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Abstract

In this work, we present methods for
parsing natural language to underlying
meanings, and using robotic sensors to
create multi-modal models of perceptual
concepts. We combine these steps to-
wards language understanding into a holis-
tic agent for jointly improving parsing and
perception on a robotic platform through
human-robot dialog. We train and eval-
uate this agent on Amazon Mechanical
Turk, then demonstrate it on a robotic plat-
form initialized from that conversational
data. Our experiments show that improv-
ing both parsing and perception compo-
nents from conversations improves com-
munication quality and human ratings of
the agent.

1 Introduction

Pre-programming robots with fixed language un-
derstanding components limits them, since dif-
ferent speakers and environments use and elicit
different words. Rather than force humans
to use language that robots around them can
understand, robots should dynamically adapt—
continually learning new language constructions
and perceptual concepts as they are used in con-
text.

Untrained human users providing natural lan-
guage commands to robots expect world knowl-
edge, perceptual knowledge, and semantic under-
standing from verbal robots. We present a holistic
system for jointly improving parsing and percep-
tion on a robotic system for natural language com-
mands through human-robot dialog. This learn-
ing agent uses clarification questions in a conver-
sation with a human partner to understand lan-
guage commands. The agent induces additional
training data for a semantic parser, similar to prior

Figure 1: Mechanical Turk web interface.

work (Thomason et al., 2015), strengthening its
parsing over time. The agent also uses oppor-
tunistic active learning (Thomason et al., 2017)
to ask questions about nearby objects to refine
multi-modal perceptual concept models (Thoma-
son et al., 2016) on-the-fly during command di-
alogs.

We evaluate this language understanding agent
on Mechanical Turk (Figure 1), and implement the
agent on a physical robot.1

2 Conversational Agent

We implement and evaluate a conversational di-
alog agent that uses a semantic parser to translate
human utterances into semantic meaning represen-
tations, then grounds those meaning representa-
tions using both a static knowledge base of facts
about an office environment and perceptual con-
cept models that consider multi-modal representa-
tions of physical objects.2

We build multi-modal concept models to con-

1The demonstration video can be viewed at https://
youtu.be/PbOfteZ_CJc

2The source code for this conversational dialog agent,
as well as the experiments described in the follow-
ing section, can be found at https://github.com/
thomason-jesse/grounded_dialog_agent

https://youtu.be/PbOfteZ_CJc
https://youtu.be/PbOfteZ_CJc
https://github.com/thomason-jesse/grounded_dialog_agent
https://github.com/thomason-jesse/grounded_dialog_agent


Figure 2: The robot used in our experiment, and
the objects explored by the robot for grounding
perceptual predicates.

nect robot perception to concept labels. We use
multi-modal feature representations across various
sensorimotor contexts by exploring those objects
with a robot arm, performing behaviors such as
grasping, lifting, and dropping objects, in addi-
tion to extracting visual information from them
(Figure 2) (Sinapov et al., 2016; Thomason et al.,
2016).

We connect these feature representations of ob-
jects to language labels by learning discriminative
classifiers on the feature spaces for each percep-
tual language concept (e.g., red or heavy) (Sinapov
et al., 2014; Thomason et al., 2016).

Since there are multiple possible groundings for
ambiguous utterances like the office and varied
confidences for perceptual concept models on dif-
ferent objects, we create a confidence distribution
over the possible groundings for a semantic parse.
This confidence probability distribution is used as
part of an update procedure for helping the agent
understand the user’s intent during dialog.

We implement a conversational dialog agent for
command understanding similar to that in previ-
ous work (Thomason et al., 2015). The differences
between this agent and the previous one are: 1)
grounding semantic parses in both static knowl-
edge and perceptual knowledge; 2) dynamically
adding new ontological predicates for novel per-
ceptual concepts; and 3) leveraging opportunis-
tic active learning for refining perceptual concept
models on-the-fly.

Dialog begins with a human user commanding
the robot to perform a task. The agent maintains
a belief state modeling the unobserved true task
in the user’s mind, and uses the language sig-
nals from the user to infer it. The command is
first parsed by the agent’s semantic parser, then
grounded against static and perceptual knowledge.
These groundings are used to update the agent’s
belief state, and the agent engages in a clarifica-

tion dialog to refine that belief.
When describing objects in the real world, hu-

mans can use words the agent has never heard be-
fore. In this work, we examine the lexical neigh-
bors of unknown words in word-embedding space,
and ask the user directly whether the unseen words
are perceptual in nature if any neighbors are. We
then check for synonyms (e.g., users marked tall
as a synonym for long), and add a new perceptual
concept if no known words are suitable synonyms
(e.g., red, a neighbor of yellow, was added in our
experiments in this way).

We introduce opportunistic active learning
questions as a sub-dialog routine for the agent, in
which it can query about objects local to the hu-
man and the robot to refine its perceptual concept
models before applying them to the remote test
object items, similar to previous work (Thomason
et al., 2017).

3 Experiments

Mechanical Turk users instruct the agent in three
tasks: navigation, delivery, and relocation. We de-
ploy the agent in a simulated office environment
populated by rooms, people, and object items. We
randomly split the set of possible tasks into initial-
ization (10%), train (70%), and test sets (20%).

Sixteen users (graduate students at the univer-
sity across several fields) engaged with a faux-
agent on initialization set tasks using the web in-
terface. We used these commands as a scaffold
on which to build an ontology, lexicon, and initial
utterance-semantic parse pairs. Of them, 44 pairs,
D0, were used to train an initial parser.

We use these initial parsing resources to create
a baseline agent A1 with a parser P1 trained only
on the initialization pairs D0 mentioned above and
concept models for several predicates Pc,1, but
with no initial object examples against which to
train them.

Three training phases i are carried out by agent
Ai, after which parser Pi+1 and concept predi-
cates Pc,i+1 are trained to instantiate agent Ai+1.
Agent A4 with parser P4 and perception models
Pc,4 is tested by interacting with users trying to
accomplish tasks from the unseen test set of tasks.
We also test an ablation agent, A∗4, with parser
P∗1 and perception models Pc,4 (trained perception
with simply initialized parser).

Table 1 gives a breakdown of the numbers of
workers who engaged with our HITs.



Condition Number of Workers
Submitted Completed Vetted Nav. Del. Rel.

HIT Tasks Correct Correct Correct
Train (A1, A2, A3) 297 162 113 36 44 18
Untrained (A1) 150 67 44 17 22 10
Test∗(A∗4) 148 83 50 20 29 10
Test (A4) 143 79 42 16 23 10

Table 1: Breakdown of the number of workers in our experiment. We here count only workers that
submitted the HIT with the correct code. Workers that completed all tasks and the survey finished
the HIT entirely. Vetted workers’ data was kept for evaluation after basic checks. The Train condition
(A1, A2, A3 agents) draws from the training set of tasks, while the Untrained (A1 untrained agent), Test∗

(A∗4 agent with trained perception and untrained parser), and Test (A4 agent with trained parser and
perception) conditions draw from the test set of tasks.

For our embodied demonstration, we use
the BWIBot (Khandelwal et al., 2014, 2017),
equipped with a Kinova MICO arm, an Xtion
ASUS Pro camera, a Hokuyo lidar, a Blue Snow-
ball microphone, and a speaker. Speech transcripts
are provided by the Google Speech API3 and
speech synthesis is performed with the Festival
Speech Synthesis System.4 Tabletop perception,
required for both the dialog interaction and the ex-
ecution of the resulting command, is implemented
with RANSAC (Fischler and Bolles, 1981) plane
fitting and Euclidean clustering as provided by
Point Cloud Library (Rusu and Cousins, 2011).

Figure 4 gives quantitative and qualitative mea-
sures of performance in Mechanical Turk, as well
as some snapshots from the embodied demonstra-
tion. The agent acquires new perceptual concept
models (25 in total), and synonym words for ex-
isting concepts, during the three phases of train-
ing. Table 3 shows the learned perceptual concept
model for can on test objects.

4 Conclusion

In this article, we presented a holistic system for
jointly improving semantic parsing and grounded
perception on a robotic system for interpreting nat-
ural language commands during human-robot dia-
log. We show, via a large-scale Mechanical Turk
experiment, that users are better able to commu-
nicate tasks and rate the system more usable af-
ter this dialog-based learning procedure. We em-
body this learning agent in a physical robot plat-
form to demonstrate its learning abilities for the

3https://cloud.google.com/speech/
4http://www.cstr.ed.ac.uk/projects/

festival/

Learned Concept Model for can
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Figure 3: The perceptual concept model learned
for can after training from conversations with hu-
man users.

non-visual word rattling.
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(a) Navigation Semantic F1 (b) Delivery Semantic F1 (c) Relocation Semantic F1

(d) Use Navigation. (e) Use Delivery. (f) Use Relocation.

(g) The robot asks questions
about items to learn rattling.

(h) The robot decides grasps a
rattling container.

(i) The robot hands over the
item at the destination.

Figure 4: Top: The average semantic slot f scores between the semantic roles in the target task and the
task confirmed by the user. Middle: Survey prompt responses about usability. Bottom: The agent learns
a new word, rattling, which requires perception using the auditory sensing modality, and uses this new
concept model to correctly identify and move the target item
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