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Continually Improving Grounded Natural Language

Understanding through Human-Robot Dialog

Jesse David Thomason, Ph.D.
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Supervisor: Raymond J. Mooney

As robots become ubiquitous in homes and workplaces such as hospitals
and factories, they must be able to communicate with humans. Several kinds of
knowledge are required to understand and respond to a human’s natural language
commands and questions. If a person requests an assistant robot to take me to Al-

ice’s office, the robot must know that Alice is a person who owns some unique
office, and that take me means it should navigate there. Similarly, if a person re-
quests bring me the heavy, green mug, the robot must have accurate mental models
of the physical concepts heavy, green, and mug. To avoid forcing humans to use
key phrases or words robots already know, this thesis focuses on helping robots
understanding new language constructs through interactions with humans and with
the world around them.

To understand a command in natural language, a robot must first convert that
command to an internal representation that it can reason with. Semantic parsing is a
method for performing this conversion, and the target representation is often seman-
tic forms represented as predicate logic with lambda calculus. Traditional semantic
parsing relies on hand-crafted resources from a human expert: an ontology of con-
cepts, a lexicon connecting language to those concepts, and training examples of
language with abstract meanings. One thrust of this thesis is to perform semantic
parsing with sparse initial data. We use the conversations between a robot and hu-
man users to induce pairs of natural language utterances with the target semantic
forms a robot discovers through its questions, reducing the annotation effort of cre-
ating training examples for parsing. We use this data to build more dialog-capable
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robots in new domains with much less expert human effort (Thomason et al., 2015;
Padmakumar et al., 2017).

Meanings of many language concepts are bound to the physical world. Un-
derstanding object properties and categories, such as heavy, green, and mug re-
quires interacting with and perceiving the physical world. Embodied robots can
use manipulation capabilities, such as pushing, picking up, and dropping objects
to gather sensory data about them. This data can be used to understand non-visual
concepts like heavy and empty (e.g. get the empty carton of milk from the fridge),
and assist with concepts that have both visual and non-visual expression (e.g. tall

things look big and also exert force sooner than short things when pressed down
on). A second thrust of this thesis focuses on strategies for learning these concepts
using multi-modal sensory information. We use human-in-the-loop learning to get
labels between concept words and actual objects in the environment (Thomason et
al., 2016, 2017). We also explore ways to tease out polysemy and synonymy in
concept words (Thomason and Mooney, 2017) such as light, which can refer to a
weight or a color, the latter sense being synonymous with pale. Additionally, push-
ing, picking up, and dropping objects to gather sensory information is prohibitively
time-consuming, so we investigate strategies for using linguistic information and
human input to expedite exploration when learning a new concept (Thomason et
al., 2018).

Finally, we build an integrated agent with both parsing and perception capa-
bilities that learns from conversations with users to improve both components over
time. We demonstrate that parser learning from conversations (Thomason et al.,
2015) can be combined with multi-modal perception (Thomason et al., 2016) using
predicate-object labels gathered through opportunistic active learning (Thomason
et al., 2017) during those conversations to improve performance for understanding
natural language commands from humans. Human users also qualitatively rate this
integrated learning agent as more usable after it has improved from conversation-
based learning.
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Chapter 1

Introduction

Humans use natural language to articulate their thoughts and intentions to
other people. As robots become ubiquitous across diverse human environments,
such as homes, offices, factory floors, and hospitals, the need for smooth human-
robot communication grows. The language we use to discuss these spaces varies,
with domain-specific words and affordances in each (e.g. Turn on the living room

lights; Move the pallet a few feet to the north; Notify me if the patient’s condition

changes). Natural language is the most natural channel for human-robot communi-
cation, and so robot natural language understanding needs to be robust to a wide-
range of both human speakers and human environments.

Pre-programming robots with fixed language understanding components lim-
its them, since environments and speakers can change. However, we can leverage
the presence of these human interlocutors to gain additional learning signals for lan-
guage understanding. Rather than force humans to use language robots around them
can understand, robots in human environments can dynamically adapt—continually
learning new language constructions and perceptual concepts as they are used in
context. In this thesis, we discuss several directions of research in algorithms for
continually improving embodied natural language understanding through human-
robot conversation. The two main thrusts of this work are improving semantic, or
abstract, understanding, and improving perceptual, or grounded, understanding.

Untrained human users providing natural language commands to robots ex-
pect world knowledge, perceptual knowledge, and semantic understanding from
their robot interlocutors. Consider, for example, the command:

Move the light mug from Bob’s office to the west, middle pod. (1.1)

Human utterances like the one above can be translated into semantic meanings.
Given a semantic meaning, a robot can check against its world knowledge and per-
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ception to resolve references to the real world and take actions appropriately in
response. For example, one semantic interpretation of the above command is

move(the(λx.(lightweight(x) ∧mug(x))),

the(λy.(office(x) ∧ owns(robert, y))),

the(λz.(west(z) ∧middle(z) ∧ pod(z)))).

(1.2)

The λ expressions used here are described in detail in Chapter 2, but for now, con-
sider them variables that need to be solved for and refer to entities (objects, rooms,
people, etc.) in the robot’s environment. Beyond translating the command into this
semantic interpretation, grounding that interpretation against concepts in the world
is a difficult problem that we explore over several chapters.

Translating human utterances to semantic meanings helps handle the syn-
onymy of commands and words (e.g. Bob for Robert), compositionality (e.g. Bob’s

office, the light mug), and ambiguity (e.g. light in weight versus light in color).
For example, in (1.1) above, Bob refers to a person, robert, not an action verb,
and Bob’s office is understood as a request for some space satisfying both being
an office and belonging to robert. To learn a function between commands
and semantic meanings, a semantic parser is often employed. Building a semantic
parser can require expert annotation of a lexicon mapping between words and their
meanings, an ontology of relevant concepts in the world, and training examples of
natural language sentences paired with composed meanings. In our work, we use
conversations robots have with humans to ameliorate this annotation effort, improv-
ing parser performance over time while starting out with sparse annotated resources
(Chapter 3).

In order to converse about the environment they share with humans, robots
must gather and maintain world knowledge through perception. Some world knowl-
edge is ontological, such as the layout of a building, ownership relations between
people and rooms, or assignments between patients and doctors in a hospital. This
information can be created by humans and stored as a knowledge base accessible
for language understanding. For example, in (1.1), the parse of Bob’s office can
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be grounded against such a knowledge base to find the entity satisfying these con-
straints. Other world knowledge is perceptual, such as whether an object is a mug,
where some movable objects were last seen, and whether an object can be picked up
and moved somewhere else. This kind of dynamic knowledge changes over time,
as new objects come in and out of the environment, and humans use previously un-
heard words to describe them. A service robot in a human environment needs both
types of knowledge to understand and respond to human requests through dialog
and actions.

Gathering correspondences between objects in the world and perceptual con-
cepts, or predicates, applicable to those objects (e.g. heavy, brown, mug) is a time-
consuming annotation effort if performed exhaustively. This effort is exacerbated
by multi-modal representations of objects, such as their weight, relevant for the
word heavy, since a human annotator has to physically interact with the object, re-
moving the ability to crowd-source annotations online using photos alone. Rather
than asking multiple humans to list every concept word applicable to an object in
person, we explore the use of a human-robot conversation game, I Spy, to extract
object-predicate relationships in a paradigm human users find interactive and en-
joyable (Chapter 4).

In a deployed setting, especially a workplace, humans are less likely to spend
time playing language games with their robot collaborators. Thus, necessary infor-
mation like object-predicate relationships should be extracted from natural human-
robot conversations. We explore the use of opportunistic active learning to ask
questions about how concept words apply to objects that are local to the human
and robot during an object retrieval task in which the human is requesting an object
that is remote. If a human requests an empty cup and the robot knows its concept
model for empty is poor, it can point to a local object whose emptiness it is un-
sure of and ask for the human’s opinion, improving the concept model with this
additional labeled example. We find that humans are undeterred by both these and
off-topic questions, in which the robot asks about irrelevant words as well in order
to improve performance in future interactions with other users (Chapter 5).

The words used to describe object properties do not form a one-to-one map-
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ping with underlying predicates. For example, the synonymous words claret and
purple can reasonably refer to the same underlying predicate classifier. Addition-
ally, the polysemous word light may refer to either a predicate for light coloration
or a predicate for light weight. Robust robot perception must account for these am-
biguous word senses, and will benefit from identifying synonymous senses (since it
increases the amount of labeled training data for the underlying concept). In (1.1),
for example, the system must find the correct sense of light, marked as a weight
sense in the associated parse (1.2). We explore an unsupervised method for detect-
ing word senses to address polysemy, then clustering those senses into word sense
synonym sets to address synonymy. We compare representing concepts as simply
their visual or linguistic embeddings, and demonstrate that using a multi-modal,
visual plus linguistic representation leads to the most interpretable sense synonym
sets (Chapter 6).

A major limitation of existing approaches to multi-modal language ground-
ing is that a robot has to exhaustively explore training objects with a variety of
actions when learning a new language concept. For example, to learn squishy, the
robot may perform its whole suite of behaviors (e.g. looking, grasping, lifting,
lowering, dropping, pushing, etc.) on objects labeled as squishy and not squishy to
decide whether squishy applies. If the robot already knows rigid, however, it should
be able to reason that since squishy is also a property related to the resistance the
objects puts up to pressure, the behaviors that give discriminating information for
rigid (pressing, grasping) should do so for squishy as well. Even without knowing
similar words, it might be more productive to ask a human which behaviors are best
for deciding squishy before performing all of them. We explore both strategies to
build a prior over exploratory behaviors’ applicability to learn a new concept: exam-
ining that concept’s nearest neighbors in an embedding space and leveraging human
annotations about behavior relevance. We demonstrate that both relevant behaviors
for related concepts and human annotations lead to reductions in the exploration
time required to achieve high recognition accuracy for new concepts (Chapter 7).

Together, the work in this thesis demonstrates individual steps towards an
integrated approach to human-robot interaction— overviewed in Figure 1.1. These
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(a) Improving semantic pars-
ing through dialog
(Chapter 3).

(b) Multi-modal language
grounding playing I Spy
(Chapter 4).

(c) Opportunistic active
learning for grounding
(Chapter 5).

(d) Unsupervised, multi-
modal synset induction
(Chapter 6).

(e) Guiding exploratory be-
haviors for grounding
(Chapter 7).

(f) Improving parsing and
perception through dialog
(Chapter 8).

Figure 1.1: Works presented in this thesis.

steps assume little in-domain knowledge, enabling robots to acquire domain-specific
vocabulary, syntax, and perceptual concepts on-the-fly from interaction with hu-
mans. Our integrated approach provides a stepping stone towards a lifelong learn-
ing agent for continually improving natural language understanding on a robotic
platform from conversations with human users (Chapter 8).

In the remainder of this thesis, we first discuss the background of algorithms
utilized for command understanding and dialog, as well as the substantial body of
related work on semantic parsing for understanding human language commands,
learning semantic parsers from corpora, language grounding from machine per-
ception, language grounding involving human-robot interaction, and polysemy and
synonymy in language understanding (Chapter 2). We continue with a discussion of
work that uses weak supervision from human-robot dialog to generate training data
for a semantic parser (Chapter 3). We then describe work that grounds predicates
in multi-modal perception, allowing a robot to move beyond pre-written predicates
(office, possesses) into perceptual concepts (mug, heavy) (Chapter 4). Addressing
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label-gathering between objects and perceptual predicates, we summarize work on
opportunistic active learning during human-robot conversations to improve pred-
icate classifiers in an object retrieval task (Chapter 5). We then discuss work in
noun phrase synonym sense set induction that utilizes multiple modalities of noun
phrase context (Chapter 6), aimed at addressing the weak one-to-one assumption
between surface forms of words and their underlying meanings. Aware of the
physical and time costs involved in gathering multi-modal object representations
through interactive behaviors, we also discuss work on using linguistic neighbors
and human feedback to expedite object exploration when learning new predicates
(Chapter 7). Combining semantic parser learning with multi-modal perception, we
present a system that uses conversations to jointly improve language and perceptual
understanding, bringing together the two main thrusts of this thesis (Chapter 8). We
then discuss the future directions of this combined approach, as well as other next
steps for the ideas explored (Chapter 9). Finally, we conclude by summarizing the
insights and contributions provided by this thesis (Chapter 10).
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Chapter 2

Background and Related Work

This thesis concerns the integration of semantic parser learning with robot
perception for natural language understanding. We focus on methods that bypass
the use of large corpora and substantial amounts of domain-relevant training data.
This work took place largely within the Building-Wide Intelligence (BWI) project
at the University of Texas at Austin (http://www.cs.utexas.edu/˜larg/
bwi_web/). We use Segway-based robots for embodied experiments, as described
in Khandelwal et al. (2014, 2017).

In this chaper, we discuss existing work on instructing robots through nat-
ural language, a task our integrated system does with both semantic parsing and
perception. We overview relevant work on learning semantic parsers, including
work on inducing training data for semantic parses from conversations. We discuss
language grounding as a task, grounding in machine perception, and grounding
with additional signal from human-robot interactions. Finally, we overview natu-
ral language understanding tasks involving detecting polysemy and synonymy in
language. We draw from and make contributions to each of these areas.

Instructing Robots in Natural Language

Instructing robots through natural language is essential for humans and robots
to cooperate in shared environments. Researchers have focused on different as-
pects of human-robot communication, including using perception alongside seman-
tic parsing for action understanding, and acquiring new actions from language de-
scriptions in a perceivable environment.

Understanding the mutual environment is essential. Semantic parsing has
been used as the understanding step in tasks like unconstrained natural language in-
struction, where a robot must navigate an unseen environment (Kollar et al., 2010;
Matuszek et al., 2012b, 2013). Weak supervision can be used to improve such
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parsers based on interactions with humans (Artzi and Zettlemoyer, 2013b). Sim-
pler parsing approaches, such as transforming commands using semantic role la-
beling to form a meaning representation, require less training data at the cost of
being less robust to language variation (Bastianelli et al., 2013). There have been
focused efforts to understand human language commands with respect to a shared
environment, such as the SemEval task of Dukes (2014). Work on semantic graphs
connects environment referents probabilistically based on both sensor data and hu-
man language (Walter et al., 2013), while similar work additionally incorporates
knowledge base information and conversation context (Mohan et al., 2013). One
framework, based on generalized grounding graphs, acts to both understand hu-
man language requests about objects in the world and generate language requests
regarding the shared environment (Tellex et al., 2014). Extensions of this frame-
work can be used to memorize new semantic referents in a dialog, like “this is my
snack” (Paul et al., 2017), or to reason about abstract sets and ordinalities (Paul et
al., 2016). Other work uses vision techniques to build a knowledge base-like model
of the shared environment. Then, language understanding is performed through
semantic parsing followed by grounding against this vision-derived knowledge to
resolve visual predicates (e.g. red) (Yang et al., 2014; Lu and Chen, 2015).

Recent work aims to translate human instructions directly to grounded be-
havior like route-following, skipping parsing in favor of sequence-to-sequence, end-
to-end learning using neural methods (Mei et al., 2016). End-to-end neural methods
are data hungry and fail to converge to useful solutions when training examples are
sparse, such as in human-robot dialogs where gathering environment-specific inter-
actions is costly. Past methods consider information jointly from the instructional
utterance and the perceived environment to perform action understanding as a se-
quence (Misra et al., 2014) or hierarchy (Kuehne et al., 2014).

Going beyond action understanding, past work has also used semantic rep-
resentations of utterances together with perception of objects in an environment
to learn new manipulation behaviors from human instruction (She et al., 2014;
Gemignani et al., 2015). Similarly focused, situated action learning for naviga-
tion maps human language instructions into programmatic behaviors that can be
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used as modules for hierarchically-composed actions (Meriçli et al., 2014).
We present a robotic system that understands requests for actions in natural

language. This understanding involves semantic parsing, but does not include ac-
tion learning. Instead, we focus on methods robust to language variations and the
use of perceptual predicates like heavy mug to describe objects in the real world,
while executing pre-programmed actions (such as navigation, delivery, and object
pick-and-place).

Learning Semantic Parsers

A semantic parser is a function from strings of words to a semantic meaning
defined by some ontology (for example, Artzi and Zettlemoyer (2013a)). Formally,
a parser P : P(T ) × LO → S0 takes in a sequence of word tokens ~x ∈ P(T ) in
the power set of T , the set of all word tokens, and a lexicon LO for ontology O
and outputs a semantic parse s ∈ SO, the set of all semantic parses in ontology O.
An ontology O defines a set of constants and predicates. Constants are things like
items, places, and people. Predicates map from one or more constants to boolean
true or false values (e.g. red is a predicate that tells whether an argument item
constant is red in color). The lexicon L is a data structure that contains information
about how individual word tokens relate to that ontology, for example, that token
alice refers to ontological constant alice and that possessive marker ’s invokes
predicate owns (see Figure 2.1). A semantic parse is a meaning representation
in terms of ontological predicates and lambda expressions. A lambda expression
allows meaning to abstract over sets of ontological constants and predicates. The
meaning of go to alice’s office could be represented as:

go(the(λx.(office(x) ∧ owns(alice, x)))).

In this case, the will pick out some unique constant x that is both an office and
belongs to alice, instantiating that constant as the argument for the go command.

Learning a semantic parser to perform these translations is non-trivial, but
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NP : the(λx.(office(x) ∧ owns(alice, x)))

N : office

office

NP/N : λP.(the(λx.(P (x) ∧ owns(alice, x))))

(NP/N)\NP : λy.λP.(the(λx.(P (x) ∧ owns(y, x))))

’s

NP : alice

Alice

Figure 2.1: A CCG-driven λ-calculus parse of the expression Alice’s office.

using statistical parsing with compositional semantics makes it feasible. Many
works, including our own, frame compositional semantics through combinatory
categorial grammar (CCG) (Steedman and Baldridge, 2011), popular in both older
and current deep syntactic parsing models (Lee et al., 2016; Lewis et al., 2016;
Misra and Artzi, 2016). CCG adds a syntactic category to each token of the input
sequence ~x and then hierarchically combines those categories to form a syntax tree.
These syntactic categories are typically a small set of basic ones, like N (noun) and
NP (noun phrase), together with compositional entries, like PP/NP (a prepositional
phrase formed after consuming a noun to the right). In a compositional semantics
framework, the input lexicon L contains entries mapping word tokens to both se-
mantic meanings and CCG syntax categories. Semantic meanings can be composed
according to the hierarchy established by a CCG syntactic parse tree to form a se-
mantic parse that spans an entire token sequence. Figure 2.1 demonstrates this for
Alice’s office.

Given data in the form of paired token sequences with their semantic parse
trees, a statistical parser can be trained to produce those parses given novel se-
quences (Berant et al., 2013; Liang and Potts, 2015). However, annotating token
sequences with entire parse trees is costly, and many works instead train with la-
tent trees, requiring only the final desired semantic form (tree root) (Liang et al.,
2011). Some works go beyond parser training and additionally incorporate ontol-
ogy matching. This matching removes the restriction that the lexicon use predicates
that exactly match the domain (Kwiatkowski et al., 2013). Others guide the seman-
tic search with domain knowledge (Gardner and Krishnamurthy, 2017). Recent
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methods perform this translation using sequence to sequence (Kočiskỳ et al., 2016;
Jia and Liang, 2016; Konstas et al., 2017) and sequence-to-tree (Dong and Lapata,
2016) deep models, but these are data-hungry and thus not feasible when we need to
deploy in multiple domains (such as robots operating in an office versus a hospital).

The number of parameters to be learned in a semantic parser becomes large
quickly even in a restricted domain, and annotating natural language with semantic
forms is an expensive human effort. Consequently, some work in semantic parser
learning has focused on overcoming data sparsity during training, for example by
identifying incorrect parses using unskilled annotators and performing a kind of
active learning which those incorrect parses are rectified by domain experts and
added as additional data to tune a parser (Iyer et al., 2017). Other work directly
queries human users to resolve ambiguities (He et al., 2016), or induces training
examples automatically from existing conversational data (Artzi and Zettlemoyer,
2011).

In our work, we build on the idea of learning from existing conversations to
gather parsing training examples from dialog (Chapter 3). We then use semantic
parsing as an understanding step in a robotic system capable of grounding language
referents in world knowledge as well as perceptual information (Chapter 8).

Language Grounding with Machine Perception

Commanding robots with language requires both semantic understanding
and a subsequent grounding step where referents in the real world are connected to
the language used to describe them. Mapping from a referring expression such
as the blue cup to an object referent in the world is an example of the symbol

grounding problem (Harnad, 1990). Symbol grounding involves connecting inter-
nal representations of information in a machine to real world data from its sensory
perception. Grounded language learning bridges these symbols with natural lan-
guage. Comparative studies have established that joint representations of language
that consider some form of perception outperform text-only representations of word
meaning (Silberer and Lapata, 2012). The grounded form of a semantic meaning is
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called its denotation. Throughout this thesis, when we refer to grounding a semantic
form, we mean finding its denotation in a given world environment.

Early work coupled vision with speech descriptions of objects to learn grounded
semantics (Roy and Pentland, 2002). Recently, most work has continued grounding
language in visual information. For grounding referring expressions in an environ-
ment, many approaches learn perceptual classifiers for words given some pairing
of human descriptions and labeled scenes (A. Lazaridou and Baroni., 2014; Sun
et al., 2013). Some approaches additionally incorporate language models into the
learning phase (FitzGerald et al., 2013; Krishnamurthy and Kollar, 2013; Zitnick
and Parikh, 2013; Matuszek et al., 2012a). Still other researchers have translated
images into a distribution over possible descriptions, attempting to ground images
in text, then doing query similarity in the resulting textual space to ground text in
images (Guadarrama et al., 2015).

Recent work bypasses any explicit modeling of language predicates in fa-
vor of neural methods, such as localizing an object in a given image given a target
query in natural language (Hu et al., 2016), or learning language concepts directly
from sentence descriptions of images (Mao et al., 2015). A related task is to resolve
ambiguities like prepositional phrase attachment in natural language by using as-
sociated images to gather additional information (Christie et al., 2016). A dataset
for understanding compositional language using robot vision similarly uses neu-
ral methods to avoid directly modeling predicates and relations, instead learning a
pipeline from commands to manipulations end-to-end, with mixed success (Bisk et
al., 2016).

There has been some work on combining language with sensory modalities
other than vision, such as audio (Kiela and Clark, 2015) or haptic (Chu et al., 2013;
Gao et al., 2016b) signals. Additionally, researchers have explored the use of haptic
and proprioceptive feedback from a robot arm to automatically learn to order ob-
jects by weight, height, and width (Sinapov et al., 2016). In other fields, such as
psychology, multiple sensory modalities for understanding words have been studied
and categorized (Lynott and Connell, 2009). In general, humans tend to use senses
beyond vision to understand how words connect to properties of their environments.
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Recent work uses co-training between two modalities— RGB and depth
information— to automatically learn grounded object attributes using deep net-
works in an unsupervised fashion, bootstrapped from a small number of supervised
examples (Cheng et al., 2016). Other approaches work with knowledge base struc-
tures directly, learning to map streams of text references of world states to knowl-
edge base entries describing those states (Liang et al., 2009). A less supervised
approach first induces possible attributes by clustering using feature-based repre-
sentations of objects, colors, and faces, then ties the discovered clusters to language
labels post-hoc (Alomari et al., 2017a). A recent survey examines this broad space
of multi-modal representations of objects and concepts in machine learning (Bal-
trušaitis et al., 2017).

A major limitation of these multi-modal approaches is that they require a
robot to perform exhaustive object exploration, i.e., a robot must explore each ob-
ject with some fixed number of exploratory actions during which it records non-
visual sensory data (or this data must come from some other external corpus). One
possible way to address this problem is to estimate the relevance of each behavior
for the task of learning a novel predicate or category. Recent work has used word
embeddings to predict unseen verb causality information from seen verbs (Gao et
al., 2016a), and unseen noun affordances from seen nouns (Fulda et al., 2017).
These embeddings can be jointly formed from textual and visual input for more
robust composition (Silberer et al., 2017). We later show that such embeddings can
be used to guide behaviors during language grounding (Chapter 7).

In robotics, language can function as a signal for navigation and question-
answering tasks, but many existing lines of research do not use human-robot dialog
as part of this process. For navigation, simple strategies can learn to ground nouns
and prepositions describing entities along a path to be followed in a physical envi-
ronment (Barrett et al., 2015). Other work distinguishes between affordances dis-
covered during exploration (useful for grounding object noun categories) and visual
information (useful for learning attributes) (Yürüten et al., 2013). Recent work in-
troduces a task paradigm around this idea, embodied question answering (Das et al.,
2017a). In that work, a simulated agent is given an unambiguous question in tem-
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plated language and continuous RGB camera input and must produce a sequence
of driving actions to eventually generate an answer to the question from one among
several hundred possibilities. Though that work does not incorporate dialog, similar
neural approaches have been used to train conversational robot-robot conversational
agents, and may be applicable for human-robot dialog (Das et al., 2017b). Similar
thrusts utilize a visually-grounded navigation dataset based on real-world environ-
ments (Anderson et al., 2017), and a dataset of hundreds of simulated 3D home
layouts (Brodeur et al., 2017).

In our work, we introduce multi-modal perception for a robotic system using
vision together with haptics, audio, and proprioception that uses conversations with
humans as a learning signal (Chapter 4), and investigate strategies to reduce the
exploration time required to learn new perceptual concepts (Chapter 7).

Language Grounding with Human-Robot Interaction

Machine perception is necessary for human-robot interaction. It can also be
improved by that interaction. A number of researchers have focused on solving the
symbol grounding problem for situated robots by leveraging their interactions with
the humans they are working to understand.

One line of existing work focuses on gathering data from human demonstra-
tion and speech to learn language grounding. Using unscripted human descriptions
of objects together with their deictic hand gestures, researchers train a grounding
system for identifying referent objects (Matuszek et al., 2014). Similar work used
only speech from humans describing objects to achieve one-shot learning of object
attributes and names (Perera and Allen, 2013). Other researchers have focused on
learning unary properties of objects (red) together with relational (taller) and dif-
ferentiating (differ by weight) properties of objects by exploring them with a robotic
arm, provided properties and relational labels as human supervision after that ex-
ploration (Sinapov et al., 2014b). These kinds of relations can also be orthogonally
learned from text data (Forbes and Choi, 2017), and there is potential to combine
these approaches outside the scope of this thesis.
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Closer to our work, some researchers gather data for perceptual grounding
using interaction with a human interlocutor. This combination of dialog and per-
ception affords new opportunities for smart interactions, such as the robot asking
questions targeting weaknesses in its understanding (Thomason et al., 2016). Early
work on learning to ground object attributes and names using dialog framed the data
gathering phase as a 20 Questions-style game where a robot tried to guess a target
object by asking narrowing questions (e.g. is it red?) (Vogel et al., 2010). Other re-
search focused on acquiring perceptual understandings through a command-, rather
than game-based environment (Dindo and Zambuto, 2010). Researchers have car-
ried this idea to more complete systems with both perceptual grounding and action
learning capability for identifying and manipulating objects, where the agent can
request more information about uncertain concepts (Mohan et al., 2012). Agents
can also be taught spatial language through a curriculum-learning paradigm, where
increasingly difficult spatial relational language is introduced (Spranger and Steels,
2015). Similar to other work that learns from demonstration and description offline,
Kollar et al. (2013) studies the joint acquisition of perceptual classifiers and lan-
guage understanding in an interactive setting. Focused efforts have begun studying
one-shot object attribute learning (Krause et al., 2014), including actively exploring
an environment with a physical robot and assigning previously unseen attributes to
objects in an online fashion (Tucker et al., 2017). Referring expressions and actions
can also be disambiguated by considering perceptual grounding information, using
the real-world to rectify errors at the parsing level (Bastianelli et al., 2016).

Other work aims to address perceptual mismatch between humans and robots,
since our sensory systems differ, and delineations present in the one may be unde-
tectable in the other (Liu et al., 2014; Liu and Chai, 2015). In the vein of game-
based data gathering, researchers have framed learning attribute classifiers for ob-
jects as an I Spy game in which a human describes a target object among several
options to a robot and confirms when the correct one is identified (Parde et al.,
2015). In another game-like approach, users offered commands and selected from a
set of world-states that would result from different system understandings of those
commands (Wang et al., 2017). Other object identification work has focused on
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integrating language with gesture, bypassing perception in favor of language co-
occurrences with particular objects (Whitney et al., 2016), or using language and
gesture to decide when to ask clarification questions (Whitney et al., 2017).

In our work, we bootstrap a perception system using an interactive I Spy

game (Chapter 4), and in conversations during an object identification task (Chap-
ter 5). We then introduce continual learning to the perceptual component of a
grounded dialog agent (Chapter 8).

Polysemy and Synonymy in Language Understanding

Semantic understanding in language is complicated by words that have mul-
tiple, distinct meanings, and by sets of words with the same underlying meaning.
A sense inventory for words, such as WordNet (Fellbaum, 1998), structures word
meaning into senses which can be taken on by one or more words. Words that
refer to the same sense are called synonymous. A word which refers to multiple
meanings across its different senses is polysemous. Sets of word senses are called
synsets.

Word sense induction (WSI) is the task of determining whether an individual
word type, such as bat, is polysemous, and what its underlying senses are. Given
a set of word senses and a word in context, the task of word sense disambiguation

(WSD) is to choose which sense the word expresses in the given context (Navigli,
2009). WSD has applications across language understanding, since the multiple
meanings of a word can be arbitrarily different and unrelated.

Traditional work on WSI discovers senses for a word by clustering the tex-
tual contexts in which it occurs (Yarowsky, 1995; Pedersen and Bruce, 1997; Schutze,
1998; Bordag, 2006; Navigli, 2009; Manandhar et al., 2010; Reisinger and Mooney,
2010; Di Marco and Navigli, 2013). The multiple meanings for bat can be recog-
nized as two clusters: one a set of contexts with words like cave and flew; and
another with words like baseball and strike. Other notions of context can be used
to discover word senses, such as images the word is used to describe. Some pre-
vious work has recognized the value of perceptual word senses for tasks such as
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image-segment labeling (Barnard and Johnson, 2005) and image retrieval from text
queries (Lucchi and Weston, 2012).

Past work has used visual information to disambiguate word senses, but as-
sumes the senses of each word are known in advance (Barnard and Johnson, 2005).
Using both textual and visual information to perform WSI has been done as well,
but on datasets where every input word is known in advance to be polysemous (Lo-
eff et al., 2006; Saenko and Darrell, 2008).

Some work performs co-clustering in separate textual and visual spaces,
treating textual clusters as word senses and visual clusters as iconographic senses
(viewpoint changes, color differences, etc.) that offer a finer-grained distinction
than word senses (Chen et al., 2015). Other work attempts to handle the polysemy
of attributes like red automatically by considering the compositions they participate
in, e.g. red wine versus red tomato (Misra et al., 2017).

We use polysemy and synonymy detection to induce synsets in an unsuper-
vised way by combining linguistic and visual context (Chapter 6). This allows us
to discover, for example, the polysemous meanings of kiwi (fruit, bird, person), and
the synonymous meanings of the fruit sense of kiwi and chinese grapefruit. In the
future, these methods could be applied to words humans use to describe properties
of objects in the world, with those objects providing multi-modal context for the
meanings of the words, discussed in Chapter 9.
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Chapter 3

Learning to Interpret Natural Language Commands
through Human-Robot Dialog

Intelligent robots need to understand requests from naive users through nat-
ural language. In this chapter we discuss a dialog agent for mobile robots that
understands human instructions through semantic parsing, actively resolves ambi-
guities using a dialog manager, and incrementally learns from human-robot conver-
sations by inducing training data from user paraphrases, as presented in (Thomason
et al., 2015). Our dialog agent is implemented and tested both on a web interface
with hundreds of users via Mechanical Turk and on a mobile robot over several
days, tasked with understanding navigation and delivery requests through natural
language in an office environment. In both contexts, we observe significant im-
provements in user satisfaction after learning from conversations.

Figure 3.1a gives an example conversation when the dialog agent had only
slim initial training data for language understanding. The clarification questions
in this conversation let the agent learn that calender and planner mean calendar.
This work allows us to translate utterances into logical forms, and is the first step
to resolving (1.1) in our work to integrate parsing and perception in an embodied
robotic system.

Motivation

Many existing natural language instruction approaches either use simple lan-
guage understanding (e.g., keyword search), or large corpora of hand-annotated
training data to pair language with robot actions or action language. The former
cannot account for language variation. The latter requires gathering annotated cor-
pora, which can be expensive and can only account for variation observed in the
training data. This chapter addresses these shortcomings via a dialog agent that
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(a) The Mechanical Turk worker instructs the dialog agent to deliver a calendar item to
Dave Daniel (left). Items are given pictorially (right) so that workers have to describe them
with natural language.

Expression Logical Form
please bring the item in slot five action(bring) ∧ patient(calendar)
to dave daniel ∧recipient(dave)
calander patient(calendar)
a day planner patient(calendar)

(b) The expression and semantic form pairs induced from the worker’s responses to ques-
tions in the clarification dialog; these are used when retraining the semantic parser to learn
new words and phrases.

Figure 3.1: This abridged conversation took place when the system had access to
only the initial, small data (no additional training examples yet), and allows the
system to learn several new words and phrases.
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communicates with users through natural language while learning semantic mean-
ings from conversations.

Our dialog agent integrates a semantic parser producing logical form repre-
sentations of user utterances with a dialog manager that maintains a belief-state for
the user’s goal. The agent starts with a few training examples for the parser and
induces more during clarification dialogs with ordinary users. When the agent un-
derstands a user goal, it pairs the logical form representing that goal with previously
misunderstood utterances in the conversation to form new training examples for the
semantic parser (3.1). This allows the agent to incrementally learn new semantic
meanings for previously unseen words and phrases. This approach is more robust
than keyword search and requires little initial data. Further, it can be deployed in
any context where robots are given high-level goals in natural language.

We demonstrate through hundreds of conversations from human users through
Mechanical Turk that the agent’s learning abilities help it to understand and not
frustrate users while converging to goals quickly. However, users interacting with a
live robot introduce lexical variations that may be user or task-specific, and do not
allow for the contextual control (e.g. linguistic priming, detecting malicious users)
afforded by a web interface like Mechanical Turk. We embody the agent in a robot
in our office and find that, even from such uncontrolled in-person conversations, it
improves understanding and is less frustrating after a brief training period. To the
best of our knowledge, our agent is the first to employ incremental learning of a
semantic parser from conversations on a mobile robot.

Meriçli et al. (2014) allow users to specify a task program to be stored and
executed on the robot. Like our dialog agent, their system prompts users to correct
its (mis)understandings. However, their natural language understanding is done by
keyword search and assumes certain words in a particular order. By contrast, we use
a richer, semantic understanding. Robot world knowledge can also be updated, such
as using semantic parsing to extract an action, pre- and post-world conditions for
that action, and the entities involved (Cantrell et al., 2012). The goal of that work is
different from ours and its parser is trained on an existing dataset (CReST (Eberhard
et al., 2010)), in contrast to our induced training data.
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Natural language instruction can dictate a series of actions to a robot. Some
approaches pair robot actions with language descriptions, then build models that
map language instructions to action sequences (Misra et al., 2014; Tellex et al.,
2011). We are concerned with interpreting high-level instructions rather than action
sequences and don’t rely as they do on a well-trained initial parser (Klein and Man-
ning, 2003). Another approach enables a robot to learn a sequence of actions and
the lexical items that refer to them from language instruction and dialog (She et al.,
2014). We focus on acquiring new lexical items to overcome linguistic variation,
rather than for referring to and teaching action sequences.

Other researchers have used semantic parsing to facilitate natural language
instruction for robots. One approach learns a parser to map natural-language in-
structions to control language (Matuszek et al., 2013). We build on such approaches
by augmenting our parser with new data in an incremental fashion from dialog. We
also use world knowledge to ground natural language expressions. Other work uses
restricted language and a static, hand-crafted lexicon to map natural language to
action specifications (Matuszek et al., 2012b).

Work closest to ours presents a dialog agent used together with a knowledge
base and semantic understanding component to learn new referring expressions dur-
ing conversations that instruct a mobile robot (Kollar et al., 2013). They use seman-
tic frames of actions and arguments extracted from user utterances, while we use
λ-calculus meaning representations. Our agent reasons about arguments like Mal-

lory Morgan’s office, by considering what location would satisfy it, while semantic
frames instead add a lexical entry for the whole phrase explicitly mapping to the
appropriate room. Our method is more flexible for multi-entity reasoning (e.g. the

person whose office is next to Mallory Morgan’s office) and changes to arguments
(e.g. George Green’s office). Additionally, this work did not evaluate how agent
learning affects user experience.

Our process of automatically inducing training examples from conversations
is partly inspired by Artzi and Zettlemoyer (2011). They used logs of conversations
that users had with an air-travel information system to train a semantic parser for
understanding user utterances. Our approach to learning is similar, but done incre-
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Figure 3.2: Dialog agent workflow processing user command go to the office.

mentally from conversations the agent has with users, and our training procedure is
integrated into a complete, interactive robot system.

Methods

A human user first gives a command to our dialog agent, then the agent can
ask clarification questions (Figure 3.2). The agent maintains a belief state about the
user’s goal. When it is confident in this state, the dialog ends and the goal is passed
on to the robot or other underlying system.

The agent produces a semantic form for each user utterance. In this work,
we use the University of Washington Semantic Parsing Framework (SPF) (Artzi
and Zettlemoyer, 2013a), a system for mapping natural language to meaning repre-
sentations using λ-calculus and combinatory categorial grammar (CCG).

To get the system off the ground we initialize the parser with a small seed
lexicon and then train it on a small set of supervised utterance/logical-form pairs.
We use a seed lexicon of 105 entries (40 of which are named entities) and a training
set of only 5 pairs.
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The agent maintains a belief state about the user goal with three compo-
nents: action, patient, and recipient. Each component is a histogram
of confidences over possible assignments. The agent supports two actions: walk-
ing and bringing items, so the belief state for action is two confidence values
in [0, 1]. recipient and patient can take values over the space of entities
(people, rooms, items) in the knowledge base as well as a null value ∅.

Multiple meaning hypotheses may be generated from a user utterance. Con-
sider:

expression go to the office

logical form action(walk) ∧ recipient(the(λy.(office(y))))
For n offices, this logical form has n groundings producing different meanings
(see Figure 3.2). The agent can be confident that walking is the task, but its
confidence in the n meanings for recipient is weakened. We use a confi-
dence update based on the number k of hypotheses generated to track the agent’s
confidence in its understanding of each component of the request. For a user-
initiative (open-ended) statement like this one, the agent updates all components
of the belief state. For each candidate hypothesis Hi,c, with 0 ≤ i < k, c ∈
{action,patient,recipient}, the agent updates:

conf(c = Hi,c)← conf(c = Hi,c)
(

1− α

k

)
+
α

k
,

where 0 < α < 1 is the threshold of confidence above which the candidate is
accepted without further clarification. The confidence in unmentioned arguments is
decayed to wash out previous misunderstandings. For Ac, the set of all candidates
of component c, Āc = Ac \ ∪i{Hi,c} are unmentioned. For each H̄j,c ∈ Āc, the
agent updates:

conf(c = H̄j,c)← γconf(c = H̄j,c),

where 0 ≤ γ ≤ 1 is a decay parameter.
System-initiative responses are associated with a particular requested com-

ponent. These can take the form of confirmations or prompts for components. For
the former, user affirmation will update the confidence of all mentioned values to
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1. For the latter, the positive and negative updates described above operate only on
the requested component.

The agent uses a static dialog policy π operating over a discrete set of states
composed of action, patient, recipient tuples together with the role to be
clarified. The agent’s continuous belief state S is reduced to a discrete state S ′ by
considering the top candidate arguments Tc for each component c:

Tc = argmaxt∈Ac
(conf(c = t)).

Each component c of S ′ is selected by choosing either Tc or unknown with probabil-
ity conf(c = Tc). The component c with the minimum confidence is chosen as the
role to request. If unknown is chosen for every component, the role requested is all.
If unknown is chosen for no component, the role requested is confirmation. Some
policy responses are given in Table 3.1. If each of the confidence values inspected
during this process exceeds α, the conversation concludes. In all experiments, pa-
rameters α = 0.95, γ = 0.5 were used.

Our agent induces parsing training examples from conversations with users
to learn new lexical items. It uses dialog conclusions and explicit confirmations
from users as supervision. The semantic parser in Figure 3.1a does not know the
misspelling calendar and calender, the word planner, or number 5. When the user
requests item in slot 5 be delivered, it only confidently detects the action, bring,
of the user’s goal. The recipient, Dave Daniel, is clarified by a system-initiative
question. When the agent asks for confirmation of the action, the user does
not deny it, increasing the agent’s confidence. While clarifying the patient,
the user implicitly provides evidence that calender, planner, and calendar are the
same. When two or more phrases are used in the same sub-dialog to clarify an
argument, the eventual logical form selected is paired with the earlier surface forms
for retraining. Figure 3.1 gives this example.

User-initiative responses generate similar alignments. One user’s conversa-
tion began please report to room 3418, which the agent could not parse because of
the new word report. The agent understood the re-worded request go to room 3418,
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S ′ π(S ′)
(action,
patient, Role Request Response Initiative
recipient)
(unknown Sorry I couldn’t understand that.
unknown, all Could you reword your original user
unknown) request?
(unknown, What action did you want me to take
Tpatient, action involving Tpatient and Trecipient? system
Trecipient)
(walk,∅, recipient Where should I walk? system
unknown)
(bring,
unknown, patient What should I bring to Trecipient? system
Trecipient)
(walk,∅, confirmation You want me to walk to Trecipient? system
Trecipient)
(bring, You want me to bring Tpatient
Tpatient, confirmation to Trecipient? system
Trecipient)

Table 3.1: Representative subset of our policy π for mapping discrete states S ′ to
questions.

and the former sentence was paired with the logical form of this latter for training.
When the retraining procedure explored possible semantic meanings for report, it
found a valid parse with the meaning of go, S/PP : λP.(action(walk) ∧ P (walk)),
and added it to the parser’s lexicon. This meaning says that report should be fol-
lowed by a prepositional phrase specifying a target for the walking action.

Evaluation

We evaluated the learning agent in two contexts. We used Mechanical Turk
to gather data from many users asked to give the agent goals for an office envi-
ronment. These users interacted with the agent through a web browser. User ex-
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pectations, frustrations, and lexical choices with a web browser versus a physical
robot will likely differ. Thus, we also implemented an interface for the agent on
a Segway-based robot platform (Segbot) operating on a floor of our university’s
computer science building as well.

We split the possible task goals into train and test sets. In both conditions,
users performed a navigation and a delivery task. For the 10 possible navigation
goals (10 rooms), we randomly selected 2 for testing. For the 50 possible deliv-
ery goals (10 people × 5 items), we randomly selected 10 for testing (80%/20%
train/test split). The test goals for Mechanical Turk and the Segbot were the same,
except in the former we anonymized the names of the people on our building’s floor.

We ended all user sessions with a survey: The tasks were easy to understand

(Tasks Easy); The robot understood me (Understood); and The robot frustrated me

(Frustrated). For the Segbot experiment, we also prompted I would use the robot to

find a place unfamiliar to me in the building (Use Navigation) and I would use the

robot to get items for myself or others (Use Delivery). Users answered on a 5-point
Likert scale: Strongly Disagree(0), Somewhat Disagree(1), Neutral(2), Somewhat

Agree(3), Strongly Agree(4). Users could also provide open response comments.

Mechanical Turk Experiments

The web interface shown in Figure 3.1a was used to test the agent with many
users through Mechanical Turk. We performed incremental learning in batches to
facilitate simultaneous user access. We assigned roughly half of users to the test
condition and the other half to the train condition per batch. After gathering train
and test results from a batch, we retrained the parser using the train conversation
data. We repeated this for 3 batches of users, then we gathered results from a final
testing batch in which there was no need to gather more training data. We used user
conversations for retraining only when they achieved correct goals.

Navigation: Users were asked to send the robot to a random room from the
appropriate train or test goals with the prompt [person] needs the robot. Send it to

the office where [s]he works. The referring expression for each person was chosen
from: full names, first names, nicknames, and titles. In this task, the corresponding
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office number was listed next to each name, and the items available were not shown.
Delivery: Users were asked to tell the robot to assist a person with the

prompt [person] wants the item in slot [number]. The (person, item) pairs were
selected at random from the appropriate train or test goals. To avoid linguistic prim-
ing, the items were given pictorially (Figure 3.1a).

For each train/test condition, we gathered responses from an average of 48
users per batch. Figure 3.3 (Top) shows the mean survey-question responses across
test batches. We used an unpaired Welch’s two-tailed t-test to determine whether
these means differed significantly. By batch 2, users felt that the agent understood
them more than in batch 0. By batch 3, they felt that it frustrated them less. The
dialog agent became more understandable and likable as a result of the semantic
parser’s learning, even though it had never seen the test-batch users’ goals.

To determine whether learning reduced the number of utterances (turns) a
user had to provide for the system to understand their goal, we counted user turns
for dialogs where the user and agent agreed on the correct goal (Figure 3.3 (Bot-
tom)). The performance between goal types differs. Because of an uncooperative
worker specifying go as a user-initiative command eventually resolved as navigat-
ing to a particular person’s office, this word picked up a polysemous lexical entry
during retraining meaning to go to that specific office, rather than whatever else
was specified. In the future, creating negative examples for the parser from mis-
understandings may ameliorate this (e.g. if the command does not lead to coherent
grounded forms, create a negative example for the parser specifying that the next-
best semantic form should be returned next time, since the top form was not help-
ful) and unlearn bad rules. In expectation, this only adds a single turn (the worker
clarifying the meaning of go). By contrast, learning successfully, and statistically
significantly, reduced the turns needed to understand multi-argument delivery goals.
These goals are more difficult to specify, since they involve two argument (the pa-
tient item and recipient person), so there is more to gain from continued semantic
parser learning. For example, the agent can learn bring A to B as well as bring B A,
nicknames and titles for people, and multiple referring expressions for items given
pictorially.
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Figure 3.3: Top: Average Mechanical Turk survey responses across the four test
batches. Bottom: Mean user turns in Mechanical Turk dialogs where the correct
goal was reached. Means in underlined bold differ significantly (p < 0.05) from
the batch 0 mean.

With respect to users’ free-form feedback, in testing batch 0, several enjoyed
their conversations (This was fun!! Wish it were longer!). Several also commented
on the small initial lexicon (It was fun to try and learn how to talk to the robot in a

way it would understand). The responses by testing batch 3 had similarly excited-
sounding users (I had so much fun doing this hit!). At least one user commented on
the lexical variation they observed (The robot fixed my grammatical error when I

misspelled ‘calender’ Which was neat). In addition to learning misspelling correc-
tions and new referring expressions, the agent learned to parse things like item in

slot n by matching n to the corresponding item and collapsing the whole phrase to
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Figure 3.4: Left: Robot platform (Segbot) used in experiments. Right: Segbot
architecture, implemented using Robot Operating System (ROS).

this meaning.

Segbot Experiments

The agent was integrated into a Segway-based robot platform (Segbot) as
shown in Figure 3.4 (Left) using the Robot Operating System (ROS) (Quigley et
al., 2009). The robot architecture is shown in Figure 3.4 (Right). Users interacted
with the agent through a graphical user interface by typing in natural language. The
agent generated queries to a symbolic planner formalized using action language BC
(Lee et al., 2013) from user goals.

For testing, users were given one goal from the navigation and delivery tasks,
then filled out the survey. The task prompts included the directory panels used in
the Mechanical Turk experiments pairing names and office numbers and showing
items available to the robot for delivery (Figure 3.1a).

We evaluated our agent’s initial performance by giving 10 users one of each
of these goals (such that each delivery test goal was seen once and each navigation
test goal was seen 5 times). Users were allowed to skip goals they felt they could
not convey. We refer to this group as Init Test.

We then allowed the agent to perform incremental learning for four days in
our office space. Students working here were encouraged to chat with it, but were
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Init Test Trained Test

Survey Question Likert [0-4]
Tasks Easy 3.8 3.7
Robot Understood 1.6 2.9
Robot Frustrated 2.5 1.5
Use Navigation 2.8 2.5
Use Delivery 1.6 2.5
Goals Completed Percent
Navigation 90 90
Delivery 20 60

Table 3.2: Average Segbot survey responses from the two test groups and the pro-
portion of task goals completed. Means in bold differ significantly (p < 0.05).
Means in italics trend different (p < 0.1).

not instructed on how to do so beyond a panel displaying the directory information
and a brief prompt saying the robot could only perform navigation and delivery

tasks. Users in test conditions did not interact with the robot during training. After
understanding and carrying out a goal, the robot prompted the user for whether the
actions taken were correct. If they answered yes and the goal was not in the test
set, the agent retrained its semantic parser with new training examples aligned from
the conversation. A video demonstrating the learning process on the Segbot can be
found at: https://youtu.be/FL9IhJQOzb8.

We evaluated the retrained agent as before. The same testing goal pairs were
used with 10 new users. We refer to this latter set as Trained Test.

During training, the robot understood and carried out 35 goals, learning in-
crementally from these conversations. Table 3.2 compares the survey responses of
users and the number of goals users completed of each task type in the Init Test

and Trained Test groups. We allow human users to opt-out of a task if they
feel frustrated with the system, and measure how often they are able to complete
the target goal (proportion of successful goals) before and after the semantic parser
learns from the 35 natural conversations had during the allowed training days.

We note that there is significant improvement in user perception of the robot’s
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understanding, and trends towards less user frustration and higher delivery-goal cor-
rectness. Goal success rates mirror the results for dialog lengths in the large-scale
Mechanical Turk experiments. In particular, navigation success remains the same,
while three times more in-person human users are able to complete the delivery goal
after retraining from natural interactions. Though users did not significantly favor
using the robot for tasks after training, several users in both groups commented that
they would not use guidance only because the Segbot moved too slowly.

Conclusion and Extensions

In this chapter, we introduce a dialog agent that improves its language un-
derstanding without requiring a large corpus of annotated data. This work uses a
static, hand-coded dialog policy to resolve confusion the agent has when taking
commands from human users. This policy centers around slot-filling for commands
and their known arguments (e.g. Table 3.1), done by estimating a discrete belief
about the user goal from an otherwise continuous one.

We also explore reinforcement learning to learn a better, Partially-Observable
Markov Decision Process (POMDP) dialog policy (Young et al., 2013) that consid-
ers a continuous belief state alongside improving semantic parsing from conversa-
tions using the techniques presented in this chapter (Padmakumar et al., 2017). We
find that jointly retraining the parser and dialog strategy, using conversation length
as a metric for dialog success, outperforms retraining either in isolation. Changes
to the parser effect the which dialog strategy is most efficient, since changes to
the parser effect the underlying space over which the POMDP driving the dialog
operates. The learned dialog policy selects which questions to ask based on a con-
tinuous agent belief state, in contrast with the work in this chapter, which samples
a discrete belief state that is then fed into a static, template-based dialog-policy. In
effect, in this chapter dialog control is handled by probabilistic sampling, which is
replaced with a reinforcement-learning based POMDP agent for selecting a ques-
tion in follow-up work. Such a policy converges to user goals more quickly by
accurately taking an expected shortest dialog path from the current understanding
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of the user’s goal to a complete and confident understanding.
By learning to translate natural language phrases into semantic forms, and

improving that translation over time by improving parser performance using data
induced from conversations, the work in this chapter is the first step towards re-
solving commands, like (1.1), in our work to integrate parsing and perception in
an embodied robotic system, discussed in Chapter 8. In the following chapter, we
introduce multi-modal perception to go beyond visual sensory data to ground words
like light and mug.
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Chapter 4

Learning Multi-Modal Grounded Linguistic
Semantics by Playing I Spy

Grounded language learning bridges words like red and square with robot
perception. The vast majority of existing work in this space limits robot perception
to vision. We build perceptual models that use haptic, auditory, and proprioceptive
data acquired through robot exploratory behaviors to go beyond vision. In this chap-
ter, we describe a system that learns to ground natural language words describing
objects using supervision from an interactive human-robot I Spy game, as presented
in (Thomason et al., 2016).

While corpora like ImageNet (Deng et al., 2009) can provide a large set of
labeled images to learn classifiers for words and noun phrases, properties like heavy

are grounded in non-visual space. Annotating a similarly large body of objects with
non-visual properties and gathering robot perception or even features (like weight)
about them is costly and does not generalize across different robotic platforms. We
use the I Spy game as a paradigm to bootstrap a perceptual grounding system since
it is fun for human users and requires less labor than strict annotation. This work
provides a blueprint for perceptual grounding of the predicates light and mug from
the earlier example (1.1). We later continually refine this bootstrapped perception
in a fully integrated robotic system that uses dialog to clarify misunderstandings
(Chapter 8).

In the I Spy game, the human and robot take turns describing one object
among several, then trying to guess which object the other has described (Figure 4.1
(Left, Center)). We demonstrate that our multi-modal system for grounding natural
language outperforms a traditional, vision-only grounding framework by compar-
ing the two on the I Spy task.
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Figure 4.1: Top-Left: the robot guesses an object described by a human participant
as silver, round, and empty. Top-Right: a human participant guesses an object
described by the robot as light, tall, and tub. Bottom: objects used in the I Spy
game divided into the four folds, from fold 0 on the left to fold 3 on the right.
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Motivation

Robots need to be able to connect language to their environment in order to
discuss real world objects with humans. Learning to map from referring expressions
such as the blue cup to an object referent in the world is an example of grounded
language learning. Early work on grounded language learning enabled a machine to
map from adjectives and nouns such as red and block to objects in a scene through
vision-based classifiers (Roy, 2001). Most work has focused on grounding these
kinds of language predicates through visual information. However, other sensory
modalities such as haptic and auditory are also useful in allowing robots to dis-
criminate between object categories (Sinapov et al., 2014b). This chapter explores
grounding language predicates by considering visual, haptic, auditory, and propri-
oceptive senses.

A home or office robot can explore objects in an unsupervised way to gather
perceptual data, but needs human supervision to connect this data to language.
Learning grounded semantics through human-robot dialog allows a system to ac-
quire the relevant knowledge without the need for laborious labeling of numerous
objects for every potential lexical descriptor. A few groups have explored learning
from interactive linguistic games such as I Spy and 20 Questions (Parde et al., 2015;
Vogel et al., 2010); however, these studies only employed vision. We use a variation
on the children’s game I Spy as a learning framework for gathering human language
labels for objects to learn multi-modal grounded lexical semantics (Figure 4.1).

There is a large body of work on grounding language for robots using visual
information. For grounding referring expressions in an environment, many learn
perceptual classifiers for words given some pairing of human descriptions and la-
beled scenes (Liu et al., 2014; Malinowski and Fritz, 2014; Mohan et al., 2013; Sun
et al., 2013; Dindo and Zambuto, 2010; Vogel et al., 2010). Some approaches addi-
tionally incorporate language models into the learning phase (Spranger and Steels,
2015; Krishnamurthy and Kollar, 2013; Perera and Allen, 2013; Matuszek et al.,
2012a). Incorporating a language model also allows for more robust generation
of robot referring expressions for objects, as explored in (Tellex et al., 2014). In
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general, referring expression generation is difficult in dialog (Fang et al., 2014).
Since we focus on comparing multi-modal to vision-only grounding, our method
uses simple language understanding and constructs new predicate classifiers for
each unseen content word used by a human playing I Spy, and our basic generation
system for describing objects is based only on these predicate classifiers.

Outside of robotics, there has been some work on combining language with
sensory modalities other than vision, such as audio (Kiela and Clark, 2015). Un-
like that line of work, our system is embodied in a learning robot that manipulates
objects to gain non-visual sensory experience.

Including a human in the learning loop provides a more realistic learning
scenario for applications such as household and office robotics. Past work has used
human speech plus gestures describing sets of objects on a table as supervision to
learn attribute classifiers (Matuszek et al., 2014; Kollar et al., 2013). Recent work
introduced the I Spy game as a supervisory framework for grounded language learn-
ing (Parde et al., 2015). Our work differs from these by using additional sensory
data beyond vision to build object attribute classifiers. Additionally, in our instanti-
ation of the I Spy task, the robot and the human both take a turn describing objects,
where in previous work only humans gave descriptions (Parde et al., 2015).

Methods

The robot used in this study was a Kinova MICO arm mounted on top of a
custom-built mobile base which remained stationary during our experiment. The
robot’s perception included joint effort sensors in each of the robot arm’s motors,
a microphone mounted on the mobile base, and an Xtion ASUS Pro RGBD cam-
era. The set of objects used consisted of 32 common household items including
cups, bottles, cans, and other containers, shown in Figure 4.1 (Right). Some of
the objects contained liquids or other contents (e.g., coffee beans) while others
were empty. Contemporary work gives a more detailed description of this object
dataset (Sinapov et al., 2016), but we briefly describe the exploration and modalities
below.
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grasp lift lower

drop press push
Figure 4.2: The behaviors the robot used to explore the objects. In addition, the
hold behavior (not shown) was performed after the lift behavior by simply holding
the object in place for half a second.

Prior to the experiment, the robot explored the objects using the methodol-
ogy described by (Sinapov et al., 2014a), and the dimensionality of the raw audi-
tory, haptic, and proprioceptive data were reduced comparably (final dimensionality
given in Table 4.1). In our case, the robot used 7 distinct actions: grasp, lift, hold,
lower, drop, push, and press, shown in Figure 4.2. During the execution of each
action, the robot recorded the sensory perceptions from haptic (i.e., joint efforts)
and auditory sensory modalities. During the grasp action, the robot recorded pro-

prioceptive (i.e., joint angular positions) sensory information from its fingers. The
joint efforts and joint positions were recorded for all 6 joints at 15 Hz. The audi-
tory sensory modality was represented as the Discrete Fourier Transform computed
using 65 frequency bins.

In addition to the 7 interactive behaviors, the robot also performed the look

action which produced three different kinds of sensory modalities: 1) an RGB color
histogram of the object using 4 bins per channel; 2) Fast point feature histogram
(fpfh) shape features (Rusu et al., 2009) as implemented in the Point Cloud Li-
brary (Aldoma et al., 2012); and 3) deep visual features from the 16-layer VGG
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Behavior Modality
color fpfh vgg

look 64 308 4096
audio haptics proprioception

grasp 100 60 20
drop, hold,
lift, lower, 100 60
press, push

Table 4.1: The number of features extracted from each context, or combination of
robot behavior and perceptual modality.

network (Simonyan and Zisserman, 2014). The first two types of features were
computed using the segmented point cloud of the object while the deep features
were computed using the 2D image of the object.

Thus, each of the robot’s 8 actions produced two to three different kinds of
sensory signals. Each viable combination of an action and a sensory modality is a
unique sensorimotor context. In our experiment, the set of contexts C was of size
2×3 + 6×2 = 18. The robot performed its full sequence of exploratory actions on
each object 5 different times (for the look behavior, the object was rotated to a new
angle each time). Given a context c ∈ C and an object i ∈ O, let the set X c

i contain
all five feature vectors observed with object i in context c.

For each language predicate p, a classifier Gp was learned to decide whether
objects possessed the attribute denoted by p. This classifier was informed by context
sub-classifiers that determined whether p held for subsets of an object’s features.

The feature space of objects was partitioned by context. Each context classi-
fierMc, c ∈ C was a quadratic-kernel SVM trained with positive and negative labels
for context feature vectors derived from the I Spy game. We defined Mc(X c

i ) ∈
[−1, 1] as the average classifier output over all observations for object i ∈ O (indi-
vidual SVM decisions on observations were in {−1, 1}).

Following previous work in multi-modal exploration, for each context we
calculated Cohen’s Kappa κc ∈ [0, 1] to measure the agreement across observations
between the decisions of the Mc classifier and the ground truth labels from the I
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Spy game (Sinapov et al., 2014b). We use κ instead of accuracy because it han-
dles skewed-class data better than accuracy, which could be deceptively high, for
example, for a classifier that always returns false for a predicate with few positive
examples (such as ball, among our objects). We round negative κ up to 0. Given
these context classifiers and associated κ confidences, we calculate an overall deci-
sion, Gp(i), for i ∈ O for each behavior b and modality m as:

Gp(i) =
∑
c∈C

κcMc(X c
i ) ∈ [−1, 1]. (4.1)

The sign ofGp(i) gives a decision on whether p applies to iwith confidence |Gp(i)|.
For example, a classifier built for ‘fat’∈ P could give

Gfat(wide-yellow-cylinder) = 0.137, a positive classification, with κgr,au =

0.515 for the grasp behavior’s auditory modality, the most confident context. This
context could be useful for this predicate because the sound of the fingers’ motors
stop sooner for wider objects.

Language predicates and their positive/negative object labels were gathered
through human-robot dialog during the I Spy game. The human participant and
robot were seated at opposite ends of a small table. A set of 4 objects were placed
on the table for both to see (Figure 4.1). We denote the set of objects on the table
during a given game OT .

Human Turn. On the participant’s turn, the robot asked him or her to pick
an object and describe it in one phrase. We used a standard stopword list to strip out
non-content words from the participant’s description. The remaining words were
treated as a set of language predicates, Hp. The robot assigned scores S to each
object i ∈ OT on the table:

S(i) =
∑
p∈Hp

Gp(i). (4.2)

The robot guessed objects in descending order by score (ties broken randomly) by
pointing at them and asking whether it was correct. When the correct object was
found, it was added as a positive training example for all predicates p ∈ Hp for use
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in future training.
Robot Turn. On the robot’s turn, an object was chosen at random from those

on the table. To describe the object, the robot scored the set of known predicates
learned from previous play. Following Gricean principles (Grice, 1975), the robot
attempted to describe the object with predicates that applied but did not ambigu-
ously refer to other objects. We used a predicate score R that rewarded describing
the chosen object i∗ and penalized describing the other objects on the table:

R(p) = |OT |Gp(i
∗)−

∑
j∈OT \{i∗}

Gp(j). (4.3)

The robot choose up to three highest scoring predicates P̂ to describe object i∗,
using fewer if S < 0 for those remaining. Once ready to guess, the participant
touched objects until the robot confirmed that they had guessed the right one (i∗).

The robot then pointed to i∗ and started a follow-up dialog in order to gather
both positive and negative labels for i∗. In addition to predicates P̂ used to describe
the object, the robot selected up to 5−|P̂ | additional predicates P̄ . P̄ were selected
randomly with p ∈ P \ P̂ having a chance of inclusion proportional to 1−|Gp(i

∗)|,
such that classifiers with low confidence in whether or not p applied to i∗ were
more likely to be selected. The robot then asked the participant whether they would
describe the object i∗ using each p ∈ P̂ ∪ P̄ . Responses to these questions provided
additional positive/negative labels on object i∗ for these predicates.

Evaluation

In our I Spy task, the human and robot take turns describing objects from
among 4 on a tabletop using attributes (Figure 4.1). A video demonstrating the I

Spy task and robot learning can be viewed at:
https://youtu.be/jLHzRXPCi_w. As an example, we suggested partici-
pants describe an object as black rectangle as opposed to whiteboard eraser. Ad-
ditionally, participants were told they could handle the objects physically before
offering a description, but were not explicitly asked to use non-visual predicates.
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Once participants offered a description, the robot guessed candidate objects in or-
der of computed confidence until one was confirmed as correct by the participant.

In the second half of each round, the robot picked an object and then de-
scribed it with up to three predicates. The participant was again able to pick up
and physically handle objects before guessing. The robot confirmed or denied each
participant guess until the correct object was chosen.

I Spy gameplay admits two metrics. The robot guess metric is the number
of turns the robot took to guess which object the participant was describing. The
human guess metric is the complement. Using these metrics, we compare the
performance of two I Spy playing systems (multi-modal and vision-only). We
also compare the agreement between both systems’ predicate classifiers and human
labels acquired during the game.

During the course of the game, the robot used its RGBD camera to detect
the locations of the objects and subsequently detect whenever a human reached out
and touched an object in response to the robot’s turn. The robot could also reach
out and point to an object when guessing.

To determine whether multi-modal perception helps a robot learn grounded
language, we had two different systems play I Spy with 42 human participants. The
baseline vision only system used only the look behavior when grounding language
predicates. Our multi-modal system used the full suite of behaviors and associated
haptic, proprioceptive, and auditory modalities shown in Table 4.1 when grounding
language predicates.

Setup

Data Folds. We divided our 32-object dataset into 4 folds. For each fold, at
least 10 human participants played I Spy with both the vision only and multi-modal
systems. Four games were played by each participant. The vision only system and
multi-modal system were each used in 2 games, and these games’ temporal order
was randomized. Each system played with all 8 objects per fold, but the split into 2
groups of 4 and the order of objects on the table were randomized.

For fold 0, the systems were undifferentiated and so only one set of 2 games
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was played by each participant. For subsequent folds, the systems were incremen-
tally trained using labels from previous folds only, such that the systems were al-
ways being tested against novel, unseen objects. This contrasts prior work using the
I Spy game (Parde et al., 2015), where the same objects were used during training
and testing.

Human Participants. Our 42 participants were undergraduate and graduate
students as well as some staff at our university. At the beginning of each trial,
participants were shown an instructional video of one of the authors playing a single
game of I Spy with the robot, then given a sheet of instructions about the game and
how to communicate with the robot. In every game, participants took one turn and
the robot took one turn. To avoid noise from automatic speech recognition, a study
coordinator remained in the room and transcribed the participant’s speech to the
robot from a remote computer. This was done discreetly and not revealed to the
participant until debriefing, when the games were over.

Quantitative Results

To determine whether our multi-modal approach outperformed a traditional
vision only approach, we measured the average number of robot guesses and human
guesses in games played with each fold of objects. The systems were identical in
fold 0 since both were untrained. In the end, we trained the systems on all available
data to calculate predicate classifier agreement with human labels.

Robot guess. Figure 4.3 (Top) shows the average number of robot guesses
for the games in each fold. Because we had access to the scores the robot assigned
each object, we calculated the expected number of robot guesses for each turn. For
example, if all 4 objects were tied for first, the expected number of robot guesses
for that turn was 2.5, regardless of whether it got (un)lucky and picked the correct
object (last)first. Two-point-five is the expected number for 4 tied objects because
the probability of picking in any order is equal, so the expected turn to get the
correct object is 1+2+3+4

4
= 10

4
= 2.5.

After training on just one fold, our multi-modal approach performs sta-
tistically significantly better than the expected number of turns for guessing (the
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Metric System
vision only multi-modal

precision .250 .378+
recall .179 .348*
F1 .196 .354*

Figure 4.3: Top: Average expected number of guesses the robot made on each hu-
man turn with standard error bars shown. Bold: significantly lower than the average
at fold 0 with p < 0.05 (unpaired Student’s t-test). *: significantly lower than the
competing system on this fold on participant-by-participant basis with p < 0.05
(paired Student’s t-test). Bottom: Average performance of predicate classifiers
used by the vision only and multi-modal systems in leave-one-object-out cross val-
idation. *: significantly greater than competing system with p < 0.05. +: p < 0.1
(Student’s unpaired t-test).
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strategy for the untrained fold 0 system) for the remainder of the games. The vi-
sion only system, by contrast, is never able to differentiate itself significantly from
random guessing, even as more training data becomes available. We suspect the
number of objects is too small for the vision only system to develop decent models
of many predicates, whereas multi-modal exploration allows that system to extract
more information per object.

Human guess. Neither the vision only nor multi-modal system’s perfor-
mance improves on this metric with statistical significance as more training data
is seen. Human guesses hovered around 2.5 throughout all levels of training and
sets of objects. This result highlights the difficulty of the robots turn in an I Spy
framework, which requires not just good coverage of grounded words (as when
figuring out what object the human is describing), but also high accuracy when us-
ing classifiers on new objects. Context classifiers with few examples could achieve
confidence κ = 1, making the predicates they represented more likely to be chosen
to describe objects. It is possible that the system would have performed better on
this metric if the predicate scoring function R additionally favored predicates with
many examples over those with few.

Predicate Agreement. Using leave-one-object-out cross validation to eval-
uate predicate classifiers, we calculated the average precision, recall, and F1 scores
of each against human predicate labels on the held-out object. Table 4.3 (Bottom)
gives these metrics for the 74 predicates used by the systems. There were 53 pred-
icates shared between the two systems. The results are similar for a paired t-test
across these shared predicates with slightly reduced significance.

Across the objects our robot explored, our multi-modal system achieves
consistently better agreement with human assignments of predicates to objects than
does the vision only system.

Qualitative Results

Correlations to physical properties. To validate whether the systems learned
non-visual properties of objects, for every predicate we calculated the Pearson’s cor-
relation r between its decision on each object and that object’s measured weight,
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height, and width. As before, the decisions were made on held-out objects in leave-
one-out cross validation. We found predicates for which r > 0.5 with p < 0.05

when the system had at least 10 objects with labels for the predicate on which to
train.

The vision only system led to no predicates correlated against these physical
object features.

The multi-modal system learned to ground predicates which correlate well
to objects’ height and weight. The tall predicate correlates with objects that are
higher (r = .521), small (r = −.665) correlates with objects that are lighter, and
water (r = .814) correlates with objects that are heavier. The latter is likely from
objects described as water bottle, which, in our dataset, are mostly filled either half-
way or totally and thus heavier. There is also a spurious correlation between blue

and weight (r = .549). This highlights the value of multi-modal grounding, since
words like half-full cannot be evaluated with vision alone when dealing with closed
containers that have unobservable contents.

Conclusion

In this chapter, we surpass past work on grounding natural language in robot
sensory perception by going beyond vision and exploring haptic, auditory, and pro-
prioceptive robot senses. We compare a vision only grounding system to one that
uses these additional senses by employing an embodied robot playing I Spy with
many human users. To our knowledge, ours is the first robotic system to perform
natural language grounding using multi-modal sensory perception through natural
interaction with human users.

We demonstrate quantitatively, through the number of turns the robot needs
to guess objects described by humans, as well as through agreement with humans
on language predicate labels for objects, that our multi-modal framework learns
more effective lexical groundings than one using vision alone. We also explore the
learned groundings qualitatively, showing words for which non-visual information
helps most as well as when non-visual properties of objects correlate with learned
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meanings (e.g. “small” correlates negatively with object weight).
This work, while introducing multi-modal grounding for a robotic system,

relies on human-robot game to gather perceptual labels. In a deployed robotic sys-
tem, such labels should be gathered, as much as possible, as needed and on-the-fly
during goal-oriented conversations. In the following chapter, we introduce a conver-
sation paradigm for gathering perceptual labels opportunistically during an object
retrieval task.
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Chapter 5

Opportunistic Active Learning for Grounding
Natural Language Descriptions

Grounding perceptual predicates like red and heavy to objects in the real
world is necessary for robots to carry out object identification and retrieval tasks.
Object identification may occur in many deployed settings, such as homes (grab

my brown coffee cup) or factory floors (go lift the heavy pallet). To build concept
models for these perceptual predicates, we can use training data in the form of
objects labeled with whether those concepts apply. In this chapter, we discuss an
object identification task in which a human requests a target object and a robot
interlocutor is allowed to ask questions about local objects, using an active learning
strategy, to refine its concept models, as detailed in (Thomason et al., 2017)

Active learning identifies data points from a pool of unlabeled examples
whose labels, if made available, are most likely to improve the predictions of a su-
pervised model. Most research on active learning assumes that an agent has access
to the entire pool of unlabeled data and can ask for labels of any data points during
an initial training phase. However, when incorporated in a larger task, an agent
may only be able to query some subset of the unlabeled pool. An agent can also
opportunistically query for labels that may be useful in the future, even if they are
not immediately relevant. Here, we demonstrate that this type of opportunistic ac-
tive learning can improve performance in grounding natural language descriptions
of everyday objects. We find, with a real robot in an object identification setting,
that inquisitive behavior—asking users important questions about the meanings of
words that may be off-topic for the current dialog—leads to identifying the correct
object more often in future interactions.

This work provides a natural context for gathering data for the perceptual
grounding required to understand light and mug from our earlier example (1.1). We
later use these concept questions about objects as a sub-dialog in a larger command

47



understanding pipeline (Chapter 8).

Motivation

In machine learning tasks where obtaining labeled examples is costly (such
as those where human interaction is required), active learning allows a system to
select its own training data to obtain better performance using fewer labeled exam-
ples (Settles, 2010). This allows an agent to iteratively query for labels of examples
from an unlabeled pool, and select examples it believes most useful for improving
its model.

An important skill required by robots in a home or office setting is retrieving
objects based on natural language descriptions. We consider an object identification
task where humans can describe real-world objects using both visual and non-visual
words (e.g. red and heavy). In this task, the pool of pre-labeled examples can be
extremely limited, since curating a set of all words that apply to every object in an
environment is a huge annotation effort for a human user. This motivates our use of
active learning to query for additional labels.

Most research on active learning assumes the agent can query a human ex-
pert (or an automated oracle) during training for the label of any unlabeled example.
Active learning can also be employed while an agent is engaged in such a task and
only has access to a limited set of examples in the current environment. In a robot
learning setting, physical limitations constrain the set of examples available at any
given time.

In particular, a robot in operation will typically be restricted to querying
about objects that are physically nearby. In addition, it may be engaged in a task
with the human to whom the query is addressed, and for whom the query is unre-
lated. In such situations, the robot needs to be inquisitive—asking questions that
may not be immediately relevant to the task at hand, and opportunistic—asking lo-
cally convenient questions that may not be optimal among all objects since only a
subset of objects is available.

We call this setting opportunistic active learning, and it differs from existing
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work on active learning in three key ways. First, the agent may not be able to ask
queries that are globally most useful to improve its models, since the task setting
limits the available objects. Second, the agent must decide whether or not to ask
such queries while performing another task. Finally, the agent typically depends
on some queries being useful for future interactions, but not necessarily the task
at hand. Thus, queries have a higher cost than in traditional active learning setups
where the goal of the system is simply to learn a good model.

We examine the usefulness of opportunistic active learning to improve an
agent’s understanding of natural language descriptions of everyday objects. We
consider a task where a robot must identify which member of a set of objects a hu-
man user is referring to using natural language. The robot learns classifiers based
on multi-sensory information for language predicates that are used to ground nat-
ural language descriptions (as in Chapter 4). When trying to understand an object
description from one user, the agent is allowed to query for predicate/object labels
not directly related to the current interaction.

We compare two agents controlling the robot: one task-oriented agent that
only asks questions relevant to the current dialog; and one inquisitive agent that
is able to ask questions unrelated to the current dialog for expected future perfor-
mance gains. We show that the inquisitive agent both quantitatively outperforms
the task-oriented one at predicting the correct object described by human partici-
pants, and is rated qualitatively more fun and usable by participants. To our knowl-
edge, ours is the first work to evaluate the effects of asking off-topic questions
to human users interacting with a physical robot performing object identification
to improve downstream task performance. The source code for this experiment
is available at: https://github.com/thomason-jesse/perception_
classifiers/tree/active_learning.

Most research in active learning is concerned with the design of appro-
priate metrics to evaluate possible queries’ likelihood of improving the current
model. Examples include uncertainty sampling (Lewis and Gale, 1994), density-
weighted methods (Settles and Craven, 2008), and the presence of conflicting evi-
dence (Sharma and Bilgic, 2017). A survey can be found in (Settles, 2010). These
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typically assume that the learner can query any example from the pool of unlabeled
examples at any time. In contrast, in our work, the system is restricted so that it can
only query for data about a subset of examples (objects, in our experiments) at any
time.

Past work compares how human teachers perceive different types of queries
a robot may pose during learning from a demonstration task (Cakmak and Thomaz,
2012). In that work, the robot required a human operator to aid in the robot’s
perception, whereas the system presented in this chapter operates autonomously.

Turn-taking interactions where humans have to teach the robot concepts
using positive and negative labeled examples are typical for interactive language
grounding, but do not employ active learning (Dindo and Zambuto, 2010; Kollar et
al., 2013; Parde et al., 2015; Lutkebohle et al., 2009). Other research uses human-
robot interaction, employing forms of active learning to better ground predicates.
In those works, the effectiveness of the active learning strategies is not explicitly
tested (Vogel et al., 2010; Thomason et al., 2016; Skočaj et al., 2016; Vogel et al.,
2010), ontological knowledge (pre-coding red as a color) is used during ground-
ing (Mohan et al., 2012), or the predicates to be grounded are not drawn from an
open-vocabulary of unrestricted user speech (Cakmak et al., 2010; Kulick et al.,
2013).

We fill this gap, testing a strategy that asks human users inquisitive questions
that are off-topic to the task at hand, studying their effects on downstream task per-
formance and human users’ perceptions. Additionally, our work explores learning
open-vocabulary predicates using noisy, high-dimensional visual, audio, and haptic
information. We situate our evaluation within the real-world task of object identi-
fication, making the multi-modal, perceptual grounding component a prerequisite,
but not ultimate goal for good performance.

Methods

We test the effectiveness of using active learning to obtain labels for pred-
icates not relevant to the current dialog for long-term task success. We created an
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Robot

Active Test Set

Active Training Set

Table 3 Table 2 Table 1

Figure 5.1: Participants describe an object on Table 2 from the active test set to the
robot in natural language, then answer the robot’s questions about the objects in its
active training set on the side Tables 1 and 3 before the robot guesses the described
target object.

object identification task using a real robot to instantiate the problem. Figure 5.1
shows the physical setup of our task. The human participant and robot both start
facing Table 2. This table holds objects in the active test setOte. The tables flanking
the robot (Tables 1 and 3) contain objects in the active training set Otr.

Human participants engage in a dialog with the robot. The robot asks the
human to describe one of the four objects in its active test set with a noun phrase.
Participants are primed to describe objects with properties, rather than categories,
given the motivating example a fuzzy black rectangle for an eraser. Participants
are told that the robot had both looked at and interacted with the objects physically
using its arm. A demonstration video of the robot system and dialog agents is
available here: https://youtu.be/f-CnIF92_wo.

Natural Language Grounding

To connect the noun phrases offered by participants to sensory perception,
the robot strips stopwords from the phrase and considers all remaining words as
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perceptual predicates. We do not restrict the words that participants are allowed to
use to describe objects, so our system learns from an open vocabulary of possible
predicates. However, it is not equipped to handle multi-word predicates or those
that require understanding phrases (e.g. water bottle or not red). The robot then
creates classifiers to identify these predicates, using objects as positive and neg-
ative examples, and getting predicate labels for objects by asking questions about
objects in its active training set. Predicates are treated as independent and a separate
classifier is learned for each predicate.

Users offer words like blue, cylinder, and heavy when describing objects.
We use a corpus of both visual and non-visual feature representations of objects
and their features gathered by multiple interaction behaviors by previous work on
an object ordering task (Sinapov et al., 2016). These are the same objects and
features previously used in the I Spy game in Chapter 4. In that chapter, we es-
tablished that using non-visual modalities when performing language grounding
can help with non-visual words like heavy. We replicate that methodology here:
training and ensembling SVM classifiers for each predicate to predict whether that
predicate applies to a novel object (Thomason et al., 2016). For every predicate
p ∈ P for P the set of predicates known to the agent and object o ∈ Otr ∪ Ote, a
decision d(p, o) ∈ {−1, 1} and a confidence in that decision are calculated using
Cohen’s kappa κ(p, o) estimated from cross-validation performance on available
examples. For predicates with too few examples to train SVMs (at least 2 positive
and 2 negative examples are needed to fit the SVMs and obtain confidences), we set
d(p, o) = −1 and κ(p, o) = 0 for all objects.

Active Learning Dialog Policy

After the participant describes a chosen target object in natural language,
the robot asks m questions about objects in its active training set before guessing a
target object. Figure 5.2 gives an overview of this dialog.

With probability qyn (we set qyn = 0.2 in all experiments), the robot points
to an object and asks the yes/no question Would you use the word p to describe this

object? for some predicate p. To select the predicate p and object o ∈ Otr to ask
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about, we first find the objects in Otr with the lowest confidence κ per predicate
(ties broken randomly).

omin(p) = argmino∈Otr
(κ(p, o)).

With uncertainty sampling as the query strategy (Settles, 2010), omin(p) is
the next object whose label is queried in a pool-based active learning setting for
p’s perceptual classifier. However, because the system is attempting to learn mul-
tiple perceptual classifiers, it must also choose which of them should be updated.
We weight predicates inversely proportional to their confidence in their least confi-
dent labels. That is, the predicate p, and its corresponding least-confidence object
omin(p), are chosen to query with probability:

prob(p) =
1− κ(p, omin(p))∑

q∈P\{p} 1− κ(q, omin(q))
. (5.1)

When querying a predicate and object in the above manner, the robot physi-
cally turns to the table holding that object, points to it, and asks whether p applies.
After getting this new positive or negative example, the robot updates p’s perceptual
classifier.

With probability 1 − qyn, the robot instead selects a predicate p and asks
Could you show me an object that you would describe as p? The participant indi-
cates a positive example object for p in the active training set or replies none, letting
the robot know that all objects in the active training set are negative examples of p.
A predicate p is selected uniformly at random from those with insufficient data to
fit a classifier:

p ∈ {q : q ∈ P ∧ κ(q, omin(q)) = 0}, (5.2)

with the additional constraint that predicates previously asked about in the current
dialog with the participant are blacklisted from re-selection. To select an object in
the active training set, the participant has to direct the robot to physically face the
table containing that object. After getting this new positive label (or, in the case
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Ask for object 
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H: “A yellow bottle with 
water filled in it.”

R: “Would you use the 
word p to describe this 
object?”

R: “Can you show me 
an object you would 
describe as p?”

R: “Is this the object 
you had in mind?”

Figure 5.2: After extracting predicates PU from a human description of a target
object, the dialog agent asks up to m questions of two types, choosing one question
type over the other with probability qyn. When asking questions, new object labels
for the chosen predicate p are restricted to objects in the active training set, o ∈ Otr.
The agent then guesses the target object in the active test set o ∈ Ote given its
updated grounding classifiers for predicates PU .

of no object exhibiting p, |Otr| negative labels), the robot updates p’s perceptual
classifier.

After asking questions, the robot evaluates the predicates PU ⊆ P of the
participant’s utterance against the objects in the active test set Ote, then turns to
the table of test objects and points to the one that best fit its understanding of the
description, o∗ ∈ Ote,

o∗ = argmaxo∈Ote

(∑
p∈PU

d(p, o)κ(p, o)

)
. (5.3)

If the robot guesses incorrectly, the human points out the correct object. The
target object is considered a positive example for predicates PU used to describe the
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object when the agent is fully retrained between rounds (i.e. whenOte is rotated out
to become Otr, and the robot is allowed to see these objects for building perceptual
predicate classifiers).

Robot Implementation

Experiments are conducted on the BWIBots service robot platform (Khan-
delwal et al., 2017). The robot uses a Kinova Mico arm mounted on top of a custom-
built mobile base using a Stanley Robotics Segway RMP which rotates to face the
three tables holding the objects. The robot uses an Asus Xtion Pro RGBD camera
mounted at the top of its frame to detect the locations of the objects after turning
to face a table, and to detect when a human touches an object. The robot can also
reach out and point to an object when asking whether a predicate applies. We imple-
ment robot behaviors in the Robot Operating System, perform text-to-speech using
the Festival Speech Synthesis System (Taylor et al., 1998), and perform automatic-
speech-recognition using Google Speech API, recording user speech through a Tur-
tle Beach Ear Force P11 Amplified Stereo Gaming Headset. Once the dialog be-
gins, the robot operates autonomously, asking for operator intervention only when
the Xtion camera fails to detect the four expected objects on a tabletop surface (of-
ten due to being slightly non-orthogonal to a table after a few in-place rotations, or
due to changing lighting conditions as the sun rose and fell).

Evaluation

We randomly divide the set of 32 objects explored in (Sinapov et al., 2016)
into 4 folds of 8 objects each, shown in Figure 5.3. We index the folds into {0, 1, 2,
3}.

We compare two dialog agents controlling the robot. The baseline agent is
only allowed to ask questions about the predicates relevant to the current dialog.
That is, if a person describes the target object as a blue cylinder, then the baseline

agent can only ask about blue and cylinder. We set m = 3 for the baseline agent.
By contrast, the inquisitive agent is allowed to ask questions about any predicate
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Figure 5.3: The objects used in our experiments, from fold 0 on the far left to fold
3 on the far right.

it had previously heard, from any user. Thus, the inquisitive agent can ask about
heavy even if the current human says a blue cylinder to describe the target object.
We set m = 5 for the inquisitive agent, making it both more talkative and less task-
oriented than the baseline agent. It would be interesting to learn the optimal values
of the parameters for task performance via reinforcement learning, which we leave
for future work. In the final round of testing described below, the inquisitive agent
is restricted to on-topic questions and has m = 3, making the agents differ only by
their training strategies up to that point.

In the object identification game, the objects in the active training set are
from fold n when the objects in the active test set are from fold n+ 1. Both agents
begin with no predicate models. Each human participant is assigned to one of the
two agents before the session begins. Participants play two games each. Both games
have the 8 objects in the active training set randomly ordered on the robot’s side
tables. Between games, the 4 objects on the robot’s front table are alternated such
that all 8 of the objects in the active test may be described by the participant. After
the games, each participant fills out an exit survey. The agents are tested across
three rounds, with objects from the active test set moving to the active training set
between rounds. The rounds can be summarized by:

• Round 1 with fold 0 as the active training set and fold 1 the active test set,
the agents effectively differ only by the number of questions they can ask,
since neither have seen any predicates before;

56



• Round 2 with fold 1 as the active training set and fold 2 the active test set,
the inquisitive agent can ask about the predicates in the current dialog or any
predicate it learned from round 1;
• Round 3 with fold 2 as the active training set and fold 3 the active test set,

the agents both operate by the baseline rules (on-topic questions, m = 3),
comparing the effects of the training strategies used in rounds 1 and 2.

Between rounds, the dialogs that the agents have with their participants so
far are aggregated and new predicate classifiers are trained for use in the next round.
The agents are trained independently, with the baseline agent only using conversa-
tions it had, and the inquisitive agent only using conversations it had. This training
aggregation is done in round-based batches so that the objects in the active test set

are always unseen by the agents’ trained classifiers at the time of any given conver-
sation.

We hypothesize that:

1. The inquisitive agent will guess the correct object more often than the base-

line agent.
2. Users will not qualitatively dislike the inquisitive agent for asking too many

questions and being off-topic compared to the baseline agent.

Experimental Results

Five participants play two games each with the robot for each agent in each
round. In total, 30 study participants, comprising graduate and undergraduate stu-
dents and employees at our university, interact with the robot. After two games,
participants fill out an exit survey by answering Strongly Disagree, Disagree, Neu-

tral, Agree, or Strongly Agree (mapped to scores 0 − 4) to the questions shown in
Figure 5.4.
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(a) Correct guesses
(b) The robot seemed to understand my de-
scriptions.

(c) The robot asked too many questions. (d) It was fun to interact with the robot.

(e) I would use a robot like this to get objects
for me in another room. (f) The conversation took too long.

Figure 5.4: Comparing average robot correct guess and average user survey re-
sponses across the three rounds between the two agents. In round 1, the agents
differ only in the number of questions they can ask. In round 2, the inquisitive
agent can both ask more questions and ask about off-topic predicates. In round 3,
the agents differ only in their training so far, and both have a maximum number of
questions fixed to m = 3.
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Results

Figure 5.4 shows the robot’s average correctness across rounds between the
two agents, as well as the average results of exit survey questions. The inquisitive

agent consistently outperforms the baseline agent at identifying the correct object
(Figure 5.4a). This difference is statistically significant according to an unpaired,
two-sample t-test between correctness of the baseline versus inquisitive agent con-
sidering all 15 dialogs each had with participants (p = 0.035). We note that in the
event of T tied confidences for an object to select, with the correct object among
those tied, we reward the robot 1

|T | correctness, regardless of the random choice it
made among those T .

In round 3, when the agents were both restricted to m = 3 questions and
only on-topic predicates, the difference in performance is entirely attributable to
the training strategies of the agents so far, and the inquisitive agent again has a
higher rate of predicting the target object. The inquisitive agent outperforms a ran-
dom chance baseline (0.25 average correctness for 4 objects), while the baseline

agent performs slightly worse due to noisy perceptual classifiers with few positive
and negative examples. However, due to the low number of users per agent per
round (five), the difference considering round 3 alone is not statistically significant
(p = 0.27). The inquisitive agent is perceived as more understanding on average
than the baseline agent (Figure 5.4b). These results support our hypothesis that the
inquisitive agent will outperform the baseline agent at the object identification task.

The inquisitive agent is perceived as asking too many questions slightly more
often than the baseline agent in round 2, when it can ask about predicates not related
to the current dialog, but not in round 1, where it still asks 2 more questions than
the baseline agent on average, but they are on-topic (Figure 5.4c). The trends are
nearly identical for the similar question of whether users felt the conversation went
on too long (Figure 5.4f). The inquisitive agent scores higher with human users
across rounds than the baseline agent for the prompts about whether the robot is
fun (Figure 5.4d) and whether the user would use a household robot like this one
to get objects in another room (Figure 5.4e). These results support our hypotheses
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Predicates Used by Round
First seen round 1 round 2 round 3
round 1 71 32 32
round 2 37 14
round 3 24
Total 71 69 70

Table 5.1: The number of unique predicates introduced in each round and repeated
in subsequent rounds. The diagonal shows predicates used for the first time in each
round, while the bottom row shows the total unique predicates used (regardless of
when they were first seen) per round.

that the inquisitive agent will not be disliked for asking too many questions or being
off-topic.

Discussion

The inquisitive agent’s differences from the baseline agent in round 3 par-
tially rely on predicates from previous rounds being used again in that round. In
general, asking about an off-topic predicate only helps if that predicate will be seen
again in the future. Table 5.1 shows the predicates introduced in each round as well
as those repeated from a previous round. There is substantial overlap, indicating
that the dataset of objects used is homogeneous enough that learning predicates
from previous folds is helpful when identifying objects in unseen folds. Addition-
ally, there were 132 unique predicates introduced throughout all thirty participants’
games, suggesting that the dataset is diverse enough to elicit a wide range of lan-
guage predicates. Descriptions varied in length among users, as well, from 1 pred-
icate in utterances like heavy to 8 predicates in the utterance “a transparent plastic

bottle with brown peanuts inside it with the red cap.”

Conclusion

In this chapter, we introduce opportunistic active learning, where a system
engaged in a task makes use of active learning metrics to query for labels potentially
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useful for future tasks. We demonstrate that a robot using opportunistic active learn-
ing during an object identification task performs well in understanding unrestricted
natural language descriptions of a target object. Our robot experiments simulate a
household robot that can be used to retrieve distant objects and is allowed to first ask
questions about nearby objects to help clarify its understanding of natural language
predicates.

The robot can ask humans not just questions about words relevant for the
current task (e.g. questions about blue and cylinder when told to go get me the blue

cylinder) but about any words it currently understands poorly. We demonstrate that
such an inquisitive agent not only outperforms an agent that stays on-topic with its
questions at identifying the correct object described by a human user, but that users
find the inquisitive agent, on average, more comprehending, fun, and usable in a
real-world setting.

By performing semantic parsing rather than simple stopword removal for
language understanding, we go on, in Chapter 8, to jointly understand language
predicates and human commands. There, we additionally leverage opportunistic
active learning to choose questions that best clarify perceptual groundings during
task-oriented conversations.

The work in this chapter, as well as that on multi-modal perception with la-
bels acquired in a language game setting (Chapter 4), reveals two important, further
problems. First, performing the exploratory behaviors required to learn multi-modal
concept models is costly in terms of time and operator effort for a robot. Leveraging
the presence of a human operator, we should be able to ask for more than positive
and negative associations between objects and language predicates. For example,
rather than asking a user for an object she would describe as red, the robot might
ask what behavior is appropriate for understanding red. In this way, the model for
red could focus on perception related to the camera, sparing the robot the need for
performing other exploratory behaviors besides looking at the object. We explore
this possibility in detail in Chapter 7.

Second, the assumption made here that a word has a one-to-one relationship
with its underlying meaning, or concept model, does not always hold. For example,
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the word light can mean either light in weight or light in color. Humans in these ex-
periments use light both ways, rendering its concept labels noisy and its perceptual
classifier unhelpful for both senses. Further, a one-to-one assumption cannot take
advantage of synonymy, such as that between small and little, whose object labels
ought to be shared in a single predicate classifier for the underlying concept of being
small in size. In the following chapter, we introduce an unsupervised method for
discovering multiple word senses and synonymy between word senses when words
are represented by multiple context modalities, such as visually and linguistically.
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Chapter 6

Multi-Modal Word Synset Induction

A word in natural language can be polysemous—having multiple meanings—
as well as synonymous— meaning the same thing as other words. Word sense in-
duction discovers the senses of polysemous words. Synonymy detection detects
when two words are interchangeable. For a robot understanding human language
commands, performing both sense induction and synonymy detection is necessary
to correctly understand commands and collate information for synonymous words.

In this chapter, we combine these tasks, first inducing word senses and then
detecting similar senses to form word-sense synonym sets (synsets) in an unsu-
pervised fashion, as presented in (Thomason and Mooney, 2017). Given pairs of
images and text with noun phrase labels, we perform synset induction to produce
collections of underlying concepts described by one or more noun phrases. We find
that considering multi-modal features from both visual and textual context yields
better induced synsets than using either context alone. Human evaluations suggest
that our unsupervised, multi-modally induced synsets are comparable in quality to
annotation-assisted ImageNet synsets, achieving about 84% of ImageNet synsets’
approval.

This chapter details a method that could be used to distinguish, for example,
the polysemous senses of light from our earlier example (1.1). We leave unsu-
pervised polysemy and synonymy detection for predicates represented in multiple,
physical modalities for future work (Chapter 9).

Motivation

Semantic understanding in language is complicated by polysemous words
that have multiple, distinct meanings, and by synonymous sets of words that have
the same underlying meaning. The word bank, for example, has at least two distinct
meanings: a financial institution and the edge of a river. Manually constructed lex-
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ical resources such as WordNet (Fellbaum, 1998) organize noun phrase meanings
into senses which can be taken on by one or more noun phrases. Sets of synony-
mous senses are called synsets. For example, one WordNet synset contains both
bank and depository financial institution, two noun phrases that refer to the same
underlying meaning.

The ImageNet (Deng et al., 2009) corpus provides images that can be used
as visual context for a subset of WordNet synsets. ImageNet required extensive
annotation to construct, is limited to its current coverage, and is only available in
English. In this work, we introduce multi-modal word synset induction, which au-
tomatically creates an ImageNet-like resource from a raw collection of images and
associated texts annotated with noun phrases. The only initial annotation required
is an association between noun phrases and observations, and our method produces
synsets without further supervision.

Word sense induction (WSI) automatically determines the senses of a word
(Pedersen and Bruce, 1997). Text-based WSI is well-studied and discovers senses
by clustering a word’s textual contexts. The multiple senses for bank can be rec-
ognized as two clusters: one near words like money and deposit; and another near
words like river and shore. Word similarity tasks attempt to discover words with
related meanings. We can discover synsets by performing this kind of similarity
search over word senses. To our knowledge, this work is the first to chain poly-
semy detection via WSI and synonymy detection through sense similarity to induce
synsets.

Other notions of context, such as images a word is used to describe, can also
be used to discover word senses. For instance, the two readings of bank are both
textually and visually distinct. When detecting polysemy via WSI and synonymy
through similarity, we consider both textual and visual contexts for noun phrases.
In the multi-modal perception of a robotics domain, even more contexts might be
available, such as haptics and audio, as in Chapters 4 and 5.

For this task, we construct and release a corpus of images paired with web
text, each labeled with a noun phrase, from ImageNet synsets, and induce synsets
automatically from these. This corpus is large enough, in contrast to impoverished,
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existing multi-modal object datasets like those used in Chapters 4 and 5, to test
our unsupervised methods. We use the WSI metrics from the SemEval-2010 Word
Sense Induction and Disambiguation task (Manandhar et al., 2010), which evaluate
systems performing WSI, to measure the quality of the induced synsets against the
gold standard from ImageNet. Additionally, we gather human judgments about the
quality of induced synsets and ImageNet synsets.

A multi-modal approach using visual and textual features outperforms uni-
modal approaches to synset induction in both automated and human evaluations.
Human judgments rate our synsets from multi-modal induction as sensible about
84% as often as ImageNet’s, suggesting that our unsupervised synsets are compa-
rable in understandability to human-constructed ones.

In distributional semantics, learning a single vector for an ambiguous word
results in a representation that averages that word’s ambiguous senses. First iden-
tifying senses and then producing separate vectors for each sense has been shown
to improve the performance of models of distributional semantics (Reisinger and
Mooney, 2010). Word sense induction is typically approached from distributional,
textual context (Pedersen and Bruce, 1997; Schutze, 1998; Bordag, 2006; Man-
andhar et al., 2010; Di Marco and Navigli, 2013). Building on these works, we go
beyond sense induction to additionally group similar senses into synsets, and we
use both visual and textual observations of noun phrases to do so.

Other work has used visual information to disambiguate word senses, but
assumes the senses of each word are known in advance (Barnard and Johnson,
2005). Using both textual and visual information to perform WSI has been done on
datasets where every input word is known in advance to be polysemous (Loeff et
al., 2006; Saenko and Darrell, 2008). By contrast, our data contains polysemous,
synonymous, and monosemous noun phrases. Additionally, we perform an explicit
synonymy detection step to create synsets out of induced word senses, unlike other
multi-modal word sense work (Lucchi and Weston, 2012). Our synonymy detection
step is related to lexical substitution (McCarthy and Navigli, 2007), but at the word
sense level.

Similar works use co-clustering in separate textual and visual spaces, treat-
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ing textual clusters as word senses and visual clusters as lower-level iconographic
senses, such as different viewpoints for or orientations of an object (Chen et al.,
2015). We use deep image features from the VGG network (Simonyan and Zis-
serman, 2014) trained for object recognition, which ameliorates the need for icono-
graphic distinctions. Some work uses images and text to discriminate between word
senses, but takes multiple senses as known, rather than inducing them automati-
cally (Kanishcheva and Angelova, 2016).

The VGG network is trained to take an image as input and identify the synset
it belongs to in ImageNet. We hold out the synsets used to train VGG as vali-
dation data in our work. Past work has used the VGG network to extract visual
features from objects (as in Chapter 4) for developing similarity metrics within Im-
ageNet (Deselaers and Ferrari, 2011), and for lexical entailment detection (Kiela et
al., 2015).

Methods

We created a large corpus of images paired with text from web pages con-
taining those images by scraping ImageNet synsets. This gave us a gold standard
set of synsets, together with multiple instances of visual and linguistic contexts for
each concept represented by a synset. We were then able to compare our unsuper-
vised reconstructions of synsets to these gold-standard ImageNet synsets.

Dataset

We selected a subset of ImageNet synsets that were leaves in the WordNet
hierarchy (e.g. kiwi but not bird) and were not used to train the VGG network.
Table 6.1 gives the number of noun phrases which participated in polysemous and
synonymous relationships among these 6,710 synsets, S.

We took the synsets used to train the VGG network as a development data
set, V . We performed reverse image search using an open-source API
(https://github.com/vivithemage/mrisa) to get text for each image
in V from web pages on which that image appeared. Images for which too little text
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Noun phrase relationships
synonymous polysemous both neither

4019 804 1017 2586

Table 6.1: Number of noun phrases that are synonymous, polysemous, both, or
neither in the ImageNet synsets S used in our experiments.

could be extracted were not included in the dataset. We performed latent semantic
analysis (LSA) (Deerwester et al., 1990) on term frequency-inverse document fre-
quency (tf-idf) vectors of bag-of-words representations of this text to create a 256-
dimensional text feature space. In early experiments, we tried Word2Vec (Mikolov
et al., 2013) embeddings trained over the development text associated with synsets
of V , but achieved better performance from simple LSA, possibly due to the small
size of the development corpus.

For each synset s ∈ S, deep visual features and LSA embedding features
were extracted for up to 100 images per noun phrase associated with s in ImageNet.
We arbitrarily selected the first 100 ∗ |s| valid image URLs listed for the synset by
the ImageNet API, eliminating ones for which too little text data could be found via
reverse image search. Visual features were the activations of the 4,096-dimensional,
penultimate layer of the VGG network given the image as input. This yielded a set
of image observations Is.

For each image, we gathered web text (about 400 words per image) as above
and embedded it in our LSA space to get textual observations Ts. We expect text
observations to be sense-specific for the images they are paired with, since, for
example, a web page with a picture of a bank building is unlikely to discuss the
rainfall and flash floods associated with rivers. So, for each s, up to 100 multi-
modal observations Os = 〈Is, Ts〉 are available per noun phrase. This corpus of
ImageNet synsets associated with text, VGG features, and LSA embedding features
per synset observation URL is publically available at https://github.com/
thomason-jesse/synpol.

For each noun phrase np ∈ NP , we associate observations with np from
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each synset in which it participated by dividing each Os uniformly among partici-
pating noun phrases (illustrated in Figure 6.1). We refer to noun phrase observations
as Onp. We note that these even divisions may not reflect a realistic distribution of
senses (i.e. the fruit sense of ‘kiwi’ dominates the bird and people senses), but dif-
ferent hyperparameters could be set for specific domain distributions in a deployed
application.

Figure 6.1: Noun phrase observations Onp (right) are extracted from ImageNet
synsets (left). Our task is to automatically induce synsets from the image and text
observations of these noun phrases in an unsupervised fashion.

Synset Induction

Given this corpus of noun phrase image and text observations, we perform
polysemy-detecting WSI to induce senses (Figure 6.2) followed by synonymy de-
tection to form synsets (Figure 6.3).

We performed synset induction using only visual features, only textual fea-
tures, and both. Our induction algorithms are based on clustering. Using an early
fusion paradigm (Bruni et al., 2014) and cosine distance to combine modalities, we
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kiwi

Mixed-Sense Noun Phrase Data

kiwi sense 0

kiwi sense 2

Induced Word Senses

kiwi sense 1

Figure 6.2: We induce senses for each noun phrase by clustering among its obser-
vation feature vectors in textual and visual space.

calculate distance d(o1, o2) between observations as follows:

d(o1, o2) =(α)cosd(Io1 , Io2)+

(1− α)cosd(To1 , To2),

cosd(a, b) =1− a · b
‖a‖‖b‖

,

where α controls the relative influence of visual (I) and textual (T ) features. We
perform vision-only, text-only, and multi-modal induction by setting α to 1, 0, and
0.5, respectively.

Polysemy detection

Polysemy detection is implemented through k-means clustering, where k is
estimated for each set of observations Onp using the gap statistic (Tibshirani et al.,
2001). Intuitively, the gap statistic selects the smallest number of clusters k that
reduces within-dispersion compared to k − 1 by more than chance. Additionally,
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Induced Word Senses

reconstructed synset 17
‘kiwi’, ‘chinese gooseberry’, ‘kiwi vine’

kiwi sense 1

chinese gooseberry sense 0

kiwi vine sense 0

Reconstructed Synsets

Figure 6.3: We induce synsets by calculating the mean sense observation vectors
across induced senses, then clustering over those means.

we enforce a constraint that no induced sense has fewer than 20 observations (es-
timated as the mean senses per noun phrase minus one standard deviation in the
development data). Consequently, the observations Onp for each noun phrase np
are clustered into k senses, yielding sense observation sets Onp,ki for ki ∈ 0 . . . k.
Together, these observation sets form a set of induced senses G.

Synonymy detection

Using the gap statistic to estimate a number of clusters k∗ for synonymy de-
tection is inappropriate because we know k∗ is on the order of |G|. The gap statistic
is best applied when looking for a minimum sensible k∗, and further sensible divi-
sions of k∗ well-separated clusters may exist within these larger clusters (Tibshirani
et al., 2001). For synonymy detection, the number of synsets is closer to the total
number of word senses than to 1.

Instead, we use a greedy merging approach. We compute a mean observa-
tion vector for each induced sense Onp,ki ∈ G, as well as the pairwise distance
d(m1,m2) between all mean sense vectors. Greedy merges of the nearest means
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produce a final set of K induced synsets, R, each of which comprises no more than
L distinct word senses.

Membership in each induced synset r ∈ R is the union of observations of the
senses ga . . . gb ∈ G whose observations were merged (i.e. r = ∪{ga . . . gb}). K is
set based on the ratio of senses to synsets in the development data V (soK fluctuates
depending on the number of senses discovered during polysemy induction to be
clustered). The maximum number of senses per synset, L = 32, is also estimated
from V .

Evaluation

Both automated and human evaluations demonstrate that multi-modal synset
induction outperforms uni-modal induction. Human judges do not significantly
favor ImageNet synsets over multi-modal, induced synsets; however, humans do

favor ImageNet’s over uni-modally induced synsets.

Automated Evaluation

We computed the v-measure (Rosenberg and Hirschberg, 2007) of the in-
duced synsets, calculated as the harmonic mean of their homogeneity and complete-

ness with respect to the gold-standard ImageNet synsets. High homogeneity means
the induced synsets mostly contain observations that correspond to a single gold
synset, while high completeness means each gold synset’s observations are mostly
assigned to the same induced synset. We do not compare our word sense induction
method to past WSI datasets (Manandhar et al., 2010; Navigli and Vannella, 2013),
because we take an additional synonymy detection step, and we consider textual
and visual information jointly, while existing corpora use only text.

Homogeneity and completeness are defined in terms of the class entropies
H(S) and H(R) of the gold-standard ImageNet synsets S, induced synsets R,
and their conditional entropies H(S|R) and H(R|S). Specifically, homogeneity
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h(S,R) is calculated as follows:

H(S) =−
|S|∑
i=1

∑|R|
j=1 aij

N
log

∑|R|
j=1 aij

N
,

H(S|R) =−
|R|∑
j=1

|S|∑
i=1

aij
N

log
aij∑|S|
k=1 akj

,

h(S,R) =

1 H(S) = 0

1− H(S|R)
H(S)

H(S) > 0
,

with aij the number of observations of gold synset Si included in induced synset
Rj , and N the total number of observations in the dataset. Completeness c(S,R) is
defined as follows:

H(R) =−
|R|∑
j=1

∑|S|
i=1 aij
N

log

∑|S|
i=1 aij
N

,

H(R|S) =−
|S|∑
i=1

|R|∑
j=1

aij
N

log
aij∑|R|
k=1 aik

,

c(S,R) =

1 H(R) = 0

1− H(R|S)
H(R)

H(R) > 0
,

with the v-measure defined as the harmonic mean of h(S,R) and c(S,R).
We also computed the paired f-measure (Manandhar et al., 2010), the har-

monic mean of the paired precision and recall between the ImageNet and induced
synsets. Rather than count membership overlap between two sets, paired f -measure
compares membership overlap between sets of sets.

Specifically, we count the number of observation pairs (oi, oj) that are mem-
bers of both synset s and induced synset r to get an overlap score between each
s ∈ S and r ∈ R. There are

(|s|
2

)
observation pairs for each s and

(|r|
2

)
obser-

vation pairs for each r across all such s and r, comprising C(S) gold pairs and
C(R) induced pairs, respectively. Then paired f -measure f(S,R) is defined as the
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harmonic mean of paired precision p(S,R) and recall r(S,R):

p(S,R) =
|C(S) ∩ C(R)|
|C(R)|

,

r(S,R) =
|C(S) ∩ C(R)|
|C(S)|

.

Results are presented in Table 6.2. The multi-modal approach achieves the highest
v-measure and is tied for highest paired f -measure. This unsupervised task op-
erates over a whole dataset, not a train/test split where cross validation could be
performed, so we have simply highlighted the highest score for each metric. These
paired scores are low compared to those of strict word sense induction (Manandhar
et al., 2010) because our method attempts to induce synsets, not just word senses,
adding complexity.

K h c v p r f human
ImageNet 6710 1.0 1.0 1.0 1.0 1.0 1.0 0.470

vision 9976 0.897 0.888 0.893 0.326 0.440 0.375 0.388
text 6406 0.853 0.911 0.881 0.173 0.496 0.256 0.346

vision+text 8216 0.887 0.910 0.899 0.286 0.543 0.375 0.395

Table 6.2: Homogeneity (h), completeness (c), v-measure (v), paired precision (p),
recall (r), f -measure (f), and human scores of our induced synsets with visual fea-
tures only, textual features only, and both. Bold indicates highest value by modality
(excluding the gold-standard ImageNet).

Homogeneity and paired precision are maximized when every observation
has its own synset. Completeness and paired recall are maximized when all obser-
vations belong to a single synset. The vision-only system overproduces synsets and
increases precision, while the text-only system underproduces synsets and increases
recall. The multi-modal system is able to balance between these flaws to achieve
high v-measure and paired f -measure.
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Human Evaluation

We observed that ImageNet synsets do not necessarily match categories hu-
mans distinguish. For example, ImageNet distinguishes photos of Croatian from
Ukrainian peoples, as well as having a synset for people who could be described
as energizers (mostly men in suits). By contrast, multi-modal induction grouped
senses of noun phrases referring to people together into one synset.

We created an Amazon Mechanical Turk task to evaluate the quality of our
induced synsets according to human judgment. Given a noun phrase and a set of
synsets that noun phrase participated in, annotators marked whether they thought
the sets were more sensible or more confusing. Figure 6.4 shows the interface with
one of the validation examples, discussed below.

Figure 6.4: The Mechanical Turk interface used to gather annotations. The noun
phrase mole was a hand-crafted validation example of more sensible synsets—one
for the burrowing animal and one for the spy.

Annotators were walked through three examples of how the word bank might
be split into synsets before the task began. Two senses containing bank (financial
institution and riverbank) were shown, with one sensible example of them well-
separated in two synsets, one confusing example of the senses lumped together in
a single synset, and one confusing example where the senses were separated but
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there were two distinct synsets for financial institutions even though this is a single
concept.

Three noun phrases were selected randomly from the corpus for each annota-
tor. Annotators evaluated vision-only, text-only, and multi-modal induced synsets,
as well as the gold standard ImageNet synsets. The ordering of the 12 sets (3 noun
phrases × 4 models) was randomized before being shown to the annotator. Two
hand-created validation examples—one of well-separated mole senses (animal and
spy), and one of incorrectly grouped crane senses (birds and construction)—were
inserted in random positions, and data from users who answered either of these
incorrectly was discarded.

After removing data from users who failed validations (nearly half did—the
task is challenging for Mechanical Turkers), and noun phrases assigned to multiple
annotators who did not reach consensus (e.g. tie in whether sets of synsets are sen-
sible or confusing), 156 noun phrases remained, annotated across all four models
(624 annotator decisions total) by 58 distinct annotators. We calculated the average
annotator decision per noun phrase/model combination (a simple, binary more sen-

sible= 1, more confusing= 0), and averaged those decisions across noun phrases to
calculate human scores per model, shown in Table 6.2.

ImageNet synsets are only rated more sensible than confusing about half the
time in our sample, highlighting the noisiness of ImageNet synsets. We conducted
paired (by noun phrase) Student’s t-tests between all models and found that only
the differences between ImageNet and the uni-modal models are significant (p <
0.05). Humans found multi-modal induced synsets sensible about 84% as often as
ImageNet synsets (.470 · .84 ≈ .395), without requiring explicit annotations to build
synsets from noun phrases and observations.

Figure 6.5 shows an example where annotators favored our multi-modal,
induced synsets versus ImageNet. The patterns of vision-only induction overpro-
ducing synsets (e.g. two senses of washboard, splashboard for the presence and ab-
sence of a human) and text-only induction under-producing them (e.g. washboard

and dulcimer instruments combined in one synset) are common. Multi-modal in-
duction’s advantage lies in balancing these opposing trends, producing more coher-
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ent synsets like the two shown for washboard.

For other noun phrases, like amphitheater, ImageNet distinguishes it from
coliseum while unsupervised induction recognizes their similarity, and human an-
notators agree with collapsing the two. Situations where ImageNet makes a dis-
tinction human annotators disagree with is also common among synsets of people,
as in the rapper/rock star example in Figure 6.6. As an additional example, Ima-
geNet separates nationalities like Austrian and Croatian, while automatic induction
(across modalities) favors putting groups of people together without respect to na-
tionality.

Conclusion

In this chapter, we introduce the task of multi-modal word synset induction

and an unsupervised method to construct synsets from image and text observations
labeled with noun phrases. Additionally, we create a dataset of image and text fea-
ture observations, drawn from ImageNet and reverse image search, and processed
by the VGG network and LSA, labeled with noun phrases from ImageNet.

We show that a multi-modal, unsupervised clustering approach in which vi-
sual and textual features are considered together outperforms uni-modal clustering
at the synset induction task both quantitatively and qualitatively. Human annota-
tors rate our multi-modal, induced synsets sensible 84% as often as gold-standard
ImageNet’s, suggesting our unsupervised method is competitive with manual anno-
tation for creating synsets from noun phrase-level observations.

These methods can be applied to any vector representation of instances
labeled with discrete classes that need to be disambiguated. For example, in a
grounded language system where word senses are associated with real-world ob-
ject properties in visual (Perera and Allen, 2013; Parde et al., 2015) or multi-modal
space (Chapters 4 and 5), instances are object representations and labels are adjec-
tives and nouns applied to those objects. Words like round are visually polysemous,
since something can be flat and circular or spherical and still be called round. This
work could tease out these meanings of round and subsequently join the meaning
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of spherical to the appropriate sense. Additionally, discovering that light is poly-
semous across modalities (coloration versus weight) and joining the color sense to
bright and the weight sense to lightweight could make robot-human communica-
tion clearer, since an embodied agent should prefer the less polysemous descriptor
words when describing things to a human. We leave this kind of integration with
robot perception for future work (Chapter 9).

A limitation of applying this method to multi-modal object representations
is impoverished datasets of object representations. For example, there are only 32
objects considered in the work presented in Chapters 4 and 5. The effort required
by both a human operator and a robot to create multi-modal object representations
is substantial, and, at least for targeted applications, might be reduced by adding
priors on which behaviors are appropriate. In the following chapter, we explore
using unsupervised word embedding vectors and human annotations to guide object
exploration for the task of learning a new perceptual concept, such as red or heavy.
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ImageNet vision

text vision+text

Figure 6.5: Human annotators favored the multi-modal, induced synsets for noun
phrase washboard over ImageNet’s and other models’ synsets. ImageNet fails to
properly distinguish the washboard senses of a household object and instrument,
vision alone creates too many instrument senses, and text alone overgeneralizes the
instrument sense. Multi-modal induction properly separates the household object
and instrument senses.
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ImageNet vision

text vision+text

Figure 6.6: Human annotators favored ImageNet’s synsets for noun phrase rapper
over all models’ induced synsets. ImageNet properly separates the door-knocker
and performer senses, vision alone creates too many senses for the performer, text
alone fails to distinguish the senses at all, and multi-modal mistakenly splits the
performer sense into those with and without rock star qualities.
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Chapter 7

Guiding Exploratory Behaviors for Multi-Modal
Grounding of Linguistic Descriptions

A major limitation of existing approaches to multi-modal language ground-
ing is that a robot has to exhaustively explore training objects with a variety of ac-
tions when learning a new language predicate like light or tall. In this chapter, we
propose a method for guiding a robot’s behavioral exploration policy when learning
a novel predicate to achieve high accuracy with lower exploration times, as detailed
in (Thomason et al., 2018). We demonstrate our approach on two datasets in which
a robot explored objects and was tasked with learning to recognize whether novel
words applied to those objects.

We estimate which behaviors are relevant for a target predicate to be learned,
such as squishy, from two sources. First, we consider the distance between the em-
bedding vectors (Mikolov et al., 2013) of the predicate to be learned and those that
are already known. The relevant behaviors for known neighbors in the embedding
space, as estimated by leave-one-out accuracy on known objects, are likely rele-
vant for the new predicate as well. Second, we use human annotations of which
behaviors are applicable for a new predicate to be learned, for example that only
the press behavior is relevant to determine whether something is squishy. Human
intuitions about which behaviors are relevant can guide search, but we show that us-
ing these together with unsupervised word embedding neighbor information gives
better performance than using either alone.

This work provides a methodology that can be used to build object repre-
sentations on-the-fly when learning new concepts. It could be used together with
opportunistic active learning to jointly acquire both object-predicate labels and ob-
ject representations from exploratory behaviors relevant for those predicates. We
leave such an integration for future work (Chapter 9).
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Motivation

In Chapter 4, we demonstrated that using sensory data beyond vision to
ground language predicates improves robotic performance over using vision alone
(Thomason et al., 2016). Non-visual exploratory behaviors such as pushing, grasp-
ing, and lifting objects can be costly in terms of time (e.g. localizing an object with
a camera in order to press down on it) and operator intervention (e.g. pushing an
object off a table, requiring an operator to retrieve it).

In many settings, a robot needs to perform object exploration for a specific
grounding task. For example, if someone asks a household robot to get the heavy

mug from the kitchen, the robot may need to explore some novel objects in the
kitchen to determine which one satisfies heavy and mug. If a dataset of unexplored
objects labeled as heavy (or not) and mug (or not) is available, the robot should be
able to explore those objects quickly to learn the concepts before traveling to the
kitchen to identify the referent. Exhaustively performing all actions when exploring
new objects to learn a novel predicate will, in expectation, yield the best accuracy,
but that exploration scales poorly as the number of behaviors and objects increases.

In this chapter, we investigate using exploratory behaviors to learn a novel
predicate on a time budget without sacrificing grounding accuracy. We use two
datasets of predicate-object relationships that include both visual (red, cylinder)
and non-visual (heavy, full) predicates that require haptic and auditory feedback
to understand. We compare methods for deciding which behaviors to perform
when exploring objects in order to learn a new predicate, beyond the obvious time-
consuming option of performing all behaviors. One possibility is to utilize unsu-
pervised information in the form of word embeddings, such as those produced by
Word2Vec (Mikolov et al., 2013). The distance between two words’ embedding
vectors suggests their semantic similarity. If squishy is close to rigid in the embed-
ding space, a robot may be able to learn squishy using just the exploratory behaviors
that determine whether an object is rigid. Another possibility, if a robot is operat-
ing in a shared space with humans, is to ask a human which behaviors they would
perform to evaluate the predicate.
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We demonstrate that word embeddings help learn predicates using fewer be-
haviors. Our approach is independent of the embedding vectors used, and we com-
pare embeddings from two different corpora, noting that as the categorical quality
of the embeddings improve (e.g. colors close to colors, weights close to weights),
so should the gains achieved by our approach. We also show that using human-
provided behavior annotations speeds up learning in a domain of real-world objects
with predicates from organic human descriptions in an embodied setting where be-
haviors must be performed in a certain order (e.g. an object must be grasped before
it can be lifted).

Most past research in language grounding has focused on using the visual
sensory modality. However, non-visual modalities can also be used to improve a
robot’s ability to ground semantic information (Araki et al., 2012; Chu et al., 2013;
Silberer and Lapata, 2014; Kiela and Clark, 2015; Gao et al., 2016b; Alomari et
al., 2017b). A major limitation of these approaches is that they require the robot
to perform exhaustive object exploration, i.e., the robot must explore each object
with some fixed number of exploratory actions (e.g., grasp, lift, shake, push, etc.)
during which it records non-visual sensory data. For example, in past work on
learning multi-modal classifiers for a set of haptic adjectives, a robot performed
seven different exploratory behaviors on 51 objects for a total of five times (Chu
et al., 2013). While some methods have been proposed for how a robot should se-
quence its behaviors to minimize exploration time when classifying a novel object,
these approaches still require exhaustive exploration during training (Sinapov et al.,
2014a; Zhang et al., 2017).

One possible way to address this problem is to estimate the relevance of
each behavior for the task of learning a novel predicate or category. Sinapov et

al. (Sinapov et al., 2014b) show that a robot’s learning performance on a novel
predicate (e.g., squishy) can be improved if the robot has some prior information
about the predicate’s similarity to known words (e.g., rigid and soft). That paper
stops short of exploring where such a prior could originate. In this chapter, we
answer this question by using word embeddings to estimate the relevance of known
words to novel ones. Additionally, we gather annotations from humans about which
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behaviors they perceive as relevant for a given predicate (Figure 7.4). This is related
to past human annotations gathered for relevant sensory modalities of words (Lynott
and Connell, 2009).

To guide the robot’s exploration when learning a new word, we use distri-
butional semantics to map words into high-dimensional vector spaces where their
vector distances carry semantic information. Word2Vec uses a neural skip-gram
model to create an embedding space for words given a large corpus (Mikolov et al.,
2013). Related strategies consider context embeddings of words as well (Melamud
et al., 2015). Past work has created multi-modal Word2Vec-style embeddings that
consider textual context together with visual (Silberer and Lapata, 2014; Lazaridou
et al., 2015; Kottur et al., 2016) or audio (Vijayakumar et al., 2017) context.

Recent work has used word embeddings to predict unseen verb causality in-
formation from seen verbs (Gao et al., 2016a), and affordances of unseen noun from
seen nouns (Fulda et al., 2017). These are similar in spirit to our use of unsuper-
vised word embeddings created from large, unannotated text corpora to assist with a
supervised grounded language learning problem—predicting the multi-modal rep-
resentations most helpful for understanding a novel predicate.

The problem we address bears some similarities to the zero-shot learning
problem (Xian et al., 2017; Fu et al., 2015; Kodirov et al., 2015). In zero-shot
learning, the task is to produce a classifier for a novel class label for which labeled
data is unavailable, given some descriptor of that class label. In our case, the task
is to produce a behavioral exploration policy when learning a new word given an
embedding that relates the novel word to ones that are already learned. To our
knowledge, this problem has not been addressed in the zero-shot learning literature.

Methods

In our experiments, we focus on learning a new predicate across a set of
unexplored objects given a dataset of learned predicates and explored objects.

Let P be a set of predicates and O be a set of objects. Let the label function
L(p, o) ∈ {−1, 1} indicate whether predicate p ∈ P holds true for object o ∈ O.
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LetB be the set of available exploratory behaviors and letC be a set of sensorimotor
contexts, such that each context corresponds to a combination of a behavior (e.g.,
grasping an object) and a sensory modality (e.g., auditory features extracted from
the sound detected during grasping).

The robot’s task is to learn predicate classifier models that can predict whether
or not a predicate applies to an object given the multi-modal behavioral observations
of that object. We learn these models from object-predicate labels as discussed in
Chapter 3, reviewed briefly here. The robot learns an individual grounding clas-
sifier Gp,c for each sensorimotor context c and predicate p. To determine whether
the predicate applies to object o ∈ O, the weighted combination of these context-
specific classifier outputs gives a consensus decision d(p, o) ∈ {−1, 1} calculated
as:

d(p, o) = sgn

(∑
c∈C

wp,cGp,c(o)

)
, (7.1)

where wp,c is the estimated reliability weight of context c.
One way of setting the weight wp,c is to make it proportional to the classifi-

cation performance (e.g., Cohen’s κ) of the classification function Gp,c as estimated
from training data. Once these reliability weights have been estimated, we hy-
pothesize that the robot can then perform only a subset of its behaviors to achieve
high classification performance on novel objects. Below, we formulate the problem
of how a robot can estimate surrogate reliability weights for a novel predicate for
which no training data is available to estimate κ.

Problem Formulation

Given a set of known predicates P , their labels on a set of explored objects
OE ⊂ O, an unseen predicate q to be learned, and an unexplored set of objects
OU ⊂ O (with OE ∩ OU = ∅) labeled for predicate q, we explore strategies for
learning a classifier for q on an exploration time budget without sacrificing accuracy.

The robot’s task is two-fold: 1) estimate surrogate weights wq,c for the novel
predicate q and each context c ∈ C; and 2) determine the order(s) in which to
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perform behaviors b ∈ B given their cost (e.g., time) and the estimated weights
associated with their contexts on OU . Reliability weights for q can then be re-
estimated at test time given the features of labeled objects extracted from the guided
exploratory behaviors.

Estimating Unseen Predicate Context Reliability Weights

A baseline strategy for estimating surrogatewq,c is to assign a uniform weight
per context. We can also use word embedding distances to share context weights
from known predicates P to unknown predicate q. For every pair of predicates
p, q ∈ P with word embedding vectors vp, vq we calculate the similarity as the
positive cosine distance between those vectors:

poscos(p, q) =
1

2
(1 + cos(vp, vq)) ∈ [0, 1]. (7.2)

It is common to use cosine distance in high-dimensional embedding spaces to mea-
sure word vector dissimilarities because it is independent of features’ magnitudes.
We find the top-k most lexically similar predicates to q in an embedding space,
Pq ⊆ P, |Pq| = k (allowing more than k in the event of a tie) and take a similarity-
weighted average of wp,c,

wq,c ≈
1

|Pq|
∑
p∈Pq

poscos(p, q)wp,c. (7.3)

Expected Values for Behaviors

Given a weight for every context, we calculate weights wq,b at the behav-
ior level. These are obtained by calculating training object decisions at the context
level, aggregating them using weightswq,c (for c a context of behavior b), and calcu-
lating κ confidences based on those behavior-specific decisions across the training
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objects. Then we can calculate the expected value for each behavior as:

v(b) = wq,b + ε, (7.4)

for some small ε such that behaviors with no confidence weight are not zero valued
at training time (since they may yet prove useful at testing time).

Evaluation

We performed experiments on two datasets. The first has a small number of
predicates and a representative set of objects that readily support effective learning,
and thus clearly demonstrates the utility of the proposed approach. The second
dataset has a large number of predicates that arose organically during human-robot
interaction for a diverse set of household objects, and thus learning the predicates
is much more challenging.

We visualize projections of those predicates in word embedding as well as κ
confidence space, demonstrating qualitatively and quantitatively that using weight-
sharing through word embeddings (Equation 7.3) can help a robot learn a new pred-
icate with fewer exploratory behaviors than a exhaustive exploration approach.

We demonstrate that using word embeddings to share information and gath-
ering behavior annotations for a new predicate allows a robot to learn that predicate
on a time budget, with real-world behavior ordering constraints, more effectively
than exploring considering the time to perform behaviors alone.

Learning object colors, weights, and contents

We demonstrate the effectiveness of surrogate reliability weight estimation
using word embeddings to predict relevant contexts for a novel predicate given
known predicates on a dataset of objects that readily support effective predicate
learning.
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Dataset Description

We use the dataset described by Sinapov et al. (2014b), in which a robot ex-
plored 36 different objects using 11 prototypical exploratory behaviors: look, grasp,
lift, shake, shake-fast, lower, drop, push, poke, tap, and press. While performing
these, the robot gathered sensory information from: proprioceptive joint-torque sen-
sors for all 7 joints, audio from an Audio-Technica U853AW cardioid microphone,
and vision from a Microsoft Kinect sensor. The objects were identical containers
except along 3 different attributes: 1) color: red, green, blue; 2) weight: light,
medium, heavy; and 3) contents: beans, rice, glass, screws. These variations re-
sulted in 3 + 3 + 4 = 10 total predicates in the set P that the robot was tasked with
learning.

During the execution of the look behavior, the robot perceived 2 different
sensory modalities, one corresponding to a color histogram of the object in the
foreground, and the other comprising of a reduced size 10 × 10 RGB image of
the object. For the remaining interactive behaviors, the robot recorded 2 types of
sensory features, auditory and haptic, produced by the interaction with the objects.
Thus, the robot’s set of sensorimotor contexts was of size |C| = 11× 2 = 22. The
robot performed each of the 11 behaviors on each of the 36 objects 10 different
times, resulting in a total of 3960 behavioral interactions.

Sample Predicate Embeddings

Figure 7.1 (a) shows a sample 2D projection of the Google News Word2Vec
embeddings corresponding to the 10 predicates in this dataset. Figure 7.1 (b) shows
the 2D projection for the lexical substitution-focused embeddings that consider con-
text embeddings (Melamud et al., 2015). The projection was computed using Multi-
Dimensional Scaling (MDS) (Kruskal and Wish, 1978).

Figure 7.1 (c) shows an embedding based on each predicate’s reliability
weights estimated as agreement κ associated with each sensorimotor context in C.
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Figure 7.1: a) 2D projection of the Google News Word2Vec embedding of the 10
predicates used in the first experiment; b) 2D projection of the lexical substitution-
focused embedding; c) 2D projection of an embedding constructed based on the
relevant sensorimotor contexts for each of the 10 predicates. Shared structure can
be seen between the word embeddings (a,b) and the sensorimotor embeddings of
robot experience (c), which we leverage for learning novel predicates.

For each predicate p ∈ P , a feature vector fp of size |C|was computed such that the
ith entry corresponded to the confidence κi for context ci ∈ C. These vectors were
used to compute a |P | × |P | distance matrix using Euclidean distance. Notably,
the visualizations show that there is some shared structure between the lexical em-
beddings and this sensorimotor embedding. In particular, attributes of similar types
(e.g. colors) appear close together in both embedding types. We show that exploit-
ing this shared structure can be used to improve learning novel predicates.

Evaluation and Results

The proposed methodology was evaluated using a leave one predicate out

approach: during each run, the robot learned multi-modal grounded classifiers for
9 of the 10 total predicates P , using 12 fully explored and labeled objects that were
randomly sampled from the entire set of 36 objects. When learning the remaining
predicate, the robot was given a budget of N behaviors to use during both train-
ing and testing. The robot estimated the context reliability weights for the novel
predicate using the lexical substitution-focused word embeddings (Melamud et al.,
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Figure 7.2: Test-time κ performance of classifiers for learning a new predicate
based on the reliability weight estimation strategy used at test time as more behav-
iors are allowed. random chooses the next exploratory behavior at random, while
guided uses word embeddings to select known neighbor predicates from which to
estimate reliability weights for behaviors. The dotted lines denote the variance over
75 simulation runs.

2015) via Eq. 7.3, with k = 7, and propagated these to the behavior level. These
estimates were then used to compute a distribution over behaviors B, which was
used to sample a subset of size N (the budget) used for both training and testing.
In this experiment, we do not explicitly model behavior transitions, but instead as-
sume that any behavior can be performed at any time and that all behaviors have
equal cost. In the next experiment (Subsection 7.3.2), we consider realistic behavior
transition constraints and the more difficult set of objects introduced in Chapter 4.
The context-specific predicate recognition models were implemented by a Support
Vector Machine (SVM) with an RBF kernel.

The results of this test are shown in Figure 7.2. Each of the three plots
contains the average κ recognition rates for the three types of predicates: a) col-
ors (red, green, and blue), b) weights (light, medium, and heavy), and c) contents
(beans, rice, screws, and glass). The proposed method is compared against the
baseline approach of randomly selecting b behaviors using a uniform prior. Given
sufficient budget, all methods perform all behaviors and achieve identical accuracy;
examining these reduced budgets shows the effectiveness of our approach under
exploration time constraints.
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Figure 7.3: Recognition results for all 10 predicates using just 1 exploratory behav-
ior selected according to three different conditions: guided with lexical substitution
predicate embedding, guided with Google News predicate embedding, and random.
The bars denote standard error.

The proposed method enables the robot to reach good recognition rates (κ >
0.95) faster than random exploration, with the difference especially noticeable for
color- and contents-related predicates. Figure 7.3 shows recognition results using
a budget of N = 1 behavior for two different embeddings: lexical substitution
and Google News. For some of the predicates, the lexical substitution embedding
performs substantially better; in particular, the Google News embeddings links the
word light with the colors and thus, the first behavior chosen when learning it tends
to be look, which does not provide informative signals regarding the weight of
the object (they all have the same size). This is related to the polysemy of light,
discussed in Chapter 6. The lexical substitution embedding puts light closer to the
other two weight-related predicates and thus achieves the best performance.

Below, we evaluate the proposed method on a much more challenging dataset
in which the robot was tasked with learning words provided by everyday human
users, and constrained to perform behaviors in a realistic order while considering
the time it takes to perform each behavior.
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Behavior Time (s)
drop 9.8
grasp 22
hold 5.7
lift 11.1
look 0.8
lower 10.6
push 22
press 22

Table 7.1: The time in seconds needed to perform each exploratory behavior.

Learning words from everyday human users

We use feature representations from multiple behaviors and modalities for
32 objects using 8 exploratory behaviors (Figure 4.2), the same as those used for
the experiments in Chapters 4 and 5. The time in seconds needed to perform each
exploratory behavior is given in Table 7.1. For every object, there are features
from every sensorimotor context, as described in earlier chapters. Seven of the
exploratory behaviors have two sensory modalities, and the look behavior has three,
resulting in |C| = (7× 2) + (1× 3) = 17 contexts.

Predicate Annotations

We consider the 81 predicates used by players in the I Spy game evaluation
performed in Chapter 4. In this work, we gathered full annotations between those
81 predicates and the 32 objects (allowing us to set L(p, o) for every predicate
p and object o). We gathered 3 annotators’ opinions about whether each predicate
applied to each object. We took a majority vote between the 3 annotators when there
was a disagreement. To reduce annotator fatigue, each annotator labeled predicates
for 8 of the 32 total objects, requiring 12 annotators in total to gather all labels.
The average pairwise κ between annotators was 0.576. Figure 7.4 shows all the
predicates given positive labels for a sample object.
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text, bright, cup,
large, round, heavy,
container, red, full,
water, cylindrical,
colored, thing, hol-
low, top, plastic,
white, cap, cylinder,
medium-sized, tall,
liquid, object, bottle

Figure 7.4: Predicates with positive labels for the object in the picture, from anno-
tations gathered in this work.
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Figure 7.5: Behavior annotations for three predicates in the dataset: cylindrical,
heavy and squishy. Scores correspond to the ratio of annotators who rated the be-
havior as relevant for recognizing whether the predicate applied to an arbitrary ob-
ject.
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Behavior Annotations

For each of the 81 predicates, we gathered annotations in order to create
a distribution over behaviors relevant for that predicate. Annotators were asked
to mark which exploratory behaviors they would engage in to determine whether a
given predicate applied to a novel object. Annotators were shown how the behaviors
were performed by a robot, for example that press was performed by coming down
from above the object until the hand touched it. Annotators could mark multiple
behaviors for each predicate, but were required to mark at least one.

We gathered annotations from 14 people, then discarded the annotations
from those whose average pairwise κ agreement with all other annotators was
less than 0.4. This cutoff left us with 8 annotators whose average agreement was
κ = .475. We assign each behavior a value for each predicate of the ratio of anno-
tators (out of these 8) who marked it relevant, so that for every p ∈ P, b ∈ B we
have an annotation score A(p, b) ∈ [0, 1]. Figure 7.5 shows the behavior annotation
scores for three predicates. We release the predicate-object labels and predicate
behavior annotations as a publically available dataset: https://github.com/
thomason-jesse/object_exploration.

In addition to estimating wq,c from Eq. 7.3 (e.g. top-k nearest word embed-
ding lexical neighbor predicates), we estimate it from behavior annotations alone
(Eq. 7.5) and from an interpolation of behavior annotations and semantic neighbors
(Eq. 7.6). For Cb the set of contexts for behavior b and bc the behavior associated
with context c:

wq,c ≈
1

|Cb|
A(q, bc); (7.5)

wq,c ≈
1

|Cb|
A(q, bc) ∗

1

|Pq|
∑
p∈Pq

poscos(p, q)wp,c. (7.6)
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Figure 7.6: Exploratory behavior actions as transitions in an object state graph.

Choosing an Exploration Policy

Given the values of each behavior (Eq. 7.4) for an unknown predicate q, the
presuppositions of each behavior, the time to perform each behavior t(b), and a time
limit per object for exploration T , we can sample a sequence of behaviors to use
when evaluating predicate q. Figure 7.6 describes the state effects of behaviors on
the object being explored, while Table 7.1 gives the time in seconds to perform each.
Because there are 5 observations per behavior per object available, each behavior
can be performed in an exploration policy up to five times, making enumerating all
policies intractable.

We take a Monte-Carlo-style approach, sampling a large number of behavior
sequences through weighted random walks, then choosing one sequence among
all those that maximizes reliability weight while minimizing time. To sample a
sequence of behaviors, we start at the on table state (Figure 7.6), choosing any
available behavior with probability proportional to v(b) (Eq. 7.4) with respect to
other available behaviors. For example, from the on table state, the probability of
choosing press is

p(press) =
v(press)

v(look) + v(press) + v(push) + v(grasp)
,

assuming press, look, push, and grasp have each been performed fewer than 5 times
and there is enough remaining time in the budget given the sequence so far to exe-
cute each (e.g. t(press) ≤ T ). When no outgoing behaviors meet these constraints,
a sampled sequence ends.
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In our experiments, we sample 100 sequences S for every training trial. Of
those sampled, we first select the subset Ŝ of sequences with the highest value, then
randomly choose one among those tied for the shortest exploration time,

Ŝ = set-argmaxs∈S

(∑
b∈s

v(b)

)
;

s∗ ∈ argminS∈Ŝ

(∑
b∈S

t(b)

)
.

The chosen sequence s∗ is used to explore the unseen objects OU , extracting fea-
tures for training classifiers for novel predicate q.

Experiments and Results

We randomly split the 32 objects into 16 explored objects OE and 16 unex-
plored objectsOU . We then perform leave-one-predicate-out cross validation, hold-
ing predicate q out. For predicate q, we are given the labels L(q, o) for o ∈ OU . We
then perform leave-one-object-out cross validation, deciding on a training behavior
sequence for q, using it to explore 15 of the unexplored objects, re-estimating con-
text reliability weights as κ agreement, and finally exploring the held-out object and
assigning a label for q based on these new reliability weights. In this way, we can
obtain agreement statistics with true labels for every held-out predicate, aggregat-
ing these to compare different surrogate reliability weight estimations for choosing
an exploration policy.

Our leave-one-predicate-out experiment operates over the 48 predicates for
which OU had at least 2 positive and 2 negative object examples for the predicate.
We calculate word embedding distance (Eq. 7.2) using Google News Word2Vec em-
beddings, use linear SVMs as context-level classifiers, set k = 3 (Eq. 7.3), and set
ε = 0.001 (Eq. 7.4). The alternative, lexical substitution-focused embeddings (Mo-
han et al., 2013) perform similarly. For every time budget T and surrogate reliability
estimate compared, the behavior sequence sampling and leave-one-object-out cross
validation was repeated 100 times to obtain average performance. Figure 7.7 shows
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these average performances. The time budgets sampled are chosen so that each be-
havior has time to be performed one, two, and three times each, if the policy chooses
homogeneously. With a sufficient time budget, all methods are able to perform all
behaviors five times (the maximum), achieving convergent performance.

Figure 7.7 shows the average κ agreement achieved by grounding classifiers
trained under different surrogate weight estimation strategies. In this more difficult
set of objects and predicates, borrowing weights from nearest lexical neighbors in
word embedding space (lex) is insufficient to improve grounding accuracy on a
behavior time budget. Unlike the clear-cut predicates of the previous experiment
(Subsection 7.3.1), the predicates arising from human users in this dataset do not
form clearly defined semantic clusters like those visible in Figure 7.1.

However, behavior annotations (ba) improves performance. The best perfor-
mance for grounding classifiers is achieved when considering these together with
lexical neighbor information (ba+lex). We postulate that this occurs because there
is a slight mismatch between the behaviors that humans would use to determine
properties versus what is actually helpful to a robot. Conversely, human intuitions
about which behaviors are relevant help prune out information from erroneous lex-
ical neighbors in this more complicated set of predicates.

These results demonstrate that gathering behavior annotations for an unseen
predicate can improve grounding performance on a time budget, and performance
is further boosted by using word embeddings to share neighboring predicates’ reli-
ability weights.

Figure 7.7.b) shows the performance when learning bottle. The top-k neigh-
bors for bottle are canister, tub, and container. The resulting lex reliability-weight
sharing emphasizes the drop/audio context—listening, perhaps, for the thumping
sound of the tub and canister containers. Figure 7.7.c shows the performance when
learning tall, and demonstrates behavior annotations keeping performance steady
as exploration time increases by focusing on the look and press behaviors, while
other strategies explore irrelevant behaviors.
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Figure 7.7: Test-time κ performance of classifiers for learning a new predicate
based on reliability weight estimation strategy used at test time for three time bud-
gets. uniform assigns reliability 1

|C| to each context, lex (Eq. 7.3) estimates reliabil-
ity weights from neighbor predicates, ba (Eq. 7.5) from behavior annotations alone,
and ba+lex (Eq. 7.6) from behavior annotations interpolated with lex. The dotted
lines denote the variance over 100 simulation runs. (a) Across all predicates, lex
alone does not outperform the uniform baseline, but when combined with behavior
annotations ba+lex achieves the best performance overall. Bottle (b) is a predicate
for which lex helps and behavior annotations do not, and tall (c) is a predicate for
which the opposite is true.

Conclusion

Current methods for grounding object concepts in behavioral exploration
and multi-modal perception suffer when a robot needs to exhaustively perform all
of its actions to determine which ones are useful for learning the target concept.
In this chapter, we address this problem through a framework for guiding a robot’s
behavioral exploration of objects when learning new words. In this framework,
given a novel word, the robot computes an exploration policy specific to that word
by relating it via word embeddings to words that have already been learned.

We demonstrate that our method allows the robot to learn new words faster,
in terms of the number of different behaviors the robot needs to perform on objects
to learn the target word (Subsection 7.3.1). We also demonstrate that behavior
annotations gathered from human users can be integrated into the framework to
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further improve predicate recognition performance under a time budget as well as
physical and temporal constraints (Subsection 7.3.2).

In future work, behavior annotations could be gathered from human users
on-the-fly in a dialog setting, using a learned human-robot dialog policy to estimate
when behavior annotation questions are warranted. We leave such integration for
future work (Chapter 9). Using modality annotations (Lynott and Connell, 2009)
may also further boost performance.

In this framework, a set of unexplored objects with labels of whether a new
predicate to be learned applies is given as input. This kind of information could
come from human-robot conversation, when a human uses a new word that the
robot needs to then learn in order to complete a task. As discussed in Chapter 3,
natural language understanding modules for things like commands can require large
amounts of annotator effort to train, but can be built up incrementally by leveraging
information in human-robot dialogs. Further, applying priors from known predi-
cates, as we do in this chapter, requires a set of learned predicates and correspond-
ing predicate-object labels. In Chapters 4 and 5, we discussed strategies for getting
these labels during a language game or object identification task, respectively. In the
following chapter, we explore combining these strategies to incrementally improve
both natural language understanding and perception modules on a robot through
human-robot conversation.
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Chapter 8

Jointly Improving Parsing and Perception for Natural
Language Commands through Human-Robot Dialog

In the preceding chapters, we have discussed work related to improving lan-
guage understanding on a robotic platform. Two main thrusts of this thesis are
parsing natural language to underlying meanings, as in Chapters 3 and 6, and on
bringing robotic sensors to bear on the real world to build multi-modal models of
perceptual concepts, as in Chapters 4, 5, and 7.

In this chapter, we present a holistic system for jointly improving parsing
and perception on a robotic system for natural language commands through human-
robot dialog. This learning agent uses clarification questions in a conversation with
a human interlocutor to understand language commands. The agent induces addi-
tional training data for a semantic parser, similar to the ideas presented in Chap-
ter 3, strengthening its parsing over time. The agent also engages in short clarifi-
cation sub-dialogs related to word synonymy when identifying possible perceptual
words, addressing some of the issues raised in Chapter 6. Finally, the agent uses
opportunistic active learning, presented in Chapter 5, to ask questions about nearby
objects to refine perceptual classifiers on-the-fly during command dialogs.

We evaluate this language understanding agent on Mechanical Turk with
hundreds of users. Figure 8.1 shows the Mechanical Turk interface we created,
with an example command and the beginning of a human-agent dialog. We find
that, as more training conversations are seen by the agent, users are better able to
communicate tasks to the agent. Qualitatively, users rate the agent more favorably
for use in deployed tasks as more training conversations become available.

Because a web interface does not allow users to physically interact with
objects, those users tend not to use non-visual predicates like heavy. However,
in a physical setting, users do use these non-visual predicates, as established in
Chapter 4. In light of this, we also demonstrate the agent on a physical robot with
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Figure 8.1: Mechanical Turk web interface used to conduct our experiments. The
user types a command to the learning agent, which replies with questions to clarify
the command until the user confirms that the agent has correctly understood. In
this conversation, the agent has just asked a confirmation question—whether it has
understood the right location from where the red can should be taken. The colored
text here refers to the pink-outlined map below the conversation window.
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an arm (Khandelwal et al., 2017), using the learning agent as a backend to drive
human-robot dialog. Initializing the learning agent based on conversations from
Mechanical Turk, we then give it the command “Move a rattling container from the

conference room by the lab to Bob’s office” and demonstrate its ability to recognize
rattling as a new word to be learned, learn a concept model on-the-fly for this word,
and successfully select a rattling container to move from the specified source room
to the specified target room. This demonstration can be viewed at: https://

youtu.be/Uz0bC-4byMc.

Motivation

Robots deployed in human environments need to be able to understand com-
mands from humans. As discussed in previous chapters, substantial annotated re-
sources are needed to perform such command understanding. Gathering corpora
of, for example, language commands and their underlying meanings, together with
language labels for objects in the environment a robot may interact with, is expen-
sive. Moreover, a corpus of language commands for an office robot, together with
explored objects and their language labels (coffee cups, heavy mugs, etc.) are un-
likely to be useful for a robot operating on a factory floor, in a hospital, or in a
military operation.

Thus, throughout this thesis, we have focused on developing dialog agents
for robots that use conversation with humans to clarify understanding given sparse
initial language understanding resources. In this way, the agents should be able to
acquire the language and perception capabilities they need in the environment in
which they are deployed, over time, from talking with humans in that environment.
In this chapter we present a system that improves both its parsing and perception
components over time. The algorithms are based on the dialog strategies for elic-
iting training pairs for a semantic parser (Chapter 3), and on opportunistic active
learning strategies for choosing questions about how words relate to objects (Chap-
ter 5) when building multi-modal predicate classifiers to understand perceptual con-
cept words (Chapter 4). We also touch on the issues raised in Chapter 6, by asking
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human users about whether an unseen, perceptual concept word is a synonym of an
already known word, possibly merging those words to the same underlying concept
(for example, tall and long).

To our knowledge, this is the first integrated, embodied robotic system that
can jointly acquire a more general semantic parser and learn new ontological con-
cepts that connect to the physical world, using visual, haptic, and auditory signals
from object behaviors as a model against which to ground perceptual concepts.

In addition to the related work discussed in Chapter 2, a few recent works
are particularly relevant for the system presented here. Command understanding is
related to question answering, in that some questions require exploration actions, as
explored in a recent research paradigm: embodied question answering (Das et al.,
2017a). In that work, however, the language inputs are constrained to templates and
restricted to always be unambiguous. In our work, we explicitly handle ambiguity
by asking the user clarification questions, and using their responses as a signal for
improving parsing performance in future conversations.

In existing work, attribute learning is sometimes done through exploring
objects and aligning novel objects with novel attributes (Tucker et al., 2017). Here,
we instead leverage the presence of the human interlocutor to continue dialog and
directly ask clarification questions about new concepts to build perceptual models
of them on-the-fly.

Recent work leveraged word embeddings to recover from rare or previously
unseen words during a language grounding task (Bastianelli et al., 2016), a strategy
we employ together with augmenting our parsing training data from conversations,
such that successful lexical substitutions guided from word embeddings are learned
as permanent lexical entries for future interactions. We also use word embeddings
to find possible synonyms when a new perceptual word is encountered, touching on
the synonymy problem handled more fully in Chapter 4 using a method similar to
that used to guide behaviors in Chapter 7.

Other work in the dialog community has used Mechanical Turk to carry out
experiments despite the difficult nature of dialog (long, engaging task, compared to
most Mechanical Turk HITs, which are fast lists of questions) (Ring et al., 2016;
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Su et al., 2018). In our evaluation, Mechanical Turk workers have a harder time
with the tasks and finish them less often than in thte evaluation performed in Chap-
ter 3. The tasks are quite difficult: users were asked to have three full dialogs with
the agent, and the agent asked many clarification questions together with questions
about whether words applied to objects (to learn better perceptual concept models).
Creating a more focused evaluation per individual worker may have ameliorated
these effects, and future human-robot dialog evaluations done through crowdsourc-
ing should be wary of the mental strain these tasks put on workers.

Methods

We have implemented a conversational dialog agent that uses a semantic
parser to translate human utterances into semantic meaning representations, then
grounds those meaning representations using both a static knowledge base of facts
about an office environment and perceptual concept models that consider multi-
modal representations of physical objects. The source code for this conversational
dialog agent, as well as the experiments described in the following section, can be
found at https://github.com/thomason-jesse/grounded_dialog_
agent.

Conversations are used to induce soft-aligned training data between user
utterances and grounded denotations, from which we extrapolate pairings of user
utterances with underlying, abstract semantic forms. These latter pairs enable us
to further train the agent’s semantic parser to better understand future human user
commands. Additionally, these conversations provide predicate-object labels from
questions selected using opportunistic active learning, enabling us to build and re-
fine perceptual concept models to better ground perceptual descriptions of objects
given by human users.

Table 8.1 enumerates some of the recurring terminology and symbols we use
in this section, for clarification and reference. The following subsections discuss the
semantic parser, perceptual concept models, language grounding formalism, agent
dialog policy, and the learning paradigm used to carry out the evaluations.
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Symbol Description
A A dialog agent
CCG A set of CCG syntactic categories
D A set of pairs of language strings and semantic forms
C The set of sensorimotor contexts of explored objects
D A grounding procedure producing denotations
G A perceptual classifier
L A lexicon
P A set of predicates
P A parser
O An ontology
S A set of semantic forms
S̄ A parser score vector
T A set of word tokens
U A top-down parsing generation procedure
θ A parser parameter vector
κ The confidence of a perceptual classifier
π A dialog policy
φ A parser feature vector

Table 8.1: Symbols used throughout this chapter.
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Semantic Parser

Semantic parsing translates human language commands to meaning repre-
sentations that a robot can reason with. Learning to perform these translations is
non-trivial and requires an expert annotator to create an ontology of concepts, a lex-
icon that maps words to compositions of those concepts, and examples of sentences
paired with their meaning representations. These paired examples are used to learn
a set of parameters in the parser for performing structured inference—translating
the linear sequence of words into a compositional meaning structure.

In this work, we use the Combinatory Categorial Grammar (CCG) formal-
ism (Steedman and Baldridge, 2011) in our lexicon to perform Cocke-Kasami-
Younger (CKY) chart parsing (Younger, 1967) on input sentences. Our parser
is functionally similar to the University of Washington Semantic Parsing Frame-
work (Artzi and Zettlemoyer, 2013a), but we use a unification-based training pro-
cedure rather than a template-based procedure. Further, we add ontological entries
dynamically during conversations with human users (for example, when a new per-
ceptual concept like red is used for the first time). Finally, we use word embeddings
to guide parsing when out-of-vocabulary words are present in an input utterance.
Each of these differences is discussed in more detail below.

Given the syntactic tree of a sentence, meaning representations can be prop-
agated from the leaf level to the root to find the composed meaning (Figures 2.1
and 8.2). We construct a parsing framework with the abstractions necessary for fa-
cilitating grounding and utilizing word embeddings in mind. The source code for
this parsing framework is available at https://github.com/thomason-jesse/
tsp. Next, we briefly describe the semantic parser’s design and training paradigm.

A parser P : P(T ) × LO → S takes in a sequence of word tokens x =

(x1, x2, . . . , xN) ∈ P(T ) from the set of all sequences composed of elements in T ,
the set of all word tokens, and a lexicon LO for ontology O and outputs a semantic
parse s ∈ S, the set of all semantic parses possible from the ontology O.

In this work, the ontology O includes constants—people (alice), objects
(o3), and rooms (r2)—and predicates—room types (lab), relations (westof ), and
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PP : the(λxl.(lab(x)))

NP : the(λxl.(lab(x)))

N : lab

lab

NP/N : λP<l,t>.(λxl.(P (x)))

the

PP/NP : λxl.(x)

to

(a) Function application used twice to compose the meaning of to the lab.

NP : the(λxi.(and(heavy(x),mug(x))))

N : λxi.(and(heavy(x),mug(x)))

N : λxi.(mug(x))

mug

N : λxi.(heavy(x))

heavy

NP/N : λP<i,t>.(λxi.(P ))

the

(b) Function application and merge used to compose the meaning of a heavy mug.

Figure 8.2: CCG-driven λ-calculus parses of the expressions to the lab and the
heavy mug to demonstrate the function application and merge parsing rules.
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Word CCG category Semantic Form
bring M/NP/NP λyp.(λxi.(bring(x, y)))
bring M/PP/NP λxi.(λyp.(bring(x, y)))
go M/PP λxl.(walk(x))
move M/PP/PP/NP λxi.(λyl.(λzl.(move(x, y, z))))
to PP/NP λxp.(x)
’s NP/N\NP λxp.(λP<l,t>.(the(λyl.(

and(P (y), pos(x, y))))))
next N/PP\N λP<l,t>.(λxl.(λyl.(

and(P (y), adjacent(x, y)))))
david NP david
lab N lab
metallic N metallic

Table 8.2: Some lexical entries created from the utterances given in the initializa-
tion phase of the experiment described in Section 8.3. The multiple entries of bring
facilitate constructions like bring coffee to Bob versus bring Bob coffee. The syntac-
tic category M represents an iMperative statement. Following each λ instantiation
is a type (e.g. person, item), which helps constrain search during parsing. Expected
input and output types are specified in brackets (< input, output >). The special
symbol the functions to select a single atom among those specified by its λ-headed
argument (i.e. to find the atom that satisfies the argument expression).

perceptual concepts (small). Each constant is associated with a type, such as person
or object item. Each predicate specifies a number of expected arguments and their
types, and returns true or false (e.g. red is a predicate that tells whether an argument
item constant is red in color).

The lexicon LO is a data structure that contains information about how in-
dividual word tokens relate to ontology O, and what CCG category they belong to.
The lexicon is a set of triples, (t, c, s) ∈ LO where t ∈ T is a word token, c ∈ CGG
is a CCG syntax category, and s ∈ S is a meaning representation composed of pred-
icates, constants, and λ abstractions. Table 8.2 gives some example lexicon entries
from the initialization phase of the experiment described in Section 8.3.

The meaning of a sequence of tokens x is the root of its semantic parse tree.
If each token xi has an entry in LO, we know the CCG categories of each. The CCG
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categories determine how the semantic forms of the tokens compose to form a tree.
CCG categories can combine by function application, for example when a preposi-
tional phrase is formed from a preposition and a noun phrase (Figure 8.2a). CCG
categories that are identical can merge, and the resulting semantic form is headed
by an and predicate whose children are the forms that were merged (Figure 8.2b).

The examples in Figure 8.2 show some bare nouns and adjectives (with syn-
tactic category N) both with and without λ-instantiated variables inside. For every
bare noun entry in the lexicon, we apply a type-raising operation to create two more
entries: one with a λ variable of the expected type as an argument, and another
nested as a child of an the predicate with said λ child (e.g. the(λx : i.(lab(x)))).
This type-raising increases the size of the lexicon and the polysemy in searching
over bare noun words, but makes parsing ungrammatical phrases in user responses,
such as bring cup, possible.

Given a lexiconLO, its corresponding ontologyO, and a set of pairs (x, r) ∈
D of token sequences and root semantic forms, we train a statistical parser follow-
ing the methodology presented in prior work (Liang and Potts, 2015). In particular,
we define a feature vector φ(x, y) ∈ RN where every entry i in φ(x, y)i represents
some value relating the input utterance x to the latent semantic tree y (rooted at the
corresponding r), or between constituent nodes of the tree y, with N being the total
number of such feature values. A summary of the features we consider is given in
Table 8.3. Next, we discuss how the latent tree y is discovered from the pair (x, r)

to facilitate training.

Parsing an Input Utterance

Given a parameter vector θ of length |φ|, we score parse trees ŷ as the dot
product θ·φ(x, ŷ). We set θ so that each subset of feature types is parameterized by a
probability distribution, such that the likelihood of the parse ŷ given x is equivalent
to θ · φ(x, ŷ). To avoid numerical underflow, our computations are done in log-
likelihood space. For an input token sequence x, we execute P (x) as a beam search
over possible parses of the token sequence x to attempt to find the ŷ parse with the
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Feature Description
CCG given token Entries counting each assignment of a CCG category to

an input token
CCG rules Entries counting each production rule ck → ci, cj in

the syntax tree of y
Sem given token Entries counting each assignment of a lexical entry to

a polysemous input token
Shallow Sem Entries counting the parent-child relationships in

the semantic root of y
Skip given token Entries indicating, for each token, whether it was skipped

Table 8.3: The features φ(x, y) we extract from a sequence of words x paired with
latent tree y; each feature appears as a count in N0 of the times it appears in φ(x, y).
Tokens are words in the input utterance x. CCG categories are syntax categories.
Sem are semantic forms in the lexicon, independent of their CCG categories. Shal-
low Sem are parent-child relationships in semantic forms, accounting for child ar-
gument positions.

minimum negative log likelihood (highest probability).
Parsing proceeds in stages, with each stage greedily scoring pieces of a can-

didate parse by examining relevant subsets of θ, then passing the current best on
to the next stage. The depth of candidates considered by each of these stages is
limited to a fixed-size beam. These greedy stages are: picking skipwords in x to
create a subsequence for parsing, creating a CCG syntax tree Cx, choosing seman-
tic leaves for each x according to its CCG category in Cx, and composing these
semantic leaves according to the structure of Cx to form a completed semantic tree
ŷ. Because this procedure is controlled by beam searches, additional completed se-
mantic trees can be sampled by continuing the process after the highest-probability
tree is produced. For full details of the implementation and hyper-parameters for
this process, we refer to reader to the source code linked above.

Training the Semantic Parser

To learn values for the parameter vector θ, we consider all the pairs (x, r) ∈
D (in random order), and run the parsing beam search outlined above until both the
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maximally-scoring parse y∗ and the correct parse ŷ (rooted at r) are returned:

y∗ =argmaxŷ∈P (x)(θ · φ(x, ŷ));

y ∈P (x)|root(y) = r.

That is, y∗ is the latent parse tree produced by P (x) that maximizes the current
vector of parameter weights, θ, while y is the latent parse tree produced by P (x)

that is rooted at the target semantic meaning r. If y∗ = y, then θ correctly guides
P to produce the desired parse from the given input. If y∗ is never found, then the
beam search terminated before a valid parse is found.

If y is not found, P may not have the lexical entries necessary to translate x
to r, so we attempt to produce new lexical entries to bridge the gap. Given a partial
parse, Y = (ŷ0, ŷ1, . . . , ŷk), a sequence of parse trees rooted at spans of x but
failing to come together under a single root, and the target root r, we can perform
a top-down search from r by reversing the function application and merge rules
for the CCG parsing we use, described above. Top-down parsing by reversing our
parsing rules is conceptually similar to previous work on inducing CCG grammars
using higher-order unification operations (Kwiatkowski et al., 2010). We denote the
lexical entries derived from this procedure U(Y, r). Figure 8.3 gives an example.

In this way, we can derive new candidate lexical entries for L based on the
training data D. We add U(Y, r) to L and the resulting latent tree y (rooted at the
target r for input pair (x, r) ∈ D) is derived. Given non-matching y∗ (the top-
scoring parse in P (x) given the current θ) and y (the parse rooted at the target
semantic form r), we update θ as follows.

The parser P maintains a running score vector, S̄, of every feature. This
vector S̄ is parallel to both the features of φ and the parameters θ. After S̄ is
initialized (e.g. to all zeros), it is updated during parser training using stochastic
gradient descent. In particular, given φ(x, y∗) and φ(x, y), S̄ is updated as:

S̄i ← S̄i + α(φ(x, y)− φ(x, y∗)i), (8.1)
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NP : the(λxl.(and(office(x), pos(robert, x))))

N : office

office

NP/N : λP<l,t>.(the(λyl.(and(P (y), pos(robert, y)))))

NP/N\NP : λxp.(λP<l,t>.(the(λyl.(and(P (y), pos(x, y))))))

’s

NP : robert

bob

(a) A top-down search from the known root on the noun phrase bob’s office is used to reveal
that bob is a nickname for the person robert.

Word CCG category Semantic Form
bob NP robert

(b) A new lexical entry induced from the top-down completion of the parse of bob’s office.

Figure 8.3: An example of top-down completion for the parse of bob’s office and the
resulting lexical entry. In this example, bottom-up parsing was unable to proceed
past the leaves of the tree. In general, top-down parsing does not begin until bottom-
up has produced subtrees that can no longer be combined.

for a learning rate α (in our experiments, α =
√
D). This training procedure is

similar to the hinge-loss training used in previous work on learning statistical se-
mantic parsers (Liang and Potts, 2015), but does not enforce a hinge penalty. The
hinge penalty can encourage over-fitting by forcing the parameters of the parser to
adhere more closely to training data, so we remove it due to the known small size
of our training set. In general, our training procedure is simply a stochastic gradient
descent method that minimizes the negative log likelihood of the correct parse y
given the scores S̄. Given this vector of scores, we calculate θ as a collection of
negative log probabilities over the feature types enumerated in Table 8.3.

This training procedure iterates over the examples in D in random order,
updating S̄ for each pair in D, and updating θ after passing over all of D. This
procedure is repeated for a fixed number of epochs, or until all y∗i = yi across D
(convergence).
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Using Word Embeddings to Aid Semantic Parsing

In order to assign a semantic meaning to a sequence of tokens x, each token
xi that is not skipped must have an entry in the lexicon L from which its semantic
meaning can be determined. Alternatively, when a known semantic root r is avail-
able during training, top-down parsing can continue from where bottom-up can
no longer continue, discovering new potential meanings for previously unknown
words xi. At test time, a known root r is unavailable. Therefore, we use word
embeddings (Mikolov et al., 2013) to augment the lexicon at test time to attempt
to recover from out-of-vocabulary words, an idea similar in spirit to previous work
(Bastianelli et al., 2016), but formally integrated into our parsing pipeline.

Specifically, for an unknown word xi at test time, the lexicon is augmented
with induced entries, visible only during the parsing of x, mapping xi to every CCG
category and semantic form pair in the lexicon. Word embedding distance between
xi and the tokens defined in L is used to parameterize these entries. Values for
θ corresponding to xi are weighted by the cosine similarity between xi and every
word t ∈ T in the lexicon L, sim(xi, t). If their similarity is 1, the θ value is copied,
otherwise a similarity-weighted penalty is added to the θ score. After this process
is repeated for every unseen xi in x, parsing can proceed as described above.

At test time, this augmentation helps recover from out-of-vocabulary words,
such as grab being used for deliver. In Section 8.2.5, we will discuss how, with
completed conversations, recovering from an out-of-vocabulary word by inducing
a lexicon entry at test time can lead to adding a permanent lexicon entry at a subse-
quent training step, after the true semantic root r for the sequence x containing the
out-of-vocabulary word is inferred from the conversational context.

Multi-modal Perception

Once a command has been translated into a semantic form, grounding that
semantic form to actions, objects, and rooms in the real world must take place be-
fore the robot can act on the command. For objects, perceptual concepts like red and
heavy require considering sensory perception of physical objects. We build multi-
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Figure 8.4: Left: The robot used in our experiment. Right: The objects explored
by the robot for grounding perceptual predicates.

modal concept models to connect sensory perception to concept labels. First, we
extract multi-modal feature representations across various sensorimotor contexts by
exploring those objects with a robot arm.

The robot used throughout this work is a Kinova MICO arm mounted on top
of a custom-built mobile base, pictured in Figure 8.4 (Left). The robot’s percep-
tion includes joint effort sensors in each of the robot arm’s motors, a microphone
mounted on the mobile base, and an Xtion ASUS Pro RGBD camera. The set of
objects O used in our experiments consists of 32 common household items includ-
ing cups, bottles, cans, and other containers, shown in Figure 8.4 (Right), explored
by a robot arm (Sinapov et al., 2016). Some of the objects contain liquids or other
contents (e.g., coffee beans) while others were empty. These are the same objects,
explored with the same behaviors, as those presented in Chapters 4 and 5.

The predicates P in our ontology can be based on static facts from a knowl-
edge base or learned perceptual concepts. We partition P into Ps: the subset of
predicates referring to static facts, and Pc: the subset of predicates referring to per-
ceptual concepts, so that P = Ps ∪ Pc and Ps ∩ Pc = φ.

Given a predicate p ∈ Pc and objects labeled as positive or negative for
p, we train an ensemble of SVM classifiers, one per sensorimotor context c ∈ C,
using its feature representation of the objects. We call this ensemble a predicate
classifier, Gp. At the SVM level, a decision on object o is the majority vote of its
observations X c

o for the relevant context c in which the SVM operates. That is, for
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every observation of o in c (e.g., multiple photographs of the object from different
angles from the look behavior), each observation is evaluated by the SVM for c and
their majority decision is used for ensembling in Gp. The decision Gp(o) ∈ {−1, 1}
for an unlabeled object o ∈ O for p is obtained by weighted majority voting of these
context SVMs, with a weight for each SVM equal to its reliability estimated using
leave-one-object-out cross validation on the available labeled objects for p. The
decision is accompanied by a confidence κp(o) ∈ [0, 1] based on the sum of these
reliabilities, and derived from the Cohen’s kappa agreement between the true labels
and the predicted labels during cross-validation (negative κ values are rounded up
to zero). Full details regarding predicate classifiers are presented in Chapter 4.

If multiple labels are given for the same predicate and object, the majority
class label is used during training. When the robot interacts with multiple people,
differing opinions can produce this situation (for example, people differ on whether
color words like red and orange apply to objects of a color between these two). In
the event of a tie, that object is not considered when training the predicate classi-
fier for the concept. To avoid premature overfitting, initial label votes of positive
and negative are added to every predicate/object combination (effectively Laplace-1
smoothing the labels since we expect some noise in human feedback). The confi-
dence κ values are also used to drive an opportunistic active learning strategy for
improving concept models during conversations, as described in Section 8.2.4.

Language Grounding

To execute a command, an utterance is first translated into a semantic form.
For the robot to act on that form, its λ variables must be instantiated. In our work,
this is done by querying a knowledge base of facts available to the agent, together
with perceptual concept models the agent learns over time from user interactions.

Given a semantic root r ∈ S, the goal of a grounder is to instantiate all
the λ expressions in r to predicates and constants in the ontology O, resulting
in a set of denotations gi ∈ S and corresponding confidence scores ci ∈ [0, 1].
The set of denotations is a strict subset of the set of semantic forms S, which
contains only semantic forms with no λ expressions. In particular, the ground-
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ing denotation procedure can be defined as D : S × P → S × [0, 1], such that
D(r) = {(g1, c1), (g2, c2), . . . , (gk, ck)}, where r is any semantic form and gi are
the corresponding semantic forms with their λ variables instantiated and associated
with confidence ci based on the predicates invoked from P . A confidence score of
zero means the grounding is unviable—there is no way to satisfy the constraints
on the λ variables in r—while a confidence score of 1 means the grounding is
unambiguous—it is the only solution to instantiating the λ variables in r.

We implement a recursive grounding procedure to gather the set of possible
grounded parses gi and confidences ci. At a high level, for every λ variable en-
countered in the form r, recursive calls ground the child of the λ-headed parse with
every possible value for that λ variable filled in (drawn from the λ variable’s type).
The base condition for this recursive procedure is a predicate p ∈ P being applied
to some constant a ∈ O. For p ∈ Ps static fact predicates, p(a) is retrieved from a
table as g = true or g = false with confidence c = 1. Static facts include room types
(office) and relations (owns(robert, room1)). For p ∈ Pc perceptual predicates, p(a)

is evaluated by a concept model for a, an object instance in the real world. Two pos-
sibilities are returned: gj =true with cj = κp(a) when p(a) = 1 and gk =false with
ck = (1−κp(a)) when p(a) = −1, where κp denotes the confidence in the decision.
For the and predicate, true is returned if the children of and match with confidence
equal to the product of the child confidences (implicitly assuming independence).
For predicates in P that return instances, such as the a predicate, variable instan-
tiations that have resulted in true values are returned along with their confidences.
Since our domain is closed-world (e.g. we know all the objects, people, and rooms
in the discourse), we normalize these confidences to form a probability distribution
over possible instantiations.

Figure 8.5 gives an example denotation propagated through the parse of a

heavy mug for a subset of two objects (though in reality all objects inO are consid-
ered), with the final confidences in the objects returned by the predicate a normal-
ized to form a probability distribution. This procedure runs on parses of complete
commands (e.g. move a heavy mug from the kitchen to alice’s office) or simple noun
phrases like a heavy mug that appear as responses to clarification questions. The
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a(λxi.(and(heavy(x),mug(x))))

λxi.(and(heavy(x),mug(x)))

and(heavy(o2),mug(o2))

mug(o2)

false, 0.2true, 0.8

heavy(o2)

false, 0.3true, 0.7

and(heavy(o1),mug(o1))

mug(o1)

false, 0.9true, 0.1

heavy(o1)

false, 0.6true, 0.4

{(o2, 0.933), (o1, 0.067)}

λxi : {(o1, 0.04), (o2, 0.56)}

and(heavy(o1),mug(o1)), 0.04

heavy(o1), 0.4

true, 0.4 false, 0.6

mug(o1), 0.1

true, 0.1 false, 0.9

and(heavy(o2),mug(o2)), 0.56

heavy(o2), 0.7

true, 0.7 false, 0.3

mug(o2), 0.8

true, 0.8 false, 0.2

Figure 8.5: Graphical depiction of the grounding procedure for the semantic parse
of a heavy mug for a toy example world with only two physical objects, o1 and o2.
The λ variable is instantiated for every object in the world, and the confidence of
the predicates applied to those instances are propagated to derive a confidence in
each denotation. In the end, the a predicate induces a probability distribution over
possible denotations of the λ variable.

probability distribution based on confidences returned with the list of possible de-
notations is used as part of an update procedure for helping the agent understand
the user’s intent, as described in the next section.

Dialog Policy

We implement a conversational dialog agent A for command understanding
similar to that in Chapter 3. The differences between this agent and the previous
one are: 1) grounding semantic parses in both static knowledge and perceptual
knowledge; 2) dynamically adding new ontological predicates for novel perceptual
concepts; 3) leveraging opportunistic active learning for refining perceptual con-
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Figure 8.6: Example semantic parse (P(x)) and grounding with static (Knowledge
Base) information and perceptual knowledge (D(P(x))) in a toy world with two
objects, one room belonging to Mallory, and two rooms that are labs.

cept models on-the-fly; and 4) semantic parser training from pairs of utterances and
denotations. The agent engages in dialogs with human users to refine its under-
standing of natural language commands by inducing additional training data for its
parsing and perceptual grounding components.

Clarification Dialog Policy

Dialog begins with a human user commanding the robot to perform a task.
The agent maintains a belief state modeling the unobserved true task in the user’s
mind, and uses the language signals from the user to infer it. In our experiments,
one user issued the command Move red can from lab to mallory’s office (Figure 8.6).
The command is first parsed by the agent’s semantic parser P (Section 8.2.1), then
grounded against static and perceptual knowledge with denotation procedure D
(Section 8.2.3), which results in a list of pairs (gi, ci) of denotations of the se-
mantic parser’s understanding of the command and associated confidence values.
Using this list of denotations and confidences, we update the agent’s belief state,
then engage in a clarification dialog to refine that belief.

The agent’s belief state, B, is a mapping from semantic roles (components
of the task) to probability distributions over the ontological constants that can fill
those roles. The belief state models the action, patient, recipient, source, and goal
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semantic roles. Different actions utilize different roles. For example, the walk

action takes only a goal argument (the room to walk to), while the deliver action
takes both a patient (the object to be delivered) and a recipient (the person to deliver
to).

In our experiments, the possible actions are walk, deliver, and relocate.
Walking instructs the robot to move to a different room, delivering to take a physi-
cal object to a person, and relocating to move a physical object from one room to a
different room. The belief state for the action role is initialized with uniform prob-
abilities across these three actions. The remaining role belief states are initialized
with half of the initial probability mass on an unknown constant, ∅, indicating that
the role is not known or is not necessary for the action the user has in mind, and the
remaining half of the probability mass is distributed uniformly across all constants
that can fill the role.

For a user utterance x and associated denotations (gi, ci) ∈ D(P(x)), this
belief state is updated on a per-role basis. For each role, a probability distribution
is induced from the set of denotations D(P(x)). For example, from the command
processed in Figure 8.6, the distribution over action will put all probability on relo-

cate, while the distribution over the patient (object to be relocated) will assign 0.66
of the mass to object o1 and 0.34 of the mass to object o2.

We call this collection of distributions Bx, a mapping from semantic roles to
the distribution over constants that can fill them based only on the most recent user
utterance x. Then we update the agent’s belief according to:

B(r, a)← (1− ρ)B(r, a) + ρBx(r, a), (8.2)

for every semantic role r and every constant a. The parameter ρ controls how much
to trust the new information versus the current belief (in our experiments, we set
ρ = 0.5).

The dialog agent poses questions to the user regarding different semantic
roles. The highest-probability constant for every semantic role in the current belief
state B, together with which among those roles has the least probability, are used
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Figure 8.7: Example belief update for the recipient role, where the initial agent be-
lief (uniform over people with half of the prior on ∅, or UNKnown) is interpolated
with an unambiguous belief that the recipient should be alice. This could arise, for
example, from the question To whom should I bring something? being answered
alice.

to select a question. A static dialog policy π that chooses a follow-up confirmation

or clarification question from these. Confirmation questions ask whether a certain
constant in a role is correct. Clarification questions ask the user to rephrase a re-
ferring expression for what should fill a role. Table 8.4 gives some examples of the
policy π.

For confirmation questions, the confirmed Bx constant(s) receive the whole
probability mass for their roles, and ρ is set to 1 for the update in Equation 8.2,
such that B reflects the confirmation. If a user denies a confirmation question, Bx is
constructed with the constants in the denied question given zero probability weight
for their roles, and other constants given a uniform weight, such that the update in
Equation 8.2 reduces the belief only for denied constants (e.g. I should walk to room

1? denied decreases both walking as the action and room r1 as the goal). However,
a previously confirmed role never loses probability mass (for example, once a user
confirms walking as the action, if the agent asks if room r1 is the goal and the user
says no, only r1 loses mass).

A conversation concludes when the user has confirmed every semantic role.
Then the constants for each semantic role in B (which each have the whole prob-
ability mass for their respective role from being confirmed) can be passed on to a
robotic planner to be executed in the environment.
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B max per role Min
(action, patient, Prob Question Type
recipient, source, goal) B Role
(∅,∅,∅,∅,∅) All What should I do? Clarification
(walk,∅,∅,∅, r1) action You want me to go somewhere? Confirmation
(deliver,∅, p1,∅,∅) patient What should I deliver to p1? Clarification
(relocate,∅,∅,∅,∅) source Where should I move something Clarification

from on its way somewhere else?
(relocate, o1,∅, r1, r2) - You want me to move o1 from Confirmation

r1 to r2?

Table 8.4: Samples of the agent’s static dialog policy π for mapping belief states to
questions. In the Mechanical Turk experiments described in Section 8.3, constants
like people (p1), objects (o1), and rooms (r1, r2) were represented pictorially, with
pronouns (this person, this, here, there) in place of their variables in the sentence
shown.

Detecting Perceptual Words and Synonyms

When describing objects in the real world, humans can use words the agent
has never heard before. Some of these are perceptual concepts—words that need
to be grounded in the physical world. In prior work, a stopword list is used to re-
move non-content words, and all content words in human descriptions of objects
are considered perceptual concept words. This generality resulted in building un-
necessary and confusing concept models for non-perceptual words like thinking,
extracted from utterances like I am thinking of a red bottle. In this work, we take
a more robust approach that hypothesizes whether a new word might be perceptual
based on known perceptual words, then asks the human user for confirmation.

For an input sequence of tokens x in a user utterance, we identify all words
for which the parser, P , does not yet have lexical entries. If one of the nearest neigh-
bors (in our work, we look at the nearest 3) of xi inP according to word-embedding
distance has a semantic form involving a perceptual predicate p ∈ Pc, we ask the
user whether the unseen word xi is also perceptual in nature. The question posed
is: I haven’t heard the word ‘xi’ before. Does it refer to properties of things, like
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Figure 8.8: Web interface example of learning tall is a synonym of long. Possible
synonyms are selected by word vector embedding similarities.

a color, shape, or weight?. If the user answers no, x is passed on to P , where xi
may be resolved in other ways (such as induced lexical entries, as described in Sec-
tion 8.2.1). If the user answers yes, we attempt to discover whether xi is a synonym
of an already known perceptual concept, such as one of the identified neighbors.

We rank the nearest neighbors of xi by distance and sequentially ask the user
whether the next nearest neighbor tp is a synonym of xi. Specifically, the question
posed is Does ‘xi’ mean the same thing as ‘tp’?. If an affirmative answer is given
for any neighbor tp, new lexical entries are created in L for xi matching those for tp,
such that they share an underlying perceptual concept model. For example, in our
experiments, previously unseen word tall was added as a synonym for the known
word long (Figure 8.8).

If no synonym is identified, a new ontological concept is created to represent
xi. In particular, a new predicate for xi, pxi

is added to O (e.g. pxi
∈ Pc), and

corresponding lexical entries mapping xi to pxi
with syntax and semantics parallel

to other concept words are added to L. For example, in our experiments, the color
concept word red was added with a new ontological predicate to represent it.

After these changes toO and L, we search for parses in P(x) as described in
Section 8.2.1. In this way, we both expand the ontology to represent new concepts
and partially account for concept synonymy, fighting the concept-object label spar-
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sity introduced by treating all new words as new concepts, as was done in Chapters 4
and 5.

Opportunistic Active Learning during Conversation

A human user may use a novel perceptual word during a conversation to
describe an object. Additionally, the concept models for known perceptual words
may be unreliable due to few labeled objects. We introduce opportunistic active
learning questions as a sub-dialog routine for the agent, in which it can query about
objects local to the human and the robot (e.g. objects in the room where the conver-
sation is happening) to refine its perceptual concept models before applying them
to the remote test object items (e.g. items that are physically in a different room but
being discussed in the conversation). We call these local objects the active train-

ing set, and the remote objects the active test set. Objects in the active training set
can be labeled by asking the human questions during a conversation about whether
particular predicates apply to them.

In Chapter 5, we established that an agent asking questions about both on-
topic (used in the current conversation) and off-topic (irrelevant to the current user’s
needs) predicates outperformed an agent that only asked about predicates in the
current human description. Thus, we allow our agent to ask both on- and off-topic
questions, moving to off-topic ones only if there are no more useful on-topic labels
to query.

After the human user gives their initial command, x, a sub-dialog for im-
proving perceptual concept models begins. This sub-dialog starts with the agent
saying I’m still learning the meanings of some words. I’m going to ask you a few

questions about these nearby objects before we continue. We divide Pc, the set of all
perceptual concept predicates, into P x

C the predicates present in the command and
P̄ x
C those that are not (such that (P x

C ∪ P̄ x
C = PC) ∧ (P x

C ∩ P̄ x
C = ∅)). A predicate

p is considered “in the command” if it is present in the logical form of any token
xi ∈ x according to the lexicon L. To determine potential active-learning queries,
we use the confidence κ(p, o) for p ∈ PC and o ∈ O based on the κ agreement with
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known labels when cross-validating the classifier of p against the labeled objects for
p (Section 8.2.2). When there are too few labeled objects in the positive and nega-
tive classes to perform cross-validation, we set κ(p, o) = 0 and the corresponding
decision d(p, o) = −1.

We fix the maximum number of questions, M , to ask (in our experiments,
as in past work, we set M = 5). Questions are asked about on-topic predicates,
P̂C = P x

C until there are no more questions that can be formulated for these pred-
icates about the available active training set of objects, Otr. A question cannot be
formulated for a predicate if all the objects in Otr are labeled for that predicate al-
ready. The robot then continues with P̂C = PC until M questions have been asked
or the same is true of PC . That is, the robot is allowed to ask about off-topic pred-
icates once on-topic, label-gathering questions have been exhausted, but may still
stop short of M questions if there are no label-gathering questions to ask about any
predicates.

We calculate the average confidence Kte(p) of each p ∈ P x
C on the active

test set of objects, Ote:

Kte(p) = |Ote|−1
∑
o∈Ote

κ(p, o). (8.3)

The robot decides which predicate to ask about next with probability proportional
to 1 minus this confidence:

pr(p) =
1−Kte(p)∑

q∈P̂C
(1−Kte(q))

. (8.4)

After selecting a predicate p∗ to query by sampling from this probability distribu-
tion, the robot must decide whether to ask for a label of a particular object among
the active training set, for a positive example object, or for a negative example ob-
ject. This decision differs slightly from Chapter 5, where we did not query for
negative example objects, and chose between question types with a fixed probabil-
ity.

We calculate the confidence of p∗ among active training set objects Ktr(p
∗)
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similar to the calculation for the active test set (Equation 8.3). IfKtr(p
∗) falls below

a fixed threshold, we consider the classifier untrustworthy for determining a useful
specific object in need of a label, and the robot instead asks for a new positive or
negative example (in our experiments, we set this threshold to 0.7). In this case,
if the labels for p∗ on Otr are majority-class positive, the robot asks for a negative
example: Among these nearby objects, could you show me one you could not use

the word ‘p∗’ when describing, or shake your head if you could use ‘p∗’ when

describing all of them?” Otherwise, the robot asks for a positive example: Among

these nearby objects, could you show me one you would use the word ‘p∗’ when

describing, or shake your head if there are none?

In the Mechanical Turk interface described in the next section, users are
presented with images of all objects Otr and can click one as an answer. The head

shaking behavior refers to a button on this interface (shake head) that labels all
objects Otr as positive or negative examples, respectively. When embodied on the
physical robot, the agent recognizes the user touching objects to select them or
verbally saying all or none, respectively (with questions modified to match this
expectation).

If Ktr(p
∗) is above the confidence threshold, we trust the classifier of p∗ to

identify an object o∗ ∈ Otr whose label would be most valuable to obtain:

o∗ = argmino∈Otr
(κ(p∗, o)). (8.5)

We frame this question as Would you use the word ‘p∗’ when describing o∗? In the
Mechanical Turk interface, o∗ in the string above is replaced with this object and an
image of the object is shown. When the agent is embodied in a robot, o∗ is described
as this object and the robot points to the physical object on a nearby table. If no o∗

can be identified (because all training objects are labeled for p∗ already), we sample
a new p∗ from the distribution of predicates in P̂ (Equation 8.4), and formulate a
question for it instead.

In this way, the agent is able to query the user for labels on the objects Otr

to improve its perceptual classifiers before continuing its clarification conversation.
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We perform this active-learning sub-dialog regardless of the nature of the user com-
mand, including, for example, navigation commands that do not require perception.
In that case, Px = ∅, P̂ = P , so the agent can ask about any predicate that needs
improvement (that is, all predicates are off-topic if the command does not require
perception). The perception sub-dialog ends when no more useful questions can
be asked (all predicates are labeled for all objects Otr) or M questions have been
asked. The agent concludes with Thanks. Now, back to business. and the clarifica-
tion dialog resumes.

Learning from Conversations

In this work, we use the same basic parser retraining strategy as in Chap-
ter 3; however, a key difference in our current retraining procedure is that it makes
a distinction between denotation parses and latent semantic parses. That is, we
differentiate between robert’s office and its denotation, r1, where in the strategy
presented in previous work, the denotation would be treated as the latent form of
robert’s office, weakening its ability to generalize from induced data and creating
more reliance on a robust initial lexicon. We first induce utterance-denotation pairs
from conversations, then induce latent semantic forms that connect those utterances
and denotations.

Inducing Utterance-Denotation Pairs from Conversations

Every time the agent asks the user a clarification question, it is associated
with the least-confident role r being queried (or All roles, if the conversation is just
starting), as shown in Table 8.4. When a user answers a clarification question, we
obtain a soft alignment between the constant that should fill role r and the human’s
natural-language answer. When the conversation concludes, the final chosen task b
gives the action and arguments. Thus, for every r in chosen task b, where b(r) the
argument chosen for role r, we induce training pairs (xi, b(r)) based on the conver-
sation history, where xi is a human answer to a clarification question regarding role
r.
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For example, suppose the agent asks What should I find to deliver? and the
user answers a heavy mug. If the final inferred task is deliver(o1, p1), we create a
pair (a heavy mug, o1) where o1 is the denotation object referred to by the heavy

mug. Furthermore, we can pair the original user command (e.g. bring the mug to

bob) with the final task denotation, deliver(o1, p1). Figure 8.9 gives an example of a
conversation where we can pair both the final task denotation with the original user
command and a clarification question response with a denotation role (the goal).
Rather than training the parser directly on these pairs, it is important to discover
the latent semantic form between them. In particular, the latent form should be
plausible given the utterance and also be translated into the denotation by the agent’s
grounder after consulting world knowledge. Next, we describe how we perform this
latent form induction.

Inducing Utterance-Semantic Form Pairs from Utterance-Denotation Pairs

Previously, we have discussed taking an input utterance as a sequence of
tokens x to produce a logical semantic form (y, cp) ∈ P(x) by invoking a semantic
parser P (here, cp denotes the confidence score the parser assigns to y, which is a
log likelihood plus fixed penalties). Additionally, we have detailed how a semantic
form y can be grounded, instantiating its λ expressions by consulting predicates that
operate on static and perceptual knowledge, to produce a denotation (g, cd) ∈ D(y).
Here, we explain how to induce a latent form y ∈ S given a pair (x, g) such that
y ∈ P(x) and g ∈ D(y). That is, a semantic parse that can be derived from the
input utterance and has a denotation matching the known one for that utterance. We
formulate this training and finding of the latent semantic form similar to past work
on learning statistical, compositional semantic parsers (Liang and Potts, 2015).

Given (x, g) for x a sequence of tokens and g ∈ S a denotation, we discover
latent semantic parse y ∈ S as follows. First, we produce the set of parses for x,
(yi, cp,i) ∈ P(x). For every parse yi, we find the denotations (gi,j, cd,i,j) ∈ D(yi).
If g ∈ D(yi), then yi is a potentially correct latent form because it was produced
from x and can be instantiated to the denotation g. Let such matching parses be
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Figure 8.9: A completed conversation for the navigation task. The user first spec-
ifies the whole task, and then clarifies the goal semantic role. The utterance-
denotation pairs are thus (go to the middle lab, navigate(lab2)) and (the lab in
the middle, lab2) for the ontological constant lab2 representing the center lab in the
diagram. This interface was used in our Mechanical Turk experiments, discussed
more in Section 8.3.2.
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represented by y∗i .
We then score each parse y∗i based on an interpolation of its log likelihood

cp,i and the confidence cd,i,j of its denotation (gi,j = g). This is computed as:

score(y∗i ) = cp,i + log(cd,i,j). (8.6)

Recall that cd,i,j is a probability in [0, 1]. This gives the score of y∗i as a log likeli-
hood for every potentially correct parse. In our experiments, we limit the number
of latent forms to 10 (e.g. i ∈ {1, 2, . . . , 10}) during search.

We select the maximally scoring latent parse y∗, given by

y∗ = argmaxy∗i
(score(y∗i )). (8.7)

In this way, y∗ ∈ P(x), g ∈ D(y∗), and y∗ has the highest interpolated log likeli-
hood between the parsing and grounding stages connecting x and g. Now the pair
(x, y∗) can be used as training data to refine the parser P . Table 8.5 gives an exam-
ple for finding the latent semantic parse between the heavy mug and object o2, the
grounding for which was given as the example in Figure 8.5.

Evaluation

We evaluate our agent with hundreds of users through the Mechanical Turk
interface. The agent has access to static facts about the world as well as multi-
modal object feature representations against which it can train perceptual concept
models. We deploy the agent with human users who instruct it to perform three
tasks: navigation (Go to the lounge by the kitchen), delivery (Bring a red can to

Bob), and relocation (Move an empty jar from the lounge by the kitchen to Alice’s

office). We demonstrate that the agent better understands human commands, and
is rated more favorably by human users, after training its parsing and perception
components from dialogs. In particular, training both parsing and perception com-
ponents outperforms training only the perception components, and training neither
(e.g. comparing just to the initial agent).
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y ∈ P(x) cp g ∈ D(P(x)) cd score(y)

the(λxi.(heavy(x))) -1 o1 0.364 (g 6= o2)
o2 0.636 -1.45

the(λxi.(and(heavy(x),mug(x)))) -1.2 o1 0.018 (g 6= o2)
o2 0.982 -1.22

the(λxi.(mug(x))) -1.2 o1 0.111 (g 6= o2)
o2 0.889 -1.32

and(heavy,mug) -1.2 and(heavy,mug) 1 (g 6= o2)

Table 8.5: Example of finding the best latent parse for x : the heavy mug given
known, correct denotation o2. In this example, the alternative parses arise from the
parser choosing to skip individual words in x, but, in general, alternatives can arise
from things like prepositional phrase attachment ambiguity, lexical polysemy, and
more. For the purposes of demonstration, in this example the parser favors skipping
the noun mug, but the re-ranking score after grounding shows that including it leads
to a better parse. The highest score is marked in bold, and is paired with the best
latent parse for this utterance-denotation pair.

After training the agent using data from conversations it had with users on
Mechanical Turk, we bootstrap an embodied agent on a physical robot using what
it learned. We demonstrate this physical robot and its ability to carry out the tasks
considered in the Mechanical Turk experiments in an actual office setting. While
Mechanical Turk limits users to describing objects only by their visual properties,
the embodied agent, initialized from Mechanical Turk, can begin to learn non-visual
concepts like heavy.

In the remainder of this section, we discuss the experimental design setup,
the Mechanical Turk evaluations, and the implementation on the physical robot.

Experiment Design

We deploy the agent in a simulated office environment similar to the real
world office our physical robot operates in at a university campus, with the same
floorplan but anonymized names and titles for the people on the floor. This environ-
ment is populated by rooms, people, and object items. Facts about the rooms and
people are static and represented in a fixed knowledge-base. Facts about the object
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Navigation Delivery Relocation
Initialization 3 7 520
Train 18 50 3640
Test 5 15 1040
Total 26 72 5200

Table 8.6: Number of unique tasks assigned to the initialization, train, and test
conditions. Task cardinality is a function of the number of locations (26), people
(9), and object items (8), together with the arguments taken by each task. For
relocation, note that the source and goal locations are selected to always differ.

items have to be learned by building perceptual concept models (Section 8.2.2).
The agent can perform three kinds of tasks: navigation, delivery, and relo-

cation. We fix 8 of the 32 objects explored in prior work (Sinapov et al., 2016)
as possible arguments to the tasks for our experiments (selected at random), and
use the remaining 24 as training objects available for opportunistic active learning
queries for learning concept models. We randomly split the set of possible tasks
into initialization (10%), train (70%), and test sets (20%). Table 8.6 gives the total
number of tasks for each action type as well as how many were included in these
subsets.

Including the same 8 objects in all sets ensures that the perceptual concepts
needed to identify those objects are the same across conditions. Otherwise, variance
would be introduced by new objects being described in the test condition distinct
from those in the training condition, where many new words with no corresponding
concept models might be used. The objects that appear in these tasks are never
visible to the predicate concept models during training.

Initialization Phase

Static facts about the predicates in the ontologyO that do not involve physi-
cal perception need to be made available to the agent. At the same time, predicates
in O that do require physical perception need to be connected to untrained concept
models whose labeled data can then come from opportunistic active learning dur-
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ing conversations with human users. To initialize a semantic parser, we run a small
initialization phase using the web interface described in Section 8.3.2.

Sixteen users (graduate students at the university across several fields) en-
gaged with a faux-agent using the web interface. They were shown three tasks (one
navigation, one delivery, and one relocation) to instruct the agent to complete, each
drawn from the initialization set. After sending their command, the faux-agent sim-
ply replied What’s another way you could phrase that command? In this way, each
user supplied two versions of the same command for each of the three tasks.

We used these commands as a scaffold on which to build an ontologyO that
could represent the concepts users invoked to talk about locations and object items.
In particular, for the 26 locations in our map, in additional to semantic map labels
like lab and office (7, in total), we created binary relationships like adjacent and
westof (5, in total). Global relationships like east and middle were also created (5,
in total). Including the relation between the 9 people in the map and their offices
(ownership), and for a room to be unoccupied, there were 19 predicates involving
locations. For the 32 object items, 20 initial perceptual concepts were used to refer
to the 8 objects involved in the delivery and relocation tasks.

We also annotated a lexicon L based on the gathered utterances. In addition
to semantic map words like lab and office, we added constructions like between (two
adjacency relations) and northwest (both north and west). For perception, we added
the concept words and their synonyms from the initialization commands. We also
added prepositions and determiners as they were used in commands, action word
synonyms (e.g. visit for the walking action), and polysemous action constructions
(e.g. move A from B to C versus get A from B and take it to C). Several kinds of
confirmations were added, such as yes, yep, and sure. Finally, we added single
lexical entries for people in the office environment based on their first names, like
robert for person b (the directory of people shown in the interface elucidates these
relationships). Note that while the object items and rooms exist in the ontology and
can be part of denotations, they cannot be directly referenced because they have
no lexical entries. Thus, users must always describe objects using their physical
properties, and rooms using their labels and spatial relations to other rooms.
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We then hand-annotated a subset of the commands with their corresponding
semantic parses. This gave us initialization pairs D0 with which to train an initial
parser given the crafted ontology and lexicon. We trained an initial parser with the
|D0| = 44 pairs annotated from the initialization. The performance of this initial
parser, with perception modules that are initially blank (but can be learned on-the-
fly using opportunistic active learning), is what we compare against after retraining
the parsing and perception components, as presented in Section 8.3.2.

When creating these initial parsing resources, we made a few decisions to
simplify the language understanding. First, though some commands used negation
(e.g. the pod not next to a conference room), we chose not to include negation in
our parsing model due to its sparse usefulness in the task. Additionally, we do not
handle elided references (e.g. from the kitchen to the conference room across the

hall [from the kitchen], or the office next to bob’s [office]). As a result of these de-
cisions, and several commands that would have introduced single-use ontological
concepts, the number of pairs (|D| = 44) is lower than the 72 commands we gath-
ered from 12 users providing 2 commands each for 3 tasks. Next, we discuss the
training procedure used to update the parsing and perception modules after batches
of users have conversed with the agent.

Training Procedure

We use these initial parsing resources to create a baseline agent A1 with
a parser P1 trained only on the initialization pairs D0 mentioned above and con-
cept models for several predicates Pc,1, but with no initial object examples against
which to train them. Our work focuses on learning from conversations, and so, past
the initialization phase described above, all learning for the parser and perception
modules arises naturally from conversations the agent has with humans. To elicit
training conversations, we provide each Mechanical Turk worker with a navigation,
delivery, and relocation task drawn from the training set of tasks.

We divide the training procedure into three phases, each associated with 8
objects from the active training set, which can be queried about during conversa-
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tions using opportunistic active learning. Between phases, the parser and perception
models are retrained from the conversations the agent has had so far. The purpose
of dividing training into phases is two-fold. First, periodically retraining the parser
can ameliorate users becoming discouraged from lexical variation. Since the parser
will know more words and phrases after each retraining step, it will understand
more of what users initially say, and they will be less inclined to back off to what
they perceive as simpler language when the agent asks clarifying questions. Sec-
ond, limiting the active training set to 8 objects is consistent with Chapter 5, and
limits user fatigue when asked open-ended questions (for positive and negative ex-
amples). Retraining also means words the current user hasn’t used and that weren’t
in the initialization phase can then arise during queries. Each phase i is carried out
by agent Ai, after which parser Pi+1 and concept predicates Pc,i+1 are trained to
instantiate agent Ai+1.

For each training phase i ∈ {1, 2, 3}, we create N Mechanical Turk Human
Intelligence Tasks (HITs) for workers to complete, where each HIT includes one of
each task type: navigation, delivery, and relocation, drawn from the training set of
tasks. Workers who complete all three tasks are considered when training the next
parser and perception concept models. Table 8.8 summarizes the Mechanical Turk
task and the final numbers of workers who completed various parts. Among work-
ers who completed all tasks, two types of conversational training data are extracted.
First, if the worker completes a task correctly, we induce utterance-denotation pairs
from that conversation for use in inducing utterance-semantic form pairs to train
the parser. Second, regardless of task correctness, if the agent asked the worker any
questions about object-predicate relationships using opportunistic active learning,
we include the worker’s answers to retrain the perceptual concept models. Addi-
tionally, if the worker answered questions about whether words were perceptual
in nature, and whether perceptual words were synonyms of known words, those
answers were considered during retraining the parser and perception modules.

As discussed in Section 8.2.4, we induce utterance-denotation pairs from
conversations by examining which semantic role(s) the agent asked for versus what
the workers said in response, once the correct semantic roles are confirmed, giving

133



pairs Di. Between phases, we train Pi+1 with
⋃i

j=0Dj , that is (the initialization
pairs D0 plus the induced pairs from all phases so far).

Before training perceptual concept models across many user conversations,
we consider which concepts should be added as novel, and which should be added
as synonyms. We consider a word w a candidate perceptual concept if at least one
worker said yes when asked if it was perceptual in nature and subsequently labeled
at least one object as a positive example for w. We then look at all the words v
that workers voted on w being a synonym of, and, if a majority of users voted yes,
then we add w to the lexicon as a word with the same meaning as the underlying
perceptual concept for v. These ontological and lexical updates to Pi+1 happen
before retraining on Di.

We aggregate the object-predicate labels obtained during each worker’s con-
versations as training data for the perceptual concept models. We use the majority
vote across workers to add an object-predicate pair as either a positive or negative
training example, disregarding object-predicate pairs in the event of a tie (e.g. to
handle workers disagreeing about whether a word applies to an object). These ad-
ditional examples are used to train predicate concept models Pc,i+1.

After adding new concept models to the lexicon and ontology of Pi+1, we
are equipped to induce utterance/semantic-form pairs Di from utterance/denotation
pairs. This is because new concept words, and new synonyms, are present in the
utterances ofDi. Thus, our training of Pi+1 proceeds over a fixed number of epochs
E as follows:

First, new utterance/semantic-form pairs Di,e are induced from the utter-
ance/denotation pairs in conversations from phase i using the current parser Pi+1,e,
where the first epoch (e = 0) has new lexical and ontological entries for new con-
cepts and synonyms from phase i. That is, after adding new entries for new per-
ceptual words, we get induce parser training data that might need these new words.
Next, Pi+1,e+1 is trained by passing once over the pairsDi,e (we train the next epoch
parser). Now new pairs Di,e+1 are induced using Pi+1,e+1, and the process repeats
(in our experiments, we set E = 10). That is, we induce the latent semantic forms
from utterance/denotation pairs and retrain the parser at each epoch. This is be-
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cause parser training can affect which latent semantic forms are selected (i.e. as the
parser improves, more accurate latent forms can be found). The final trained parser
Pi+1,E = Pi+1 is used in the next phase of the experiment for agent Ai+1.

After three phases, agent A4 with parser P4 and perception models Pc,4 is
tested by interacting with users trying to accomplish tasks from the unseen test
set of tasks. We also test an alternative agent, A∗4, with parser P∗1 and perception
models Pc,4. This agent serves as an ablation to see the effects of trained perception
models versus those along with a trained parsing model. Parser P∗1 has its lexicon
and ontology expanded to include the new predicates and synonyms discovered
retraining perception models Pc,4, but its training iterates only over pairs D0, not
additional utterance-semantic form pairs induced from conversations.

Performance Metrics

Quantitatively, we measure the number of clarification questions the agent
asked per user and task, as well as the semantic f -score of each user on each task.
The number of clarification questions is the number of questions required before
all roles of the command are confirmed by the user. This measure does not include
questions about whether words are perceptual, whether a new perceptual concept
is a synonym of a known one, or the questions asked during sub-dialogs using
opportunistic active learning. We only consider this metric when a worker confirms
the correct task, since we are interested in reducing successful conversation lengths.

The semantic f -score of a task is a measure of the agreement between the
task the user confirmed and the task they were instructed to convey, and is used as
a measure of how close users came to conveying the correct task (Corona et al.,
2017). This is calculated as the harmonic mean of the precision and recall between
the sets TU and TG, where TU is the set of pairs (r, a) of roles and constants the
user confirmed, including a pair for (action, a) for a an action, and TG the gold task
specification pairs. For example, if the user confirmed deliver(o2, p1) when the gold
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Survey Prompts
The robot understood me.
The robot frustrated me.
I would use a robot like this to help navigate a new building.
I would use a robot like this to get items for myself or others.
I would use a robot like this to move items from place to place.

Table 8.7: Survey prompts posed at the end of our evaluation sessions with human
users. Users answered on a 7-point Likert scale the degree to which the agreed or
disagreed with each of these statements.

task specification was relocate(o2, r1, r2), then:

TU ={(action, deliver), (patient, o2), (recipient, p1)},

TG ={(action, relocate), (patient, o2), (source, r1), (goal, r2)};

precision(TU , TG) =
|TU ∩ TG|
|TU |

=
1

3
,

recall(TU , TG) =
|TU ∩ TG|
|TG|

=
1

4
,

f(TU , TG) =2 · precision(TU , TG) · recall(TU , TG)

precision(TU , TG) + recall(TU , TG)
= 0.286.

We also consider user’s answers to survey questions about their experience
with the agent. Each questions was answered on a 7-point Likert scale: Strongly

Disagree (0), Disagree (1), Slightly Disagree (2), Neutral (3), Slightly Agree (4),
Agree (5), Strongly Agree (6). Survey questions are given in Table 8.7. In par-
ticular, we evaluate whether users consider the agent more understanding and less
frustrating, as well as whether they would more consider using the agent for real-
world tasks, after training the parsing and perception components from conversa-
tions. Users are also able to provide optional, free-form text feedback as a part
of completing this survey, and their responses provide some anecdotal insight into
their experiences with the agent.
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Mechanical Turk Evaluation

We conducted a large-scale evaluation of our procedures for learning pars-
ing and perception from conversations using Amazon Mechanical Turk as a crowd-
sourcing platform for workers to interact with our dialog agent.

Web Interface

Workers connect to our web interface and engage in three conversations,
then fill out a survey about their experience using the agent. Workers are initially
instructed Give your commands all at once, as opposed to in individual steps. At
the beginning of each conversation, workers are presented with a new task, together
with the instructions: Command the robot with a complete sentence. The robot

does not understand questions, but it may ask you questions of its own. The robot

understands high-level commands, so it doesn’t need step-by-step instructions, and

it doesn’t matter what location it starts in.

To avoid biasing workers towards certain words (linguistic priming), we
present tasks by describing the target state of the world after the task is completed.
For example, for the navigation task, the prompt is: Give the robot a command

to solve this problem: The robot should be at the X marked on the green map. A
green-highlighted floor map is shown along with this text, with a marker for the
target room (Figure 8.10). For delivery tasks, the problem is phrased This person

needs the object shown below. The person and object are shown as picture panels
of a person icon (as in the right panel of Figure 8.10) and the object item. For relo-
cation tasks, the problem is phrased The object shown below is at the X marked on

the pink map. The object belongs at the X marked on the green map. The object and
corresponding color-highlighted maps with markers are shown below the problem.

Confirmation and clarification questions in dialogs are asked by color-coding
reference phrases like this object, this person, here, and there and showing a corre-
sponding picture with the matching color highlight. Figure 8.11 shows a clarifica-
tion and confirmation question for the goal semantic role of the navigation task.

The agent also asks questions in sub-dialogs regarding whether perceptual
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Figure 8.10: Web interface prompt for an example navigation task. The map on the
left marks the target room to avoid linguistic priming (e.g. at the X marked on the
green map can be used instead of the middle pod). The panel on the right shows the
names of people to establish office ownership relationships (e.g. the supervisor’s
office).
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Figure 8.11: Web interface when the agent asks for a semantic role confirmation.
The green word here refers to the green-bordered map below, the goal of the com-
mand. In other tasks, like relocation, green- and pink-bordered maps separately
refer to the goal and source semantic roles during such confirmation questions. In
this example, the agent asked the clarifying question Where should I go? just before
the confirmation, eliciting a referential phrase pod next to nancy’s office that can be
tied to the denotation (the referent room) for training the parser.
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Figure 8.12: Web interface for the agent asking whether a predicate applies to a
particular object. The blue word this refers to the blue-bordered object image.

concept words apply to objects. Figure 8.12 shows an example of a yes/no question
for whether a word applies to an object. In this case, the worker types a response.
Figure 8.13 shows the panel used for open-ended positive/negative example ques-
tions (asking, among available objects, which one a word does or does not apply
to). In this case, workers click one of the objects to select an answer, or the Shake

Head button to say none of presented objects satisfies the request.

Human Intelligence Task (HIT) Setup and Completion Data

We run 50 HITs at a time on our server. This was based on the maximum
number of processes our server could spawn for connecting workers without ex-
ceeding the its available RAM. For the train condition, we run two batches per fold
of active training set objects, for a total of 2 × 3 × 50 = 300 workers. For the
test conditions—without parser or perception training (A1), with perception train-
ing only (A∗4), and with parser and perception training (A4)—we run three batches
of 50 workers each for a total of 3× 50 = 150 workers.

Each worker completes three tasks: navigation, delivery, and relocation, in
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Figure 8.13: Web interface for the agent asking for a positive/negative example of
a particular predicate, for example Among these nearby objects, could you show me
one you would use the word ‘red’ when describing, or shake your head if there are
none?
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that order, drawn from either the train or test set of tasks, then completes a survey as
described above. The conversational dialog agent has access to word embeddings,
which it uses to preemptively expand its per-worker lexicon with induced entries
for out-of-vocabulary words (Section 8.2.1). These entries are not visible when
the parser is retrained, but correct ones can be induced through the procedure for
learning from denotations.

Workers were paid $1 per completed HIT. Each HIT is available to submit
for 2 hours after starting. The dialog-agent server enforces a time limit of 1 hour
per worker. If a worker’s conversations exceed 1 hour, the agent times out, allowing
the worker to advance to payment. This is to assuage workers who believe the HIT
takes far too long, though it may discard workers who are doing multiple HITs in
parallel and only spending a little of the hour on ours. If, in an individual task
conversation, a worker replies to the agent (either by writing commands, selecting
objects, or writing clarifications) 30 or more times, a button appears on the interface
allowing them to end the HIT and advance to payment. This also prevent workers
from feeling exploited by the long, difficult nature of the HIT. The same option is
offered to workers if the agent takes more than two minutes to respond (this delay
only happened when the agent crashed from RAM being exceeded on the server
managing the agents for workers). These allowances help maintain our Mechanical
Turk recommender account’s usability and trustworthiness with workers, but reduce
the total number of complete interactions our agent has with humans.

Finally, we vet the remaining set of workers by removing two categories.
First, for workers who complete HITs more than once in our experiment, we con-
sider their conversational data only from the first time they did one of our HITs.
Second, we remove workers who confirmed navigation commands with the agent
for all three target tasks (navigation, delivery, and relocation). On inspection, these
workers identify, during the navigation task (the first dialog), that the robot will
advance to the next phase once a command is confirmed, and they continue issuing
navigation commands because these are fast to resolve.

Table 8.8 gives a breakdown of the numbers of workers who engage with
our HITs through different experimental conditions. Only workers who submit the
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Condition Number of Workers
Submitted Completed Vetted Nav. Del. Rel.

HIT Tasks Correct Correct Correct
Train (A1, A2, A3) 297 162 113 36 44 18
Untrained (A1) 150 67 44 17 22 10
Test∗(A∗4) 148 83 50 20 29 10
Test (A4) 143 79 42 16 23 10

Table 8.8: Breakdown of the number of workers in our experiment. We here count
only workers that submitted the HIT with the correct code, meaning they com-
pleted the HIT but may not have finished all three tasks due to timeout or overly
long conversations. Workers that completed all tasks and the survey finished the
HIT entirely. Vetted workers are ones that were both first-time participants and did
not confirm only navigation commands for all tasks. Finally, we note the number of
vetted workers that confirmed the correct task and whose conversations were used
to train the parser (at train time) or evaluate conversation length (at test time). The
Train condition (A1, A2, A3 agents) draws from the training set of tasks, while the
Untrained (A1 untrained agent), Test∗ (A∗4 agent with trained perception and un-
trained parser), and Test (A4 agent with trained parser and perception) conditions
draw from the test set of tasks.

HIT with the correct survey code (i.e. actually use the interface) are considered for
training the system (for the train condition) and evaluation (for the test condition).
For training the parser and for evaluating conversation lengths, conversations are
only included when the worker confirms the correct task.

The low number of workers that complete the tasks given that they submit-
ted the HIT at all gives a sense of how difficult the HIT is compared to others on
Mechanical Turk. The number of vetted workers is even lower, due in large part
to repeat users who enjoyed the task enough to come back and do it again (even
though this was explicitly discouraged in the HIT description), by contrast.

Quantitative Performance Results

Figures 8.14 and 8.15 give quantitative measures of the agent’s performance
in the untrained condition (A1), the trained condition where only the perception
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modules are updated based on user conversations (A∗4), and the trained condition
where both the parsing and perception modules are updated based on user conver-
sations (A4). We measure the number of clarification questions answered by users
(e.g. omitting those about word synonyms and those regarding objects’ relationship
to perceptual concepts) and semantic slot f -measure (e.g. the agreement between
the semantic roles in the target task versus the task confirmed by the user).

The number of clarification questions per successful dialog (one that ends
with the user confirming the correct task) is hypothesized to decrease as more con-
versations become available for training the parsing and perception components of
the agent. Because this metric requires users to communicate correct tasks, the
number of users we can average over to estimate the agent’s performance is low,
resulting in high standard deviations.

For navigation (Figure 8.14a), only the action and the goal room need to
be communicated, so the number of clarification questions is typically low. Only
parser training can affect this task, since perception on real-world objects is not
required. We find that training the parsing model from conversations doesn’t change
performance, possibly because the number of arguments involved is small. This is
similar to the result demonstrated in Chapter 3 for navigation tasks.

For delivery (Figure 8.14b), the action, real world object to be delivered,
and the recipient person need to be communicated. Training both parsing and per-
ception makes a dent in conversation length, but, counter-intuitively, when training
only perception the conversations become a little longer. This may be a result of
the untrained parser incorrectly translating utterances involving many new predi-
cates (which have lexical entries as per the perception training scheme, but have not
appeared in paired (x, r) ∈ D parser training instances for updated θ parser param-
eters). That is, without parser training, out-of-vocabulary words can be mapped to
the incorrect perceptual concept models (for example, function words like should

mapping to the concept can because of the function sense of can placing them
closer together in word embedding space). It is important not only to refine per-
ception modules, but to give the parser examples of how those models are invoked
from user utterances.
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(a) Navigation Clarification Questions (b) Delivery Clarification Questions

(c) Relocation Clarification Questions

Figure 8.14: The average number of clarification questions the agent asked users
(lower is better). In this and other figures, plots display the number of users n in
parentheses at the bottom of each bar representing the average over an experimental
condition. Additionally, the numerical averages represented by the bars are given
in text on top of each condition bar. The black lines in each condition bar represent
the standard deviation.
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(a) Navigation Semantic Slot F1 (b) Delivery Semantic Slot F1

(c) Relocation Semantic Slot F1

Figure 8.15: The average semantic slot f scores between the semantic roles in the
target task and the task confirmed by the user (higher is better).

For relocation (Figure 8.14c), the action, real world object to be relocated,
and the source and goal locations need to be communicated. Due at least in part
to the low number of users who finished this task correctly across conditions, it is
difficult to discern the degree to which training shortened the number of clarifica-
tion questions. Training on this small data was not enough to substantially shorten
conversations. By contrast, when considering user f scores with target tasks, we
can see that training gives a bump in performance on this task.

The f scores between the tasks users confirmed with the robot and the gold
tasks they were assigned provides us insight into how far users were willing to go to
communicate the correct intent. These scores reflect both user frustration (e.g. giv-
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ing up early with a wrong task specification) and the agent’s misunderstandings,
adding noise and contributing to the modesty of the increases in performance after
training. The advantage of this score is that we can consider all users who com-
pleted the tasks, regardless of their correctness. We hypothesize that the f score will
be higher when the agent is operating with trained parsing and perception modules.

For navigation (Figure 8.15a), the f score remains almost constant before
and after training, regardless of which models are trained. This could be largely due
to the low number of semantic roles (2) involved.

For delivery (Figure 8.15b), the f score increases most when we retrain
the perception module (likely because the patient argument, the physical object, is
easier to select). Adding parser training gives a further bump in performance.

Finally, for relocation (Figure 8.15b), the f scores only increase when we
retrain both the parsing and perception modules. This is consistent with the diffi-
culty of the task: two locations on the map, referring to which becomes easier with
a better parser, and an object in the real world, referring to which becomes easier
with better perception modules.

User Survey Results

Figure 8.16 gives qualitative measures of the users’ experience with the
agents. Figure 8.17 gives user responses to prompts about whether they would
use the robot to accomplish tasks in the real world similar to the three they just
commanded it to perform. As described before, these prompts answered along a
7-point Likert scale ranging from Strongly Disagree (0) to Strongly Agree (6).

For experience metrics, we hypothesize that users will find the system more
understanding and less frustrating when trained versus untrained, with training both
parsing and perception better than perception alone. Regarding whether the user felt
the robot understood them, in general (Figure 8.16a), there is little change between
the untrained and trained conditions. This may be reflective of whether users felt
frustrated by the robot (Figure 8.16b), where we see a similar lack of change but
consistently higher agreement. That is, across conditions, Mechanical Turkers were
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(a) The robot understood me.
(Higher is better.)

(b) The robot frustrated me.
(Lower is better.)

Figure 8.16: Survey prompt responses about task experience.

frustrated by the task (this is unsurprising, given its length, the degree of conversa-
tional involvement and consequent time, and the reward of only $1), regardless of
the agent’s quantitative performance.

The users’ qualitative feelings about usability suggest whether a deployed
agent in a physical robot might actually be utilized by humans. We hypothesize that
users will rate the system more usable for each task after training the parsing and
perception modules. Across all three tasks, we see a slight increases in user ratings
of usability between the untrained condition and the trained parsing and perception
module condition. Notably, for every task, training the perception system alone is
insufficient to increase usability ratings. For navigation (Figure 8.17a), this result
is consistent with this task not requiring perception. For delivery (Figure 8.17b)
and relocation (Figure 8.17c), this is more surprising, since perception is required
for these tasks. The improved parser may affect users’ perception of the agent as a
whole, regardless of its performance on individual tasks, making the ratings users
give to the usability of these three tasks co-dependent.

Though we discard users who take HITs more than once (in different batches)
during our vetting process, we can still consider their subjective experience. In par-
ticular, we can track their responses on the survey’s open response text box as they
finish HITs in different conditions. For example, one user participated in HITs
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(a) I would use a robot like this to help navi-
gate a new building.

(b) I would use a robot like this to get items
for myself or others.

(c) I would use a robot like this to move items
from place to place.

Figure 8.17: Survey prompt responses about usability (higher is better).
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across two learning phases and then one testing condition, experiencing the agent
as it acquired more and more robust parsing and perception components. The first
time that user completed a HIT, it was with agent A2 (one phase of training), and
the user wrote: Ugh. I can never figure out how to get it to understand that red and

white container with the snap lid! It always goes for the soda can instead. Argh. ...

The second time, with agent A3, the user wrote: A good day for Mr.Robot. It’s nice

to have progress... Finally, with agent A4, used with test set tasks, the user wrote:
Wow. It’s made some progress. It was a lot easier to parse this time...

Learned Perceptual Concept Models

The agent acquires new perceptual concept models (25 in total), and syn-
onym words for existing concepts, during the three phases of training. The learned
concept models are noisy, given that Mechanical Turk workers are often inattentive
or even combative in the long HIT. For example, nine workers labeled a uniformly
yellow mustard container as a positive example for red. Nonetheless, these learned
models quantitatively and qualitatively improve user experience with the agent. Ta-
ble 8.18 shows the distribution of confidence given by the learned perceptual con-
cept model for can during testing tasks. The soda can object takes more probability
than the other objects, while the foam block receives no probability mass.

When examining concept models through cross-validation on the training
objects, the concept models for blue, brown, container, cylinder, long, red, and
small achieve an average κ = 0.63 with the majority votes from human annotators.
These are the models for which, when evaluating in cross-validation, more than
the majority class is returned (most predicates have a strong majority class baseline
that the concept models learn or fall back on, depending on available labels). The
agreement is fairly high for these color and shape concepts, several of which have
multi-modal interpretations (e.g. small can be evaluated based on object weight and
height, as well as visually). The average agreement with human annotators for all
25 learned concept models (including those for which the majority class is always
returned) is even higher at κ = 0.79.
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Learned Perceptual Concept Model Distribution Results for can

0.32 0.22 0.2 0.13

0.07 0.03 0.03 0

Figure 8.18: The perceptual concept model learned for can after training from con-
versations with human users. The numbers below each object in the active test set
represent their (rounded) portion of the distribution of probability based on outputs
from the can concept model. The objects are roughly ordered by can-ness after
training, with the soda can object ranking highest.
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Physical Robot Implementation

For our embodied demonstration, we use the BWIBot (Khandelwal et al.,
2014, 2017), equipped with a Kinova MICO arm (for pointing to and manipulating
objects), an Xtion ASUS Pro camera (for viewing objects on tabletop surfaces), a
Hokuyo lidar (for navigation and obstacle avoidance), a Blue Snowball microphone,
and a speaker (for conducting the dialog). An Alienware computer executes all
necessary computation. The robot’s mobile Segway base is reinforced with two
additional 12V Li-Ion batteries to power the base, arm, computer, and sensors for
up to 6 hours of continuous operation.

We implement the dialogue interaction atop of the BWIBot software stack
(Khandelwal et al., 2017)— which provides automated task planning and autonomous
navigation. For this demonstration, speech transcripts are provided by the Google
Speech API (https://cloud.google.com/speech/) and speech synthe-
sis is performed with the Festival Speech Synthesis System (http://www.cstr.
ed.ac.uk/projects/festival/). Tabletop perception, required for both
the dialog interaction and the execution of the resulting command, is implemented
with plane fitting and Euclidean clustering. The robot approaches tables by se-
lecting the largest horizontal planar surface in its view and moving to a fixed dis-
tance from the nearest point of the plane. Manipulation is realized with a heuristic
grasping approach. Candidate grasps are generated along the bounding box of the
perceived object, filtered for their reachability under the robot’s kinematics, then
ranked to prefer grasps near the centroid of the object. The robot executes han-
dovers by presenting the item and waiting for its joint efforts to exceed a threshold.
The symbolic planning domain here is specific to navigation actions, such as go-
ing to a location and opening a door, and plan execution is handled by the existing
BWIBots system.

In the demonstration, depicted in Figure 8.19, the dialog begins near a set
of objects in a room that can be subjects of opportunistic active learning questions
(https://youtu.be/PbOfteZ_CJc). A human user instructs the robot to
Move a rattling container from the lounge by the conference room to Bob’s office.
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R: What should I do?
H: Move a rattling container from the

lounge by the conference room to
Bob’s office.

R: Does rattling refer to a property of
an object?

H: Yes.
R: Does rattling mean the same thing

as empty?
H: No.
R: I am still learning the meanings of

some words.
R: Show me an object you could use

the word rattling when describing,
or say “none of them.”

H: Watch.
R: I am getting the objects on the table

into focus. . . Okay, I see them.
H: This one. The human picks up a

small, full pill jar

R: I see.
R: Show me an object you could not

use the word rattling when
describing, or say “all of them.”

H: Watch. This one. The human picks
up a red water bottle

R: I see.
R: Show me an object you could use

the word rattling when describing,
or say “none of them.”

H: Watch. This one. The human picks
up a container half-full of beans

R: I see.
R: Thanks. Now back to business.
R: You want me to move an item

from 3.514 to somewhere?
H: Yes.
R: I should move something from

3.514 to 3.510?
H: Yes.

(a) The user gives the com-
mand verbally.

(b) The robot learns the new
rattling property.

(c) The robot autonomously
navigates to the target.

(d) The robot decides the rel-
evant item and grasps it.

(e) The robot autonomously
navigates to the destination.

(f) The robot hands over the
item.

Figure 8.19: A demonstration of the learning agent embodied on the physical BWI-
Bot platform.
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The dialog agent has been initialized using predicates learned from Amazon Me-
chanical Turk interactions, but does not know the word rattling. The agent checks
its word embedding to see if it can relate the word to a known predicate. After
the human rejects the agent’s synonymy and antonymy inquiries, it queries the user
for positive and negative examples of rattling items from the nearby objects. After
this exchange, the robot confirms that the user intended to issue an object reloca-
tion command and that it grounded the destination location correctly. Leveraging
its previous exploration of the queried objects, the agent trains a new perceptual
classifier for the rattling predicate and correctly identifies the requested item from
among several candidates in the target room.

The grounded command type, object, source room, and target room are
passed to task level control. The task is decomposed into three parts: navigation
to the source room, retrieval of the object, navigation to the target room for a han-
dover. In this demonstration, navigation to the source room is realized with three
symbolic actions: approaching the door, going through the door, and going to a
position in the lounge. On arrival at the source location, the robot perceives its
surroundings and executes a table approach and object grasp step. Once the robot
has the object in its gripper, it makes a navigation plan with the goal of facing the
target room’s door. Once at the target door, the robot hands over the object to Bob,
concluding the execution of the task.

Conclusion

In this chapter, we presented a holistic system for jointly improving seman-
tic parsing and grounded perception on a robotic system for interpreting natural-
language commands through human-robot dialog. This agent uses clarification
questions during dialog to refine its understanding of user intent, then aligns an-
swers to those questions to underlying denotations to improve its semantic parser
after inferring the latent semantic meaning connecting the answers to their deno-
tations. Further, the agent engages users with questions about local objects and
their physical properties, with questions selected through an opportunistic active
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learning strategy that improves performance on the current command (relevant per-
ceptual words) and downstream tasks (off-topic words).

We show, via a large-scale Mechanical Turk experiment, that users are better
able to communicate tasks to the agent after this learning procedure acquires new
information from conversations with other users. Further, we find that users rate the
overall system more usable for real-world tasks after conversation-based learning.
Finally, we embody this learning agent, initialized from Mechanical Turk conver-
sations, in a physical robot platform, and demonstrate its learning abilities for the
non-visual word rattling unseen during training on a novel test command.

Given this learning agent that combines core ideas from this thesis, there are
immediate future directions for folding in more ideas presented in the preceding
chapters into a complete system. In the next chapter, we discuss these immediate
possibilities as well as broader future research applications for human-robot dialog
systems that learn in a continual way from human users.
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Chapter 9

Future Work

This thesis broadly addresses topics at the intersection of natural language
processing, robotics, vision, and dialog. Below, we overview future directions
for integrating ideas presented in this thesis to build a grounded dialog agent that
can improve its component parts through dialogs with human users. We then dis-
cuss broader future directions for applications of human-robot dialog to accomplish
other high-level goals outside of command understanding.

Improving Language Understanding and Perception Modules

The preceding chapter discusses our holistic dialog agent that performs se-
mantic parser learning from conversations and engages the user in perception-relevant
sub-dialogs to improve its concept models. There are several possible improve-
ments on such an agent. Some of these directions are outside the scope of this
thesis, while others are natural integrations of the methods presented here.

Improving Black-box Speech Recognition through Parsing and Perception

Off-the-shelf speech recognition systems can have high word-error rates un-
less trained extensively on individual user voices. Even small word-error rates can
render utterances unparseable. Existing work the author contributed to investi-
gates using a semantic parser and in-domain language model to re-rank hypothe-
sis transcriptions of audio utterances given to a black-box speech recognition sys-
tem (Corona et al., 2017).

In that work, transcription hypotheses are re-ranked based on their felicity
according to an in-domain language model and a trained semantic parser. The intu-
ition behind this method is that if a transcription contains out-of-vocabulary words
or syntactic constructions the semantic parser doesn’t recognize, that transcription
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is less likely to be correct in the domain. By using a state-of-the-art black-box
speech recognition system, high transcription accuracy is possible even without
models of individual user speech (in that work, we use the Google Speech API).
By adding in-domain constraints through parsing, that transcription accuracy is im-
proved.

Further work in this direction could re-rank transcriptions not just consider-
ing semantic information, but also local perceptual information. For example, if a
person says bring me the short bottle and the top transcriptions include both that
and bring me the sport bottle, grounding the resulting parses against the local ob-
jects could help clarify that short bottle is more likely, if an object matching that
description exists in the environment (assuming there is not, in fact, an athletics
sport bottle on the table as well). The grounding algorithm for working with both
perception and knowledge base information, presented in Chapter 8, provides a
starting point for this direction of future work, and already uses the Google Speech
API for speech transcription on the robot platform.

Leveraging Accommodation

Most natural language understanding algorithms focus on understanding
what humans say. However, the overarching goal of NLU is to communicate ef-
fectively with a human partner. Effective communication can also arise from more
interpretable input utterances from the human partner. In particular, if a user adapts
her speech so that the system can better understand it, effective communication is
still achieved. In a vanilla dialog system, the user has no way of knowing what
words or syntactic constructions the system understands best.

Accommodation is a conversational phenomenon in which interlocutors con-
verge to shared referring expressions, lexical and syntactic choices, cadence, vol-
ume, and other vocal variations (Lakin et al., 2003; Gravano et al., 2015; Lubold et
al., 2015). Past work by the author explored the connection between user accom-
modation and learning in a tutoring dialog system (Thomason et al., 2013).

Future work could leverage accommodation to improve natural language un-
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derstanding. When responding to a human user, rather than using template-based
conversational responses, a dialog agent could consider a range of possible utter-
ances and rank them based on how well the semantic parser understands them. Such
an approach is conceptually similar to previous work in which a neural sequence-
to-sequence model was used to generate SQL queries from user utterances, and
incorrect queries were flagged by skilled users familiar with SQL for further anno-
tation by domain experts (Iyer et al., 2017). The proposed strategy could replace
skilled workers with unskilled users by creating an additional model that translates
the logical form (in that case, SQL) back into language and offering the paraphrase
as a signal for whether the answer is correct.

Previous work has used a similar strategy to influence lexical choices (Lopes
et al., 2013). Through accommodation, we can expect human users to adopt the
lexical and syntactic choices of the dialog agent as the conversation proceeds. By
selecting responses that the semantic parser understands, the system tacitly encour-
ages the user to make lexical choices the parser better understands.

Learning Dialog Policy

The dialog agents that employ clarification and opportunistic active learn-
ing, presented in Chapters 3, 5, and 8 use, hand-coded dialog policies to choose
questions to ask the user. These policies discretize continuous belief states regard-
ing semantic role slots and confidences about whether perceptual predicates apply
to objects, then map these discrete states to questions.

A policy based on a Partially Observable Markov Decision Process-based
policy (Young et al., 2013) that considers a continuous belief state about the user’s
intention was implemented and evaluated by recent work the author contributed
to (Padmakumar et al., 2017). That work demonstrated that a learned POMDP-
based policy led to shorter clarification dialogs with users in a setting similar to that
presented in Chapter 3, where only semantic parsing was considered (i.e. no per-
ception). Additionally, that work compared two strategies for jointly retraining both
the dialog policy and the underlying semantic parser, and established that retraining
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them jointly in batches was more effective than holistic retraining, since changes to
the parser affect the structure of a good dialog policy.

Further work in this direction could incorporate perceptual grounding, as
was done in Chapter 8. In this case, the partial observability of the world would
include not only the latent intentions of the user, but the applicability of percep-
tual concepts to objects in the environment. Incremental retraining would need to
consider changes not only to the underlying parser that affects the dialog policy,
but additionally to changes in the underlying perceptual concept models as training
data becomes available through conversations with users.

Synset Induction for Multi-modal Grounded Predicates

In our experiments with multi-modal, grounded linguistic semantics (Chap-
ters 4 and 5), we discovered that people use some polysemous words (e.g. light) as
well as effectively synonymous words (e.g. round and cylindrical) when describing
objects. By applying a synset induction algorithm based on the one presented in
Chapter 6 to multi-modal predicates, we could tease apart polysemous word senses
and strengthen perceptual classifiers by combining synonymous predicates’ data.

This kind of learning would be helpful in a deployed system partly because
it could learn domain-specific polysemy and synonymy based on data. For exam-
ple, in the office domain, the command Fetch me a pen may mean a robot should
bring a writing pen or that it should bring a whiteboard pen. The polysemy step
should be able to separate these domain senses of pen. The synonymy step should
subsequently merge the whiteboard-relevant sense with a sense of marker.

In the synset induction algorithm presented in Chapter 6, every observation
is associated with a unique label. Each pair of an image and the text of webpages
it appeared on was associated with a single noun phrase, such as kiwi or Chinese

grapefruit. However, in robot perception, an observation can be associated with
many labels. For example, the same object may be described as blue, cylindrical,
and bottle. A baseline for performing synset induction on this multi-modal, multi-
label data using the existing algorithms in this thesis is to simply duplicate each
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object as an instance for every label. However, because perceptual contexts offer
more than the two modalities in Chapter 6 (vision and language), there are more in-
teresting ways to frame the problem. For example, considering the intuitions about
context relevance guiding behaviors in Chapter 7, one might partition a polysemous
word like light into senses by observing that the lift behavior is discriminatory for
one subset of light objects while the look behavior is discriminatory for the com-
plementary set.

For synonymy, another simple starting approach is to greedily merge con-
cept words as synonymous if a classifier trained with labels from both words out-
performed each individually. Known label overlap and lexical embeddings could be
used to guide the search for plausible synonyms. For polysemy, a comparable sim-
ple baseline would be to perform 2-means clustering within each concept’s positive
labels in object space, examining whether the resulting cluster divergence exceeded
some threshold beyond which multiple word senses were plausible. This approach
would be computationally expensive but could be done along with parser training
as an overnight task.

Classifier and Feature Extraction Approaches for Perception

The perception modules in this thesis are implemented as linear combina-
tions of decisions from support vector machines (SVMs) operating in each per-
ceptual context. SVMs draw a decision boundary in a feature space given labeled
positive and negative examples.

In the future, we could instead use positive-unlabeled classifier methods (Liu
et al., 2003; Elkan and Noto, 2008), removing the need for explicit negative exam-
ples. Some of these methods include continual learning similar to that presented in
our work, like the positive labels an agent receives over time from conversational
feedback (Chang et al., 2016). Other methods bootstrap attribute classification in
deep models using co-training between multiple representations of objects, starting
with only positive examples (e.g. sets of words that describe objects) (Cheng et al.,
2016).
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Another next step would be to leverage neural feature representations dur-
ing perceptual grounding. We currently use the penultimate layer of the VGG (Si-
monyan and Zisserman, 2014) network as a sensorimotor context space for looking
at objects. We could similarly use auto-encoders over object representations (Burch-
fiel and Konidaris, 2017) to provide a reduced feature vector representing a found,
rather than hand-crafted, feature space at every sensorimotor context. For example,
the features learned through an encoding for the matrix of haptic motor feedback
during the lifting behavior through time may prove more useful than the temporal-
binning done presently as a feature extraction method.

Feature extraction for most language grounding work operates at the whole-
object level. However, in our experiments (e.g. in Chapter 5), users describe compo-
nents of objects as well, such as a container with a red cap. Object sub-segmentation
into components, such as the cap of a container or the handle of a mug, would en-
able feature extraction at the whole-object as well as component level. In this case,
some perceptual predicates, like cap and handle, could identify components, and
adjectives operating on those nouns in the description (e.g. red) could be grounded
against the relevant component’s features.

Guided Open-world Object Exploration

Throughout this thesis, language grounding has been performed against a
fixed knowledge base (Chapter 3), explored objects (Chapters 4 and 5), or both
(Chapter 8). However, in a deployed setting, a robot will need to explore new ob-
jects in the environment, as simulated in Chapter 7 by revealing object observations
only when the simulated agent chose to explore them when learning a new percep-
tual concept word.

One direction for future work on an embodied platform is to perform ex-
ploratory behaviors in an autonomous fashion. To reduce exploration costs, meth-
ods like those explored in Chapter 7 could be employed. Moreover, for applications
like the demonstration in Chapter 8 of the robot learning the word rattling, a robot
would need to identify novel objects in the source room and explore them solely
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with the discriminatory behavior estimated for rattling from examples gathered us-
ing opportunistic active learning with the human. In this case, that could mean
picking up and dropping each object to get discriminative audio feedback signal for
the rattling property.

Learning Across Robot Platforms

As more robots are deployed in workplaces, disjoint corpora of human-robot
conversations will become available. There may be room for leveraging transfer
learning between similarly-deployed robots (for example, in different hospitals) to
increase the amount of human-robot language data available. This could enable
learning more data-hungry, but less brittle, neural parsing methods (Dong and La-
pata, 2016). Similarly, as different robots interact with different sets of objects,
learned manifold alignments between object feature representations from different
platforms (for example, different robot arms and cameras) may allow transfer of
object experiences between distinct robot platforms (Tuia and Camps-Valls, 2016).

Human-Robot Dialog in Other Applications

This thesis has focused on human-robot dialog for command understanding.
We have presented algorithmic solutions that leverage the presence of a human in-
terlocutor. Human-robot teams, in general, are capable of accomplishing more than
a robot can alone. Below, we outline directions for future work on tasks outside of
commanding a robot, for which the presence of a human interlocutor both changes
the space of the problem and offers novel ways to solve it.

Learning from Demonstrations with Dialog

When learning from demonstrations, systems are trained to recreate actions
after observing a human perform them. For example, after watching videos of peo-
ple making sandwiches, a robot should be able to make a sandwich. At a high level,
and given recent advances in both NLP and robotics, future research could incor-
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porate conversation, where humans and robots collaborate on learning a task. This
conversational learning would benefit from incorporating common ground— mod-
eling both the robot’s understanding and expected human understanding of actions
and questions posed (Knepper et al., 2017). In this setting, robots must be able to:
perceive the scene and actions the human is taking, understand natural language
from the human and connect it to that scene, formulate natural language questions
to clarify understanding, and perform actions incrementally while describing them
during question asking.

A step towards achieving these is a change from discrete to continuous repre-
sentations of knowledge and actions. High-level planning and traditional language
understanding can share a common ontology. For example, grasp, knife, and jelly

can be composed to express counter-top actions. These discrete symbols limit the
behaviors a robot can perform and the perceptual concepts it can reason with. By
contrast, continuous representations, such as word embeddings, can give locality
information about a wide vocabulary of concepts. Embedding ontological symbols
in a continuous space will allow a robot to share information between similar sym-
bols while preserving differences in their execution—for example, knowing that
hold and grasp involve the same end position for a hand, while the latter requires
closing the fingers first. Work towards this end has begun for example for zero-
shot recognition of previously unseen human gestures by embedding gestures in a
continuous space (Thomason and Knepper, 2016).

These continuous representations can be bootstrapped from large, unstruc-
tured text and tuned incrementally during language-augmented learning from demon-
stration. This change could be a first step towards a conversational training paradigm
for learning from demonstrations where natural language understanding and gener-
ation are integral. In this setting, where perception and planning to recreate actions
are integral, language understanding may take the form of signals that influence
plan structure. Language generation, for communicating back to the human, then
becomes an option during planning to resolve misunderstandings about how to com-
plete a demonstrated task (refining both perception- and linguistic-level ambiguity).
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Explainable AI with Dialogs

Enabling robots to explain their decisions will help humans understand why
those decisions were made, and enable targeted feedback to modify these decisions
in the future. Explainable artificial intelligence is an area of emerging interest in
the wake of black-box deep learning methods that achieve state-of-the-art, though
opaque, performance in computer vision tasks. Advances in neural language mod-
els, for example, allow co-generating model decisions and explanations (Hendricks
et al., 2016). At a high level, bringing explainability into robotics creates challenges
and unique opportunities versus explaining decisions in vision applications.

If a robot gets the wrong mug from the kitchen, it should be able to offer
why (maybe it falsely believes the mug to be green), allowing the human user to
guard against future, similar mistakes by correcting it (Actually, that mug is pur-

ple). However, in order to use deep models at all, data sparsity issues (limited
sentence/semantic form pairs for language understanding, exploratory behaviors on
objects for concept recognition, etc.) must be addressed, and adding model inter-
pretability will exacerbate this need. Encoding intuitions from traditional semantic
parsing, such as the tree structure of semantic forms, can reduce the data required to
train deep models (Dong and Lapata, 2016). Additionally, perturbing available in-
put information, such as sentences (Alvarez-Melis and Jaakkola, 2017), and objects
(possibly based on low-level object representations like those induced by (Burch-
fiel and Konidaris, 2017)) could expand the available training data analogous to the
perturbation strategies used in deep visual recognition (Krizhevsky et al., 2012).

In a grounded setting, a robot perceiving a cluttered table could establish a
prior when understanding a command from a human in the same environment (i.e.
the human is probably talking about something in the nearby clutter). How to in-
corporate these structural and perceptual priors together when training explainable
language understanding models for robots is an open area for further research.

164



Chapter 10

Conclusions

The work in this thesis is situated at the intersection of natural language
processing, robotics, vision, and dialog. We draw attention to the importance, and
difficulty, of robust command understanding, and present methods for using human-
robot conversation as a learning signal for this task. To summarize each contribution
of this thesis briefly:

1. We describe a method for using clarification dialog to both interpret the
current command a human is trying to communicate and learn to improve
future command understanding (Chapter 3). We show that this learning can
reduce conversation lengths with users for multi-argument commands.

2. We demonstrate the effectiveness of language grounding in multi-modal
space, connecting words like heavy and empty to physical properties of ob-
jects, going beyond traditional language grounding work in visual space alone
(Chapter 4). We introduce a human-robot I Spy game, through which a robot
gets positive and negative labels between words and physical objects from
human players.

3. We introduce an opportunistic active learning strategy for a robot to decide
on maximally-useful questions about objects and their word labels to pose to
a human interlocutor during an object retrieval task (Chapter 5). We find that
humans are undeterred by a robot agent that asks them off-topic questions
about words they themselves did not use to describe objects.

4. We introduce a multimodal, unsupervised method for discovering word senses
(detecting polysemy) and subsequently clustering those senses (detecting syn-
onymy) to form synonymous sets of senses (Chapter 6). We find that these
unsupervised synsets quantitatively match supervised versions and are quali-
tatively rated as more sensible by humans when the clustering methods oper-
ate in a joint textual and visual space.
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5. We also introduce a strategy for guiding a robot’s exploratory behavior pol-
icy, reducing the number of behaviors (and the time taken) to explore new
objects when acquiring a concept model for a novel word (Chapter 7). We
find that large-scale word embeddings and human annotations of relevant be-
haviors improve concept model accuracy when a robot is restricted to a fixed
number of exploratory behaviors or a time budget for those behaviors.

6. Finally, we join two themes of the thesis into a grounded dialog agent that
improves both its semantic parsing and lexical grounding components jointly
from conversations with humans (Chapter 8). This joint learning allows the
agent to understand more complex commands, acquire new syntactic struc-
tures and words, and improve concept models of object properties over time.

These contributions begin to address the low-resource nature of many prob-
lems in human-robot dialog, and grounded language understanding in general, by
introducing algorithms and strategies for data collection that can be deployed with
low initial supervision in a new domain. We discussed both immediate directions
for further work in command understanding and orthogonal directions for human-
robot collaboration leveraging dialog for continual learning (Chapter 9). Many
more unexplored possibilities are forthcoming as robots inhabit more human en-
vironments, and we look forward to increased community focus on human-robot
dialog as researchers continue making progress in this cross-disciplinary area.
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