_sort(D, F),
merge(E, F, B).
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The predicate split/3 "produces” lists C and D for consumption by the
recursive calls to merge_sort/2. Since this means that split/3 is called with
these variables uninstantiated, it would be difficult for FORTE to correctly

revise it.

The third common failure occurs when the lower-level predicate we
wish to revise is called with a restricted set of arguments. In this case, the
program we learn may actually be correct, but the lower level predicate does
not have the expected meaning. This can occur, for example, when revising
the naive reverse program, since reverse always calls append with lists of
length one in the second argument. Suppose we begin with the incorrect

program
reverse([], [].
reverse([A|B], C) :- append(D, [A], C), reverse(B, D).
append([Ai8], C, [DIE) :- append(B, C, E).

FORTE successfully revises this program to be a correct implementation of

reverse:

reverse({l, [} -
reverse([A|B], C) :- append(D, [A], C), reverse(B, D).

append(A, [BIA], [BIAD.
append(fAlB], C, [AID]) :- append(8, C, D).

The definition of append/3 is correct for its role in this program. However,
it is not a general-purpose append predicate. The first clause must require
A to be the empty list. The definition given works, but only if the second
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" argument is a list of only one element. This is always true for this program,

but is not true in general.

7.4 DECISION-TREE INDUCTION

In order to demonstrate FORTE's potential as an automated debugging
system for logic programs, we presented it with buggy versions of a large,
realistic logic program. This program is a variation®® of the decision-tree
induction program in [Bratko, 1991]). The previous section describes the
limitations of FORTE's ability to revise deeply—recursive'programs,'and there
are many predicates in this program that FORTE cannot revise, primarily
because they are procedural in nature (the producer-consumer problem where
predicates are called in non-ground mode). Additionally, certain errors in
higher-level predicates cause FORTE to be unable to develop adequate training
sets for lower-level recursive predicates. However, FORTE is able to repair

many realistic bugs in this program.

7.4.1 Methodology

We made one concession to efficiency when introducing bugs, in that
we placed most of the program's lower-level predicates into the fundamental
domain theory. Since the fundamental domain theory is compiled rather than
meta-interpreted, and since FORTE does not explore revision points in the
shielded predicates, this substantially increased the speed of revisions. This
also allows us to improve efficiency by using Prolog built-in functions such
as nonvar and cut in some of the lower-level predicates. The fundamental
domain theory and revision verifier were otherwise empty. The language bias

was set to allow recursion, and antecedents from the theory, fundamental

Z3The primary difference between this program and the original is that two mutually
recursive predicates have been collapsed into the single recursive predicate induce_tree/5, since
" FORTE cannot revise programs containing mutual recursion.
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domain theory, and built-in equality relations. The portion of the program

FORTE was asked to revise is shown below. Thg complete program appears in

Appendix G.

'/* Top-level; given attributes and examples, produce decision tree */

induce_tree{Attr, Examples, Tree) :- _
induce_tree(Al, [], Attr, Examples, Tree).

/* Given no exampies, produce an empty tree */
induce_tree(_, [I -, [I, {1).

_ /*If examples are pure, the tree is the ciass of the examples */
induce_tree{ A1, [], A2, Examples, Class ) :-

Examples = [Example|_],

pure(Examples),

Example = [Class, .].

/* If the examples are impure, choose best attribute as root of subtree */
induce_tree( _, [], Attributes, Examples, [Attr_name, Subtrees] ) :-
Exampies = [_|_], .-
impure(Examples),
choose_attribute( Attributes, Examples, 0, _, Attribute),
fdt_delete{ Attribute, Attributes, Rest_atts),
Attribute = [ Attr_name, Values ],
induce_tree{ Attr_name, Values, Rest_atts, Examples, Subtrees).

/* create subtree branch for each value in selected attribute */
induce_tree(Name, [VallVals], Rest_atts, Examples, [[Val, Tree] | Trees]) :-
vals = [ ],
attval_subset(Name, Val, Examples, Example_subset),
induce_tree(Al, [], Rest_atts, Example_subset, Tree),
induce_tree(Name, Vals, Rest_atts, Examples, Trees).

/* last subtree branch */

induce_tree(Name, [Val], Rest_atts, Examples, [[Val, Tree]]} :-
attval_subset{Name, Val, Examples, Example_subset),
induce_tree(A1, [, Rest_atts, Example_subset, Tree).
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/* choose attribute yielding highest purity */
choose_attribute( [}, _, _, Best, Best).
choose_attribute( [AttriAttrs], Examples, Best_purity, Best_so_ far Best) :-
purity(Attr, Examples, Purity), _
less(Best_purity, Purity),
choose_attribute( Attrs, Examples, Purlty, Attr, Best).
choose_attribute( [Attr|Attrs], Examples Best_ purlty, Best_so_far, Best) :-
purity(Attr, Examples, Purity),
less_or_equal(Purity, Best_purity),
choose_attribute( Attrs, Examples, Best_ purlty, Best_so_far, Best ).

" There were 26 trammg mstanc-
es, 14 posmve and 12 negauve A
single training instance for FORTE
included the attributes and instances
given to the decision-tree program
along with the decision tree expected
as outpuft. All FORTE instances were
based on the set of attributes and

decision-tree instances given below;

Figure 37. Decision tree induced by the target
program.

the correct decision tree associated
- with these instances is shown in
Figure 37. Positive instances given to FORTE incl_uded the whole decision tree,
all subtrees thereof, and repetitions of some instances with the attributes

listed in a different order. -

Attributes

shape: round, triangular, square
color: red, green, blue, yellow
size: small, large
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Positive instances Negative instances
triangular, green, large round, red, small
square, green, large square, blue, small
square, red, large round, yeliow, large
round, green, small triangular, red, small
triangular, blue, large round, blue, large

triangular, yellow, small
square, yellow, small

7.4.2 Sample Revisions

Iri this subsection we show two sample corruptions of the theory that
FORTE successfully repaired. Both of these corruptions introd'uced two errors
into the program, one at the second level recursive predicate induce_tree/5
and another at the third-level recursive predicate choo$e_attfibute/ 5. These

are the two predicates that drive the decision-tree algorithm.

: ~ In the first example, a new rule is added to induce_tree/5. This rule
is an overly-general version of the second clause in the correct program. In
" choose_attribute/5, an antecedent from the second clause is deleted. The

incorrect clauses are:

~ induce_tree( Al, [], A2, Examples, Class ) :- | /* New Rule */
Examples = [Examplel_],
Example = [Class, _].

choose_attribute( {AttrjAttrs], Examples, Best_purity, Best_so_far, Best) :-
purity(Attr, Examples, Purity), ,
/* less(Best_purity, Purity), Antecedent Deleted */
choose_attribute( Attrs, Examples, Purity, Attr, Best ).

FORTE repaired these errors, exactly restoring the original theory. The revision
took 78 minutes on a SPARCstation 2. This relatively long revision time is
due to two factors. First, the length of the initial theory leads to many

possible revision points. Second, the high arity of the predicates and large
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number of variables in each clause leads to a large number of possible

revisions at each revision point.

The second example corrupted the same two key predicates, but in a
different way. The second rule in ind'uce__tfee/ 5 ‘contains an incorrect
antecedent (the correct one was deleted and a new one added in its place).
And the base-case of choose;attribute/ 5 is overly general, due to the addition

of an anonymous variable. The incorrect predicates were:

induce_tree( Al, [], A2, Examples, Class ) :-
Exampies = [Example|_),
impure(Examples}, /* Incorrect Antecedent */
Example = [Class, _]. '

choose_attribute( _, _, ., Best, Best). ~ /* Overly General Base Case */

FORTE repaired these errors, restoring the original correct program in 50
minutes on a SPARCstation 2. '

7.5 COMPARISON TO PDS6

One of the most well-known Prolog debugging systems is Shapiro's
PDS6 [Shapiro, 1983]. We took an annotated PDS6 test from {Murray, 1986}
and gave the same problem to FORTE. The incorrect program is a quicksort

containing three errors:

qsort([X|L], LO) :-
partition(L, X, L1, L2),
gsort(L1, L3), gsort(L2, L4),
append(L3, [XIL4], LO).

partition({XiL], Y, L1, [X|L2)) :-
partition(L, Y, L1, L2}, less(X, Y).
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partition{[X|L], Y, [XIL1], L2) :-
partition(L, Y, L1, L2}, less_or_egual(X, Y).
partition(f], X, {1, [D.

append([X|L1], L2, L3) :-
_ append([XIL1], L2, [XIL3D).
append(f], L, L).

One error appears in each of the predicates. The base-case for qsort/2 is
missing. The variables are reversed in less/2, in the first partition/4 clause.
Finally, the recursive append/3 clause is wrong. The corrected program

developed by PDS6 is:

gsort([XIL], LO) :-
partition(L, X, L1, L2),
gsort(L1, L3), gsort(L2, L4),
append(L3, [XIL4], LO).
gsort([}, [D.

partition([XIL], Y, L1, [X|L2]) -

partition(L, Y, L1, L2), less(Y, X).
partition({X|L}, Y, [XiL1], L2) :-

partition(L, Y, L1, L2), less_or_equal(X, Y).
partition([}, X, [], [}

append([XIL1], L2, [XIL3]) :-
append(L1, L2, L3).
append((], L, L.

FORTE is unable to correctly revise the erroneous program. However,
when the errors appear singly, FORTE is able to correct all but the erroneous
append clause. The reason that this clause is not correctly revised is that
FORTE evaluates recursive calls last. This means that append is called with
two unbound variables, which leads to an inadequate derived training set.
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RESULTS IN QUALITATIVE MODELLING

To demonstrate FORTE's ability to work in diverse domains, we have
applied it in the constraint-based domain of qualitative modelling. When
supplied with appropriate domain knowledge through the fundamental
_domain theory and the revision verifier, FORTE is able to synthesize and revise
gualitative models suitable for use by QSIM [Kuipers, 1:986]. | '

In order to provide some background for the results in the chapter,
“Section 8.1 provides a brief description of the qualitatiVe modelling task as
" implemented by QSIM. Section 8.2 describes the representation FORTE uses

* _in this domain and provides a summary of results in this domain. The

remaining sections present a detailed look at _particular qualitative modelling

probiems.

. 8.1 QUALITATIVE SIMULATION

- QSIM {Kuipers, 1986} is a qualitative simulation system that takes as
‘input a qualitative model of a system alon..g with an initial staté and pioduces
as output a complete set of system behaviors. The premise of qualitative
simulation is that it is possible to describe the general behavior of a system
‘without knowing anything about the numerical values involved. For example,
given a bathtub with water flowing into it and draining out of it, there are
three possible behaviors: it can stay empty (very lafge drain), it can overflow,
or it can reach an equilibrium where the water level rises to a point where the

water flows out as fast as it_flows in.

109
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QSIM uses qualitative differential equations (QDEs) to describe
systems. Using FORTE's syntax, the QDE for the bathtub would be

bathtub(Amount, inflow, Outflow, Netflow) :-
constant(Infiow),
derivative(Amount, Netflow),
add(Netflow, Outfiow, Inflow),
m_plus(Outflow, Amount).

The first constraint states that inflow is constant—it does not change over
time. The second constraint, derivative(Amount, Netflow), indicates that
Netflow is the derivative of amount. This means, for example, that, if Netflow
is positive, then Amount must be increasing. The third constraint says that
fhe sufn of Netflow and Cutfiow yields Inflow (or, more intuitively, Netflow is
the difference of inflow and Outflow). Finally, the last constraint indicates
‘that some monotonically increasing function holds between Outflow and

Amount—i.e., the more water there is in the bathtub, the faster it flows out.

Given this QDE, and initial values for the variables, QSIM produces
behaviors for the system. A behavior contains, for each system variable, a
| 't_ime-ordered sequence of values, directions of change, and signs. Values are
s_ymbols whose 6nly meaning is in their relative ordering; there are three
- predefined values: minus-infinity, 0, and infinity. Directions of change may
be decreasing (1), steady (@), or increasing (1). Signs are minus (-), zero (0),
| and pius (+). As an example, the equilibrium behavior for the bathtub is
shown in Table ML

In this behavior, Amount begins with a value of 0, it is increasing, and its sign
is 0. At time 2, Amount has a value in the open interval between 0 and max

(the predefined maximum volume of the bathtub), it is increasing, and its sign
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Table I. Behavior showing a simple bathtub reaching equilibrium

" Variable | Time 1 Time 2 Time 3

En?nt—_-_l 0,10 (0, max), 1, + equil_amt, o, +
Inflow || in_1, e + in_1, o + in_1, o, +
Netfiow || net_1, J, + (©, net.1), 1, + 0,60
Outflow “ 0,10 _ (0, inf), 1, + equil_out, g, +

S
is positive. At time 3, Amount has a value of equil_amt, it is steady, and its
sign is positive. We know that equil_amt is less than max, since Amount
began at 0 and did not pass through max. Similar explanations apply to the

other variables showmn.

8.2 FORTE AND QUALITATIVE SIMULATION

FORTE's task is to induce or revise qualitative models, given instances
_of behaviors. A qualitative model is a single clause, which means that the
language bias will be conjunctive. Furthermore, one generally wants tightly
constrained models that produce only the desired behaviors, so the language
- bias will also be most-specific. This means that FORTE will produce a single
* clause containing all consfraint_s consistent with the input behaviors. As
discussed in [Richards, Kraan, and Kuipers, 1992], when given complete
‘behavioral information, a model generated in this manner is guaranteed to be

‘unique, complete, and correct.*

We provide system behaviors to FORTE as complex functional terms.

For example, the behavior of Amount for the bathtub above is given as

Z4The definition of complete behavioral information in [Richards, Kraan, and Kuipers, 1992]
has recently been found to be incomplete. However, this deficiency does not affect the results
in this thesis. ' : _ .



112

[amount, = [0, max, inf],
[Imass],[l],
[[0, inc, 01,{[0,max]}, inc, plus],lequil.amt, std, plus]l]

The first term gives the space of qualitative values; in this case, amount may
range from 0 through max to infinity. The second term provides the
dimensions of amount. The first sublist is the numerator and the second is
the denominator. In a quantitative simulation dimensions would be some
unit such as kilograms, but in a qualitative domain it is the more abstract unit
mass. The third term provides the actual behavioral information from
Table IIL.

Of course, theories in FORTE do not include functions, so FORTE is
unaware of the internal structure of these terms. Instead, the fundamental
domain theory provides definitions of the QSIM constraints, and these
constraints are responsible for interpreting the behavioral information. For
example, when FORTE tries to prove the constraint m_pius(Amount, Outflow),
for the above behavior, the variables Amount and Outflow are instantiated to
the appropriate behavior terms and FORTE calls the fundamental domain
theory predicate m_plus/2. Predicate m_plus/2 must then determine whether
or not a monotonically increasing function holds between the two given
behaviors. A more complete description of QSIM constraints is beyond the
scope of this chapter, but may be found in [Kuipers, 1986, 1989]. FORTE's
implementation of the QSIM constraints is taken from MISQ ([Kraan, Richards,
and Kuipers, 1991} [Richards, Kraan, and Kuipers, 1992)), and includes:
constant, M-;, M-, add, mult, and derivative. From FORTE's point of view,
however, the constraints in the fundamental domain theory are simply

antecedents that succeed or fail in the course of a proof.

_ Also, the constraints can instantiate variables. In the family domain,
calling parent(fred, X) would instantiate X to a child of fred. Here, calling
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| m_plus(Amount, X) will instantiate X. However, since this is a constraint-
‘based domain, X will only be partially instantiated, to constrain it to the set
of possible behaviors that are monotonic functions of Amount. This means,
for example, that Amount and X must have the same directions of change at
all times, but it says nothing about the values or dimensions of X. The
importance of this becomes apparent when we consider how relational

pathfinding works in this domain.

Relational pathfinding explores the graph of domain values surround-
"ing the values that appear in a positive instance. In qualitative modelling,
' nodes in this graph are behaviors and edges are constraints. Thus, to explore
the graph, relational pathfinding tries a known behavior in all possible con-
straints to see what behaviors it can derive. Since the derived behaviors are
~ only partially instantiated, each of them actually stands for a set of possible

. behaviors. An intersection is reached when two such behavior sets intersect.

To illustrate this, consider the problem of modelling a ball thrown into
the air. Suppose that the user only provides behavioral information for
position and gravity. The behavior provided appears in Table IV.

Table IV. Behavior of a thrown ball, omitting velocity. Abbreviations: f = floor, h = hand,
m = max, ¢ = ceiling. The notation (hc) indicates the open interval from htoc.

Variable l

Position

thm) 1+ |h 1+ Oh) | +

Gravity I go-

This behavior shows a ball being thrown from someone's hand, rising to a
maximum before hitting the ceiling, and then falling to the floor. Gravity is

shown as a constant throughout the behavior. FORTE can find no constraints
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that hold between the two variables. However, when it proposes an empty
 model, the revision verifier rejects it, since the variables in the model are not
“connected (the functions of the revision verifier are described fully below),

and FORTE attempts to join the variables using relational path_finding.

One path leading from Position is derivative(Position, V)., and one path
leading from Gravity is derivative(V,, Gravity). - The derivative constraint
defines a relationship between the sign of one variable and the direction of
change of the other. The resulting partial instantiations appear as the first
two lines in Table V. These two partially instantiated terms can be unified

“(i.e., the intersection of the behavior sets that they represent is not empty),

" and their units are consistent” so relational pathfinding creates a path
containing the two derivative constraints, and intersecting at the new variable
whose behavior is shown as the third line of Table V.

25The dimensions of Position and Gravity are distance and dlstance/tlme reSpectlvely. 80
both V, and V, have dimensions of distance/time. -
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Table V. Two partially instantiated behaviors, and the derived variable resulting from their
unification.

Variable “ Time1 |Time2 {Time3 |Time4 [Time5 |[Time6 |Time?7
V, 27- 77~ 77- ?77-
Vv, 217 712 212 717
Velocity ||?1+ 71+ 010 {?!- 71- ?1- ?4-

Thus, FORTE produces the final, correct model

ball(Position, Gravity) :-
' derivative{Position, Velocity),
derivative(Velocity, Gravity).

'As mentioned above, the revision verifier also plays a role in this
domain. The revision verifier aliows the user to provide domain-dependent
consistency checks. In particular, it rejects a model if not all system variables
‘are used in the constraints or if the model does not form a connected graph.
However, if relational pathfinding is unable to connect the model within the
depth bound given in the language bias, FORTE will give a warning message

and provide the best model it was able to generate.

It should be noted that providing a model that is not connected is not
necessarily an error. FORTE brings a new capability to Qualitatiye model
building—namely, the ability to create new system variables. Howeﬁer, there
is an essential tension between the desire to relate two behaviors and the
need to recognize when truly independent process are taking place. On one
extreme, any two behaviors can be related by introducing a large enough set
of intermediate variables. On the other extreme, two similar behaviors may,

in fact, be unrelated. The depth-bound the user provides sets a point in this



116

spectrum—it identifies the maximum number of intermediate variables FORTE
is allowed to introduce in an attempt to join to apparently disparate
behaviors. If FORTE presents a disconnected model, this is a statement that

the processes are independent, within this bound.

Table V1. Summary of qualitative model induction results.

Model Training Set Size Number of Execution Time
Constraints

thrown ball ~ |1 behavior 2 constraints 4 seconds

{missing velocity)

bathtub 1 behavior 3 constraints 2 seconds

two tubs 2 behaviors 6 constraints 35 seconds

cascaded tanks 1 behavior 9 constraints 10 seconds

cascaded tanks 2 behaviors 7 constraints 43 seconds

_ {missing netflows)

shuttle reaction 1 behavior 55 constraints 114 seconds
control system

W

Table VI proirides a summéry of the tests run in qualitative modelling.
The thrown ball has already been discussed. The bathtub is a simple tank
with water flowing in from some source and out through a drain. The two-
tubs problem presented FORTE with two independent bathtubs and asked it
to build a single model; FORTE correctly refused to connect the two tubs, and
provided a model containing two copies of the simple bathtub. The cascaded
tank_s examples are discussed in detail in Section 8.3. The shuttle reaction

~ control system is discussed in Section 8.4.

8.3 TWO CASCADED TANKS
Cascading two tanks so that the drain from one provides the inflow to

the next provides a moderately complex second order system. A correct
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model for this system appears in Figure 39. FORTE is able to induce this
model from a single qualitative behavior. FORTE's induced model contains two
redundant constraints, but is otherwise identical to the expected model. The

variables have been renamed for easy readability:

model(in A, Net_A, Out_A, Amt_A, Net_B, Out_B, Amt_B) :-
constant(in_A),
add(Out_A, Net_A, In_A),
add(Out_B, Net_B, Qut_ A},
derivative(Amt_B, Net_B),
derivative(Amt_A, Net_A),
m_plus(Amt_A, Out_A),
m_minus(Amt_A, Net_A),
m_minus(Out_A, Net_A),
m_plus(Amt_B, Out_B).

— Amount_A
=251 ¢ ' : . ,
1& Nettow A | /et
Inflow A
Outflow A M+
Amount B
Nethow B g/t
Outflow B M4+

Figure 38. A system of two cas- Figure 39. Graphical representation of a correct qualita-
caded tanks. tive model for two cascaded tanks.

In order to test FORTE's ability to induce missing system variables, we
omitted those that a user might realistically forget. We supposed the user
measured all the flows and amounts but did not realize that the calculated
" netflow for each tank would be important. Thus, we provided behaviors for
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alt of the other variables, but omitted the netflows entirely. For this test we

provided two qualitative behaviors, and inflow_a was not held constant.

Figure 41. Model after one round of rela-

Figure 40. Partial model before relational tional pathfinding.

pathfinding.

The process FORTE goes
through to create a system model in this case can be viewed in three stages.
First, before doing any relational pathfinding, it generates the disconnected
model shown in Figure 40. The revision verifier rejects this model. After one
round of relational pathfinding, FORTE has flypothesized one netflow variable,
with the results shown in Figure 41. This model is still not connected, so the
~ revision verifier rejects it again. Finally, after a second round of relational

pathfinding, FORTE generates the complete model shown above in Figure 39.

8.4 SHUTTLE REACTION CONTROL SYSTEM

The space shuttle reaction control system (RCS) (see [Kay, 1992)) is
substantially moi‘e complex than the system of cascaded tanks, and provides
a more realistic test of FORTE's capabilities in this domain. The basic
functional element of the reaction control system is shown in Figuré 42. The
system works as follows. Helium from the helium tank enters the fuel tank
at a constant, regulated pressure (helium in the fuel tank is referred to as
ullage). This forces fuel out of the fuel tank and into the manifold. From the
manifold, the fuel enters the thruster and ignites to provide thrust. '
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The complete system, of course, is more complex
than this. There are three independent reaction control -
systems on the shuttle, each of which has both fuel and
oxidizer subsystems. The diagram in Figure 42 may be
viewed as one fuel or oxidizer subsystem. Within a

subsystem, there are redundant valves, and the upper

X §Ne

valve is actually a pressure regulator. In addition, the

single manifold shown is an abstraction of fivg parallel Manifold

manifold chambers leading to five thrusters. However,
one can use this element of the RCS to understand the

basic properties of the entire system. For the purposes

of this section, we will assume that the lowest valve, Fgure 42. The RCS.
leading to the thruster, is closed (i.e., the thruster is off).

Figure 43 shows the hand-generated model for this system, taken from [Kay,
19921. '

- 8.4.1 Model Induction _

Assume that the upper valve, between the Helium tank and the fuel
tank is open and providing constant pressure, and that the center vaive
between the fuel tank and the manifold has just been opened. If the initial
pressure in the manifold is lower than the initial pressure in the fuel tank (so
that the system is not immediately at equilibrium), then the fuel flows from
~ the fuel tank into the manifold. Providing this single behavior to FORTE allows
FORTE to induce exactly the model shown in Figure 43, with the addition of

several redundant constraints.*

_ “Eor example, since Vol_total is constant, one redundant constraint is an M- between Vol_U
and Vol_Fuel. : : ' S :
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i‘: X Amt-H %
VoLUl A\ Amt-Ull d/dt t-He M+ P-He
He-Uli-Flow
d/dt * [TAmtHe
Vol-Total / + M+
P-Ull
Vol-Fuel X
Den-Fuel [\, S . P-Man M+
- k_
P-Diff-Fue!
* -
M+ _ jAmt-Man
Amt-Fuel
d/dt d-Ami-Fuel | _ d-Amt-Man d/dt

Figure 43. Qualitative model of the RCS.

8.4.2 Model Revision and Diagnosis

Alternatively, suppose the user hasﬂ a faulty model of the RCS, along
with correct system behaviors. Since FORTE is a theory revision system, it can
take the faulty model as an initial theory, and revise it to match the correct
system behaviors. For example, suppose the user mistakenly used a multiply
constraint in place of the add constraint leading to Vo!_total in the correct
model. FORTE begins by deleting this constraint (or any constraint which
keeps the positive instances from being provable). Then, since the model is
required to be most-specific, FORTE adds all constraints consistent with the
behaviors which do not already appear in the model. The result is, of course,
the same model that Forte would induce in the absence of the initial theory.

However, one can view this process of model revision in a different
_, light. Suppose that the user has a correct system model, but that the system

itself is behaving incorrectly. In this case, we can use theory revision to
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revise the correct system model to reflect the actual system behavior. The

resulting changes in the model can be viewed as a diagnosis.

One of the failures that can occur in the RCS is a leak in one of the five
manifolds leading from the fuel tank. In order to isolate the leak, the
astronauts shut the valve leading from the fuel tank into the manifolds. They
" then isolate the suspected manifold and reopen the valve connecting the fuel
" tank and the manifolds. If the leak has been eliminated, the system will
‘quickly reach equilibrium. If the leak has not been isolated, the system will

not reach a pressure equilibrium (at least, not before all of the fuel has
drained out through the leak).

If FORTE begins with the correct system model shown in Figure 43,
along with the system behavior caused by a leak in the manifold, FORTE
revises the model by deleting the constraint minus(D_Amt_Fuel, D_Amt_Man).
The variable D_Anit_Fuel is the amount of fuel leaving the fuel tank and
flowing into the manifold. Variable D_Amt_Man is the net change in the
amount of fuel in the manifold. Normally, the amount of fuel flowing out of
the fuel tank (D_Amt_Fuel) should be the same, except for sign, as the net
amount of fuel being added to the manifold. Since FORTE deletes this con-
straint, there must be another influence on the amount of fuel in the

manifold—namely, a leak.

Unfortunately, there are two classes of faults in the RCS that FORTE
cannot diagnose. First, operation of the valves controls transitions’’ between

different system models, and failures of the valves cause failures in those

27 A transition is a discontinuity in system behavior that requires a new and different model
to continue simulation. For example, when modelling the temperature of water, transitions wili
occur when the water freezes or boils. In the RCS, transitions occur when valves open or close,
when a tank becomes completely empty, or when pressure regulation of the Helium fails.
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transitions. While FORTE could maintain different system models as different
clauses in a theory, the support code from MISQ that constitutes the
fundamental domain theory and revision verifier is not designed to handle

‘model transitions.

The second class of faults that FORTE cannot diagnose in the RCS are
Jeaks that occur while the thruster is activated. The reason for this is that the
thruster itself acts exactly like a leak. Additional leaks cause no qualitative
change in system behavior. Thus, in order to detect leaks while the thruster

is operating, we must have access to quantitative information. .



Chapter 9
RESULTS IN GRAMMAR ACQUISITION

In this chapter we take a brief look at FORTE's potential in the field of
grammar acquisition. FORTE represents theories as pure Prolog programs and
- pure Prolog programs can, by a mmple SYl'ltaCtIC transformatlon, be turned
- into definite clause gramm_ars” (DCGs). Consequentiy, since FORTE can revise
logic programs, it can also revise DCGs. We illustrate this capability with

several revisions of one example grammar.

9.1 METHODOLOGY _ _

The data set for grammar revision includes both positive and negative
instances of correct sentences, along with a dictionary of words that .provides
the part-of-speech and, for nouns and v_erbs,_whether the word is singular or

plural. The tests presented in this chapter use the following words:

big: adjective feral: adjective

little: adjective ugly: adjective

a: determiner, singular the: determiner, singular/piural
boy: noun, singular boys: noun, plural

cat: noun, singular cats: noun, plural

dog: noun, singular dogs: noun, plural

chases: verb, singular chase: verb, plural

hits: verb, singular hit: verb, piural

285 definite clause grammar is less powerful than a full context-sensitive grammar, but more
powerful than a context-free grammar, since nonterminals may take arguments.

123
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In keeping with DCGs, dictionary entries are coded as difference lists, e.g.,

adjective( [blglRest] Rest)
noun( [boylRest], Rest, singular)

: ~ The revision verifier is empty. The fundamental domain theory
| ) _prov1des no new predicates. However, it checks the calls to the dictionary to
ensure that one of the first two arguments is‘instantiated—calls with neither
of the first two arguments mstamlated are useless since they do not connect

to other parts of the sentence through the difference lists. -

The training set for the revisions shown below includes four correct
sentences as positive instances and four incorrect sentences as negative

instances. The correct sentences are

The little boys hit the big dog.
" The little boy hits the big dog.
The dog chases the cat. -
The big, ugly dogs chase the feral cat.

The incorrect sentences are:

The little boys hits the big dog.
A little boys hit the big dog.
The littie boy hits the the dog.
The little the boy hits the dog.

9.2 SAMPLE REVISIONS
Consider the following simple English grammar, which we show using
standard Prolog syntax. This grammar structures sentences as noun-phrases
‘followed by verb-phrases, it allows articles and adjectives, and it enforces

agreement on number between the subject and the verb.
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sentence(S, R) :- noun_phrase(S, S1, N), verb_phrase(S1, R, N).

noun_phrase(l, O, N) :- determiner(l, A, N), adj_noun(A, O, N).
noun_phrase{l, O, N) :- adj_noun(l, O, N). :

adj_noun(l, O, N) :- adjective(l, A}, adj_noun{A, O, N).
~adj_noun(l, 0, N) :- noun{l, O, N). . .

verb_phrase(i, O, N) :- verb(l, O, N).
verb_phrase(l, 0, N) :- verb(i, A, N), noun_phrase(A, O, M).

Revision 1. If the top-level rule for sentence is deleted, leaving only the

trivial
sentepce(A, B). .
' FORTE successfully reconsffucts the ruléf
sentence(A, B) :- noun_phrase(A, C, D), verb_phrase(C, B, D).
Revision 2. If the lower-level predicate ve.rb_phrase/ 3 is changed to

verb_phrase(l, O, N) :- verb(}, O, N).
verb_phrase(l, O, N) - verb(l, A, N).

FORTE successfully revises it to the original

verb_phrase(l, O, N} :- verb(l, O, N).
verb_phrase(l, O, N) :- verb(l, A, N), noun_phrase(A, O, M).

Revision 3. If the lower-level predicate verb_phrase/3 is changed to

verb_phrase(l, O, N) :- verb(l, O, N).
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FORTE successfully revises it to

‘verb_phrase(l, O, N) :- verb(l, O, N). '
verb_phrase(l, O, N) :- verb(l, A, N), noun_phrase(A, O, M), _

Revision 4. If the lower-leve] recursive predicate adj_noun/3 is changed to

adj_noun(l, O, N) :- adjective(l, A), adj_noun(A, O, N),

FORTE successfully revises it to

a&j_;noun(I. O, N} :- adjective(l, A), adj_noun(A, O, N).
adj_noun(l, O, N) :- noun(l, O, N).

Howev::, FORTE is unable to repzi- errors in the recursive clause of this

predicz: 2, since this predicate is c:ii+d in non-ground mode (see discussion

of deer:iy recursive predicates in Chizpter 6).



Chapter 10
RELATED WORK

Thié chapter compares FORTE to related work in the field. The organi-
zation of this section parallels that of Chapter 2. However, where Chapter 2
provided a broad view of related work to set the stage for FORTE, this chapter
foci.xses on specific work that is closely related to FORTE, and to which we wish
to contrast FORTE's appro'ach. Related work in machine learning is discussed
in the sections on propositional and first-order learning. The following
sections discuss related work in the target domains of logic programming and

qualitative modelling.

10.1 Propositional Theory Revision |
The most closely related propositibnal théoﬁr revision system is
EITHER, described in {Ourston and Mooney, 1990]. EITHER is a propositional
| theory revision system; however, FORTE draws many of its basic theory
revision operators from EITHER. EITHER'SJapproach' to theory revision takes
advantage of the relative tractability of propositional logic and uses a global
- greedy-search algorithm that guarantees convergence on the training set.
FORTE, on the other hand, uses a hill-climbing method that is not guaranteed
to converge on the training set. This hill-climbing approach does not improve
FORTE's speed relative to EITHER in propositional domains. This is due to a
difference in revision strategy between the two systems. EITHER limits the
explosiveness of its global search by only considering revisions at the lowest
level of a theory. It only moves upward in the theory if revision at the lower
level fails. FORTE, by contrast, always explores revision points at all levels in
the theory. However, FORTE's hill-climbing approach does allow it to work
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with reasonable efficiency in first-order domains, where a global search

algorithm would likely be overwhelmed by the explosion in the theory space.

FORTE's use of a hill-climbing approach leaves it vulnerable to local
maxima. FORTE can usually escape local maxima within a single clause by
using relational pathfinding or by deleting multiple antecedents. .However,
when the only way to escape a local. maximum is to make simultaneous
changes in two or more clauses, FIOR'.IE cannot escape. AS discussed in

Chapter 6, this has not been a significant problem.

10.2 First-order Learning

A closely related first-order system is FOCL, presented in {Pazzani,
Brunk, and Silverstein, 1991]. FOCL is an extension of FOIL that allows the
use of an initial theory to guide an inductive learning process. Clauses and
portions of clauses from thé inpuf theory are considered for addition to the
rules under development by FOIL. If adding antecedents from the input
theory provides more information gain than adding a newly created anteced-
ent, the terms from the theory are chosen. Thus, providing a good input
theory provides a substantial boost to the learning process. This is not true
theory revision, however, and much _of the information contained in the initial

theory can be lost.

FOCL's approach is also at a disadvantage when the initial theory is
missing lower-level rules (see Chapter 7 and [Cohen, 1991]). Furthermore,
since the initial theory is only used to aid an otherwise inductive process, the
structure of the initial theory is lost. FORTE preserves as much of the initial
theory as possible, and can modify ruies at any level in a theory with equal
effectiveness. FOCL has been used as the basis for an interactive theory
revision system, KR-FOCL {Pazzani and Brunk, 1991]. KR-FOCL examines a
trace of FOCL execution on a knowledge base (FOCL is not actually allowed
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to modify the original knowledge base), and uses the information to suggest
revisions to the user. This is intended to detect and correct simple errors in

a multi-leve] theory.

A different approach to first-order induction is presented in [Kijsirikul,
Numao, and Shimura, 1991] in their system CHAM. CHAM performs first-
order induction on the same types of problems as FOIL. However, CHAM uses
mode?® information together with a new heuristic, likelihood, that attempts to
determine what relations are needed based on a similarity analysis of input
" and output variables. Unfortunately, the likelihood heuristic only applies to
recursively structured variables such as lists, and even then only applies to

a select set of problems. For example, there is no a priori similarity among

the variables in the top-level clause of merge-sort.

In {Cohen, 1992}, Cohen describes GRENDEL, the most versatile and
arguable the most powerful fixjst-order induction system available. GRENDEL
is based on FOIL, but Cohen allows the user to give GRENDEL a meta-leve]
program which guides the learning process. Using this method he has been
able to closely simulate a number of different first-order inductive learning
systems. Cohen's thesis is that any learning algorithm inevitably brings with
it a learning bias, and by allowing the user to "program” GRENDEL, this bias is
made explicit. However, GRENDEL is still inherently an inductive learner; initial
theories can be introduced only in the sense that they can be explicitly coded
as part of the meta-program that guides GRENDEL's learning.

29 10de information refers to the fixed use of particular variables for input or output. For
example, a sort predicate might have the defined mode sort(+, -), meaning that the first variable
is the input variable and the second variable is the output variable. Modes are especially
beneficial whenever a logic program is written procedurally. )
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AUDREY, described in [Wogulis, 1991] is a simple first-order theory
revision system. It takes a two-pass approach to revising theories. First, it
specializes the theory to exclude all negative instances. Specialization is
coarse; it deletes entire clauses from the theory until all negatives have
become unprovable. Second, AUDREY gercralizes the theory to include all
positives. Generalization uses an abductive process, but only a single
assumption may be made for any positive instance; generalization fails if

" more than one assumption is required.

A technique similar to relational pathfinding was developed indepen-
"dently in [Langley, 1980}, in the context of learning production rules.
Langley's technique differs from relational pathfinding in a number of ways,
although the underlying idea of graph search is present in both. For example,
Langley's search method is unidirectional, and less tightly constrained. On
the other hand, his bias in accepting paths is more restrictive—Langley seeks
"paths which lead to unique productions, which essentially means that the
path must contain all antecedents necessary to complete the production.
FORTE, on the other hand accepts any path which helps discriminate between

positives and negatives, even if further specialization may be necessary.

- 10.3 Logic Program Synthesis

The specification-based approaches to logic program synthesis cannot
be directly compared to FORTE, since the underlying assumptions are very
different. However, we can contrast the approaches at a high level. Using a
specification presupposes that the user understands the problem well enough
" to provide a complete and correct specification. Given this, and the relatively
large effort required to correctly formulate the specification, we are rewarded
with a program that is guaranteed to he correct. The inductive approach
followed by FORTE is more suited to problems where the user is not able to
“formulate a complete and_ cqfrect specification. What knowledge the user
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does have goes into the relatively easy task of constructing input-output
examples. If the user has some algorithmic knowledge of the problem, this
can go into an initial theory, which gives FORTE a starting point in its task.
'However, the price we pay for these less stringent input requirements is that,
while the resuiting program will work correctly on the given instances, it may

still not be the intended program.

Similarly, it is difficult to directly compare FORTE to the work of
“Shapiro [Shapiro, 1983]. Shapiro's PDS6 can debug much more complex

 programs than FORTE can, but it does so by asking the user to identify the

correctness of predicate calls, to determine which clause in a predicate shouid
be changed, and to actually write missing program clauses. Forte, on the
other hand, determines where errors lie in the theory and develops correc-
tions without any user interaction. When comparing FORTE to Shapiro's work
(see Section 7.5), it is no surprise that the highly interactive PDS6 debug more
complex errors than a fully automatic system.

Flener's work [Flener, 1991} is a closer analogy. He seeks to learn logic
programs from positive input-output tuples supplemented with informal
properties that provide information equivalent to what FORTE gains from the
use of negative examples. He does not provide for the possibility of an initial
program. Unfortunately, Flener presents no results to demonstrate the
capabilities of his approach. His methods seem likely to be more effective
than FORTE at developing good recursions, since he uses predefined program
schemata, but he provides less powerful operators overall, and is thus likely
to be less effective on nonrecursive learning problems.

10.4 Qualitative Model Building
In qualitative model building, [Coiera, 1989] presents GENMODEL, a
method for inducing a qualitative model from qualitative behaviors. His
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approach is limited by the fact that behaviors must be completely specified,
and his output models contain many mathematically redundant constraints
due to the absence of dimensional analysis.*® A more powerful system, MISQ,
was developed independently in [Kraan, Richards, and Kuipers, 1991] and
[Richards, Kraan, and Kuipers, 1992]. MISQ adds dimensional analysis to the
model-building process, and is also able 1o work with incomplete behavioral
information. The core learning algorithm of both GENMODEL and MISQ is
similar to the version-space computation of most specific conjunctive
hypotheses ((Mitchell, 1982]). FORTE's processing of most-specific theories
subsumes this method, and thus FORTE can be used to implement MISQ.
"-Relational pathfinding allows FORTE to induce models even when the user has
omitted essential system variables, something that MISQ as described in
[Kraan, Richards and Kuipers, 1991] cannot do. FORTE is also able to take an

initial model as input, and revise that mode! to reflect observed behaviors.

GOLEM has also been applied to the problem of learning qualitative
models [Bratko, Muggleton, and Varsek, 1991} However, their method
requires hand-generated negative information (i.e., examples of behaviors that
~ the system does not exhibit), it does not completely implement the QSIM
constraints (e.g., corresponding values are ignored), and it does not use
dimensional information. GOLEM also requires extensionally defined
background knowledge, whereas FORTE's fundamental domain theory allows

background knowledge to be defined intensionally.

Although not a qualitative system, BACON.3 [Langley, 1977] performs
the related task of building algebraic expressions. Since BACON works from

numeric data to construct numeric equations, its operations are more tightly

, 3%¢ a model is interpreted as a real physical system, then these constraints are not merely
redundant, but actually incorrect. One would never, for example, add velocity and mass, even
if .doing s0 were plausible from the observed values.
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constrained than those of MISQ. As a result, it is able to create equations that
include many implicit intermediate variables (e.g., the equation a(b+c) = d
contains an implicit intermediate variable holding- the value of b + o).
However, working with numeric equations restricts BACON to relatively
simple physical systenis, since its library of lfunctions must include the exact

functions required to mode] the system.



Chapter 11
FUTURE WORK

11.1 ENHANCEMENTS TO FORTE
There are a number of possibilities for direct enhancements to FORTE.

These are outlined in the following paragraphs.

11.1.1 Efficiency ‘

FORTE's operator-based approach is highly effective, but also highly
inefficient. One area with the potential to greatly improve FORTE's efficiency
is the area of operator selection. If we could classify theory errors to
determine which operator is most likely to provide a good revision for a
particular type of error, we could eliminate a great deal of redundant work by
selecting the proper operator first, and only resorting to other operators if
‘the selected operator fails to develop a useful revision.

~Anotherdifficult but potentially worthwhile improvement would be the
use of an ATMS [deKleer, 1986] to cache proof results. Currently, when
developing possible revisions, FORTE tries to prove every instance many times
over. While each proof uses a different theory, most subgoals remain the
same. While using an ATMS imposeg a substantial overhead, it is likely that
the savings resulting from caching unchanged subgoals would provide a

marked increase in speed.

11.1.2 Mode Information

Our philosophy in developing FORTE has been to avoid mode informa-
tion. The rationale for this is that pure logic programs should have a purely
declarative meaning, whereas mode dependencies imply a procedural
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interpretation. However, mode information can be a powerful aid in
‘developing recursive predicates, and can limit the difficulty of writing the
fundamental domain theory (since, without modes, predicates in the
. fundamental domain theory must be defined for all modes). Thus, a
reasonable way to enhance FORTE's capabilities would be to allow the user the
option of specifying mode information, and having FORTE make use of this

information when it is available.

Using mode information would allow FORTE to prune its search space
by rejecting antecedents that would leave required inputs uninstantiated. It
would also make FORTE aware of antecedent ordering within clauses.
Currently, since training instances are ground, FORTE is unaware of the way
that a predicate will be called in practice. For exampie, FORTE produces the

~ clause

“merge_sort(A, B) :-
split(A, C, D),
merge(E, F, B),
merge_sort(C, E),
merge_sort(D, F).

If this clause were used as part of a sort program it would be highly
inefficient, since merge will generate possible permutations of the output list
‘until it finds the ones that correspond to the following merge_sort anteced-
ents. The use of modes would eliminate this problem.

11.1.3 Negation 7

Negation does not increase the expressive power of logic pro-
grams—any predicate can be written without using negation. However, doing
so can be inconvenient, and can increase the complexity of a theory. Hence,
another possible enhancement would be to allow FORTE to add negations of
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literals. The simplest way to do this is, when specializing a clause, to
consider the negation of all antecedents we currently consider, thus roughly
doubling the number of possible antecedents. However, it is not clear how
one would deal with the problem of floundering®, other than simply disallow-
ing non-ground negations of any literal that cannot be proven to be ground
at that point in the clause. [Bain, 1991] presents an interesting approach to
negation using CIGOL, which could be extended to any first-order learning

system.

11.1.4 Deep Recursion

Learning recursive predicates is perhaps the single most challenging
aspect of first-order theory revision. FORTE can induce or revise recursive
predicates for which a training set is provided, and has limited capabilities
to revise lower-level recursive predicates, However, giving FORTE more
detailed knowledge of recursion schemes would be very heipful. We do not
mean giving FORTE a fixed set of recursion templates, which would subse-
quently limit the types of recursive predicates it would be able to learn.
However, we could explicitly identify the variable on which a predicate will
recurse, and ensure that all base cases and recursive cases use this variable
appropriately. We could also add knowledge about what it means for a

recursion to be well-founded.

Deeply recursive theories pose a larger challenge, and it is difficult to
see how to lift the current limitations. However, this is an area where a

3 1he problem of floundering arises in SLDNF resolution when a negative literal contains an
uninstantiated variable. Consider the logic program

p(b).
q - not(pCd), X = a.

Read declaratively, the que'ry q should succeed However, since X is uninstantiated when the
negative literal is resolved, the program fails.
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merger between the two approaches to logic program synthesis may be
valuable. Both techniques, inductive learning from input-output examples
and derivation from specifications, find nested recursions to be challenging.
However, each method can provide different information to aid the selection

of appropriate recursion schemes.

11.1.5 Predicate Invention
" FORTE currently does not invent new predicates. Predicate invention

' is unnecessary when learning in non-recursive domains, although introducing

new predicates may simplify the theory.* However, when learning a concept
that is expressed as nested recursions, predicate invention is essential. For
" example, a program for naive reverse cannot be written without using a lower-

level recursive predicate like append.

Inverse resolution offers one approach to predicate invention. For
~ “"example, the operators interconstruction and intraconstruction can be used
to invent new predicates, although they have traditionally been used only to
help produce a more compact theory. Relevant work in inverse resolution
includes [Muggleton, 1987, [Muggleton and Buntine, 1988], and [Muggleton,
1990]. An abductive approach to predicate invention is outlined in [Wirth and
O'Rorke, 1991].

11.1.6 Probabilistic Theories
Theories for many domains are best cast in terms of probabilistic
reasoning, fuzzy logic, certainty factors, or other numerically-based

techniques. While FORTE currently makes no provision for such techniques,

3210 see this, consider an arbitrary nonrecursive multi-level theory. Each antecedent
* referencing a lower-level predicate can be partially evaluated (possible in several ways) by
resolving it with lower-level clauses, Collecting all possible partial evaluations yields an
equivalent single-level theory. Since the theory is nonrecursive, the set of partial evaluations is
finite. ' ' '
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" the field of reasoning under uncertainty has received a great deal of work.
Many of the techniques could be combined with FORTE to produce a first-order
theory revision system capable of reasoning in these domains. One approach

to revision of uncertain theories appears in [Mahoney and Mooney, 1992].

11.1.7 Other Revision Operators

FORTE depends on having a variety of revision operators to help it
avoid local maxima. Hence, one direction for future work would be the
development of new types of operators. For example, Forte currently has no
operator that simultaneously revises multiple clauses. For examplie, suppose
that a theory is overly specialized. It may be necessary do delete multiple
antecedents in order to improve the accuracy of the theory. However, if these
antecedents are distributed over different clauses, FORTE will be unable to
develop an appropriate revision, and will resort to learning new
rules—essentially discarding whatever information is present in the existing
overly-specialized rules. This is the sort of interaction that prevents FORTE

" from correctly debugging the PDS6 example in Section 7.5.

11.2 FUTURE WORK IN LOGIC PROGRAMMING
While many of the enhancements discussed in Section 11.1 would
improve FORTE's performance in the domain of logic programming, there are

two specific areas of work that deserve separate consideration.

11.2.1 Speed-up Learning

A new area of firsi-order learning deals not with correcting a theory
but with making its execution more efficient. The goal of the learner is to
identify preconditions that must be satisfied before rules are tried, thus
preventing needless backtracking. The preconditions can be expressed either
as contro) rules in a meta-program or simply added as the first antecedents

“to be evaluated by the target rules. Positive and negative instances are
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derived by monitoring normal program execution; when a rule succeeds
during a successful proof a positive instance is recorded. When some other
rule participates in the final proof a negative instance is recorded. From
these instances, normal first-order induction derives the control rules.
However, if approximate control rules already exist, first-order theory revision
technigues could be applied to revise them. This approach is explored in
[Zelle and Mooney, 1992]. '

'11.2.2 Automated Tutoring

FORTE can correct bugs in an incorrect logic programs in a way that
preserves much of the original structure. In essence, FORTE tried to revise a
program to be correct, but along the lines the author intended rather than
according to some model solution. This give FORTE the potential to be used
‘as part of an automated tutoring system for logic programming. The
instructor could prepare a training set for FORTE to go along with each
programming assignment given to the class. Students who needed help
understanding what was wrong with their programs could use FORTE to debug
* them. If the program is too complex for FORTE to debug, due perhaps to
~ nested recursions, the student could provide explicit examples for the lower-

‘leve] predicates.

Used in this way, FORTE would provide a learning tool to help students
learn to write and debug logic programs. FORTE would provide an individual-
ized critique of each student's program, suggesting only those changes
" necessary to make the program work—even if it the result differs from the
model solution intended by the instructor. This after-the-fact evaluation
allows the student to attempt an assignment and then see a correction, as
opposed to the highly interactive approach required by [Shapiro, 1983].
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FORTE and PDS6 are at opposite ends of a spectrum; FORTE is complete-
ly automatic and PDS6 is highly interactive. It would be possible to develop
an intermediate approach, where the system would work automatically, but
would ask the user for guidance on questionable actions. For example, the
user might be asked to confirm the need for predicate invention, or perhaps

to verify the correctness of a recursion scheme.

11.3 FUTURE WORK IN QUALITATIVE MODELLING

FORTE's application to qualitative modelling gives MISQ the capability
to invent new system variables, as described in Chapter 8 and in [Richards,
‘Kraan, and Kuipers, 1992). This is an important contribution to the task of _
automatically deriving models from system behaviors. However, much of
- FORTE's power is currently unused on this problem, since theories in this
domain consist of only a single clause. The next step forward in this area will
be the ability to work with model transitions—to simultaneously maintain

more than one system model, and to switch between them as needed.

In addition, prior implementations of MISQ were able to work directly
“with quantitative behaviors. This is an important capability for many reasons,
but perhaps the most important is that it allows the system to work directly
with sensor data—eliminating any need for a person to translate the data.
There are two ways to bring quantitative processing together with FORTE's
theory revision capabilities. One is to implement a new special-purpose
version of MISQ that incorporates relational pathfinding and whatever other
features of FORTE that will be useful in addressing the model transition task.
The other is to add the quantitative pre-processing component of earlier

versions of MISQ and use it as an example translator for FORTE.

Finally, a shortcoming of all versions of MISQ to date, including the
FORTE implementation, is that MISQ includes redundant constraints in its
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models. While these constraints do not alter the model semantics, they can
make large models difficult to understand. Many of these redundant

constraints could be eliminated via subsumption analysis.



‘Chapter 12
CONCLUSIONS

This research has demonstrated the feasibility of general purpose first-
order theory revision by developing a system, FORTE, which has been used to
revise and induce theories in a wide range of domains. FORTE is an operator-
based revision system, and includes a variety of powerful theory revision
operators. Some of these were derived from prior work in the field, while
others are new. Relational pathfinding, in particular, has proven to be a
valuable revision operator in almost all of the domains FORTE has been tested
on. Although FORTE uses hill-climbing techniques, during the more than 1000
.test runs needed to generate the learning curves in Section 6.1 Forte was

trapped by local maxima less than 1% of the time.

A first-order theory revision system is a significant advance over
propositional theory revision systems. While many domains can be encoded
as propositional learning problems, doing sb often greatly increases their size
and reduces their understandability. Moreover, many domains cannot be so
encoded; for example, 6ne cannot express useful programs in propositional
logic. Thus, working in first-order logic opens many new fields to machine

learning.

FORTE also provides a research contribution to two of the individual
domains in which it has been tested. In logic programming, FORTE has been
able to automatically debug incorrect programs that previously would have
required an oracle-based system. Its ability to revise programs while
preserving their basic structure represents the beginning of an effective

automatic tutoring system for logic programming. In one test, FORTE was able
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to revise multiple bugs in a large logic program which performs propositional
inductive learning. Extensions to FORTE could lead to a highly effective

automated tutoring system.

In the domain of qualitative modelling, FORTE can induce models from
examples of system behavior, just as the special purpose system MISQ is able
to do. However, FORTE's relational pathfinding algorithm provides the ability
to create system variables as needed, in order to produce a correct model.
This is an unportant capability, since a user trying to understand the
'operatlon of a system cannot be expected to know in advance which variables
will be necessary to model that system. Theory revision capabllltles translate,
in this domain, to an ability to perform model revision and.diagnosis. These
.. capabilities were demonstrated on the space shuttle reaction control system.
Future work in this area may lead to the abﬂlty to mduce rewse. and

-diagnose systems of qualitative models connected by transitions.

These domains and many others currently rely on humans to perform
knowledge acquisition and theory revision. Knowledge acquisition is an
expensive and time-consuming task. Yet, once obtained, knowledge requires
maintenance for the same reasons any software does: undetected errors, a
- changing environment, or extensions to unplanned areas of application.
Automating theory revision will allow modifications to be made to a
knowledge base without recalling the knowledge engineer and domain expert.
This, in turn, will lead to lower costs and more reliable knowledge bases.



Appendix A
HINTON'S FAMILY DOMAIN

The Hinton data set of two
isomorphically identical fafnilies,
one of which is shown in
Figure 44, Positive instances con-

sist of all correct instances of the

‘twelve concepts: husband/2,

wife/2, father/2, mother/2,
son/2, daughter/2, brother/2, sis-
ter/2, uncle/2, aunt/2, nephew/2,

marriad
Christopher Penelope
" parent parent
h married
Arthur ~ Victoria James
&
parent ) parant
Colin Charlotte

Figure 44. One of the families in Hinton's data.

and niece/2. Negative jnstances are "near-misses," i.e., instances which are

~ provable by a theory which differs by only one or two antecedents from a

correct theofy. For example, negative instances for uncle/2 include examples

of aunt/2 and grandfather/2.

The fundamental domain theory for this data set adds only one piece

of knowledge: that marriage is commutative. The definition of marriage in

the fundamental domain theory is

married(X, Y) :- example(married(X, Y)), !.
married(X, Y) :- example(married(Y, X)).
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A correct theory for the con- [wife(x, V) - gender(X, female), married(X, Y).

. . . . husband(X, Y) :- gender(X, male), married(X, Y).
cepts in this domain appearsin .. other(X. ) :- gender(X, female), parent(X, Y).
Figure 45. . father(X, Y) :- gender(X, maie), parent(X, Y).

daughter(X, Y) :- gender(X, female), parent(Y, X).
son(X, Y) :- gender(X, male), parent(Y, X).
| sister(X, Y) :- gender(X, female}, sibling(X,Y).
_brother(X, Y) :- gender{X, male), sibling(X,Y).
aunt(X, Y) ;- gender{X, female), au(X, Y).
uncle(X, ) :- gender(X, male), au(x, ¥).
niece(X, Y) :- gender(X, female), au(Y, X). ~
nephew(X, Y) :- gender(X, male), au(Y, X).
au(X, Y) :- sibling(X, B), parent(B, Y).
au(X, Y) :- married(X, A), sibling{A, C), parent(C, Y).
sibling(X, Y) :- parent(A, X), parent(A, Y), X \= Y.

. Figure 45. Correct theory for family relationships.




Appendix B
LARGE FAMILY DOMAIN

This appen'dix describes the data set for the family domain and the
randomly corrupted theories used for revision, and shows a sample FORTE

execution in this domain.

- B.1 DATA SET |

The data set describes a la_i'ge family consisting of 86 people in five
generations (sée Fi"gure 46). The data set lacks the artificial regularity of
Hinton's data. Positive instances consist of all correct instances of the same
twelve relations that were used with Hinton's data. Negative instances were

randomly generated; there are twice as many negatives as positives.

B.2 THEORIES

Since the same concepts are defined both here and for Hinton's data,
the theory in Figure 45 is also correct for this domain. The five randomly
corrupted theories used to generate the revision learning curve in Chapter 5

appear below.

wife(X,Y) :- gender(X,female), married(X,Y). wife(X,Y) :- gender(X.female), married(X,Y).

husband(X,Y} :- gender(X, male). husband({,Y):-gender(X,male}, married(X,Y).

mother(X,Y) :- gender(X,female), parent(X,Y). mother(X,Y) :- married(Z,Y).

father(X,Y) :- gender(X,male), parent(X,Y}. father(X,Y) :- gender(X,male), parent(X,Y).

daughter(X,Y) :- gender(X,female), parent(Y,X). daughter(X,y) :- gender(X,female), parent(Y,X}.

son(X,Y) :- gender(X, male), parent(Y,X). son(X,Y) :- gender(X,male}, parent(Y,X),
married(Z,X).

sister(X.Y) :- gender(X,female), sibling(X,Y). sister(X.Y) :- gender{X,female), sibling(X,Y).

brother(X,Y) :- gender(X,male}, au(Z,Y}. brother(X,Y) :- gender(X,male)}, sibling(X,Y).

aunt(X,Y) :- gender(X,female), au(X,Y).

uncle(X,Y) :- gender(X,male), au(X,Y). uncie(Z,Y) :- gender(X,male), au(X,Y).

niece(X,Y} :- gender(X.female), aulY,X). niece(X,Y) :- gender(X,female), au{Y,X).

nephew(X,Y) :- gender(X,male), au(Y,X).
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Taei
1

mi

mio

Figure 46.

Graphical representation of the large family domain.



au(X,Y) :- sibling(X,B), parent(8,Y), married(8,2).
au(X.Y) :- married(%,A), sibling(A,C),
parent(C,V), siblina(X, Z).
sibling(X,Y) :- parent(A,X), parent(A,Y),
X\=Y.

wife(X,Y) :- gender(X,female), married(X,Y).
husband(X,Y) :- gender(X,male), married(X,Y).
mother(X,Y} :- gender(X,female), parent(X,Y).
father(X,Y) ;- gender(X,male), parent(XY).
daughter(X,Y) :- gender(X,female), parent(Y,X).
daughter(X,Y) :- married(X,2).
son{X,Y) :- gender(X,female), parent(Y,X).
sister(X,Y) :- gender(X,female), sibling(X,Y}.
brother(X,Y) :- gender(X,male), sibling(X,Y}.
aunt(X,Y} :- gender(X female), au(X,¥).
uncle(X.Y) :- gender(X,maie), au(X,Y).
niece(X,Y} :- gender(X,female), au(Y,X).
nephew(X,Y) :- gender(X,male), au(Y,X).
nephew(X, Y} :- au(Y, Z), X \=Y.
au(X,Y) :- sibling(X,B), parent(8,Y).
au(X,Y) :- married(X,A), sibiing(A,C),
parent(C,Y).
sibling(X,Y) ;- parent(A,X), parent(A,Y),
X\mY,

wife(X,Y) :- gender(X,female), married(X,Y).
husband(X,Y) :- gender(X,male), married(X,Y).
mother(X,Y) :- gender(X,female), parent(X,Y).
father(X,Y) :- gender(X,male), parent(X,Y).
daughter(X,Y} :- gender(X female), parent(Y,X).
son(X,Y) - gender(X,;male}, parent(Y,X).
sister(X,Y) :- gender(X,femaie), sibling(X,Y).
brother(X,Y) :- gender(X,male), sibling(X,Y).
aunt(X,Y) :- gender(X,female), au{X,Y}.

uncie(X,Y) :- gender(X.male), au(X,Y), parent(X,Y).

uncle(X.Y) :- married({X,A), sibling{A,B).
niece(X,Y) :- gender(X,female), au(Y,X).
nephew(X,Y) :- gender(X,male}, au(Y,X).

aulX,y) :- sibling(X,B), parent(B,Y).

au(X,Y) :- married(X,A), sibling(A,C), parent(C.,Y).
sibling(X,Y} :- parent(A,X), parent(A,Y), X \= Y.

B.3 SAMPLE EXECUTION

Forte version 2.15 -- Test parameters
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au(X,Y) :- sibling(X,B), parent(BY).

au(X,Y) :- married(X,A), sibling(A,C),
parent(C, Y).

sibling(X,Y) :- parent(A,X), parent(A,Y),
X\=Y.

wife(X,Y) :- gender(X,female), married(X,Y).

mother(X,Y) :- gender(X female), parent(X,Y}.
father(X.Y) :- gender(X male}, parent(X,Y).
daughter(X,Y) :- gender(X,female), parent(Y,X).

“son(X,Y) :- gender(X,male), parent{(Y,X).

sister(X,Y) :- gender(X,female), sibling(X,Y).
brother(X,Y) :- gender(X, male), sibling(X,Y).
aunt(X,Y) :- gender(X,female), au(X,Y).
uncle(X,Y) ;- gender(X,male), au({,Y).
niece(X,Y) :- gender(X,female), au(y,X).
nephew(X,Y) :- gender(X,male), au(Y,X).

aulX,Y?} :- sibling(X,8), parent(B,Y).
au(X,Y) :- married(X,A), sibling(A,C),
parent(C,Y). :
sibling(X,Y) :- parent(A, X}, parent(A,Y),
o X\=Y.

Data set, nitial theory, and domain knowledge: ../Data/family, ../Data/fam2,../Domain/family

The data set contains 2232 instances.



Language bias is:

[depth_limit{5),use_attr,use_| relations, use_theory,use_built_in,relation_ tuningthighly_

Output detail set to 3, and initial random seed is random

Test series of 1 independent runs
Training set is 100 instances; test set is 2132 instances

{nitial Theory
sibling{A, B):-parent{C,A),parent(C,B),A\=B.

au(A, B):-married(A,C},sibling(C,D}, parent(D,B).
au{A, B):-sibling(A,C), parent{C,B).

nephew(A, B):-gender(A, male), au(B.A).
niece(A,B):-gender(A,female),au(B,A).
uncle(A,B):-gender{C,male),au{C,B).
brother(A,B):-gender(A,male), sibling(A B).
sister(A,B):-gender(A, female),sibling(A,B).
son(A,B):-gender(A,male), parent(B, A}, married(C,A}.
daughter(A,B):-gender{A,female),parent(B,A).
father(A,B):-gender(A male}, parent(A, B).
mother(A,B):-married(C,B).
husband(A,B):-gender{A,male},married(A,B).

wlfe(ﬂB):-gender(A.female).married(A,B).

relanonal)]

——ee— Beginning test run with seed: random(29919,10151 ,10674,425005073) ~--vesuees

Initial train/test accuracy: 0.88, 0.850375

Selected revision by add_rule scores {6, -2) by replacmg the old
aunt(A, B):-fail.
~ with the new
aunt(B,C):-au(B,C).
aunt(A,B):-fail.
end revision

Selected revision by delete_antecedent scores {2, 1) by replacing the old
son(A,B):-gender{A,male), parent(8,A),married(C,A).

with the new

son{A,B):-gender{A,male), parent(B,A).

end revision

Selected revision by delete_rule scores {2, 0) by replacing the old
. maother{A,B).-married(C,B).
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with the new

mother(A, B):-fail.

end revision

Selected revision by add_antecedent scores (2, -1) by replacmg the old
uncle(A,B):-gender(C,male),au(C,B). .
with the new

uncie(A,B):-gender(C,male),au(C,B),C~A.

end revision

Revised Theory

aunt{A,B):-au(A,B).

sibling(A, B):-parent(C,A), parent(C, B), A\=B.

au(A, B):-marrled(A,C).sibling(c.D),parent(D.B).
au(A,B):-sibling({A,C),parent(C,B).

nephew(A, B):-gender{A,male),au(B,A).
niece(A,B):-gender(A female),au(B,A).
uncle(A,B):-gender(A,male),au(A,B).
brother(A,B):-gender(A, male),sibling(A,B).
sister{A,B}:-gender(A female),sibling(A,B).
son({A,B):-gender{A, male), parent(B,A).
daughter(A,B):-gender{A. female), parent(8,A).
father(A,B).-gender{A,male),parent(A,B).
mother(A,B):-fail.

husband(A, By:-gender(A,male), married(A,B).

wife(A,B):-gender{A,female),married(A,B).

Initial Initial _Initial Final Final Final
Training Theory Training Test Set Training Theory Training Test Set
Set Size Size Accuracy Accuracy Time Size Accuracy Accuracy

100 44 88.00 85.04 1992 45 100.00 = 97.19



- Appendix C
KRK ILLEGALITY DATA

The king-rook-king domain consists of chess positions with a white
rook and king and a black king, with white to move. A position i_s positive if
it is illegal. A position is illegal if the black king is in check by the white rook,

if the two kings are adjacent, or if two pieces occupy the same squafe.

C.1 DATA SET \
The data set was randomly generated, and contams 684 posmves and

1316 negatives, The fundamental domain theory prowdes definitions for
row/column adjacency (numerical difference of 1), less-than, and equality.

C.2 THEORIES
The five randomly corrupted versions of the multi-level theory appear
below, along with one _s_ampl_e revision of each theory using 50 training

instances.

Corrupted thegmﬁ "l

krk(WKR, WKF, WRR, WRF, BKR, BKF).

krk(WKR, WKF, WRR, WRF, BKR, New) :- same_square(WKR, WKF, BKR, BKF).
krk(WKR, WKF, WRR, WRF, BKR, BKF) :- same_square(WRR, WRF, BKR, BKF).
krk(WKR, WKF, WRR, WRF, BXR, BKF) :- adjacent_squares(WKR, WKF, BKR, BKF).
krk(WKR, WKF, Rank, WRF, Rank, BKF) :- line_attack(WKR, Rank, WKF, WRF, BKF).
krk{WKR, WKF, WRR, WRF, BKR, BKF) :- line_attack(WKF, WKR, WRR, BKR, BKF).
krk(WKR, WKF, WRR, File, BKR, File) :- line_attack(WKF, File, WKR, WRR, BKR).

same_square(A, B, A, B).
adjacent_squares(Rank1, File1, Rank2, File2) :- adi{Rank1, Rank2), adj(ﬁlel File2).

adjacent_squares(Rank?1, File, Rankz File) :- adi{Rank1, Rank2}.
adjacent_squares(Rank, File1l, Rank, File2) :- adj(File1, File2).
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line_attack(WK, Others, A, B, C) :- not_equal(WK, Others).
line_attack(Same, Same, WK, WR, BK) :- less(WK, WR), less{WK, BK).
line_attack(Same, Same, WK, WR, BK} - less(WR, WK), _Iess{BK, WK).

Revised theoty 1

krk(A,B,C,D,E,F):-same_square(A,B,E,G).equal(G.F).
krk(A,B,C,D.E,F):—iine__attack(B,A,C.E,F}.equal(F.E), iess{D,C).
krk(A,B,C,D,E,F):-line_attack(B,A,C,E, F),adj(F,F).
krk(A,B,C,D,E,D):-line_attack(B,D,A,C, E).
krk(A,B,C,D,C,B):-line_attack(A,C,B, D,E).

krk(A,B,C,D, E,F):-adjacent_squares(A,B,E, F).
krk(A,B,C,D,E,F):-same_square(C,D,E,F).

-same, square(A B,A,B).

| édjacent_squareQ(A,B,A,C):-adj(B,C).
. -adjacent_squares(A,B,C,B):-adj(A,C). :
adjacent_squares(A, B,C,D):-adj(A,C),adj(B,D).

line_attack(A,A,B,C,D):-less(C,B), less(D,B). ‘
line_attack(A A,B,C,D):-less(B,C),less(B,D).
line_attack(A,B,C,D,E):-not_equal(A,B).

Corrupted theory 2

krk(WKR, WKF, WRR, WRF, BKR, BKF) :- same_saquare{WKR, WKF, WRR, WRF).
krk(WKR, WKF, WRR, WRR, BKR, BKF) :- same_square(WKR, WKF, BKR, BKF).
krk{WKR, WKF, WRR, WRF, BKR, BKF) :- same_square(WRR, WRF, BKR, BKF).
krk(WKR, WKF, Rank, WRF, Rank, BKF) :- line_attack(WKR, Rank, WKF, WRF, BKF).
krk(WKR, WKF, WRR, File, BKR, File) :- line_attack(WKF, File, WKR, WRR, BKR).

same_square(A, B, A, B).

adjacent.squares{Rank1, File1, Rank2, File2) :- adj(Rank1, Rank2), adij(File1, File2).
adjacent_squares{Rank]1, File, Rank2, File) :- adj(Rank1, Rank2). SR
adjacent_squares(Rank, Filel, Rank, File2) :- adj(File1, File2).

line_attack(WK, Others, A, B, C) ;- not_equal(New, Others).
line_attack(Same, Same, WK, WR, BK).
line_attack(Same, Same, WK, WR, BK) :- not_less(WR, WK), less(BK, WK).

Revised theory 2

krk(A,B,C,D,E,F):-equal(F,D).
krk(A,B,C,D,E,F):-adjacent_squares(E,F,A,B).
krk(A,B,C,D,E,P):-equal(E,C).
krk(A,B,C,D,E,D):-line_attack(B,D,A,C,B).
krk(A,B,C.D,C,E):-line_attack(A,C,B,D,E).
krk(A,B,C,D,E,P):-same_square(C,D,E,F).
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krk(A,8,C,C,D,E):-same_square(A,B,D,E).
krk(A,8,C,D,E. P):-same_square(A,B,C,D).

same_square{A,B,A,B).

adjacent_squares{A,B,A,C):-adj(B,C).
adjacent_squares(A,B,C,B):-adj(A,C).
adjacent_squares(A,B,C,D):-adj(A,C),adj(B, D).

line_attack{A,A,B,C,D):-not_less(C,B),less(D,B).
line_attack(A,A,B,C,D).
line_attack(A,B,C,D,E):-not_equal(F,B).

Corrupted theory 3

krk(WKR, WKF, WRR, WRF, BKR, BKF) :- same_square(WKR, WKF, WRR, WRF).
krk(WKR, WKF, WRR, WRF, BKR, BKF) :- same_square(WKR, WKF, BKR, BKF).
krk(WKR, WKF, WRR, WRF, BKR, BKF) :- same_square{WRR, WRF, BKR, BKF).
krk(WKR, WKF, WRR, WRF, BKR, BKF) ;- adjacent_squares(WKR, WKF, BKR, BKF).
krk(WKR, WKF, Rank, WRF, Rank, BKF) :- line_attack(WKR, Rank, WKF, WRF, BKF),
krk(WKR, WKF, WRR, File, BKR, File) :- line_attack(WKF, File, WKR, WRR, BKR).

same_square(A, B, A, B).

adjacent_squares(Rank1, File1, Rank2; File2) -adj(Rankl Rank2), adj(Fllel FIIeZ)
adjacent_squares(Rank1, File, Rankz File) - adj(Rank1, Rank2).
adjacent_squares(Rank, Filel, Rank, File2) :- adj(File1, File2).

line_attack(WK, Others, A, B, C) :- not_equal(WK, Otﬁel_'s). _
line_attack(Same, Same, WK, WR, BK) :- less(WK, WR), less(WK, BK).
line_attack{Same, Same, WK, WR, BK} :- less(BK, WK), less(BK, WK).

Revised theory 3

krk(A,B,C,D,E,D):-line_attack(B,D,A,C,E).
krk(A,B,C,D,C,E):-line_attack(A,C,B,D,E).
krk(A,B,C,D,E, F):-adjacent_squares(A,B,E,P.
krki(A,B,C,D,E,F):-same_square(C,D,E.F).
krk(A,B,C,D,E,Fx:-same_square{A B,E,F).
krk(A,B,C,D,E,F):-same_square{A,B,C,D).

same_square(A, B A.B).

adjacent_squares(A, B, A,C):-adj(B,C).
adjacent_squares(A,B,C,B):-adj(A,C).
adjacent_squares(A,B,C,D):-adj(A,C),adj(B,D).

line_attack(A,A,B,C,D):-less(D,B).
line_attack(A,A,B,C,D):-less(B,(),less(B,D).
line_attack(A,B,C,D,E):-not_equal{A,B).



Currupted theory 4

krk(WKR, WKF, WRR, WRF, BKR, BKF) :- same_square(WKR, WKF, WRR, WRF).
krk(WKR, WKF, WRR, WRF, BKR, BKF) :- same_square(WKR, WKF, BKR, BKF).
kek(WKR, WKF, WRR, WRF, BKR, BKF).
krk(WKR, WKF, WRR, WRF, BKR, BKF) :- adjacent_squares(WKR, WKF, BKR, BKF).
krk{WKR, WKF, Rank, WRF, Rank, BKF) :- line_attack(WKR, Rank, WKF, WRF, BKF).
krk(WKR, WKF, WRR, File, BKR, File) :- line_attack(WKF, File, WKR, WRR, BKR).
krk(WKR, WKF, WRR, File, BKR, File) :- same_square(WRR, File, BKR, File),
line_attack(BKR, File; WKR, WRR, BKR).

same_square(A, B, A, B).

adjacent_squares(Rank]1, Filel, Rank2, File2) :- adj(Rankt, Rank2), adj(Filel, File2
adjacent_squares(Rank1, File, Rank2, File) :- adj(Rank1, Rank2).
adjacent_squares(Rank, Fiiel, Rank, File2) :- adj(File1, File2), adj(File1, Rank).

line_attack(WK, Others, A, B, C) :- not_equal{WK, Others).
line_attack(Same, Same, WK, WR, BK) :- iess(WK, BK), less(WK, BIQ. -
line_attack(Same, Same, WK, WR, BK) - less(WR, WK), less(BK, WK). -

Revised theory 4

krk(A,B,C,D,E,D):-same_square(C.D.E.D},Iine_attack(E,D.A,C,E).
krk(A,B,C,D,E,D):-line_attack(B,D,A,C.D). - '
krk(A, B,C,D,C,E):-line_attack(A,C,B,D.E).
krk(A,B,C,D,E,F):-adjacent_squares(A,B,EF).
krkiA,B,C,D,E,F):-same_square(A,B,E.F).

krk(A,B,C,D,E, P):-same_square(A,B,C,D).

same_square(A,BA,B).

adjacent_squares(A,B,A,C):-adj(B,C),adi{(B,A).
adjacent_squares(A,B,C,B):-adj(A,.C).
adjacent_squares(A,B,C,D):-adj{A,C),adj(B,D).

line_attack(A,A,B,C,D):-less(C,B),less(D,B).
line_attack(A,A,B,C,D}:-less(B,D).
line_attack(A,B,C,D,B:-not_equal{A,B).

Corrupted theory 5

krk(WKR, WKF, WRR, WRF, BKR, BKF) :- same_square(WKR, WKF, WRR, WRF).
krk(WKR, WKF, WRR, WRF, BKR, BKF) :- same_square(WKR, WKF, BKR, BKF).
krk(WKR, WKF, WRR, WRF, BKR, BKF).
krk(WKR, WKF, WRR, WRF, BKR, BKF) :- adjacent_squares(WKR, WKF, BKR, BKF).
krk(WKR, WKF, WRR, WRF, BKR, BKF) :- line_attack(WKR, BKR, WKF, WRF, BKF},
line_attack(WKF, BKF, WKR, WRR, BKR).
krk(WKR, WKF, Rank, WRF, Rank, BKF) :- line_attack(WKR, Rank, WKF, WRF, BKF).
krk(WKR, WKF, WRR, File, BKR, File) :- line_attack(WKF, File, WKR, WRR, BKR).

).
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same_square(A, B, A, B).

adjacent_squares(Rank1, Fife1, Rank2, File2) :- adj(Rark1, Rank2), adj(File1, File2}.
adjacent_squares(Rank1, File, Rank2, File) :- adj(Rank1, Rank2). .

line_attack(WK, Others, A, B, C) ;- not_equal{WK, Others).

line_attack(Same, Same, WK, WR, BK) :- less(WK, WR), less(WK, BK).
line_attack(Same, Same, WK, WR, BK) :- less(WR, WK), less(BK, WK). '

Revised theory 5

krk(A,B,C,D,E,D):-same_square(C,D,E,D),line_attack(E,D,A,C,E).
krk(A,B,C,D,E,D):-line_attack(B,D,A,C,E}. ' N
krk(A,B,C,D,C,E):-line_attack(A,C,B,D,B).
krk(A,B.C,D,E,F):-adjacent_squares(A,B,E,F).

- krk(A,B,C,D,E, F):-same_square(A,B,E,F).

krk(A,B,C,D,E, F):-same_square(A,B,C,D).

same_square(A,B.A,B).

adjacent_squares(A,B,A,C):-adj(B,C),adj(B,A).
adjacent_squares(A,B,C,B):-adj(A, Q).
adjacent_squares(A,B,C,D).-adj(A,C),adj(B,D).

line_attack(A,A,B,C,D):-less(C,B),less{D,B).
line_attack(A,A,B,C,D):-less(B,D).
line_attack(A,8,C,D,E):-not_equal(A,B).

C.3 SAMPLE RUN
The sample run below is an inductive run (i.e., an empty initial theory)

using a training set of 100 instances.

Forte version 2.15 -- Test parameters

Data set, initial theory, and domain knowledge: ../Data/krk-flat, ../Data/empty,
../Domain/krk
The data set contains 2000 instances.
Language bias is:
[depth_limit(10),nonconjunctive,use_relations,use. theory,no_new_vars,
relation_tuning(non_relational)]
QOutput detail set to 3, and initial random seed is random

Test series of 1 independent runs
Training set is 100 instances; test set is 1900 instances
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Initial Theory

---------- Beginning test run with seed: random(831,15285,7013,425005073)}

Initial train/test accdracy: 0.59, 0.661 579
Revised Theory

krk(A,B,C,D,E,F):-equal(C,A),equal(D,B).

krk(A B,C,D,E,F):-equal(E,A),adj(B,F). '
krk(A,B,C,D,E,P):-not_less(E,A),adj(A,B),not_ adJ(D B)
krk(A,B,C,D,E,P):-adj(E,A},adj(F,B).
krk(A,B,C,D,£,F):-equal(E,C).
krk(A,B,C,D,E,F):-equal(F,D).

Initial _Initial _Initial Final Final Final

Training Theory Training Test Ser Training Theory Traiming Test 5et
Set Size Size Accuracy Accuracy Time Size Accuracy Accuracy
100 0 59.00 66.16 147‘ 17 100.00 93.58



Appendix D
- DIRECTED PATH

This appendix shows the origina

with the corresponding correct program

Incorrect theory

path(A, B) :- edge(A, B). .
path(A, B) :- path(A, C), _path(C, B). _

path(A, B) :- edge(A, B).
path(A, B) :- edge(B, A).
path(A, B) :- gdge(A. C), e_dge(D,_B)._ path(A, C).

path(A, B) :- edge(A, B).
path(A, B) :- edge(B, A).
path(A, B) :- edge{A, C), edge(B, D), path(C, D).

path(A, B) :- edge(A, B). _
path(A, B) :- edge(A, C), edge{D, B), path(C, D).
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] incorrect student programs along
s generated by FORTE.

Correctly revised theory
path(A, B) :- edge(A, B).

path(A, B) :- edge(C, B), path(A, O).
path(A, B) :- edge(A, B).
path(A, B) :- edge(C, B), path(A, C).

path(A, B).
path(A, B :- edge(C, B), path(A, C).

path({A, B) :- edge(A, B).
path(A, B) :- edge(A, C), edge(C, B).
path{A, B) :- edge(A,C), edge(D, B), path(C, D).



Appendix E
INSERT-AFTER

This appendix includes the original incorrect student programs for the

insert-after problem, along with the corresponding revised programs

generated by FORTE.

Incorrect theory

insert_after{[A|B], A, C, [A,CIB].
insert_after(fAlB], C, D, [AIE)) :-
insert_after(B, C, D, B).

insert_after([AlB], A, C, [A,CIB].

insert_after({], A, B, [D.

insert_after(fAlB], C, D, [AlE]) :-
insert_after(B, C, D, B).

insert_after(fA|B], A, C, IA,CIBD.

insert_after([A], A, B, [A,B).

insert_after([AlB], C, D, [AIED) :-
insert_after(B, C, D, E).

insert_after([], A, 8 ).
insert_after([AlB], C, D, ) :-
insert_after(B, C, D, [AIED.

insert_after(f], A, B, .
insert_after{[A|B], C, D, [AIB]) :-
insert_after(8, C, D, E).

insert_after([A}, A, B, [A.BICD.
insert_after([A|B], C, D, [EIE]) :-
insert_after(8, C, D, B).

iﬂseﬂ..afteﬂ[AiB]s C| D! [AIE]) -

insert_after(B, C, D, E).

insert_after([A|B], A, C, [A,CIDD) :-
insert_aften(B, A, C, D).
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Correctly revised theory

insert_after([AIg], A, C, [A,CIBD.
insert_after([A)B], C, D, [AIED :-
C\= A, insert_after(B, C, D, B.

insert_after(JAIB), A, C, [A,CIBD.

insert_after([A|B], C, D, [AIE]) :-
C \= A, insert_after(B, C, D, E).

insert_after([A|B], A, C, [A,CIBD.

insert_after(AIB], C, D, TAIED
C \= A, insert_after(B, C, D, B).

insert_after([A|B], A, C, [A,CIBD.
insert_after([AlB], C, D, [AlED) :-
C \= A, insert_after(B, C, D, E}.

insert_after([A|B], A, C, [A,CIB).
insert_after([AIB], C, D, [AlED :-
A \= C, insert_after(B, C, D, B).

insert_after([AIB], A, C, [A.CIBD.
insert_after(fA|8], C, D, [AIED :-
C \= A, insert_after(B, C, D, E).

insert_after([AIB], A, C, [A,CIB)).

insert_after(IA|B], C, D, [AlED) :-
C \= A, insert_after(B, C, D, B).



insert_after{{AIB], A, C, [A,CI8).

insert_after({AlB], C, D, [EIF]} :-

insert_after(, C, D, ).

insert_after([A|B], C, D, [AIED :-

iinsert_after(B, C, D, E).

insert_after([A|B], A, C, [A,C|B].
insert_after([AlB], C, D, [AIE]) :-

C \= A, insert_after(B, C, D, B).

insert_after({[A|B], A, C, {A,CIB).
inseri_after([AIB], C, D, [AIE]) :-

Ci\=A, in_sert_,after(& C, D, B.
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Appendix F
MERGE SORT

This appendix shows the original incorrect student programs for the

merge sort program, along with the corresponding corrected programs

generated by FORTE.

Incorrect theory

merge_sort([A,B], [BA]) :- A >= B,
merge_sort({A,B], [A,B]) :- A < B.
merge_sort(A, B) :-

split(A, C, D),

merge_sort(C, E), merge_sort(D, P,

merge(E, F, B).

merge_sort({l, .

merge_sort({A], {B)).

merge_sort(A, B) :-
split(A, C, D),
merge_sort(C, E), merge_sort(D, P),
merge(E, F, B).

merge_sort({, .

merge_sort(A, B} :-
spiit(A, C, D),
merge_sort(C, E), merge_sort(D, F),
merge(E, ¥, B).

merge_sort([l, D).
merge_sort([AlB], [AIC]):- merge_sort(B, ().
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Correctly revised theory

merge_sort(A, B) :- merge(A, B, A).

merge_sort(A, B) :-
split(A, C, D), merge(E, F, B),
merge_sort(C, £), merge_sort(D, F).

merge_sort{[j, .

merge_sort([A], [A]).

merge_sort(A, B} :-
split(A, C, D), merge(E, F, B),
merge_sort(C, ), merge_sort(D, F).

merge_sort{[J, ).

merge_sort({al, [AD.

merge_sort(A, B) :-
split(A, C, D), merge(E, F, B},
merge_sort(C, E), merge_sort(D, .

merge_sort(Ql, .
merge_sort([Alg], A) :- merge_sort(B, II).
merge_sort(A, B) :-
split(A, C, D), merge(E, F, B),
merge_sort(C, E), merge_sort(D, F).



merge_sort{A, A).

merge,_sort(A, B) -
split(a, C, D),
merge_sort(C, E) merge_sort(D, F),
merge(B, E, F).

merge_sort([A], [A].
merge_sort(A, B) :-

split(A, C, D),

merge_sort(C, B), merge_sort(D, F),
merge(E, F, B).

merge_sort(A, A).
merge_sort(A,B) :-
split(A, C, D),
merge(C, D, B),
merge_sort(A, B).

" merge_sort(f), A) :-
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merge_sort(A, B) :- merge(A, B, A).
merge_sort(A, B) -
merge(C, D, B}, split(A, E, F),

merge_sort(E, C), merge_sort(F, D).

merge(([], G, A
merge_sort([A}, [A].
merge_sort(A, B) :-
split(A, C, D), merge(E, F, B),
merge_sort(C, E), merge_sqrt(D, E.

" merge_sort(A, B) :- merge(A, B, A).

merge_sort(A, B) :-
split(A, C, D), merge(E, F, B),
merge_sort(C, E), merge_sort(D, F).

. merge_sort(A, B) :- hemefA. B, .A)-

merge_sort(A, B) :-
split(A, C, D), merge(C, D, B).

merge_sort{A, B) :-
split(A, C, D), merge(C, D, E),
merge_sost(E, B).

merge_sort(fl, 0.

merge_sort(fA], [AD.

merge_sort([A,BIC], D) :-
split(iA,BIC], E, F),
merge_sort{E, G), merge_ sort(F H),
merge{G, H, D). :

merge_sort(A, B) :-
merge(C, D, B), spiit(A, E, F),
merge_sort(E, C), merge_sort(F, D).

merge_sort{{l, .
merge_sort(A, A) :-.
merge(A, A, B), split(B, A, A).
merge_sort(A, B) :-
split(A, C, D), merge(E, F, B),
merge_sort(C, E), merge_sort(D, F).

merge_sort({], [D.
merge_sort([Al, [AD.
merge_sort{A, B) -
split(A, C, D), merge(E, F, B),
" merge_sort{C, E), merge_sort(D, F).



Appendix G
DECISION-TREE INDUCTION

This appendix shows the decision-tree induction program, followed by

a sample revision run on a buggy version of this program.

* G.1 DECISION-TREE PROGRAM
The top three predicates (induce_tree/3, induce_tree/5, and

choose_attribute/5) were included in the initial theory, with the remainder of

the program placed in the fundamental domain theory.

/* Top-level: given attributes and examples, produce decision tree */
induce_tree(Attr, Examples, Tree) :-
induce_tree{Al, [}, Attr, Examples, Tree).

:/* Given no examriles. produce an empty tree */
induce_tree(_, [}, ... [l [T )

/* If examples are pure, the tree is the class of the examples */
induce_tree( Al, [}, A2, Examples, Class ) :-
Examples = [Example|_],
. pure(Examples),
Example = [Class, _].

/* If the examples are impure, choose best attribute as root of subtree */
induce_tree( _, [l, Attributes, Examples, [Attr_name, Subtrees] ) :-
Examples = [_L_],
impure(Examples),
choose_attribute( Attributes, Examples, O, _, Attribute),
fdt_delete( Attribute, Attributes, Rest_atts),
Attribute = [ Attr_name, Values ],
induce_tree( Attr_name, Values, Rest_atts, Examples, Subtrees).

/* create subtree branch for each value in selected attribute */
induce_tree(Name, [VallVals], Rest_atts, Examples, [[Val, Tree] | Trees)) :-
Vals = [_I.], :
attval_subset(Name, Va}, Examples, Example_subset),
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induce_tree(Al, [], Rest_atts, Example_subset, Tree),
induce_tree(Name, Vals, Rest_atts, Examples, Trees).

/* last subtree branch */

induce_tree(Name, [Val], Rest_atts, Examples, [[Val, Tree]]) :-
attval_subset(Name, Val, Examples, Example_subset),
induce_tree(A1, [], Rest. atts, Example_subset, Tree).

/* choose attribute yielding highest purity */

choose_attribute( [], _, _, Best, Best).

choose_attribute( {AttrjAttrs}, Examples, Best_purlty, Best so_far, Best) :-
purity(Attr, Examples, Purity), _
less(Best_purity, Purity),
choose_attribute{ Attrs, Examples, Purity, Attr, Best ).

choose_attribute( [Attr|Attrs], Examples, Best_purity, Best_so_far, Best) :-
purity(Attr, Examples, Purity), 3
less_or_equal(Purity, Best_purity),
choose_attribute{ Attrs, Examples, Best_purity, Best so_far, Best ).

/* determine average purity of leaves, if split on thxs attnbute */
purity(Attr, Examples, Purity) :-
Attr = [Name, Values},
get_purities(Name, Values, Examples, Purities),
average_purities(Purities, Purity). '

get«pul'ities(.., []l -2 (.
get_purities(Name, [Value|Values], Examples, [PuritylPurities]) :-
attval_subset(Name, Value, Examples, Example_ subset)
calc_purity(Example_subset, Purity), _
get_purities(Name, Values, Examples, Purities).

calc_purity(Examples, Purity) :-
count_positives(Examples, 0, Num_pos),
length(Examples, Total),
subtract(Total, Num_pos, Num_neg),
max(Num_pos, Num_neg, Max),
divide(Max, Total, Purity).

average_purities(Purities, Purity) :-
sum(Purities, 0, Sum),
length(Purities, Number),
divide(Sum, Number, Purity).



count_positives([}, Num, Num).
count_positives({[Example[Examples], Num._in, Num_out) :-
Example = [positive, _],
add(1, Num_in, Num_tempj}, .
count_positives(Examples, Num_temp, Num_out).
count_positives([Example|Examples], Num_in, Num_out) :-
Example \= [positive, .,
count_positives(Examples, Num_in, Num_out).

/* Return all examples that have a particular attribute value */

attval_subset(Name, Val, [}, [D.

attval_subset(Name, Val, [Example[Examples], [Example{Subset}) :-
has_attr_val(Example, Name, Val), o
attval_subset(Name, Val, Examples, Subset).

attval_subset(Name, Val, [Example|[Examples], Subsaet) :-
has_not_attr_val(Example, Name, Val),
attval_subset(Name, Val, Examples, Subset).

has_attr_val(Example, Name, Value) :-
Example = [_, Attr_list],
member([Name, Value], Attr_list).

has_not_attr_val(Exampie, Name, Value) :-
Example = {_, Attr_list],
not_member([Name, Value], Attr_list).

/* delete an element from a list */

fdt_delete(Elt, {Elt|Rest], Rest).

fdt_delete(Elt, [Elt2|Elts], [Elt2|Rest]) :-
Elt \= Elt2, '
fdt_delete(Elt, Elts, Rest).

/* all examples in a set are in the same class */

pure(f].

pure({_].

pure({Examplel, Example2 | Examples]) :-
Examplel = [Class,._],
Example2 = [Class,.],
pure({Example2{Examples]).
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/* all examples in a set are not in the same class */
impure({Examplel | Examples]) :-

Examplel = [Classl,_],

member(Example2, Examples),

Example2 = [Class2,.],

Class] \= Class2,
1

/* miscellaneous utility predicates */

sum(([], Sum, Sum).

sum(Num|Nums), Sum_in, Sum_out) :-
add(Num, Sum._in, Sum_temp),
sum(Nums, Sum_temp, Sum_out).

add(A, B, C) :- nonvar(A), nonvar(B), Cis A+ B.
subtract(A, B, C) :- nonvar(A), nonvar(B), C is A - B.
divide(A, B, C) :- nonvar(A), nonvar(B), B \== 0, Cis A / B.
max(A, B, A) - nonvar(A), nonvar(B), A >=B, 1.

max(A, B, B) :- nonvar(A), nonvar(B), A < B.
not_member(X, Y) - \+ member(X, Y).

less(,Y) - X < Y. _

iess_or_equal(X,Y) - X =< Y.

G.2 SAMPLE RUN

Forte version 2.15 - Test parameters

Data set, initial theory, and domain knowledge: ../Data/dtreel,
../Data/dtree1-ca4, ../Domain/dtreel
The data set contains 26 instances.
Language bias is: [depth_limit(1 5),use_relations, use_theory,use_built_in,recursive,
relation_tuning(non_relational}]

Output detail set to 7, and initia} random seed is random

Test series of 1 independent runs
Training set is 26 instances; test set is 0 instances

Initial Theory

choose_attribute(A,B,C.D,D).
choose_attribute({A|B],C,D,E,F):-

purity(A,C,G), less_or_equal(G,D),choose_attribute(B,C,D, EF).
choose_attribute(fA{B],C,D,E, F):-purity(A,C,G),less(D,G),choose_attribute(B,C,G,A, F.



induce_tree(A, [, B,[[C,D]|E],C):-impure([[C, DJIE]).
induce_tree(a,[l,B,0,I).

induce_tree(A, [8,C|D],E,F, [[B,G1IH]):- '
attval_subset(A, B F,)),induce_tree(),1,E,1,G),induce_tree(A, [C]D] E,F H).

induce_tree(A,{B],C,D,[[B, E}}::-attval_subset(A,B,D, F),lnduce tree(G,0,C,F.E).
induce_tree(A,[1,B,[C|D}, [E,F]):-
impure([C{D]),choose_attribute(B,[C|D],0,G [E,H]),
fdt_delete([E, H], B, |),induce_tree(E,H,|,[CID],P).

induce_tree(A, B,C):-induce_tree(D,[,A,B,C}. _
- Beginning test run with seed: random(9690,2928,10754,425005073) «--r=-

initial train/test accuracy: 0.346154, 0

Selected revision by delete_antecedent scores (12, 1) by replacing the old
induce_tree(A, H,B,C,D):-H=[],C=[E|F},impure(C), E=[D,G}.
induce_tree(A,C,B,D,E):-Cu[],D=[],E=]].
induce_tree(A,LLD,.EM):-
L=[BiC], M={[B, F1iG], C=[H}i],attval_subset{A,B,E,J},
induce_treefK,[,D ), F},induce_tree(A,C,D,E,G).
induce_tree(A, H,C,D,D:-H=[B}, I=[[B, ]}, attval_subset(A,B,D, P,induce_tree(G, [, C F, E)
induce_tree(A,L,8,C,M):-
L=[,M={D, Ej,Cu[FIG],mpum(C).choose_attnbute(B,c.O,H,!),
fdt_delete(l,B.)),1=ID,K],induce_tree(D,K,),C,E).
with the new
induce_tree(A, H,B,C,D):-H=[], C=[E|F],E={D,G].
induce_tree(A,C,B,D,E):-C={],D=[,E={l.
induce_tree(A,L D,E.M):-
L=[B|C], M=[IB,F]|G},C=[H!i],attval subset(A.B,EJ).
induce_tree(K.[1.D J.F),induce_tree(A,C,D,E.G).
induce_tree(A, H,C,D, 1):-H=[B], l=[[B, E]], attval_subset(A,B,D,F),induce,tree(G,0,.C,F.B). .
induce_tree(A,L,B,C,M):-
L={], M=[D,E], C=[F|G], impure(C),choose_attribute(8,C,0,H,D),
fdt_delete(t,B.J),I=[D,K],induce_tree(D,K J,C,E).
end revision

Selected revision by add_antecedent scores (4, -1) by replacmg the old

choose_attribute(A,B,C,D,D).

choose_attribute(H,C,D,E,F):-
H=[AiB].purity(A,C,G),less_or_equa!(c,D).choose_attribute(B,C,D,E.F).

choose_attribute(H,C,D,E, P):-Ha[A|8], purity(A,C,G), less(D,G),choose_attribute(B,C,G,A,F).

with the new
choose_attribute(A,B,C,D,D):-A=[].
choose_attribute(H,C,D,E,F):-
H=[AlB], purity(A,C,C),less_or_equal(G,D),choose_attribute(B,C,D,E,F).

choose_attribute(H,C,D,E,F):-H={A|B], purity(A,C,G), less(D, G).choose attnbute(B C,G,A,P.

end revision
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Selected revision by add_antecedent scores (1, -1) by replacing the old
induce_tree(A, F,B,G,C):-F={],G={{C,D}E].
induce_tree(A,C,B,D,E):-C=[},D={],E=[.
induce_tree(A,K,E,F,Lx-
K={8,C|D], L={{B,G]|H], attval_subset(A,B,F,D),
induce_treeU.I],F.,I,G),induce_tree(A,[CID],E,F,l-I).

induce_tree(A, H,C,D,1):-H=[B}, i=[[B, E]l,attval_subset(A, B,D,F),induce_tree(G,[,C,F,B.

induce_tree(A,],B K,L):-
J=!].K-ICID]‘L-[E.F].impure([CIDl).choose-attribute(B.ICID_I.O.G.[E,H]).
tdt_delete([E,H],B, ), induce_tree(E,H,1,ICID],F).

with the new

induce_tree(A,F,B.G,C):~F-I],G-[IC,D]IE].pure(E).

induce_tree(A,C,B,D,E):-C=[}, D=[l,E=[.

induce_tree(A, K,E F,L):-

' K=[B,C|D],L=IIB,Gl|H],attvai_subset(A,B,F,),
induce,tree(l,l],E,l.G},induce_tree'(A,[CID],E,F.H).

; induce_tree(A,H.C,D,I):-H-n[Bl.l-[lB,E]],attvaI_subset(A,B,D,F).induce_treé(G,U,C,F,E).

induce_tree{A J,B,K,L):-
' ' J=I],K=[C!D],L-[E.Fl.impure([CIDl).ChOOSE..attribl-lte(B.[CIDLO.G,[E.FH).
fdt_delete({E, H],B,1),induce_tree(E,H,1,{C|D], F). o
end revision

Revised Theory

choose_attribute(Il,A,B,C,C).
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choose_attribute([AlB],C,D,E,F):-purity(A,C,G),Iess_or_equal(c,D).choose_attribute(s.c,D,E,F).
choose_attribute([A| B},C,D.E.F):-purity(A,C,G),Iess(D.G),choose_'attribute_(B,C,G,A,F).

induce_tree(A, [, B,{IC,D]|E},C):-pure(E).
induce_tree(A,[i,B,0,1D.
induce_tree(A,[B,CID],E F,[[B,GlIH]):- :
attval_subset(A,B, F,l),induce_tree(j,[l,E,I.G),induce_tree(A, [CID],E,F,H).
induce_tree(A,[B],C,D.[[B.ﬂl):-attval_subset(A.B,D,F).induce_tree(G.ﬂ.C,F,E). :
induce_tree(A,]1,B,ICID],[E.F]:- :
impure([C{Dl),choose_attribute(B,[CiDl.O,G,[E,H]).
fdt_delete([E,H], B, 0, induce_tree(E,H,|,[CID],F).

induce_tree(A,B,C):-induce_tree(D,{],A,B,0).

_ Initial Initial _Initial Final _ Final _ Final
Training Theory Training Test Set Training Theory Training Test Set
Set Size Size Accuracy Accuracy Time . Size Accuracy Accuracy

26 43 34.62 '0.00 3011 41 100.00 0.00

- End of test run ---——-—



Appendix H
QUALITATIVE MODELLING

This appendix includes a sample of the MISQ domain knowledge
contained in the fundamental domain theory, as well as behavioral inputs and
FORTE outputs for two cascaded tanks (without netflows) and the RCS.

H.1 DOMAIN KNOWLEDGE _ 7
FORTE's domain knowledge for qualitative modelling is a modification

of the QSIM constraints coded in MISQ [Richards, Kraan, and Kuipers, 1992].
While the complete code is too lengthy to include he_I_'e, this section shows the

code for one of the simpler constraints: the M+.

m_plus(varl, var2) i~
* only_second can be new 4 '
get_qualvar(Varl, Behaviorl, Unitsl, Newl),
Newl \== new,
/* partial var must have qdirs */
( Newl == partial -> hqs_qdirs(Behaviorl) ; true ),
get_qualvar(Var2, Behavior2, Units2, New2), o
/* prevent isomorphic duplicates %/
var_order(Varl, Var2), -
/* units checking
rv:constraint_units(m_plus(Unitsl, Units2)),
/* QSIM constraint checking *
misq_m_plus(Behaviorl, Behavior2),
/* Is our instantiation valid? */
( Newl \== old -> rv:ivalid_data(Varl) ; true),
( New2 \== old -> rv:valid_data(var2) ; true),
/* Do corr. val's. make sense? */

*

" check_corr(m_plus, Behaviorl, Behavior2, [1).

/* Validity of M+ constraint: . same Qdirs */

misq_m_plus(f], [1). .
misq_m_plusC({l., Qdir, _1 | Qualsl], ([, Qdir, 1 | Quals2]) :-

Qdir \== ign,
misq_m_plus(Qvalsl, Qvals2).
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H.2 CASCADED TANKS

/* behavior 1 */
example( { model(amount_a, amount_b, inflow_a, outflow_a, outflow.b) ],

[1
[ qualvar(] famount.a, [0, inf], [[mass}], .
[{0,inc,0), {10,infl,inc,plus), {a3,std,plus], [a3,std,plus],
[a3,std,plusli], :
[amount.b, [0, inf], [imass],{1l,
[10,std,0], {[0,infl,inc,plus], [[0.inf}inc,plus),
{[0,inf],inc,plus], [b4,std,plus]l},
linflow_a, [0, if, infl, [[mass},[timel],
{lif,std,plus), [if,std,plus], {if,std,plus}, [if std,plus],
[if,std,plusill, - ' : . o
[outflow_a, [0, inf], [[mass],[time]],
[[0,inc,0], [{0,inf]inc,plus}, [of_a3,std,plus],
[of_a3,std,plus], {of_a3,std,plus]lj,
foutflow_b, [0, inf], [[mass],[timell, .
[10,std,01, [i0,inf},inc,plus], [[0,infl,inc,plus],
{[0,inf],inc,plus], fof_b4,std,plus]]]

: D
Co ' ]l
facts([ )
).
/* behavior 2 */ :
example( [ model(amount._a, amount_b, inflow_a, outflow_a, outflow_b) ],
[ ]I ’
[ qualvax(| [amount_a, [0, inf], [fmass][l],
[(0,inc,0], [{0,infl,inc,plus], {a2,std,plus]]],
f[amount_b, [0, inf], [imass],],
[10,st4,0], [{0,infl,inc,plus]), [b2,std,plus]]],
finflow_a, {0, if, inf], [[mass],[time]],
[fif,std,plus), [if,std,plus], {if,std,plus]i],
[outflow_a, [0, inf}, {[mass],{time]],
[[0,inc,0], {l0,inf],inc,plus], [of_a2,std,plus}]],
foutflow_b, [0, inf}, {[mass],{time]},
[10,std,0], [{0,inflinc,plus], [of_b2,std,plus]i]
D
1

) facts({ ))

169



170

Induced model

modeli(A,B,C,D,E) :-
m_plus(B,E),
m_plus(A,D),
constant(C),
derivative(B,F),
add(E,F,D),
add(D,G,0),
m_minus(A,G),
derivative(A,G),
m_minus(D,G).

H.3 REACTION CONTROL SYSTEM -

/* behavior 1 */ 8
example( { modelamt_he, p_he, d_amt_he, he_ull_flow, amt_ull, p_ull, amt_fuel,
vol_fuel, vol_ull, vol_total, den_fuel, d_amt_fuei,
p_diff_fuel, amt_man, d_amt_man, p.man) 1,
[
[ gvi[ [ amt_he, [0, amt_he_min, amt_he_preg, amt_he_sreg, amt_he_init},
[{mass_he],[l], :
[ [ amt_he_sreg, dec, plus],
[ famt_he_preg, amt_he_sreg], dec, plus],
[ a9, dec, plust 1j, :
[ p-he, [0, p_he_min, p_he_preg, p_he_sreg, p_he_init], -
[[mass__he],[distance,,he_tank,time,time]],
[ p_he_sreg, dec, plusl,
[ [p_he_preg, p_he_sreg], dec, plus],
[ p6, dec, plus] 1],
[ d.amt_he, [minf, O, infl, :
{mass_he),[time]],

[ [ [minf, O}, ign, minus],
[ [minf, 0], ign, minus]),
[ Iminf, O], ign, minus] 1,

[ he_ull_flow, [0, inf],
[[mass_he],[time}],

[L[O,infl, ign, plus],
[ 1O, inf], ign, plus],
i [0, inf], ign, plus} 1],
[ amt_ull, [0, amt_ullinit, amt_ull_nom, amt_uli_max},
{Imass_he],[1},
[ [ amt. ull_nom, inc, plus],

[ [amt_ull_nom, amt_ull_max], inc, plus],
[a-10, ~inc, plus] ]i,
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[ p_ull, [0, p_ull_preg],
[[mass_he],idistance_he,time,time]],
[ [ p_ull_preg, std, plus],
[ p_ull_preg, std, plus],
[ p_uli_preg, std, pius] ],
[ amt_fuel, [0, amt_f_nom, amt_{_init],
[[mass_fuell, (1],
[ amt_f_nom, dec, plus],
[ [0, amt_f_nom], dec, plus],
[o, dec, 011},

[ vol_fuet, {0, vf_nom, vf_init, vol_total],
[[distance_tank,distance_ tank,distance_tan k1,1,

[[ vf_nom, dec, plus],
{ [0, vf_nom], dec, plus],
{0, dec, 0] 1},

[ vol_uli, [0, vu_init, vu_nom, vol_total},
[Idistance_tank,distance_tank,distance_tank],[]], o

[ [ vu_nom, inc, plus],
[ [vu_nom, vol_total], "inc, plus],
[ vol_total, inc, plus] 11,

~ [ vol_total, [0, vol_total, inf], -
L [[distance_tank,distance_.tank,distance_t_ank],[]],_

f [ vol_total, . std, plus],
[ vol_total, std, plus],
[ vol_total, std, plus] 1},

[ den_fuel, 10, dfpreg, dfmax],
: ' [{mass_fuel],[distance_tank,distance_tank,distance_tank]].

[ | dfpreg, ' std, plus),
[ dfpreg, ‘ std, plus], .
[ dfpreg, ' std, plus] 11,

[ d.amt_fuel, {[minf, O, inf],
{[mass_fuel],[time]],

[ [ {minf, 0], ign, minus},
[ [minf, 0], ign, minus],
{ [minf, 0], ign, minus] 11,

{ p_difi_fuel, [minf, O, inf],
[[mass_he],[distance_he,time,time]],

{ [ [0, inf], dec, plus],
[ {0, inf], dec, plus],
[ {0, inf], dec, plus} ]],
[ amt_man, = [0, a0, amt_preg],
{imass_fuel},[1],
[ia0, inc, plus],
[ [a0, amt_preg], inc, plus],

[all, inc, plus] 1],
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[d.amt_man, [minf, 0, inf],
‘ [fmass_fuel], [time]],

[ [0, inf], ign, plus),
[ [0, inf], ign, plus],
[ [0, inf], ign, plus] ]],
[ p-man, [0, p1, p-man_preg],
[[mass_hel,[distance_he,time,time]l,
{ipl, inc, plus],
[ [p1, p-man_preg], inc, plus],
[ p8, inc, plus] 1}
| ) : L _

fact5(f )]
).

induced model

model(A,8,C,D.E,F,G,H,1J,KLLM,N,QOP) :-

m_plus(P,l), m_plus(N,P), m_plus(N,1), m_plus(N,E), m_plus(M,H),
m_plus(M,B), m_plus(K.)), m_plus(K,F}, m_plus(G,M), m_plus(G,H),
m_plus(G,B), m_plus(G,A), m_plus(F)), m_plus(E,P), m_plus(E,}),
m_plus(B,H), m_plus(A,M), m_plus(A,H), m_plus(A,B),
m_minus(P,H), m.minus(N,M}, m_minus(N,H), m_minus(N,B),
m_minus(M,P), m_minus(M,)), m_minus(K,J), m_minus(K,F),
m_minus(H,), m_minus(G,P), m_minus(G,N), m.minus(G,D,
m_minus(G,B, m_minus(F.)), m_minus(E,M), m_minus(E,H),
m_minus(E,B), m_minus(B,P), m_minus(8,D, m_minus(A,P),
m_minus(A,N), m_minus(A,l), m_minus(A,B,

derivative(N,0), derivative(G,L), derivative(E,D), derivative(A,C),
muit{K,l,N}, mult(K,H,G), ' _
minus({L,0), minus(C,D),

add(M,P,F), add(H,L.)),

constant(K), constant()), constant(F). -
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