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Abstract—Natural language understanding in robots needs
to be robust to a wide-range of both human speakers and
human environments. Rather than force humans to use language
that robots can understand, robots in human environments
should dynamically adapt—continuously learning new language
constructions and perceptual concepts as they are used in context.
In this work, we present methods for parsing natural language
to underlying meanings, and using robotic sensors to create
multi-modal models of perceptual concepts. We combine these
steps towards language understanding into a holistic agent for
jointly improving parsing and perception on a robotic platform
through human-robot dialog. We train and evaluate this agent
on Amazon Mechanical Turk, then demonstrate it on a robotic
platform initialized from conversational data gathered from
Mechanical Turk. Our experiments show that improving both
parsing and perception components from conversations improves
communication quality and human ratings of the agent.

I. INTRODUCTION

Humans use natural language to articulate their thoughts
and intentions to other people. As robots become ubiquitous
across diverse human environments, such as homes, offices,
factory floors, and hospitals, the need for smooth human-robot
communication grows. The language we use to discuss these
spaces varies, with domain-specific words and affordances in
each (e.g., turn on the living room lights, move the pallet a few
feet to the north, notify me if the patient’s condition changes).
Pre-programming robots with fixed language understanding
components limits them, since different speakers and environ-
ments use and elicit different words. Robots should leverage
human speaking partners as a source of additional learning
signals for language understanding. Rather than force humans
to use language that robots around them can understand, robots
should dynamically adapt—continually learning new language
constructions and perceptual concepts as they are used in
context. The main thrust of this paper is to bring together
methods for improving semantic understanding and grounded
perceptual understanding.

Untrained human users providing natural language com-
mands to robots expect world knowledge, perceptual knowl-

edge, and semantic understanding from verbal robots. Trans-
lating human utterances to semantic meanings helps han-
dle the synonymy of commands and words (e.g., Bob for
Robert), compositionality (e.g., Bob’s office, the light mug),
and ambiguity (e.g., light in weight versus light in color). To
learn a mapping between commands and their semantic forms,
a semantic parser is often employed. Building a semantic
parser requires expert annotation of a lexicon mapping words
to their meanings, an ontology of relevant concepts in the
world, and training examples of natural language sentences
paired with composed meanings. In this work, we ameliorate
this annotation effort by leveraging conversations that robots
have with human users. We improve a parser built using
sparse annotated resources using weak supervision from such
conversations. This approach builds on past work, presented
in full in [37].

To converse about the environment they share with humans,
robots must gather and maintain world knowledge through
perception. Some world knowledge can be modeled as static,
such as the layout of a building, ownership relations between
people and rooms (e.g., Bob’s office), or assignments between
patients and doctors in a hospital. Other world knowledge
is perceptual, such as whether an object is a mug, where
some movable objects were last seen, and whether an object
can be picked up and moved somewhere else. Gathering
correspondences between objects in the world and perceptual
concepts, or predicates, applicable to those objects (e.g.,
heavy, brown, mug) is a time-consuming annotation effort if
performed exhaustively. In this work, we instead extract this
information from natural human-robot conversations on-the-
fly.

We present a holistic system for jointly improving parsing
and perception on a robotic system for natural language
commands through human-robot dialog. This learning agent
uses clarification questions in a conversation with a human
partner to understand language commands. The agent induces
additional training data for a semantic parser, similar to prior



Fig. 1: Mechanical Turk web interface used to conduct our
experiments. The user types a command to the learning agent,
which replies with questions to clarify the command until
the user confirms that the agent has correctly understood.
In this conversation, the agent has just asked a confirmation
question—whether it has understood the right location from
where the red can should be taken. The colored text here refers
to the pink-outlined map below the conversation window.

work [37], strengthening its parsing over time. The agent
also uses opportunistic active learning [39] to ask questions
about nearby objects to refine multi-modal perceptual concept
models [38] on-the-fly during command dialogs.

We evaluate this language understanding agent on Mechan-
ical Turk with hundreds of users. Figure 1 shows the Me-
chanical Turk interface we created, with an example command
and the beginning of a human-agent dialog. To demonstrate
flexibility for understanding non-visual predicates, we also
implement the agent on a physical robot with an arm [16],
using the learning agent as a back-end to drive human-robot
dialog.1 As more training conversations are seen by the agent
in Mechanical Turk, users are better able to communicate
tasks to the agent. Users rate the agent more favorably for
use in deployed tasks as more training conversations become
available.

II. RELATED WORK

Instructing robots through natural language is essential for
humans and robots to cooperate in shared environments. Re-
search in this space spans semantic parsing, robotic perception
and grounding, and human-robot dialog.

Semantic parsing has been used as a language understand-
ing step in tasks involving unconstrained natural language
instruction, where a robot must navigate an unseen environ-
ment using language guidance [19, 24, 25]. Recent methods
perform semantic parsing translations using sequence to se-
quence [18, 14, 20] or sequence-to-tree [8] neural networks.
One framework, based on generalized grounding graphs, aims

1The demonstration video can be viewed at https://youtu.be/PbOfteZ CJc

to both understand human language requests about objects in
the world and generate language requests regarding the shared
environment [36]. Extensions of this framework can be used
to memorize new semantic referents in a dialog, like this is my
snack [30], or to reason about abstract sets and ordinality [29].
In this work, our agent can learn new referring expressions and
novel perceptual concepts on-the-fly through dialog.

Mapping from a referring expression such as the red cup
to an object referent in the world is an example of the
symbol grounding problem [12]. Grounded language learning
bridges internal represenations of information in a machine
with natural language. Most work in this space has grounded
language using visual perception [10, 21, 42, 23]. There
has been some work on combining language with sensory
modalities other than vision, such as audio [17] and hap-
tic [4, 11] signals. A recent survey attempts to cover this
broad space of multi-modal representations of objects and
concepts in machine learning [1]. Some neural methods bypass
any explicit modeling of language predicates and instead train
end-to-end on tasks such as localizing an object in a given
image given a target query in natural language [13], and
translating human instructions directly to grounded behavior
like route-following [26] or question answering [7]. In this
work, we explicitly model language predicates that refer to
spatial relations and categories in an office environment, as
well as perceptual predicates that refer to properties of objects,
the latter of which is an open set.

Some researchers gather data for this kind of perceptual
grounding using interaction with a human interlocutor. This
combination of dialog and perception affords new opportuni-
ties, such as the robot asking questions targeting weaknesses
in its understanding [38]. Previous work on learning to ground
object attributes and names using dialog framed the data
gathering phase as a 20 Questions-style [40] or I Spy [28, 38]
game. Neural approaches have been used to train grounded
robot-robot conversational agents [6], and may be applicable
for human-robot dialog in future works. We do not use
neural methods, which share a data hungry weakness and
fail to converge to useful solutions when training examples
are sparse, such as in human-robot dialogs where gathering
environment-specific interactions is costly.

We present a robotic agent that understands requests for
actions in natural language that include both domain knowl-
edge (for example, a building floorplan) and environmental
perceptual information (for example, learned properties of
objects), using semantic parsing as an understanding step
and learning multi-modal perceptual concept models using
supervision elicited during conversations.

III. CONVERSATIONAL AGENT

We implement and evaluate a conversational dialog agent
that uses a semantic parser to translate human utterances into
semantic meaning representations, then grounds those meaning
representations using both a static knowledge base of facts
about an office environment and perceptual concept models

https://youtu.be/PbOfteZ_CJc


Fig. 2: The robot used in our experiment, and the objects
explored by the robot for grounding perceptual predicates.

that consider multi-modal representations of physical objects.2

A. Semantic Parser

We use the Combinatory Categorial Grammar (CCG) for-
malism [35] in our lexicon to perform Cocke-Kasami-Younger
(CKY) chart parsing [41] on input sentences, and use a
unification-based grammar to add new lexical entries dur-
ing training. We add ontological entries dynamically during
conversations with human users (for example, when a new
perceptual concept like red is used for the first time). In the
interest of space, we refer the reader to other work in learning
statistical parsers for details [22].

In order to assign a semantic meaning to a sequence of
tokens, each token that is not skipped must have an entry in the
lexicon from which its semantic meaning can be determined.
We use word embeddings [27] to augment the lexicon at
test time to attempt to recover from out-of-vocabulary words,
an idea similar in spirit to previous work [2], but formally
integrated into our parsing pipeline. This allows, for example,
unseen word grab to use the lexical entry for the nearby (in
embedding space), known word take at test time.

B. Multi-modal Perception

Once a command has been translated into a semantic form,
grounding that semantic form to actions, objects, and rooms in
the real world must take place before the robot can act on the
command. For objects, perceptual concepts like red and heavy
require considering sensory perception of physical objects. We
build multi-modal concept models to connect robot perception
to concept labels. We use multi-modal feature representations
across various sensorimotor contexts by exploring those ob-
jects with a robot arm (Figures 2 and 3), as detailed in previous
work [34, 38].

We connect these feature representations of objects to
language labels by learning discriminative classifiers on the
feature spaces for each perceptual language concept, as de-
tailed in previous work [33, 38]. Relevant for this work, each
trained classifier produces both a decision and a confidence
(in [0, 1]) when evaluating a test object for a language concept
(e.g., an object is red with confidence 0.8). These confidence
values are also used to drive an opportunistic active learning
strategy for improving concept models during conversations.

2The source code for this conversational dialog agent, as well as the
experiments described in the following section, can be found at https://github.
com/thomason-jesse/grounded dialog agent

grasp lift lower

drop press push

Fig. 3: The behaviors the robot used to explore the objects. In
addition, the hold behavior (not shown) was performed after
the lift behavior by holding the object in place.

C. Language Grounding

To execute a command, an utterance is first translated into a
semantic form. Some forms must be instantiated in a particular
context. For example, the office by the kitchen refers to a
physical location in an environment, but the utterance means
different such locations depending on where it is uttered, and
must be grounded to the current environment.

Static facts such as room types (office) and relations
(owns(robert, room1)) can be looked up in a provided floor-
plan, such that unambiguous noun phrases can be grounded
with full confidence. For perceptual predicates, concept mod-
els return both a decision and a confidence value in [0, 1].

Since there are multiple possible groundings for ambiguous
utterances like the office and varied confidences for perceptual
concept models on different objects, we create a confidence
distribution over the possible groundings for a semantic parse.
This confidence probability distribution is used as part of an
update procedure for helping the agent understand the user’s
intent during dialog.

D. Dialog Policy

We implement a conversational dialog agent A for com-
mand understanding similar to that in previous work [37].
The differences between this agent and the previous one are:
1) grounding semantic parses in both static knowledge and
perceptual knowledge; 2) dynamically adding new ontolog-
ical predicates for novel perceptual concepts; 3) leveraging
opportunistic active learning for refining perceptual concept
models on-the-fly; and 4) semantic parser training from pairs
of utterances and denotations.

a) Clarification Dialog Policy: Dialog begins with a
human user commanding the robot to perform a task. The
agent maintains a belief state modeling the unobserved true
task in the user’s mind, and uses the language signals from
the user to infer it. The command is first parsed by the agent’s
semantic parser, then grounded against static and perceptual
knowledge with denotation procedure, which results in a set of
pairs of denotations of the semantic parser’s understanding of
the command and associated confidence values. Using these

https://github.com/thomason-jesse/grounded_dialog_agent
https://github.com/thomason-jesse/grounded_dialog_agent


denotations and their confidence distribution, we update the
agent’s belief state, then engage in a clarification dialog to
refine that belief.

The agent’s belief state, B, is a mapping from semantic roles
(components of the task) to probability distributions over the
ontological constants that can fill those roles (action, patient,
recipient, source, and goal).

The belief state for the action role is initialized with uniform
probabilities across three actions (walk, deliver, and relocate).
The remaining role belief states are initialized with half of the
probability mass on an unknown constant, ∅, indicating that
the role is not known or is not necessary for the action the
user has in mind, and the remaining half of the probability
mass is distributed uniformly across all constants that can fill
the role.

We call the collection of beliefs from a single utterance, x (a
command or question answer), Bx, a mapping from semantic
roles to the distribution over constants that can fill them. We
update the agent’s belief based on new utterance x:

B(r, a)← (1− ρ)B(r, a) + ρBx(r, a), (1)

for every semantic role r and every constant a (for example, as
in Figure 4). The parameter ρ controls how much to trust the
new information versus the current belief (in our experiments,
we set ρ = 0.5).

The dialog agent poses questions to the user regarding
different semantic roles. The highest-probability constant for
every semantic role in the current belief state B, together with
which among those roles has the least probability, are used to
select a question. Table I gives some examples of the policy
π.

For confirmation questions, the confirmed Bx constant(s)
receive the whole probability mass for their roles, and ρ is
set to 1 for the update in Equation 1, such that B reflects the
confirmation. If a user denies a confirmation question, Bx is
constructed with the constants in the denied question given
zero probability weight for their roles, and other constants
given a uniform weight, such that the update in Equation 1
reduces the belief only for denied constants. A conversation
concludes when the user has confirmed every semantic role.

b) Detecting Perceptual Words and Synonyms: When
describing objects in the real world, humans can use words
the agent has never heard before. Some of these are perceptual
concepts—words that need to be grounded in the physical
world. In prior work, a stopword list is used to remove non-
content words, and all content words in human descriptions
of objects are considered perceptual concept words [38, 39].

In this work, if one of the neighboring (among the nearest
3) words of unknown word xi (in word-embedding distance)
has a semantic form involving a perceptual predicate, we ask
the user whether the unseen word xi is also perceptual in
nature. The question posed is: I haven’t heard the word ‘xi’
before. Does it refer to properties of things, like a color, shape,
or weight?. If the user answers yes, we attempt to discover
whether xi is a synonym of an already known perceptual
concept, such as one of the identified neighbors.

We rank the nearest neighbors of xi by distance and
sequentially ask the user whether the next nearest neighbor
tp is a synonym of xi. If so, new lexical entries are created to
allow xi to function like tp, including sharing an underlying
perceptual concept model. For example, in our experiments,
previously unseen word tall was added as a synonym for
the known word long. If no synonym is identified, a new
ontological concept is created to represent xi. For example,
in our experiments, the color concept word red was added
with a new ontological predicate to represent it.

c) Opportunistic Active Learning during Conversation:
We introduce opportunistic active learning questions as a sub-
dialog routine for the agent, in which it can query about objects
local to the human and the robot (e.g. objects in the room
where the conversation is happening) to refine its perceptual
concept models before applying them to the remote test object
items (e.g. items that are physically in a different room but
being discussed in the conversation), a strategy employed
for object selection from language descriptions in previous
work [39].

Objects in the nearby active training set can be labeled
by asking the human questions during a conversation about
whether particular predicates apply to them. Prior work es-
tablished that an agent asking questions about both on-topic
(used in the current conversation) and off-topic (irrelevant to
the current user’s needs) predicates outperformed an agent
that only asked about predicates in the current human descrip-
tion [39]. We allow our agent to ask both on- and off-topic
questions, moving to off-topic ones only if there are no more
useful on-topic labels to query. Our question selection strategy
is similar to that described in this prior work [39]. Using
this sub-dialog, the agent is able to query the user for labels
on the active training objects, Otr, to improve its perceptual
classifiers before continuing its clarification conversation and
possibly selecting a described object in the active test set, Ote.

E. Learning from Conversations

Past work retrains a semantic parser from conversations
an agent has with a human [37]. In this work, we expand
on this retraining procedure and make a distinction between
denotation parses and latent semantic parses. That is, we
differentiate between robert’s office and its denotation, r1,
where in the strategy presented in previous work, the denota-
tion would be treated as the latent form of robert’s office,
weakening its ability to generalize from induced data and
creating more reliance on a robust initial lexicon. We first
induce utterance-denotation pairs from conversations, then
induce latent semantic forms that connect those utterances and
denotations.

For details on inducing utterance-denotation pairs from
conversations, we refer to previous work [37]. In this work,
given an utterance-denotation pair, we discover a semantic
parse that can be derived from the input utterance and has
a denotation matching the known one for that utterance. We
formulate this training and finding of the latent semantic form
similar to past work on learning statistical, compositional



Fig. 4: Example belief update for the recipient role. This could arise from the question To whom should I bring something?
being answered alice.

B max per role Min
(action, patient, Prob Question Type
recipient, source, goal) B Role
(∅,∅,∅,∅,∅) All What should I do? Clarification
(walk,∅,∅,∅, r1) action You want me to go somewhere? Confirmation
(deliver,∅, p1,∅,∅) patient What should I deliver to p1? Clarification
(relocate,∅,∅,∅,∅) source Where should I move something from on its way somewhere else? Clarification
(relocate, o1,∅, r1, r2) - You want me to move o1 from r1 to r2? Confirmation

TABLE I: Samples of the agent’s static dialog policy π for mapping belief states (left) to questions (right). In the Mechanical
Turk experiments described in Section IV, constants like people (p1), objects (o1), and rooms (r1, r2) were represented
pictorially, with pronouns (this person, this, here, there) in place of their variables in the sentence shown.

semantic parsers [22]. At a high level, a beam of parses is
created for the utterance, and these are grounded to discover
which matches the target denotation (selecting among these
parses the one with highest joint confidence between parsing
and grounding). After inferring these latent parses, we train
the parser on the discovered utterance-semantic parse pairs.

IV. EXPERIMENTS

We evaluate our agent with hundreds of users through the
Mechanical Turk interface, asking human users who instruct
it to perform three tasks: navigation (Go to the lounge by the
kitchen), delivery (Bring a red can to Bob), and relocation
(Move an empty jar from the lounge by the kitchen to Alice’s
office). After training the agent using data from conversations it
had with users on Mechanical Turk, we instantiate the trained
agent on a physical robot.

A. Experiment Design

We deploy the agent in a simulated office environment
populated by rooms, people, and object items. We fix 8 of the
32 objects explored in prior work [34] as possible arguments
to the tasks for our experiments (selected at random), and use
the remaining 24 as training objects available for opportunistic
active learning queries for learning concept models. We ran-
domly split the set of possible tasks into initialization (10%),
train (70%), and test sets (20%).

a) Initialization Phase: Sixteen users (graduate students
at the university across several fields) engaged with a faux-
agent using the web interface. They were shown one of each
type of task, drawn from the initialization set, and gave two
high-level commands for each (the faux-agent simply asked
the user to rephrase each high-level command once, with not
following clarification dialog). We used these commands as
a scaffold on which to build an ontology, lexicon, and initial
utterance-semantic parse pairs. Of them, 44 pairs, D0, were
used to train an initial parser.

b) Training Procedure: We use these initial parsing
resources to create a baseline agent A1 with a parser P1

trained only on the initialization pairs D0 mentioned above and
concept models for several predicates Pc,1, but with no initial
object examples against which to train them. All learning
for the parser and perception modules arises naturally from
conversations the agent has with humans.

We divide the training procedure into three phases, each as-
sociated with 8 objects from the active training set, which can
be queried about during conversations by the agent. Between
phases, the parser and perception models are retrained. Each
phase i is carried out by agent Ai, after which parser Pi+1

and concept predicates Pc,i+1 are trained to instantiate agent
Ai+1.

After three training phases, agent A4 with parser P4 and
perception models Pc,4 is tested by interacting with users
trying to accomplish tasks from the unseen test set of tasks. We
also test an ablation agent, A∗4, with parser P∗1 and perception
models Pc,4 (trained perception with simply initialized parser).

c) Performance Metrics: Quantitatively, we measure the
semantic f -score of each user on each task. This metric is a
measure of the agreement between the task the user confirmed
and the task they were instructed to convey, and is used as a
measure of how close users came to conveying the correct
task [5]. The metric is defined as the harmonic mean of the
precision and recall between the sets TU , the set of pairs of
roles and constants the user confirmed, and TG, the gold task
specification pairs.

We also consider user’s answers to survey questions about
whether they would use the agent for the three tasks in
the real world (Figure 7). Each questions was answered on
a 7-point Likert scale: Strongly Disagree (0), Disagree (1),
Slightly Disagree (2), Neutral (3), Slightly Agree (4), Agree
(5), Strongly Agree (6). Users are also able to provide optional,
free-form text feedback as a part of completing this survey,



Fig. 5: Web interface for the agent asking whether a predicate
applies to an object (Left), and for positive/negative examples
(Right) (e.g., could you show me one you would use the word
‘red’ when describing, or shake your head if there are none?).

and their responses provide some anecdotal insight into their
experiences with the agent.

B. Mechanical Turk Evaluation

Workers connect to our web interface and engage in three
conversations, then fill out a survey about their experience
using the agent. To avoid biasing workers towards certain
words (linguistic priming), we present tasks by describing
the target state of the world after the task is completed. For
example, for the navigation task, the prompt is: Give the robot
a command to solve this problem: The robot should be at the
X marked on the green map., with a green-highlighted map
visually marking the target. Figure 1 shows a clarification
and confirmation question for the goal semantic role of the
delivery task. The agent also asks questions in sub-dialogs
regarding whether perceptual concept words apply to objects.
Figure 5 shows an example of such a yes/no question and
of the panel used for open-ended positive/negative example
questions (asking, among available objects, which one a word
does or does not apply to).

a) Human Intelligence Tasks (HITs): We run 50 HITs
at a time on our server. For the train condition, we run two
batches per fold of active training set objects, for a total of
2 × 3 × 50 = 300 workers. For the test conditions—without
parser or perception training (A1), with perception training
only (A∗4), and with parser and perception training (A4)—we
run three batches of 50 workers each for a total of 3×50 = 150
workers.

In addition to removing workers who timed out (2 hour
limit) or had exceedingly long conversations (30 human dialog
turns), we vet the remaining set of workers by removing repeat
workers and workers who confirmed navigation commands
with the agent for all three target tasks3.

Table II gives a breakdown of the numbers of workers
who engage with our HITs through different experimental
conditions. Only workers who submit the HIT with the correct

3On inspection, these workers identify, during the navigation task (the first
dialog), that the robot will advance to the next phase once a command is
confirmed, and they continue issuing navigation commands because these are
fast to resolve.

survey code (i.e. actually use the interface) are considered for
training the system (for the train condition) and evaluation
(for the test condition). For training the parser, conversations
are only included if the worker confirms the correct task. The
low number of workers that complete the tasks given that they
submitted the HIT at all gives a sense of how difficult the HIT
is compared to others on Mechanical Turk.

b) Quantitative Performance Results: Figure 6 gives
quantitative measures of the agent’s performance in the un-
trained condition (A1), the trained condition where only the
perception modules are updated based on user conversations
(A∗4), and the trained condition where both the parsing and
perception modules are updated based on user conversations
(A4).

For navigation (Figure 6a), little changes, possible due to
the low number of semantic roles (2) involved. For delivery
(Figure 6b), the score increases most when we retrain the
perception module (the patient argument, the physical object,
becomes easier to select). For relocation (Figure 6b), the score
only increases when we retrain both the parsing and perception
modules (this is consistent with the roles in this task: two
locations on the map, referring to which becomes easier with
a better parser, and an object in the real world, referring to
which becomes easier with better perception modules).

c) User Survey Results: Across all three tasks, we see
a slight increase in user ratings of usability between the
untrained condition and the trained parsing and perception
module condition. The improved parser may affect users’
perception of the agent as a whole, regardless of its perfor-
mance on individual tasks, making the ratings users give to
the usability of these three tasks co-dependent.

We track the responses on the survey’s open response
text box as repeat users finish HITs in different conditions,
obtaining qualitative feedback from users whose data we
otherwise discard as they repeat the task. For example, one
user participated in HITs across two learning phases and then
one testing condition. The user first experience agent A2 (one
phase of training), and wrote: Ugh. I can never figure out how
to get it to understand that red and white container with the
snap lid! It always goes for the soda can instead. Argh. ... The
second time, with agent A3, the user wrote: A good day for
Mr.Robot. It’s nice to have progress... Finally, with agent A4,
used with test set tasks, the user wrote: Wow. It’s made some
progress. It was a lot easier to parse this time...

d) Learned Perceptual Concept Models: The agent ac-
quires new perceptual concept models (25 in total), and
synonym words for existing concepts, during the three phases
of training. The learned concept models are noisy, given that
Mechanical Turk workers are sometimes inattentive in the long
HIT.4 Nonetheless, these learned models quantitatively and
qualitatively improve user experience with the agent. Table 8
shows the learned perceptual concept model for can on test
objects.

4For example, nine workers labeled a uniformly yellow mustard container
as a positive example for red.



Condition Number of Workers
Submitted Completed Vetted Nav. Del. Rel.

HIT Tasks Correct Correct Correct
Train (A1, A2, A3) 297 162 113 36 44 18
Untrained (A1) 150 67 44 17 22 10
Test∗(A∗

4) 148 83 50 20 29 10
Test (A4) 143 79 42 16 23 10

TABLE II: Breakdown of the number of workers in our experiment. We here count only workers that submitted the HIT with
the correct code. Workers that completed all tasks and the survey finished the HIT entirely. Vetted workers’ data was kept for
evaluation. The Train condition (A1, A2, A3 agents) draws from the training set of tasks, while the Untrained (A1 untrained
agent), Test∗ (A∗4 agent with trained perception and untrained parser), and Test (A4 agent with trained parser and perception)
conditions draw from the test set of tasks.

(a) Navigation Semantic Slot F1 (b) Delivery Semantic Slot F1 (c) Relocation Semantic Slot F1

Fig. 6: The average semantic slot f scores between the semantic roles in the target task and the task confirmed by the user.

(a) I would use a robot like this to
help navigate a new building.

(b) I would use a robot like this to
get items for myself or others.

(c) I would use a robot like this to
move items from place to place.

Fig. 7: Survey prompt responses about usability.

Learned Concept Model for can

0.32 0.22 0.2 0.13

0.07 0.03 0.03 0

Fig. 8: The perceptual concept model learned for can after
training from conversations with human users. The num-
bers below each object in the active test set represent their
(rounded) portion of the distribution of probability based on
outputs from the can concept model.

C. Physical Robot Implementation

For our embodied demonstration5 (Figure 9), we use the
BWIBot [15, 16], equipped with a Kinova MICO arm (for
pointing to and manipulating objects), an Xtion ASUS Pro
camera (for viewing objects on tabletop surfaces), a Hokuyo
lidar (for navigation and obstacle avoidance), a Blue Snowball
microphone, and a speaker (for conducting the dialog). For
this demonstration, speech transcripts are provided by the
Google Speech API6 and speech synthesis is performed with
the Festival Speech Synthesis System.7 Tabletop perception,
required for both the dialog interaction and the execution of
the resulting command, is implemented with RANSAC [9]
plane fitting and Euclidean clustering as provided by Point
Cloud Library [31].

5The demonstration video can be viewed at https://youtu.be/PbOfteZ CJc.
6https://cloud.google.com/speech/
7http://www.cstr.ed.ac.uk/projects/festival/

https://youtu.be/PbOfteZ_CJc
https://cloud.google.com/speech/
http://www.cstr.ed.ac.uk/projects/festival/


R: What should I do?
H: Move a rattling container from the

lounge by the conference room to
Bob’s office.

R: Does rattling refer to a property of
an object?

H: Yes.
R: Does rattling mean the same thing

as empty?
H: No.
R: I am still learning the meanings of

some words.
R: Show me an object you could use

the word rattling when describing,
or say “none of them.”

H: Watch.
R: I am getting the objects on the table

into focus. . . Okay, I see them.
H: This one. The human picks up a

small, full pill jar

R: I see.
R: Show me an object you could not

use the word rattling when
describing, or say “all of them.”

H: Watch. This one. The human picks
up a red water bottle

R: I see.
R: Show me an object you could use

the word rattling when describing,
or say “none of them.”

H: Watch. This one. The human picks
up a container half-full of beans

R: I see.
R: Thanks. Now back to business.
R: You want me to move an item

from 3.514 to somewhere?
H: Yes.
R: I should move something from

3.514 to 3.510?
H: Yes.

(a) The human says move a rattling
container.

(b) The robot asks questions about
local items to learn rattling.

(c) The robot moves to the specified
location.

(d) The robot decides which item is
a rattling container and grasps it.

(e) The robot navigates to the spec-
ified destination room.

(f) The robot hands over the item
at the specified destination.

Fig. 9: The agent learns a new word, rattling, which requires perception using the auditory sensing modality, and uses this
new concept model to correctly identify and move the target item.

V. CONCLUSION

In this article, we presented a holistic system for jointly im-
proving semantic parsing and grounded perception on a robotic
system for interpreting natural language commands during
human-robot dialog. We show, via a large-scale Mechanical
Turk experiment, that users are better able to communicate
tasks and rate the system more usable after this dialog-
based learning procedure. We embody this learning agent in
a physical robot platform to demonstrate its learning abilities
for the non-visual word rattling.

We currently use the penultimate layer of the VGG network
[32] as a sensorimotor context space for looking at objects,
and in the future could similarly use auto-encoders over
object representations [3] to provide a reduced feature vector
representing a learned feature space for every sensorimotor

context. There may be room for leveraging transfer learning
between similarly-deployed robots (for example, in different
hospitals) to increase the amount of human-robot language
data available. This augmentation could enable learning more
data-hungry, but less brittle, neural parsing methods [8].
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[1] Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe
Morency. Multimodal machine learning: A survey and
taxonomy. arXiv preprint arXiv:1705.09406, 1705, 2017.

[2] Emanuele Bastianelli, Danilo Croce, Andrea Vanzo,
Roberto Basili, and Daniele Nardi. A discriminative
approach to grounded spoken language understanding
in interactive robotics. In Proceedings of the 25th
International Joint Conference on Artificial Intelligence
(IJCAI), pages 2747–2753, July 2016.

[3] Benjamin Burchfiel and George Konidaris. Generalized
3d object representations using bayesian eigenobjects.
In Proceedings of Robotics: Science and Systems (RSS),
2017.

[4] Vivian Chu, Ian McMahon, Lorenzo Riano, Craig G Mc-
Donald, Qin He, Jorge Martinez Perez-Tejada, Michael
Arrigo, Naomi Fitter, John C Nappo, Trevor Darrell,
et al. Using robotic exploratory procedures to learn
the meaning of haptic adjectives. In Robotics and
Automation (ICRA), 2013 IEEE International Conference
on, pages 3048–3055. IEEE, 2013.

[5] Rodolfo Corona, Jesse Thomason, and Raymond J.
Mooney. Improving black-box speech recognition using
semantic parsing. In Proceedings of the 8th Interna-
tional Joint Conference on Natural Language Processing
(IJCNLP-17), November 2017.

[6] Abhishek Das, Satwik Kottur, José M.F. Moura, Stefan
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