
Also appears as Technical Report UT-AI-TR-06-327, Artificial Intelligence Lab, University of Texas at Austin, February 2006.

Learning Semantic Parsers

Using Statistical Syntactic Parsing Techniques

Ruifang Ge
Department of Computer Sciences

University of Texas at Austin
Austin, TX 78712
grf@cs.utexas.edu

Doctoral Dissertation Proposal

Supervising Professor: Raymond J. Mooney

Abstract

Most recent work on semantic analysis of natural language has focused on “shallow” semantics such

as word-sense disambiguation and semantic role labeling. Our work addresses a more ambitious task we

call semantic parsing where natural language sentences are mapped to complete formal meaning repre-

sentations. We present our system SCISSOR based on a statistical parser that generates a semantically-

augmented parse tree (SAPT), in which each internal node has both a syntactic and semantic label. A

compositional-semantics procedure is then used to map the augmented parse tree into a final meaning

representation. Training the system requires sentences annotated with augmented parse trees. We eval-

uate the system in two domains, a natural-language database interface and an interpreter for coaching

instructions in robotic soccer. We present experimental results demonstrating that SCISSOR produces

more accurate semantic representations than several previous approaches on long sentences.

In the future, we intend to pursue several directions in developing more accurate semantic parsing

algorithms and automating the annotation process. This work will involve exploring alternative tree rep-

resentations for better generalization in parsing. We also plan to apply discriminative reranking methods

to semantic parsing, which allows exploring arbitrary, potentially correlated features not usable by the

baseline learner. We also propose to design a method for automating the SAPT-generation process to al-

leviate the extra annotation work currently required for training SCISSOR. Finally, we will investigate the

impact of different statistical syntactic parsers on semantic parsing using the automated SAPT-generation

process.
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1 Introduction

Spectacular developments have been made in natural language processing in recent years, mainly focusing

on surface level tasks such as part-of-speech tagging, chunking and syntactic parsing (Manning & Schütze,

1999), while fewer efforts have been devoted to analyze meanings deep in natural language sentences. Re-

searches on shallow semantic analysis tasks, such as word-sense disambiguation (Ide & Jeanéronis, 1998)

and semantic role labeling (Carreras & Màrquez, 2005, 2004; Gildea & Palmer, 2002), only partially tackle

this problem by identifying the meanings of target words or finding phrases that fill in the semantic roles of

a single predicate in a sentence. Our work, however, addresses a more ambitious task we call semantic pars-

ing, where natural language sentences are mapped to complete formal meaning representations. Semantic

parsing is useful in many practical tasks such as speech understanding (Price, 1990; Zue & Glass, 2000),

question answering (Lev et al., 2004), and advice taking (Kuhlmann et al., 2004).

Prior learning approaches to semantic parsing (Price, 1990; Zue & Glass, 2000) have mainly concen-

trated on relatively simple domains, such as the Air Travel Information Services (ATIS) domain, where

the semantic parsing task can be simplified to fill a single non-recursive semantic frame. Other learning

approaches have been aimed at generating meaning representations in the structure of multiple, recursive

semantic frames, however, these approaches are mainly based on deterministic parsing (Zelle & Mooney,

1996; Kate, Wong, & Mooney, 2005), which lacks the robustness of statistical parsing, especially on long

sentences.

In this proposal, we present an approach based on a statistical parser that generates a semantically aug-

mented parse tree (SAPT), in which each internal node includes both a syntactic and semantic label. We

augment Collins (1997) parsing model 2 to incorporate a semantic label on each internal node. By inte-

grating syntactic and semantic interpretation into a single statistical model and finding the globally most

likely parse, an accurate combined syntactic/semantic analysis can be obtained. Once a SAPT is generated,

an additional step is required to translate it into a final formal meaning representation (MR) with a nested

structure. Our approach is implemented in a system called SCISSOR (Semantic Composition that Integrates

Syntax and Semantics to get Optimal Representations). Training the system requires sentences annotated

with both gold-standard SAPTs and MRs. We present initial experimental results on real-world data sets

demonstrating that SCISSOR produces more accurate semantic representations than several previous ap-

proaches on long sentences.

In future work, we will pursue several directions in developing more accurate semantic parsing algo-

rithms and automating the labeling process:

1. Exploring alternative tree representations of SAPTs for optimal parsing accuracy;

2. Applying discriminative reranking methods to semantic parsing that would lead to improved parsing

performance;

3. Designing a method for automating the SAPT-generation process to alleviate the extra annotation

work currently required by training SCISSOR. We plan to use statistical syntactic parsers to generate

syntactic parses automatically;

4. Investigating the impact of different statistical syntactic parsers on semantic parsing.

The remainder of this proposal is organized as follows. Section 2 briefly reviews prior work on statistical

syntactic parsing, as well as several learning approaches on semantic parsing and their application domains.

Section 3 presents our semantic parsing algorithm SCISSOR and some initial experimental results. We

discuss proposed directions for future work in Section 4.
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Figure 1: A syntactic parse tree and the list of rewrite rules associated.

2 Background and Related Work

2.1 Statistical Syntactic Parsing and Collins (1997) Parsing Models

Syntactic parsing is the process of constructing a syntactic parse tree for an input sentence by recursively

applying a sequence of context free rewriting rules (see Figure 1). The key issue in syntactic parsing is

to solve syntactic ambiguity, which arises when a sentence can have more than one syntactic parse tree

according to a grammar. For example, The children ate the cake with a spoon where the preposition phrase

can be attached to either the noun or the verb.

Statistical parsing models provide a natural way for solving ambiguity by attaching probabilities to each

parse tree of a sentence. Probabilistic context free grammars (PCFGs) are one of the most widely used

models among them. Formally, a PCFG is a 4-tuple:

G = (N, Σ, S, R) (1)

where N is a set of non-terminal symbols, Σ is a set of terminal symbols, and S is a distinguished symbol in

N , namely the start symbol. R is a set of rules of the form LHS → RHS, where LHS ∈ N and RHS is a

sequence of terminals and non-terminals; each rule has an associated probability where the probabilities of

all rules expanding the same non-terminal sum up to one. PCFGs output a parse tree with the highest joint

probability P (T, S), where the joint probability is defined as the product of the n applications of the context

free rules LHSi → RHSi, 1 ≤ i ≤ n.

P(T, S) =
n

∏

i=1

P(LHSi → RHSi) (2)

In supervised learning, the probability of each rule is acquired using maximum likelihood estimation on a

set of labeled parse trees by counting.

A well-known drawback with PCFGs is their lack of lexicalization – the probabilities of rules are inde-

pendent of words involved. For example, in the Penn Treebank (Marcus, Santorini, & Marcinkiewicz, 1993),

the probabilities of the rule VP→V NP with different verbs take (32.1%) and come (1.1%) are different (Man-

ning & Schütze, 1999), however, they would be the same under PCFGs. Lexicalized PCFGs address this

problem by augmenting each non-terminal in a parse tree with its head word, so that the probabilities of the

rewriting rules are sensitive to words involved (see Figure 2). The head is chosen using linguistic rules. For

example, the head of a noun phrase is the noun (player is the head of the noun phrase our player 2).
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has2our player the

NP(player)

ball

PRP$ NN CD

NNDT

NP(ball)

VP(has)

VB

S(has)

TOP(has)

TOP(has)   −> S(has)

VP(has)     −> VB(has) NP(ball)

NP(ball)    −> DT(the) NN(ball)

S(has)        −> NP(player) VP(has)

NP(player) −> PRP$(our) NN(player) CD(2)

Figure 2: A lexicalized parse tree and the list of lexicalized rewrite rules associated.

Lexicalization enormously increases the number of potential rules and makes the direct rule probability

estimation infeasible because of sparse data problems. This is particularly true for parsing the Penn Tree-

bank, which is known for its flat tree structures. Collins (2003) points out that there are as many as 12,409

distinct rules from the approximately 40,000 sentences in sections 2-21 of the Penn Treebank. Divide and

Conquer strategies are effectively used to tackle this problem (Collins, 1997; Charniak, 1997).

In the following part of this section, we introduce Collins’ (1997) parser, one of the best lexicalized

statistical parsers up-to-date. The basic idea of breaking down a rule in Collins’ (1997) parser is as follows.

One child is labeled as a head, and all other children are labeled as modifiers. Expanding the non-terminal in

the LHS with its RHS is then broken down into several steps – first generating the head, then generating the

left and right modifiers, respectively, under the assumption that the generation of one modifier is dependent

of the head, but independent of other modifiers. By applying the chain rule, the rule probability is calculated

as the product of the probabilities associated with the generation steps. Note that sparse data problems are

significantly alleviated by relying on the counts of the smaller parts of a rule instead of an entire rule.

While the independence assumption among the modifiers alleviate sparse data problems effectively, it

can also lead to incorrect probability estimations. For example, the verb read normally only requires one

object, thus its probability of taking a second noun phrase as its object should be much lower than the

probability of taking a first noun phrase, however, it is not true under the independence assumption.

To capture the dependencies between the modifiers, Collins (1997) builds a series of progressively more

complex models that lead to improved performance at each time. The first model (CM1) incorporates a dis-

tance feature, which is the combination of the distance, intervening words and punctuation between the head

and modifier. The second model (CM2) divides the modifiers of a head into complements (essential to the

head) and adjuncts (optional to the head). Each head is predicted with a subcategorization frame composed

of a set of complements that a head should appear with; and the generation of modifiers is conditioned on

the complements in the subcategorization frame that have not yet been fulfilled by the previous modifiers.

The third model (CM3) extends the second model to deal with the Wh-movement where subcategorization

complements do not appear in their normal place, like in the question Who did you go out with last night.

In the semantic parsing task, we will use CM2 in parsing sentences because CM2 performs significantly

better than CM1, while the most sophisticated model CM3 does not show significantly improvement over

CM2 (Collins, 1997). Another reason to use CM2 is that the statistics on moved complements required for

training CM3 is not labeled in the semantic parsing data.

Below we formally describe the rule probability estimation in CM2 using the same notation as in Collins
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(1997). Each non-terminal X in a parse tree is lexicalized with a word, w, and a part-of-speech (POS) tag t.

Each rule LHS → RHS has the form:

P (h)→Ln(ln)...L1(l1)H(h)R1(r1)...Rm(rm)

where P , H ,L, and R are the parent, head child, and left and right children, respectively; each non-terminal

is written as X(x), where X is a constituent label, and x = 〈w, t〉. The rule probability is calculated as the

product of the following probabilities:

1. The probability of choosing a head constituent label H: Ph(H|P, h).

2. The probabilities of choosing the left and right subcategorization frames LC and RC: Plc(LC|P, H, h)
and Prc(RC|P, H, h).

3. The probabilities of generating the left and right modifiers:
∏

i=1..m+1 Pr(Ri(ri)|H, P, h, ∆i−1, RC)×
∏

i=1..n+1 Pl(Li(li)|H, P, h, ∆i−1, LC), where ∆ is the distance between the head and modifier, and

Ln+1(ln+1) and Rm+1(rm+1) are the pseudo non-terminal STOP representing the boundaries of a

phrase.

As an example, the probability of the rule VP(has) → VB(has) NP(ball) in Figure 2 would be estimated as:

Ph(VB|VP,has) × Plc({}|VP,has) × Prc({NP}|VP,has) ×
Pl(STOP|VP,has,{}) × Pr(NP(ball)|VP,has,{NP}) × Pr(STOP|VP,has,{})

In Collins’ implementation, a variant of the CKY parser is employed to find a parse tree that maximizes

the joint probability of a sentence and its parse tree.

2.2 Discriminative Reranking for Syntactic Parsing

Collins’ (1997) parsing models are examples of widely-used history-based parsing models, where a parse

tree is represented as a sequence of decisions, and the probability of the tree is then calculated as a product of

the probabilities associated with these decisions. For example, in Collins’ (1997) parsing models, generating

the RHS of a rule is decomposed into a sequence of decisions – first choosing the head, then generating the

left and right modifiers; each of these decision is associated with a probability. While history-based models

have many advantages, it can be awkward to incorporate discriminative features, because the choice of

features are directly constrained by the choice of the generation decisions. For example, one discriminative

feature for predicting correct parse trees that the models have trouble incorporating is different heights of

subtree features which can be overlapping (Collins, 2002b).

Ideally, we would like to apply algorithms, which incorporate arbitrary discriminative features, to di-

rectly choose the best parse tree. In practice, however, the algorithms become infeasible when a large

exponential number of candidate trees exist, because there is no feasible way to find the best tree effciently

when arbitrary features are included. Dynamic programming techniques cannot apply in this situation, and

the algorithms need to enumerate over all parse trees to find the best tree.

Reranking approaches (Collins, 2000; Charniak & Johnson, 2005) address this problem with the ad-

vantages of both allowing a tree to be represented using arbitrary features, and also keeping the size of the

candidate trees manageable. In such an approach, a baseline model is used to generate a set of top parses

only utilizing local features (thus feasible for dynamic programming), and then a second model attempts to

rerank the top parses using arbitrary discriminative features as evidence.
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Inputs: A set of training examples (xi, y
∗

i ), i = 1...n

Initialization: Set W̄ = 0
Algorithm:

For t = 1...T, i = 1...n

Calculate yi = arg maxy∈GEN(xi) Φ(xi, y) · W̄
If (yi 6= y∗

i ) then W̄ = W̄ + Φ(xi, y
∗

i ) − Φ(xi, yi)
Output: The parameter vector W̄

Figure 3: The perceptron training algorithm.

Formally, a reranking model for statistical syntactic parsing is composed of three parts (Collins, 2002a):

a set of candidate parse trees GEN , which is the top N parse trees of a sentence from a baseline parsing

model; a function Φ that maps a sentence x and its parse tree y into a feature vector Φ(x, y) ∈ R
d; and a

weight vector W̄ associated with the set of features. Each feature in a feature vector is a function on a parse

tree that maps the tree to a real value. For example, a feature could be the counts of a context-free rule in a

parse tree. A special and powerful feature, the score of a parse tree under a baseline model, is often included

to take advantage of the baseline model. In reranking models, the parse tree with the highest score under a

parameter vector W̄ is outputted, where the score is calculated as:

score(x, y) = Φ(x, y) · W̄ (3)

Training a reranking model amounts to estimating the parameter vector W̄ using a set of training ex-

amples. Popular parameter estimation methods for reranking parse trees include probability models that

maximize the likelihood of the training examples, such as maximum entropy models (Collins, 2000). It

also includes distribution-free methods (Collins, 2004) where the distribution generating the data is un-

known, such as the perceptron algorithm (Collins, 2002a), boosting (Collins, 2000), and support vector

machines (Joachims, 2002). As an example, we introduce the perceptron algorithm (Rosenblatt, 1958)

below, which has proven to be effecient and effective in practical problems despite its age and simplicity.

The perceptron training algorithm is shown in Figure 3. For each sentence x, one of the candidates

y∗ that has the highest similarity score with the gold-standard parse tree is chosen as the correct one. In

training, all parameters are set to 0 initially. The algorithm then goes through the training examples for T

iterations, calculating the scores of each candidates using the current parameter vector. In each iteration, for

every example, the parse tree with the highest score is chosen. If the best tree is not the correct tree, a simple

additive method is used to update the weights of the features which have different values in the two parse

trees. Note that the update operation is very efficient – parameter values associated with other features are

kept unchanged. Collins (2002a) gives theoretical analysis of convergence property of this method. If the

training data is separable and there is a parameter factor W which makes zero errors on the training data,

then the perceptron training algorithm will converge to a parameter vector with zero training error in a finite

number of iterations.

The averaged perceptron, a variant of the perceptron algorithm is often used in testing to decrease gener-

alization errors on unseen test examples, where the parameter vectors used in testing is the average of each

parameter vector generated during the training process.

In the rest of the section, we briefly introduce the feature types used by Collins (2000) and Collins and

Koo (2005) for reranking syntactic parse trees. The parse trees in Figure 4 taken from Collins and Koo

(2005) are used for illustration. The head of the rule VP→VBD NP NP SBAR in Figure 4(a) is VBD.

1. Rules. These are the counts of unique context-free rules in a syntactic parse. For example, the tree in
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S

NP VP

VBD NP NP SBAR

(a)

NP(president)

NP(president)

the president

PP(of)

of NP(U.S.)

the U.S.

(b)

Figure 4: The syntactic parse trees for illustrating the reranking features.

Figure 4(a) has the feature f (VP→ NP NP SBAR)=1.

2. Bigrams. These are the counts of unique bigrams in a constituent. They are also featured with the

type of the constituent, and the bigram’s relative direction (left, right) to the head of the constituent.

For example, the tree in Figure 4(a) has the feature f (NP NP, right, VP)=1, where the bigram appears

to the right of the head VBD.

3. Grandparent Rules. These are the same as Rules, but also include the non-terminal above a rule. For

example, the tree in Figure 4(a) has a feature f (VP→ NP NP SBAR, S)=1, where S is the non-terminal

above the rule VP→ NP NP SBAR.

4. Grandparent Bigrams. These are the same as Bigrams, but also include the non-terminal above the

constituent containing the bigram. For example, the tree in Figure 4(a) has a feature f (NP NP, right,

VP, S)=1, where S is the parent of the constituent VP.

5. Lexical Bigrams. These are the same as Bigrams, but also include the lexical heads of the two non-

terminals in a bigram.

6. Two-level Rules. These are the same as Rules, but also include the entire rule above a rule, for

example, the tree in Figure 4(a) has a feature f (VP→ NP NP SBAR, S→ NP VP)=1.

7. Two-level Bigrams. These are the same as Bigrams, but also include the entire rule above the con-

stituent containing the bigram. For example, the tree in Figure 4(a) has a feature f (NP NP, right, VP,

S→ NP VP)=1.

8. Trigrams. These are the counts of unique trigrams in a constituent. This is also featured with the type

of the constituent. For example, the tree in Figure 4(a) has a feature f (NP NP SBAR, VP)=1, where VP

is the type of the constituent containing the trigram.

9. Head-modifiers. These are the counts of unique head-modifier pairs appearing in a constituent, with

the types of the constituent and its parent also included. A binary flag adj is used to signal if the

modifier is adjacent to the head. For example, the tree in Figure 4(a) has a feature f(VBD PP, adj=1,

VP, S, left)=1, where the modifier PP appears directly to the left of the head VBD in the constituent VP

under the non-terminals S.

10. PPs. Each feature is the count of a preposition phrase (PP), the noun phrase (NP) it is attached to, the

NP containing it, and the NP it contains with each component lexicalized. For example, the tree in

Figure 4(b) has a feature f (PP of, NP president, NP president, NP U.S.)=1.

11. Distance Head-Modifiers. These features involves the distance between head words.
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12. Further Lexicalization. These are the lexicalized version of the previous features except Head-Modifiers,

PPs and Distance Head-Modifiers, where all non-terminals are augmented with their lexical heads

when the head words are closed-class words.

Besides parsing, discriminative reranking has also been successfully used in a large variety of NLP tasks:

POS tagging and chunking (Collins, 2002a), Name Entity recognition (Collins, 2002c), machine translation

(Och, Gildea, Khudanpur, Sarkar, Yamada, Fraser, Kumar, Shen, Smith, Eng, Jain, Jin, & Radev, 2004) and

speech recognition (Collins, Koehn, & Kucerova, 2005).

2.3 Application Domains

Semantic parsing has mainly focused on three application domains. The earliest application domain is the

Air Travel Information Services (ATIS) domain (Price, 1990) mainly used in speech community. The ATIS

corpus is a collection of spoken questions about air travel, their written form and meaning representations

in the SQL database query language. A sample database query, paired with its SQL query is given below:

SELECT flight id FROM flight WHERE from airport = ‘boston’

Show me the flights from Boston.

The second domain is the GEOQUERY domain. GEOQUERY is a logical query language for a small

database of U.S. geography containing about 800 facts. This domain was originally chosen to test corpus-

based semantic parsing due to the availability of a hand-built natural-language interface, GEOBASE, supplied

with Turbo Prolog 2.0 (Borland International, 1988). The GEOQUERY language consists of Prolog queries

augmented with several meta-predicates (Zelle & Mooney, 1996). Below is a sample query with its English

gloss:

answer(A,count(B,(city(B),loc(B,C),const(C,countryid(usa))),A))

How many cities are there in the US?

Kate et al. (2005) later developed a functional, variable-free version of the query language. Two corpora

are developed for this domain, where the smaller corpus is the subset of the larger one. The smaller corpus

contains 250 queries for the GEOQUERY database, collected by asking undergraduate students in a language

class. Queries were then manually translated into the logical form (Zelle & Mooney, 1996). The average

length of the NL sentence and MR are 6.76 and 6.20 tokens, respectively. There are altogether 159 unique

NL tokens in the corpus. The second corpus also includes an additional 630 queries collected from an

undergraduate AI class and the users of a database query interface on the web. The average length of the NL

sentence and MR are 7.48 and 6.47 tokens, respectively. There are altogether 270 unique NL tokens in the

corpus.

The third domain is the ROBOCUP domain. ROBOCUP (www.robocup.org) is an international AI

research initiative using robotic soccer as its primary domain. In the Coach Competition, teams of agents

compete on a simulated soccer field and receive advice from a team coach in a formal language called

CLANG. In CLANG, tactics and behaviors are expressed in terms of if-then rules. As described in Chen

et al. (2003), its grammar consists of 37 non-terminal symbols and 133 productions. Below is a sample rule

with its English gloss:

((bpos (penalty-area our))

(do (player-except our {4})

(pos (half our))))

If the ball is in our penalty area, all our players except player 4 should stay in our half.
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ORIG

/PP
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/PROPER-NOUN

Boston

Figure 5: A sample semantically-augmented parse tree in the ATIS domain, similar to that in Miller et al.

(1996).

The corpus developed for this domain (CLANG corpus) (Kate et al., 2005) contains 300 pieces of coaching

advice, randomly selected from the log files of the 2003 ROBOCUP Coach competition. Each formal in-

struction was translated into English by one of four annotators. The average length of the NL sentence and

MR are 22.52 and 13.42 tokens, respectively. There are altogether 337 unique NL tokens in the corpus.

2.4 Semantic Parsing Approaches

2.4.1 Syntax-Driven Approaches

An elegant, natural and well-studied approach in semantic parsing is the syntax-driven approach, a major

approach in computational semantics (Blackburn & Bos, 2005). In this approach, each node on the tree has

both a syntactic label and the semantics associated with this node; the analysis of semantics is driven by the

structure of a parse tree where the meaning of the parent is built from its children in the tree. The semantics

of complex linguistic constructs such as coordination, and relative clauses can be treated elegantly. Figure 5

shows a sample semantically-augmented parse tree similar to that in Miller, Stallard, Bobrow, and Schwartz

(1996). The semantic label on each node is the main predicate of its subtree. Nodes having no corresponding

concept in the application domain have empty semantic labels.

Miller et al. (1994, 1996, 2000) extend statistical syntactic parsing models to incorporate a semantic la-

bel on each node. Miller et al. (1994, 1996) propose a hidden understanding model for parsing, while Miller

et al. (2000) utilizes a head-driven model similar to that in Collins (1997) (Section 2.1). The training data

includes the annotated parse trees, thus parameter estimation is just frequency counting.

Zettlemoyer and Collins (2005) utilizes a combinatory categorial grammar (CCG) (Steedman, 2000)

in semantic parsing, where each syntactic label specifies its valency and the directionality of its syntactic

arguments, and each subtree has an MR attached to its root. Figure 6 gives a simple CCG parse tree taken

from Zettlemoyer and Collins (2005), where the syntactic label (S\NP)/NP of the word border specifies that

it takes an NP to the right (\NP), and then an NP to the left (/NP) to form an S (sentence) constituent, while
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(S\NP)/NP
x.y.BORDERS(y,x)

borders

IDAHO

Idaho

NP
UTAH

NP

Utah

(S\NP)
y.BORDERS(y,IDAHO)

BORDERS(UTAH,IDAHO)

S

Figure 6: A CCG parse tree taken from Zettlemoyer and Collins (2005), where the meaning representation

of the sentence is BORDERS(UTAH,IDAHO).

SHOW

Show me FLIGHT

the flights ORIGIN

from CITY

boston

Figure 7: A sample semantic parse tree in the ATIS domain.

the semantic label λx.λy. BORDERS(y, x) specifies that it takes the MR associated with the first and second

NPs as its second and first arguments, respectively. Training on a set of sentences only labeled with their

meaning representations, it induces a maximum entropy model to represent the distribution of syntactic and

semantic structures for generating correct meaning representations. It requires prior knowledge of syntax

for representing the semantics. A set of rules are carefully designed to specify possible syntactic categories

for each type of predicates in the semantics, in which each rule is in the form of an input trigger, and an

output category. Below is a sample rule for constants:

Input trigger: any constant c

Output category: NP : c

Using this rule, the constant IDAHO in the MR of Figure 6 would match the input pattern, and output a

category NP:IDAHO. This category would then be associated with all words as their candidate labels. During

training, spurious labels such as the category NP:IDAHO attached to the word borders would be pruned.

2.4.2 Semantic-Driven Approaches

While syntax-driven approaches have their advantages of computating semantics in its simplicity and power-

fulness, syntactic parse trees can be more sophisticated than needed for meaning composition. For example,

in Figure 5, since the conveys no meaning, the noun phrase the flights actually has the same meaning as

its child flights, there is no meaning composition going on in this phrase. A more straightforward way for

semantic parsing is to be driven directly by semantic representations.
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One important work of these approaches is semantic grammar (Jurafsky & Martin, 2000), where the

non-terminals on the tree are purely semantic labels, and each rewriting rule corresponding to some meaning

composition (see Figure 7). A semantic parse tree can be seen as generated using a semantic grammar. Kate

et al. (2005) employs such an approach in a system called SILT. The training data in SILT only includes

the pairs of NL sentences and their MRs, while semantic parse trees are hidden, thus the key work in the

algorithm is to induce a semantic grammar. The examples are first labeled as positive and negative according

to the appearances of a semantic concept in the MRs, and then the rules for that concept are learned from

these examples. For example, for the concept FLIGHT in Figure 7, if the pattern the flights ORIGIN is seen

very often in the positive examples and very rare in the negative ones, then it is very likely that FLIGHT→the

flights ORIGIN is a rule. The rules are learned in a bottom-up manner: the rules for simple concepts are

learned first, and the rules for the concepts including these simple ones are learned subsequently. In the

example in ATIS domain above, the rules for CITY would be learned before the rules for ORIGIN.

Wong (2005) introduce another method to induce a semantic grammar (the synchronous context-free

grammar) by using machine translation techniques in a system called WASP. First, the NL sentence and

meaning representation pairs in the training corpus are aligned by a statistical word alignment model. Then,

semantic grammar rules are inferred from the alignments in a bottom-up manner. Finally, a maximum

entropy model is used to estimate the probability of these rules.

Hard matching of semantic rules in the above approaches can limit the coverage of a semantic grammar

in testing. To address this problem, Kate (2005) introduces a system called KRISP, using a soft semantic

grammar based on string-kernel-based classification. For each production in the meaning representation

language, a classifier is trained using string similarity as the kernel to acquire the probability that this pro-

duction occurs in a substring of an input sentence. Meaning representations of sentences are obtained by

finding the most probable semantic parse using these probabilities.

Instead of using semantic grammars to build the semantic parse tree explicitly, He and Young (2005)

treats semantic parsing as a tagging problem, where each word is assigned a label that encodes the structure

information in a semantic parse tree. More specifically, the label of a word is a vector of semantic labels

starting from the pre-terminal of the word, and ending at the root node. As an example, the word from

in Figure 7 would have a label 〈ORIGIN,FLIGHT,SHOW〉. A HMM model is trained on the sentences only

labeled with their MRs, and the labels are hidden. A drawback of the encoding here is the sparse data

problem. For example, if we have already seen the sentence the flight from Boston to Austin, and know that

from represents an attribute ORIGIN, we should be able to analyze the meaning of from in the train from

Boston to Austin correctly. However, since these two from would have different labels (FLIGHT.ORIGIN and

TRAIN.ORIG) in the system, the information from the previous example will not be helpful.

One of the earliest learning approaches of semantic parsing system (Zelle & Mooney, 1996) called

CHILL learns a shift-reduce parser with control rules using induction logic programming (ILP) (Muggle-

ton, 1992). Control rules are used to decide the parsing actions, such as when a semantic concept should

be introduced, and when these concepts should be combined to build the MR. No actions are labeled for

learning the control rules in the training data, therefore an ILP approach is used to induce these control

rules. The learning algorithm requires a lexicon with the words paired with their possible semantic concepts

as its input, which can be acquired using lexicon learning methods (Thompson & Mooney, 2003). CHILL

is later extended by Tang and Mooney (2001) in a system called COCKTAIL, which uses multiple clause

constructors to obtain more expressive power than a single clause constructor.

For a class of simple semantic parsing tasks, which is popular in speech understanding, such as book-

ing the flights (ATIS) or querying the weather, the semantic parsing task can be simplified to fill a single

semantic frame, where the structure among these fillers become less important. For example, the seman-
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Figure 8: The semantic frame associated with the example in Figure 7.

tic frame associated with the example used above is shown in Figure 8. One of the earliest such systems,

CHANEL (Kuhn & De Mori, 1995), adopts a decision tree approach, where each SQL attribute has a corre-

sponding decision tree to decide if an attribute should be included in the query. For example, a match of the

pattern from city name would indicate the presence of an attribute ORIGIN in the query. The decision trees

are learned from a set of NL sentences and their SQL queries.

3 Completed Research

We present an approach based on a statistical parser that generates a semantically augmented parse tree

(SAPT), in which each internal node includes both a syntactic and semantic label. We augment Collins’

(1997) parsing model 2 to incorporate a semantic label on each internal node to capture the predicate-

argument structure of a sentence. By integrating syntactic and semantic interpretation into a single statistical

model and finding the globally most likely parse, an accurate combined syntactic/semantic analysis can be

obtained. Once a SAPT is generated, an additional step is required to translate it into a final formal meaning

representation (MR) in a meaning representation language (MRL).

Our approach is implemented in a system called SCISSOR (Semantic Composition that Integrates Syn-

tax and Semantics to get Optimal Representations). Training the system requires sentences annotated with

both gold-standard SAPTs and MRs. We present experimental results on corpora for both geography-

database querying and Robocup coaching demonstrating that SCISSOR significantly outperforms other sys-

tems (Wong (2005), Kate (2005), Tang and Mooney (2001)) on long sentences, where syntax is crucial for

meaning composition.

3.1 Semantic Parsing Framework

This section describes our basic framework for semantic parsing, which is based on a fairly standard ap-

proach to compositional semantics (Jurafsky & Martin, 2000). First, a statistical parser is used to construct a

SAPT that captures the semantic interpretation of individual words and the basic predicate-argument struc-

ture of the sentence. Next, a recursive procedure is used to compositionally construct an MR for each node

in the SAPT from the semantic label of the node and the MRs of its children. Syntactic structure provides

information of how the parts should be composed. Ambiguities arise in both syntactic structure and the se-

mantic interpretation of words and phrases. By integrating syntax and semantics in a single statistical parser

that produces a SAPT, we can use both semantic information to resolve syntactic ambiguities and syntactic

information to resolve semantic ambiguities.

In a SAPT, each internal node in the parse tree is annotated with a semantic label. Figure 9 shows the

SAPT for a simple sentence in the CLANG domain. Note that the semantic labels on the internal nodes

capture the predicate-argument structure of the sentence, such as in the rule (omitting syntactic labels)

bowner → player bowner, where the predicate bowner (ball owner) takes a player as its argument.
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S-BOWNER

NP-PLAYER

PRP$-TEAM

our

NN-PLAYER

player

CD-UNUM

2

VP-BOWNER

VB-BOWNER

has

NP-NULL

DET-NULL

the

NN-NULL

ball

Figure 9: A SAPT for a simple CLANG sentence.

Function:BUILDMR(N, K)
Input: The root node N of a SAPT;

predicate-argument knowledge, K, for the MRL.

Notation: XMR is the MR of node X .

Output: NMR

Ci := the ith child node of N, 1 ≤ i ≤ n

Ch = GETSEMANTICHEAD(N ) // see Section 3.1

ChMR
= BUILDMR(Ch, K)

for each other child Ci where i 6= h

CiMR
= BUILDMR(Ci, K)

COMPOSEMR(ChMR
, CiMR

, K) // see Section 3.1

NMR = ChMR

Figure 10: Computing an MR from a SAPT.

The semantic labels which are shown after dashes are concepts in the domain. Some type concepts do

not take arguments, like team and unum (uniform number). Some concepts, which we refer to as predicates,

take an ordered list of arguments, like player and bowner. The predicate-argument knowledge, K, specifies,

for each predicate, the semantic constraints on its arguments. Constraints are specified in terms of the

concepts that can fill each argument, such as player(team, unum) and bowner(player). A special semantic

label null is used for nodes that do not correspond to any concept in the domain.

Figure 10 shows the basic algorithm for building an MR from an SAPT. Figure 11 illustrates the con-

struction of the MR for the SAPT in Figure 9. Nodes are numbered in the order in which the construction

of their MRs are completed. The first step, GETSEMANTICHEAD, determines which of a node’s children is

its semantic head based on having a matching semantic label. In the example, node N3 is determined to be

the semantic head of the sentence, since its semantic label, bowner, matches N8’s semantic label. Next, the

MR of the semantic head is constructed recursively. The semantic head of N3 is clearly N1. Since N1 is a

part-of-speech (POS) node, its semantic label directly determines its MR, which becomes bowner( ). Once

the MR for the head is constructed, the MR of all other (non-head) children are computed recursively, and

COMPOSEMR assigns their MRs to fill the arguments in the head’s MR to construct the complete MR for

the node. Argument constraints are used to determine the appropriate filler for each argument. Since, N2

has a null label, the MR of N3 also becomes bowner( ). When computing the MR for N7, N4 is determined

to be the head with the MR: player( , ). COMPOSEMR then assigns N5’s MR to fill the team argument
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N8-BOWNER(PLAYER(OUR,2))

N7-PLAYER(OUR,2)

N5-TEAM

our

N4-PLAYER( , )

player

N6-UNUM

2

N3-BOWNER( )

N1-BOWNER( )

has

N2-NULL

NULL

the

NULL

ball

Figure 11: MRs constructed for each SAPT Node.

and N6’s MR to fill the unum argument to construct N7’s complete MR: player(our, 2). This MR in turn is

composed with the MR for N3 to yield the final MR for the sentence: bowner(player(our,2)).

For MRLs, such as CLANG, whose syntax does not strictly follow a nested set of predicates and argu-

ments, some final minor syntactic adjustment of the final MR may be needed. In the example, the final MR

is (bowner (player our {2})). In the following discussion, we ignore the difference between these two.

3.2 Corpus Annotation

This section discusses how sentences for training SCISSOR were manually annotated with SAPTs. Sentences

were parsed by Collins (1997) parser (Bikel, 2004) (trained on sections 02-21 of the WSJ Penn Treebank)

to generate an initial syntactic parse tree. The trees were then manually corrected and each node was

augmented with a semantic label using the following procedure.

First, semantic labels for individual words, called semantic tags, are added to the POS nodes in the

tree. The tag null is added to words that have no corresponding concept in the application domain. For

concepts conveyed by phrases, like “has the ball” for bowner in the previous example, only one word is

labeled with the concept, where the syntactic head word (Collins, 1997) is preferred; the other words in the

phrase provide context for determining the semantic label of the word during parsing.

After that, labels are added to the remaining nodes in a bottom-up manner. For each node, one of its

children is chosen as the semantic head, from which it inherits the label. The semantic head is chosen to be

the child whose semantics take other children’s semantics as arguments in the MR. For example, in Figure 9,

the root node inherits the semantic label from its semantic head VP-BOWNER, which takes NP-PLAYER as

an argument in the MR. This step was done mostly automatically, but required some manual corrections to

account for unusual cases.

In order for COMPOSEMR to be able to construct the MR for a node, the argument constraints for its

semantic head must identify a unique concept to fill each argument. However, some predicates take multiple

arguments of the same type, such as point.num(num,num), which is a subclass of point that represents a

field coordinate in CLANG. In this case, extra nodes are inserted in the tree with new type concepts that are

unique for each argument. An example is shown in Figure 12 in which the additional type concepts num1

and num2 are introduced. Again, during parsing, context will be used to determine the correct type for a

given word.
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PRN-POINT.NUM

-LRB- - POINT.NUM

(

CD-NUM1

CD-NUM

0.5

, - NULL

,

CD-NUM2

CD-NUM

0.1

-RRB- - NULL

)

Figure 12: Adding new types to disambiguate arguments.

S-BOWNER (has)

NP-PLAYER (player)

PRP$-TEAM

our

NN-PLAYER

player

CD-UNUM

2

VP-BOWNER (has)

VB-BOWNER

has

NP-NULL (ball)

DET-NULL

the

NN-NULL

ball

Figure 13: A lexicalized SAPT.

3.3 Integrated Parsing Model

3.3.1 Integrating Semantics into the Model

SCISSOR introduces a parsing model for generating SAPTs for sentences, by extending Collins (1997)

parsing model 2 (see Section 2.1 for detailed description) to incorporate the generation of semantic labels in

SAPTs. We focus on the extensions in the following discussion.

In SCISSOR, the representation of each non-terminal in a SAPT is extended to include a semantic label,

together with a syntactic label; each non-terminal is lexicalized with both a head word, part-of-speech tag

and also a semantic tag passed up from its head child. Figure 13 shows a lexicalized SAPT (omitting the

POS tag and semantic tag lexicalized to each non-terminal).

The generation of the right-hand-side (RHS) of a rule in SAPTs is decomposed in the same way as

in Collins (1997): first generating the head of the RHS, then generating the modifiers conditioned on the

head. The difference is that each child has the new representation augmented with semantics. To model

a predicate’s argument preference for generating semantic labels of modifiers, each head is predicted with

a semantic subcategorization frame, in addition to a syntactic subcategorization frame. For example, the

predicate player in CLANG requires a team and a unum as its arguments. The implementation of semantic

subcat frames is similar to syntactic subcat frames, which are multi-sets specifying the semantic-label re-

quirements of a head to its left or right modifiers. The generation of modifiers is modified to be constrained

on both syntactic subcats and semantic subcats.

We introduce the new meanings of notations for describing the extended model. The subscript syn

refers to the syntactic part, and sem refers to the semantic part. We redefine X and x to include semantics:
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BACK-OFFLEVEL Ph(H|...) PLC(LC|...) PL1(Li|...) PL2(lti|...) PL3(lwi|...)
1 P,w,t P,H,w,t P,H,w,t,∆,LC P,H,w,t,∆,LC, Li P,H,w,t,∆,LC, Li, lti
2 P,t P,H,t P,H,t,∆,LC P,H,t,∆,LC, Li P,H,t,∆,LC, Li, lti
3 P P,H P,H,∆,LC P,H,∆,LC, Li Li, lti
4 – – – Li lti

Table 1: Conditioning variables for each back-off level in semantic parameters.

each non-terminal X is a pair of a syntactic label Xsyn and a semantic label Xsem (X = 〈Xsyn, Xsem〉); x

is a triple of a word w, a POS tag tsyn, and a semantic tag tsem (x = 〈w, tsyn, tsem〉). Left and right subcat

frames LC and RC are redefined as: 〈LCsyn, LCsem〉 and 〈RCsyn, RCsem〉. All other notations are the

same as in Section 2.1.

The probability of a rule LHS → RHS in the form (P is the parent, H is the head child, and L and R

are the left and right children):

P (h)→Ln(ln)...L1(l1)H(h)R1(r1)...Rm(rm)

is calculated as the product of the following probabilities in the same way as described in Section 2.1:

1. The probability of choosing a head constituent label H: Ph(H|P, h).

2. The probabilities of choosing the left and right subcat frames LC and RC: Plc(LC|P, H, h) and

Prc(RC|P, H, h).

3. The probabilities of generating the left and right modifiers:
∏

i=1..m+1 Pr(Ri(ri)|H, P, h, ∆i−1, RC)×
∏

i=1..n+1 Pl(Li(li)|H, P, h, ∆i−1, LC), where ∆ is the distance between the head and the modifier,

and Ln+1(ln+1) and Rm+1(rm+1) are the pseudo non-terminal STOP representing the boundaries

of a phrase.

As an example, the probability of generating the phrase “our player 2” in Figure 13 using the rule

NP-[player](player) → PRP$-[team](our) NN-[player](player) CD-[unum](2) is calculated as (omitting the

distance measure):

Ph(NN-[player]|NP-[player],player)×

Plc(〈{},{team}〉|NP-[player],player)×Prc(〈{},{unum}〉|NP-[player],player)×

Pl(PRP$-[team](our)|NP-[player],player,〈{},{team}〉)×Pl(STOP|NP-[player],player,〈{},{}〉)×

Pr(CD-[unum](2)|NP-[player],player,〈{},{unum}〉)×Pr(STOP|NP-[player],player,〈{},{}〉)

3.3.2 Smoothing

The non-terminals in the extended model are the combinations of syntactic labels and semantic labels,

and thus need more smoothing. To address this problem, the parameters (probability estimations in the

generation steps) are decomposed using the chain rule as follows (only the parameters for generating the left

modifiers are shown here):

Ph(H|C) = Phsyn
(Hsyn|C) × Phsem

(Hsem|C, Hsyn) (4)

Plc(LC|C) = Plcsyn
(LCsyn|C) × Plcsem

(LCsem|C, LCsyn) (5)

Pl(Li(li)|C) = Plsyn
(Lisyn(ltisyn , lwi)|C) × Plsem

(Lisem(ltisem , lwi)|C, Lisyn(ltisyn)) (6)
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For brevity, C is used to represent the context on which each parameter is conditioned; and lwi, ltisyn , and

ltisem are the word, POS tag, and semantic tag for a non-terminal Li. Words are generated individually in

both syntactic and semantic outputs.

To further simplify the model, we make the independence assumption to condition syntactic output only

on syntactic features, and semantic output only on semantic features. Note that the syntactic and semantic

parameters are still integrated in the model to find the globally most likely parse. We have also tried different

ways of conditioning syntactic output on semantic features and vice versa, but they failed to show significant

improvement. Our explanation is that the integrated syntactic and semantic parameters have already captured

the benefit of this integrated approach in our experimental domains.

The syntactic parameters are reduced to the same parameters as in Collins (1997) (Section 2.1), and are

smoothed using the method in Collins (1997). In the following part of this subsection, we discuss the tech-

niques for smoothing the semantic parameters. Since the semantic parameters do not depend on syntactic

features under the independence assumption, we can safely omit the sem subscripts in the discussion. The

parameter Pl(Li(lti, lwi)|P, H, w, t,∆, LC) for generating the left modifier is further decomposed as:

Pl1(Li|P, H, w, t,∆, LC) × Pl2(lti|P, H, w, t,∆, LC, Li) × Pl3(lwi|P, H, w, t,∆, LC, Li(lti)) (7)

where the parameters are the probabilities for generating the semantic label, semantic tag, and head word

of a left modifier, respectively. We point out that the smoothing is different from its syntactic counterpart,

where the generation of a syntactic label and POS tag pair Li(lti) is not decomposed into two parameters as

in Pl1 and Pl2. This is because semantic tags are essentially more specific than semantic tags, and requires

more smoothing. Table 1 shows the back-off levels for each semantic parameter. The probabilities from

these back-off levels are interpolated using the techniques in Collins (1997).

3.3.3 Tagging and Parsing

The parsing model does not rely on an external POS tagger or semantic tagger, instead, it uses the following

method to provide candidate tags for parsing. It classifies words into known and unknown words (all words

occurring less than 3 times in the training data, and words in the test data that were not seen in training).

For known words, the candidate tags are those that have been seen with this word in the training data. For

unknown words, the candidate POS tags are those that have been seen with any unknown words in the

training data, and the candidate semantic tags are limited to those that have been seen with its associated

POS tag during training. Note that the unknown word threshold (3) is smaller than the one used by Collins

(1997) since the training corpora for semantic parsing are small.

In decoding, a CKY-style parser is used to find a best SAPT that maximizes the joint probability of a

sentence and a SAPT.

3.4 Implementation Details

We discuss the approaches used for handling pronoun resolution and non-compositionality in SCISSOR in

this section. We utilize a straightforward method to deal with pronoun resolution. In SAPTs, each pronoun is

labeled with a semantic label, and the task of pronoun resolution is to find an entity having the same semantic

type as the pronoun as its referee. SCISSOR chooses the latest entity that appears before the pronoun, and

also has number agreement with the pronoun. For example, in the sentence “If our player 6 has the ball,

then he should shoot”, “he” has the semantic label player, thus its referee should be a player that appears

before it, which is the case in “our player 6”.
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DT-NULL
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Figure 14: A simple example in CLANG illustrating non-compositionality, where the meaning representa-

tion of the sentence is (AND (BOWNER (PLAYER (OUR 2))) (BPOS (MIDFIELD))) .

Non-compositionality occurs in the application domains, where MR structures do not correspond to

the structures of syntactic parse trees. For example, in Figure 14, midfield in the MR is attached to the

predicate bpos (ball position), however, in the syntactic parse tree, “in the midfield” (midfield) is attached

to the verb “has” (bowner) instead of “the ball” as in the meaning representation. In this case, we combine

the two predicates bowner and bpos to a new predicate bowner.bpos, which takes the arguments from both

individual predicates, thus the word “has” can be augmented with the new predicate bowner.bpos, and the

MR of the sentence can be built compositionally. Other non-compositionality cases are handled in similar

ways.

3.5 Experimental Evaluation

3.5.1 Methodology

We evaluated SCISSOR on three corpora introduced in Section 2.3: CLANG, the small GEOQUERY corpus,

namely GEO250, and the large GEOQUERY corpus, namely GEO880. The average NL sentence lengths

(in tokens) of the three copora are 22.51, 6.72, and 7.48, respectively, and the average number of possible

semantic tags for each word that can represent meanings is 1.59 in CLANG, and 1.46 in GEO250. SCIS-

SOR has not been evaluated in the ATIS domain, however, Popescu et al. (2004) showed that parsing the

GEOQUERY data is harder than parsing the ATIS data.

SCISSOR was evaluated using standard 10-fold cross validation. NL test sentences were first parsed to

generate their SAPTs, and then their MRs were built from the trees. The unknown word threshold was 3,

and the beam width was 104 (a parse with its probability within 1
104 of the probability of the top parse in the

same chart entry is kept). We measured the number of test sentences that produced complete MRs, and the

number of these MRs that were correct. For CLANG, an MR is correct if it exactly matches the correct MR,

up to reordering of the arguments of commutative operators like and. For GEOQUERY, an MR is correct if

19



 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  50  100  150  200  250  300

F
 M

ea
su

re
 (

%
)

Training sentences

SCISSOR
WASP
KRISP

COCKTAIL

(a) F-measure curves

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  50  100  150  200  250  300

P
re

ci
si

o
n
 (

%
)

Training sentences

SCISSOR
WASP
KRISP

COCKTAIL

(b) Precision curves

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  50  100  150  200  250  300

R
ec

al
l 

(%
)

Training sentences

SCISSOR
WASP
KRISP

COCKTAIL

(c) Recall curves

Figure 15: Learning curves on CLANG.

the resulting query retrieved the same answer as the correct representation when submitted to the database.

The performance of the parser was then measured in terms of precision, recall, and F-measure:

Precision =
Number of correct MRs

Number of test sentences with completed MRs
(8)

Recall =
Number of correct MRs

Number of test sentences
(9)

F-measure =
2 ∗ Precision ∗ Recall

Precision+Recall
(10)

We compared SCISSOR on all corpora to three other algorithms: WASP (Wong, 2005) , KRISP (Kate,

2005) and COCKTAIL (Tang & Mooney, 2001). WASP and KRISP are two most recently developed, unsu-

pervised statistical semantic parsing algorithms, where WASP is based on synchronous context-free gram-

mar, and KRISP is based on string-kernel-based classification. COCKTAIL is an unsupervised deterministic

shift-reduce parser based on inductive logic programming. We also compared SCISSOR to Zettlemoyer
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Figure 16: Results for test sentences within certain length ranges on CLANG.

and Collins (2005), with results reported on GEO880. Zettlemoyer and Collins (2005) introduced an inte-

grated syntactic-semantic parser based on combinatory categorical grammar (CCG), which requires a set of

domain-specific hand-built rules for building a CCG lexicon. All these systems do not need full syntactic-

semantic annotation of the training examples. In the evaluation, all these systems except Zettlemoyer and

Collins (2005) performed 10-fold cross validation using the same splits between training and test data. Since

KRISP only presented plotted precision-recall (PR) curves, and did not give unique precision and recall to

compare with, we used the confidence that maximizes the F-measure on the last data point of a learning

curve to be the threshold for each corpus, and used the precision and recall at the threshold for each data

point to generate learning curves. Zettlemoyer and Collins (2005) used a different experimental method on

GEO880, where the data was divided into 600 training examples and 280 test examples, and the reported

result was averaged over two runs over the data.

3.5.2 Results

Figure 15 shows the learning curves on CLANG. SCISSOR performs significantly better than other systems,

with the recall about 12% higher than WASP, and 17% higher than KRISP. COCKTAIL shows unsatisfying

results on this corpus: it can not handle training sets larger than 160 examples due to its intensive memory

requirement. It also shows poor performance on other data points because of its deterministic decision-

making nature – once it fails to parse a sentence in the middle, it does not backtrack. This drawback

becomes especially problematic on CLANG where sentences are long.

Figure 16 gives detailed look at the F-measures on sentences within different length ranges on CLANG.

Figure 16(a) lists the sentence counts in different length ranges, and their corresponding points in Fig-
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Figure 17: Learning curves on GEO250.

ure 16(b); the performance of sentences within length range 41-50 is not shown in Figure 16(b), because

only 5 sentences fall into this category. It shows that great improvement of SCISSOR over WASP and KRISP

appears when sentences are long: while WASP and KRISP degrade significantly as sentences are getting

longer, SCISSOR does not show such degradation. This suggests that the meaning composition process

guided by syntax employed in SCISSOR is especially useful when sentences are long.

Figure 17 gives the learning curves on GEO250. While SCISSOR shows higher F-measure on the last

two data points, overall, it does not show substantial improvement as in CLANG. This is consistent with

the results in CLANG, where great improvement of SCISSOR over other systems appears when sentences

are long. Figure 18 shows the learning curves on GEO880. SCISSOR has lower F-measure than both Zettle-

moyer and Collins (2005) and COCKTAIL. Careful quantitative analysis shows that the errors relate closely

to the annotation method for augmenting semantic labels to the internal nodes of SAPTs in GEOQUERY. We

will give more detail in Section 4.1, and it is also a part of our future work.

Overall, the experiments demonstrate that SCISSOR significantly outperforms other systems on long
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Figure 18: Learning curves on GEO880.

sentences, where syntax is crucial for meaning composition.

4 Proposed Research

4.1 Better Generalization in Tree Representation

In Section 3.5.2, our experiments show that SCISSOR gives lower F-measure than both Zettlemoyer and

Collins (2005) and COCKTAIL on GEO880. Careful analysis suggests that the low F-measure could be

caused by the annotation method for adding semantic labels to the internal nodes of SAPTs (see Section 3.2).

Before discussing the annotation problem, let us first briefly introduce the meaning representation lan-

guage namely FUNQL used in GEOQUERY. Each predicate in meaning representations in FUNQL is treated

as a function modifying an argument list. For example, in the MR of Figure 19, the innermost expression,

COUNTRYID(’USA’) represents a single element: the US; and the predicate LOC 2 is applied to the list,
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Figure 19: An example in GEOQUERY illustrating the labeling problem, where the meaning representation

of the sentence is ANSWER(LEN(SHORTEST(RIVER(LOC 2(COUNTRYID(’USA’)))))). The annotation is

produced using the method in Section 3.2.

so that the expression LOC 2(COUNTRYID(’USA’)) returns the list of entities in the US. The same process

goes on so that the expression RIVER(LOC 2(COUNTRYID(’USA’))) returns the list of rivers in the US, the

expression SHORTEST(RIVER(LOC 2(COUNTRYID(’USA’)))) returns the shortest river in the US, and the

expression LEN(SHORTEST(RIVER(LOC 2(COUNTRYID(’USA’))))) returns the length of the shortest river

in the US. Finally, the special predicate ANSWER returns the acquired elements, which is the length of the

shortest river in the US in this example.

The annotation process described in Section 3.2 adds semantic labels to the non-leave nodes of a syn-

tactic parse tree in a bottom-up manner. The semantic label of each node is the same as the semantic label

of one child, whose semantics takes other children’s semantics as the arguments in the meaning represen-

tation. Applying this process to the tree in Figure 19, the semantic label of the phrase the shortest river

will be SHORTEST, because RIVER is the argument of SHORTEST in the meaning representation. The label

SHORTEST is further passed up the tree according to the same procedure.

We can see that semantic labels added in this way do not resemble the dependency relation in the

syntactic side. For example, the phrase the shortest river has the syntactic head river, however, in the

semantic side, it has the same semantic label (SHORTEST) as another child shortest to represent a subset of

RIVER. Learning from these SAPTs can potentially lead to severe sparse data problem. For example, the

statistics acquired from Figure 19 only relates to a subset of RIVER namely SHORTEST, while the statistics on

other subsets of RIVER, such as LONGEST, have to be learned separately. Quantitative analysis on GEO880

for the experiments in Section 3.5 demonstrates that error rates in the sentences that includes predicates like

SHORTEST are significantly higher than that in the other sentences.

A simple and principled way to tackle this problem is to utilize the productions in the meaning represen-

tation language, where the left-hand-side (LHS) of a production provides generalization for the concept in

the right-hand-side (RHS). These productions have been explored by the semantic parsing systems in Wong
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Figure 20: The new annotation of the example in Figure 19.

(2005) and Kate (2005). For example, in the production rule RIVER → SHORTEST RIVER in FUNQL, the

LHS (RIVER) is the superclass of the RHS (SHORTEST RIVER). Each production rule is associated with a

pattern describing its meaning representation. For example, in the production rule above, the pattern speci-

fies that SHORTEST would enclose RIVER. In annotation, instead of labeling a node with the semantic label

passed up from its child, it can be labeled with the LHS of the production involved. Thus, the phrase the

shortest river in Figure 19 will be labeled as RIVER using the production rule RIVER → SHORTEST RIVER.

The new SAPT annotated using production rules is shown in Figure 20. Note that the statistics acquired

from the new SAPT relates to all rivers (RIVER).

By providing better generalization in tree labels, which still capture the predicate-argument structures of

sentences, we hope that training SCISSOR on the newly-annotated GEOQUERY corpora will produce better

results. The same procedure of generating meaning representations as in Section 3.1 can still be used here.

4.2 Discriminative Reranking for Semantic Parsing

In this section, we discuss ongoing work on learning to rerank the top outputs from SCISSOR, which allows

exploring arbitrary, potentially correlated features not usable by the baseline learner. Detailed descrip-

tion for training and testing a reranking model is described in Section 2.2. Briefly, in a reranking model,

semantically-augmented parse trees (SAPTs) are mapped into feature vectors, where each feature is asso-

ciated with a weight representing the feature’s power for predicting the correct SAPT. Training a reranking

model amounts to estimating the weight associated with each feature, and in testing, the SAPT with the

highest score (use Equation 3) under a weight vector is outputted.

4.2.1 Features

A central issue in reranking SAPTs is to devise a set of features for predicting correct outputs. One set of

features that we can exploit is those features proven to be useful in reranking syntactic parses, such as the
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BACK-OFFLEVEL PL1(Li|...)
1 P,H,w,t,∆,LC

2 P,H,t,∆,LC

3 P,H,∆,LC

4 P,H

5 P

Table 2: Extended back-off levels of the semantic parameter PL1(Li|...), using the same notation as in

Section 3.3.

features introduced by Collins (2000), which are described in detail in Section 2.2. Specially, the score of

a parse under a base model is included as a feature to take advantage of the baseline model. Besides using

syntactic features for predicting the correctness of the syntactic part, we could extend the model to include

a set of semantic features based on the correspondence between syntax and semantics – for each syntactic

feature type, we introduce a similar semantic feature type. For example, the feature type Semantic rules

is introduced corresponding to the syntactic feature type Rules. These are the counts of unique semantic

context-free rules in a SAPT, where non-terminals are semantic labels (the empty semantic label NULL

is not included). For example, the tree in Figure 13 would have the feature f (PLAYER→ TEAM PLAYER

UNUM)=1. For brevity, other semantic features are not listed here.

Another set of features that we can exploit is the features used in semantic role labeling (SRL). Given

a sentence and a target word, SRL identifies all constituents that fill semantic roles of the target word,

such as agent, patient or instrument, together with its adjuncts, such as location or manner. State-of-the-art

SRL systems (Carreras & Màrquez, 2004, 2005) generally explore the following types of features: features

capturing the internal structure of candidate arguments, and features extracted from the arguments’ context;

features describing properties of a target predicate, and features generated from the predicate’s context; and

also features modeling the distance between a predicate and its argument. These features should be valuable

in semantic parsing for predicting predicate-argument relations.

4.2.2 Preliminary Experimental Evaluation

Methodology. We have evaluated reranking models using different feature sets adapted from (Collins,

2000) on CLANG (300 examples) and Geo250 (250 examples), adopting standard 10-fold cross validation.

First, the base parsing model SCISSOR was used to generate N candidate parses (SAPTs) for training and

test examples, where N was 50. After that, a reranking model was trained on the training examples using

the averaged perceptron algorithm described in Section 2.2. The correct parse of each sentence required

by training is a parse that lead to the correct meaning representation, and it is the parse with the highest

syntactic F-measure score among these parses. If the correct parse does not exist, then the training example

is discarded. In testing, the averaged weight vector was used to choose the best parse from the candidate

parses. In all these experiments, the number of iterations T over the training examples was 10, and the

feature-count cut-off was 0. We have experimented with other cut-offs (2 and 4), and they did not show

significant improvements.

SCISSOR failed to generate enough candidate parses using the beam width and back-off levels introduced

in Section 3 because of training on the small datasets. To acquire sufficient candidate SAPTs, we increased

the beam width from 104 to 108 for CLANG, and 1012 for GEO250. The reason to use a larger beam width

for GEO250 is that the sentences in GEO250 are relatively short (8 on average), and thus it is harder to get
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TRIAL CLANG GEO250

P R F P R F

SCISSOR 89.51 73.76 80.88 98.52 74.43 84.80

SCISSOR+ 86.94 78.19 82.33 95.50 77.20 85.38

Table 3: The performance of the base system SCISSOR+ compared with SCISSOR, where P refers to preci-

sion, R refers to recall, and F refers to F-measure.

TRIAL CLANG GEO250

P R F P R F

SCISSOR+ 86.94 78.19 82.33 95.50 77.20 85.38

Oracle score - 85.58 - - 81.60 -

sem 89.55 80.54 84.81 96.50 77.20 85.78

syn 87.31 78.52 82.68 95.07 77.20 85.21

sem+syn 88.81 79.87 84.10 95.52 76.8 85.14

Table 4: Reranking results on SCISSOR+ outputs using different feature sets.

enough candidates using a small beam width. We also extended the back-off levels of the parameters for

generating modifiers’ semantic labels (see Table 2, only the parameter for the left side is shown), so that

SCISSOR would allow the exploration of more parses.

Results. Table 3 gives the results of the base learner SCISSOR using different parameters: SCISSOR uses

the beam width and back-off levels in Section 3.3, and SCISSOR+ uses the new beam width and back-off

levels. SCISSOR+ shows better recall, and worse precision than SCISSOR on both corpus. Since SCISSOR+

does not constrain the generation of modifiers’ semantic labels on semantic subcat frames, and allow broader

search, the result is reasonable.

Table 4 compares the results of reranking models using different feature sets adapted from (Collins,

2000). In all these experiments, the score of a SAPT in SCISSOR+ is included as a feature. The oracle score

is the upper-bound a reranking model can achieve, where an oracle tells which parse is the best for each

example. sem is the reranking model using only the semantic features, syn using only the syntactic features,

and sem+syn using both the syntactic and semantic features. Only using the semantic features, sem achieves

the best performance, with 2.48% absolute F-measure improvement (14.0% relative error reduction) in

CLANG and 0.4% absolute F-measure improvement (2.7% relative error reduction) in GEO250. Note that

sem+syn performs worse than sem. Though we do not want to over-interpret the small difference, the

result may suggest that when training on the small datasets, the model using both syntactic and semantic

features starts over-fitting. We have also experimented with introducing features combining both syntax and

semantics, and they also failed to show improvement.

Overall, our results show that discriminative reranking can improve upon the baseline system SCISSOR

in semantic parsing. Future work includes a further investigation of features derived from SAPTs, such

as the features used in SRL. We also plan to investigate the reasons behind the modest improvement on

GEOQUERY compared to CLANG.
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Figure 21: A SAPT in CLANG, where the meaning representation of the sentence is (POINT.NUM 0.5 0.1).

4.3 Automating the Semantically-Augmented Parse Tree Generation

Training SCISSOR requires a set of training examples augmented with semantically-augmented parse trees

(SAPTs). The annotation work required by generating SAPTs restricts both the size of available training

data in one domain and its application to new domains. In this section, we propose to automate the SAPT-

generation process for training corpus with sentences paired with their meaning representations.

SAPTs are composed of syntactic parse trees and augmented semantic labels. Since syntactic parse trees

with satisfying accuracies can be generated automatically using statistical syntactic parsers (Section 4.3.1),

the key issue of the SAPT generation is to add semantic labels to these trees for composing correct meaning

representations. The semantic labels on the non-leave nodes of SAPTs can be essentially classified into two

types. One type of semantic labels is passed up from one of their children using a compositional-semantics

process (Section 3.2), such as the root node’s semantic label POINT.NUM in Figure 21. The other type of

semantic labels is semantic-role labels specially introduced when a predicate can take multiple arguments of

the same type. For example, in Figure 21, NUM1 and NUM2 are introduced to specify the unique arguments

of the predicate POINT.NUM. This kind of labels can be introduced by exploiting the correct meaning

representations for sentences.

The remaining issue for generating SAPTs is to add correct semantic labels to the words. We propose

to induce a maximum entropy model similar to the one in Zettlemoyer and Collins (2005) to represent the

distribution of semantic labels of words for generating correct meaning representations. No extra human

annotation is required in this process. The model is trained on a set of sentences paired with their meaning

representations, where each sentence is also augmented with a syntactic parse tree generated using the

method in Section 4.3.1.

This model is different with the one in Zettlemoyer and Collins (2005), in which it only learns the

distribution of semantic labels for training sentences, while relying on available statistical syntactic parsers

to learn the distribution of syntactic structures. This is in contrast with Zettlemoyer and Collins (2005),

where it learns both syntactic and semantic distributions for generating SAPTs. It relies on a set of carefully-

designed rules to specify possible syntactic categories (its valency and the directionality of its arguments)

for predicates with different numbers of arguments in the semantics. These rules should be sufficient for

parsing the training corpus (Section 2.4.1).

The section is organized as follows. We first discuss using statistical parsing techniques to automatically

acquire syntactic parse trees in Section 4.3.1. We then talk about obtaining candidate semantic labels for

words in Section 4.3.2. Section 4.3.3 introduces a maximum entropy model, which discriminates among

candidate label sequences of words for a sequence, which can generate the correct meaning representation.

Finally, in Section 4.3.4 and 4.3.5, we discuss the methods to obtain better initial parameters for estimating

a maximum entropy model on incomplete data.
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Figure 22: F-measure learning curves of syntac-

tic parsing on CLANG.
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Figure 23: F-measure learning curves of syntac-

tic parsing on GEO250.

4.3.1 Using Statistical Syntactic Parsers to Obtain Syntactic Parse Trees

Automatically generated syntactic parse trees have been successfully used in many natural language pro-

cessing tasks such as semantic role labeling (Carreras & Màrquez, 2005). To take advantage of the rapid

development of syntactic parsing techniques, we propose to use statistical parsers to obtain syntactic parse

trees needed for generating a SAPT. These high performance parsers include parsers which output Penn

Treebank (Marcus et al., 1993) style parse trees, such as Collins’ (1997) parser and Charniak’s (2000)

parser. They also include a combinatory categorical grammar (CCG) parser (Hockenmaier & Steedman,

2002) where non-terminals in the trees encode subcategorization information. Most recently, Charniak and

Johnson (2005) reported a new highest F measure, 91.02% on sentences of length less than 100, achieved

so far on parsing the Penn Treebank using a reranking approach.

The most widely used corpus by statistic parsers is the Penn Treebank, a large corpus of syntactic parse

trees. However, because of corpus variation, applying a syntactic parser trained only on the Penn Treebank

directly to a semantic parsing corpus taken from different data distribution would critically degrade the

performance of the parser (Gildea, 2001). To acquire statistics inherent in the application domain, we can

train the parser either only on the in-domain parse trees or on the treebank, together with a small amount of

in-domain parse trees. The benefit of the second approach is that the statistics acquired in the treebank can

reduce the generalization error on unseen test examples.

We experimented with training Collins’ parser (Bikel, 2004) using a few in-domain (CLANG and GEO-

QUERY parse trees, either together with the Penn WSJ Treebank (WSJ+InDomain) or not (InDomain), while

only testing on the in-domain data. Figure 22 and 23 shows the F measure learning curves of the parser in

both domains. As is clearly shown in the figures, including WSJ (WSJ+InDomain) in training significantly

outperforms not using WSJ (InDomain) in both domains. For the experiments using WSJ in training, we can

see that the performance of the parser degrades substantially when zero in-domain training sentence is pro-

vided, only at around 80% in the GEOQUERY domain. This is much worse than the result reported in Bikel

(2004) testing on the WSJ corpus – around 90% F measure for sentences of length less than 40 words. We

can also see that the performance improves quickly when adding only a small amount of in-domain parse

trees– the F measure in both domains arise to above 90% when only 20 in-domain sentences are used, and

around 95% when 80 are used.

Syntactic parsing errors could be corrected using a post-processing procedure as introduced in Popescu
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et al. (2004). In some semantic parsing task, it is possible to acquire the domain-specific semantic constraint

information from resources such as a database or a lexicon, and this information can be used to correct the

syntactic errors. For example (Popescu et al., 2004), in the ATIS domain, the preposition on is constrained

to only take the pair flight and day as its arguments, but not a city and a day. So if the preposition phrase

on Monday (day) is incorrectly attached to Chicago (city) in the sentence When are the flights from Chicago

on Monday, the error could be fixed by attaching it to the flights. Note that syntactic parsing errors do

not necessarily hurt the performance of semantic parsing. First, what is the correct syntactic parse tree of

a sentence is arguable – the correct syntactic parse tree in one linguist’s view could be wrong from other

linguists’s view. Second, some errors, such as tagging a proper noun as a normal noun, are irrelevant to

the compositional-semantics procedure used to build the meaning of a sentence, thus would not hurt the

performance of semantic parsing.

4.3.2 Obtaining Candidate Semantic Labels for Words

In order to augment a sentence with a sequence of semantic labels for generating the correct meaning repre-

sentation, each word in the sentence would require a set of candidate semantic labels to start with. Simply

allowing each predicate in the meaning representation for each word would result in an exponential output

space. To keep the search space manageable, certain techniques like beam search can be used to prune the

search space during searching. Another option is to reduce the number of candidate labels for each word

even before searching.

Co-occurrence measures, such as mutual information (Church & Hanks, 1990), can be used to find

candidate labels for a word (Manning & Schütze, 1999). Using these measures, the predicates with the

highest co-occurrence scores with the word would be chosen as its candidate labels. In addition, many

existing learning systems which utilize more sophisticated techniques for finding associated predicates for

a word can also be used. One of these systems is WOLFIE (Thompson & Mooney, 2003), which has been

used in a semantic parser called CHILL in parsing the GEOQUERY corpus. Using a greedy search method

based on a co-occurrence measure, WOLFIE acquires a semantic lexicon from a corpus of sentences paired

with their meaning representations. The predicates associated with a word in the lexicon can be used as

candidate labels. Other systems include machine translation systems such as the one introduced by Brown

et al. (1990). In these systems, a sentence and meaning representation pair would be treated as a pair of

sentences in a source and target language, respectively, and the words in the sentence would be aligned with

the predicates in the meaning representation. The predicates associated with a word in the top alignments

could be treated as the candidate labels for the word.

The systems introduced above are capable of augmenting sentences with semantic label sequences by

themselves, thus a natural question is why we want to introduce another system for the same task. The

answer lies in the definition of correctness for semantic label sequences in semantic parsing. We define a

label sequence to be correct only if the word meanings in the sequence, combined with the sentence structure

provided by the syntactic parse tree, can lead to the correct meaning representation of the sentence using a

compositional-semantics procedure. Hence the systems above achieve surface level correctness, while the

method proposed aimed to achieve deep level correctness for computing the semantics.

4.3.3 A Maximum Entropy Model

In the problem of labeling words in a sentence with semantic labels using its syntactic parse tree, it is ideal to

select a model that can incorporate arbitrary, potentially overlapping features over the input sentence, such

as dependencies among semantic labels of words. Maximum entropy models have such advantages and have
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Figure 24: A simple example in CLANG illustraing the features used in a maximum entropy model.

been successfully applied to a variety of natural language tasks such as part-of-speech tagging (Ratnaparkhi,

1996; Lafferty et al., 2001), parsing (Ratnaparkhi, 1999; Clark & Curran, 2003; Abney, 1997; Johnson et al.,

1999), information extraction (Borthwick et al., 1998; McCallum et al., 2000), machine translation (Berger

et al., 1996; Och & Ney, 2002) , and semantic role labeling (Carreras & Màrquez, 2004). More concretely,

we propose to utilize a conditional maximum entropy model similar to those used in (Riezler et al., 2002;

Zettlemoyer & Collins, 2005; Clark & Curran, 2004) capable of learning on incomplete training data. The

training data for this task is incomplete because a fully-supervised training would require the semantic label

of each word;however, only meaning representations of sentences are annotated.

Let us first introduce the terminologies and notations we will use in describing such a model. For brevity,

we will refer to input (S) for a sentence and its syntactic parse tree, label sequence (L) for the sequence of

semantic labels of words in a sentence. A meaning representation can have multiple label sequences leading

to it, by following the computational-semantics procedure described in Section 3.1. For training examples,

a label sequence can only lead to a unique meaning representation (M ), because slot ambiguities existing

in the procedure can be solved using the gold standard meaning representation. We say a label sequence is

consistent (Riezler et al., 2002) with a meaning representation when word meanings in the label sequence,

combined with the syntactic parse tree in the input, can lead to the meaning representation. M∗ stands for

gold-standard meaning representations.

In a conditional maximum entropy model for the incomplete training data problem, the conditional

probability of a label sequence L given an input S is defined as:

Pr(L|S; θ̄) =
exp(θ̄ · f̄(S, L))

∑

L′∈△(S) exp(θ̄ · f̄(S, L′))
(11)

where f̄(S, L) is a function that maps the pair (S, L) into a feature vector in R
n, parameter θ̄ is a vector of

weights associated with each feature, θ̄ · f̄(S, L) is the inner-product of the two vectors, and △(S) is the set

of label sequences that S can take (all possible word meaning assignments to an input sentence). Features

contain information on how likely a label sequence can be used to generate the correct MR. One type of

such feature used in Zettlemoyer and Collins (2005) is lexical features representing the semantic labels a

word can take. Specially, the number of times a word, its semantic label and syntactic label co-occur in

a tree. For example, the tree in Figure 24 has the lexical feature f (our,TEAM, PRP$)=1. Another type of

such features could be features modeling predicate-argument structures in the semantics, which form the

counterpart of dependency features in the syntax (Clark & Curran, 2004). For example, the tree in Figure 24

has the predicate-argument feature f (PLAYER, UNUM)=1.

The conditional probability of a meaning representation M given an input S is then defined as the sum of

the conditional probabilities of the set of label sequences consistent with it, which we denote with △(S, M):
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Pr(M |S; θ̄) =
∑

L∈△(S,M)

Pr(L|S; θ̄) (12)

Given a set of partially-labeled training examples {(S1, M
∗
1 ), (S2, M

∗
2 ), ..., (Sm, M∗

m)}, training a con-

ditional maximum entropy model on incomplete data involves finding a parameter θ̄∗ that maximizes the

product of the conditional likelihood of the partially labeled training set:

θ̄∗ = arg max
θ̄

m
∏

j=1

Pr(M∗
j |Sj ; θ̄)

= arg max
θ̄

m
∑

j=1

logPr(M∗
j |Sj ; θ̄)

= arg max
θ̄

m
∑

j=1

log
∑

Lj∈△(Sj ,M∗

j )

Pr(Lj |Sj ; θ̄)

= arg max
θ̄

m
∑

j=1

log
∑

Lj∈△(Sj ,M∗

j )

exp(θ̄ · f̄(Sj , Lj))
∑

Lj∈△(Sj)
exp(θ̄ · f̄(Sj , Lj))

(13)

A variety of parameter estimation methods can be used to find such a parameter θ̄ that optimizes the

above objective function, including generalized iterative scaling (Darroch & Ratchliff, 1972) and improved

iterative scaling (Della Pietra et al., 1997). These methods also include gradient-based methods, such as

gradient ascent, conjugate gradient (Fletcher & Reeves, 1964), and a quasi-Newton method called limited-

memory quasi-Newton (L-BFGS) (Nocedal & Wright, 1999). The experiments by Malouf (2002) show

that gradient-based methods, with the exception of gradient ascent, generally converge faster than iterative

methods, and L-BFGS performs the best among the gradient-based methods.

Gradient-based methods require the calculation of the gradient of the objective function in Equation 13,

which we call L(θ̄) :

Lθ̄ =

m
∑

j=1

log
∑

Lj∈△(Sj ,M∗

j )

exp(θ̄ · f̄(Sj , Lj))
∑

Lj∈△(Sj)
exp(θ̄ · f̄(Sj , Lj))

(14)

the gradient of the function with respect to θi is calculated as:

∂Lθ̄

∂θi

=
m

∑

j=1

∑

Lj∈△(Sj ,M∗

j )

exp(θ̄ · f̄(Sj , Lj)) ∗ fi(Sj , Lj)
∑

Lj∈△(Sj ,M∗

j ) exp(θ̄ · f̄(Sj , Lj))

−
m

∑

j=1

∑

Lj∈△(Sj)

exp(θ̄ · f̄(Sj , Lj)) ∗ fi(Sj , Lj)
∑

Lj∈△(Sj)
exp(θ̄ · f̄(Sj , Lj))

=

m
∑

j=1

∑

Lj∈△(Sj ,M∗

j )

Pr(Lj |Sj , M
∗
j ; θ̄) ∗ fi(Sj , Lj)

−
m

∑

j=1

∑

Lj∈△(Sj)

Pr(Lj |Sj ; θ̄) ∗ fi(Sj , Lj) (15)
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The algorithm finds a θ̄ that optimizes the objective function when the gradient is 0. Note that unlike the

fully-supervised case, L(θ̄) is not a concave function with respect to θ̄, and it is only locally maximized.

Good initial parameters would be very important for obtain an optimization value that is closer to the global

maxima, and we propose to use supervision to obtain these parameters (see Section 4.3.4 and 4.3.5). When

such supervision is not available, all θi should be set to zero initially to assume as little as possible. To

prevent over-fitting, a Gaussian prior (Chen & Rosenfeld, 1999) should be used to penalize large weights.

The first term of Equation 15 is the expectation of feature fi over all label sequences consistent with each

gold standard meaning representation in the training data, and the second term is the expectation of feature

fi over all label sequences that each S can take . Calculation of these values requires summing over all label

sequences that a sentence can take, and summing over all label sequences consistent with a gold standard

meaning representation. Since both sets can be extremely large, it is not feasible to directly enumerate them.

Fortunately, it is possible to collect these statistics using a variant of the inside-outside algorithm based on a

packed chart (Geman & Johnson, 2002; Miyao & Tsujii, 2002; Clark & Curran, 2004) since the features are

generated using a tree structure. In a packed chart, chart entries that are equivalent for producing features

are packed together.

4.3.4 Improving Parameter Estimation Using Semi-Supervised Learning

The objective function (see Equation 14) for estimating a maximum entropy model is not concave with

respect to θ̄, so the model estimation is sensitive to initial parameters. To obtain good initial parameters,

we propose to use semi-supervised learning (Seeger, 2000), where a large amount of partially-labeled or

unlabeled data, together with a small amount of fully-labeled data, is used jointly to build a good model. The

justification for using partially-labeled or unlabeled data to obtain a better model can be found in (Nigam

et al., 2000). In the task of learning semantic label sequences for sentences, the fully-labeled data are

sentences with words labeled with meanings, and the partial-labeled data are sentences only labeled with

meaning representations while the label sequences are unknown. More specifically, we propose to use a

method similar to the one used by Nigam et al. (2000) where the model will be first trained on the data

labeled with label sequences to obtain good initial parameters, and then it is retrained on both examples

labeled with label sequences, and examples only labeled with meaning representations using the initial

parameters to obtain a better model.

In a semi-supervised learning setting, a few sentences with words annotated with semantic labels are

added to the training data, hence the training data include both a set of examples labeled with meaning

representations {(S1, M
∗
1 ), (S2, M

∗
2 ) ,...,(Sm, M∗

m)} and a set of examples labeled with both meaning rep-

resentations and label sequences {(Sm+1, M
∗
m+1, L

∗
m+1), (Sm+2, M

∗
m+2, L

∗
m+2), ..., (Sm+n, M∗

m+n,

L∗
m+n)}. The same notation utilized in Section 4.3.3 is used here, where S is an input sentence and its

syntactic parse tree, M is the meaning representation of S, and L is the label sequence of S. M∗ and L∗

stands for gold-standard meaning representations and label sequences, respectively.

As a first step, the model obtains the initial parameters θ̄0 that maximize the product of the conditional

probabilities of a label sequence L given an input S, trained only on the examples labeled with label se-

quences:

θ̄∗0 = arg max
θ̄

m+n
∏

j=m+1

Pr(L∗
j |Sj ; θ̄) (16)

After that, the model is retrained on both the partially-labeled and fully labeled data, using the initial

parameters θ̄0 just learned, where training the model amounts to maximizing the product of the conditional
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probability of the meaning representation M given S. The conditional probability of a meaning representa-

tion given an input S on the fully-labeled data is the same as the conditional probability of the label sequence

L of S:

θ̄∗ = arg max
θ̄

m
∏

j=1

Pr(M∗
j |Sj ; θ̄) ∗

m+n
∏

j=m+1

Pr(M∗
j |Sj ; θ̄)

= arg max
θ̄





m
∏

j=1

∑

Lj∈△(Sj ,M∗

j )

Pr(Lj |Sj ; θ̄) ∗
m+n
∏

j=m+1

Pr(L∗
j |Sj ; θ̄)





= arg max
θ̄





m
∑

j=1

log
∑

Lj∈△(Sj ,M∗

j )

Pr(Lj |Sj ; θ̄) +
m+n
∑

j=m+1

log Pr(L∗
j |Sj ; θ̄)



 (17)

Here △(Sj , M
∗
j ) are the set of label sequences that are consistent with M∗

j . A weighting factor ranging

between 0 and 1 can be added to the first term of the above equation to adjust the strength of the unlabeled

data (Nigam et al., 2000).

4.3.5 Improving Parameter Initialization Using Glossaries

Meaning representation languages (MRL) are often accompanied by a manual describing the language using

natural language sentences, and this information can also be used to suggest good initial parameter values

to the model described in Section 4.3.3. For example, CLANG is provided with a manual (Chen et al., 2003)

describing the predicates in the language. Below we give two definitions excerpted from the manual:

1. (POS REGION)

The player should position itself in REGION.

2. (DRIBBLE REGION)

The ball should be dribbled to REGION.

where POS and BPOS are predicates in CLANG which both require an argument with a semantic type RE-

GION.

Predicates are often named after the words carrying their meaning, using either the whole word or the

abbreviation of the word, thus the string similarity between a predicate and the tokens in its definition can

be used to infer the likelihood of a token representing a predicate. For example, in the above definitions, the

predicate POS is named after position, and DRIBBLE is named after dribble. The orthographical similarity

score can be acquired using string similarity measures, such as string edit distance (Levenshtein, 1966).

The similarity between the definition of a predicate and the context where a token appears in the training

corpus can also be seen as a good indicator of a token’s meaning (Lesk, 1986); a high similarity score

between a token and a predicate would suggest a high initial parameter value to the associated feature in the

maximum entropy model. For example, in the training corpus, if the token position co-occurs very often with

the words player and itself (words in POS’s definition), but not other words, then the parameter associated

with the feature which says that position’s semantic label is POS should have a high initial value. Though the

token player appears with position and itself, it also co-occurs very often with other words like pass, which

is not in the definition of POS, thus it is less similar to POS compared with position. The context of a token in

the training corpus is defined as the combination of the context of each occurrence of the token, where each

context of the token’s single occurrence is the words around the token within some limited window size. A
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variety of methods can be utilized to measure the similarity, among which, one of the most commonly used

method is cosine similarity. In this method, both the definition and context are represented as vectors, where

each element of the vectors is the weight of an associated token. The cosine similarity is then calculated as

the cosine of the angle between the two vectors d1 and d2:

sim(d1, d2) =
d1 · d2

‖d1‖‖d2‖

where ‖d1‖ and ‖d2‖ are the lengths of the two vectors, respectively, and d1 · d2 is their inner-product. The

vectors will get a high similarity value if they are similar, and vice versa .

We use a simple example to illustrate this method. Assume the weight of a token is the number of

times it appears in a definition or the training corpus, and the token vector associated with weight vectors is

(player, position, itself, pass), then, using the statistics in the training data, POS’s definition is represented

as (1,1,1,0) (d1), position’s context is (10,10,10,0) (d2), and player’s context is (20,10,10,10) (d3). Cosine

similarities between the definition and the two tokens are calculated as:

sim(d1, d2) =
d1 · d2

‖d1‖‖d2‖
=

1 ∗ 10 + 1 ∗ 10 + 1 ∗ 10 + 0 ∗ 0√
3 · 10

√
3

= 1

sim(d1, d3) =
d1 · d3

‖d1‖‖d3‖
=

1 ∗ 20 + 1 ∗ 10 + 1 ∗ 10 + 0 ∗ 10√
3 · 10

√
7

= 0.87

As we can see, position has a higher similarity value than player.

The syntactic relations in the definitions resemble the predicate-argument relations in the semantics.

Besides using context, these syntactic relations can also be used to help infer how likely a token is to

represent a predicate. For example, in the definition of the predicate POS, if we assume that the head of the

definition should resemble the predicate it defines, then the word position should have the meaning POS. The

definition can be further used to infer the tokens representing the argument. The token position is connected

with its argument REGION through a PP-attachment using the preposition in. If the same syntactic relation

also appears in the training corpus, such as in the sentence Player 2 should position itself in the midfield, then

the semantic type of the word which appears in the same place as REGION in the syntactic relation (midfield

here) is very likely to be a REGION. The hypothesis could be further reinforced if other definitions also

suggest the same thing. For example, the definition of the predicate BPOS given previously provides another

syntactic relation where a REGION could appear. If the word midfield also appears in sentences which

resemble this syntactic relation, then we can be more confident about the meaning of this word. We can

use utility measures combining the evidences to suggest good inital parameter values in maximum entropy

models.

One problem with dictionary-based methods is that the definitions are usually pretty short and could

have little overlap with the context of a token (Manning & Schütze, 1999). Lexical resources such as

WordNet (Miller, 1991) and other thesauruses can be used to expand definitions as suggested by researches

on word sense disambiguation (Pook & Catlett, 1988) and information retrieval (Baeza-Yates & Ribeiro-

Neto, 1999).

4.4 Evaluating the Impact of Statistical Syntactic Parsers

Various natural language processing tasks utilizing syntactic parse trees have tried to evaluate the impact of

using automatic syntactic parses on the accuracies of the application tasks, such as the work by Gildea and

Palmer (2002) in semantic role labeling. It is also a crucial question we want to answer in our work based on
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statistical syntactic parsing techniques. We have experimented with training SCISSOR on SAPTs augmented

with gold-standard parses in Section 3. In the future, we plan to also train SCISSOR on SAPTs augmented

with automatic syntactic parses (Section 4.3.1) to measure the impact of using gold-standard and automatic

parses in the performance.

We also plan to investigate semantic parsing performances using automatic parses generated by differ-

ent statistical syntactic parsers. State-of-the-art statistical parsers include Treebank parsers, such as Collins

(1997) parser and Charniak (2000) parser, and combinatory categorical grammar (CCG) parsers, such

as Hockenmaier and Steedman (2002) parser and Clark and Curran (2004) parser. The CCG formalism

is known for its elegant treatment of linguistic phenomena such as coordination and relative clauses, where

non-terminals encode syntactic subcat information. We plan to analyze the impact of using parsers based on

different tree representations and parsing models to semantic parsing.

5 Conclusion

We have presented a semantic parsing approach based on a statistical parser that generates a semantically-

augmented parse tree. Once a SAPT is generated, a compositional-semantics procedure is used to translate it

into a final formal meaning representation with a nested structure. Preliminary experimental results on real-

world data sets demonstrate that SCISSOR produces more accurate semantic representations than several

previous approaches on long sentences. In the future, we plan to explore alternative tree representations

for better generalization in parsing. We contemplate applying discriminative reranking methods to semantic

parsing, which allows exploring arbitrary, potentially correlated features not usable by the baseline learner.

We also propose to design a method for automating the SAPT-generation process to alleviate the extra

annotation work currently required for training SCISSOR. Finally, we will investigate the impact of different

statistical syntactic parsers on semantic parsing using the automated SAPT-generation process.
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