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the fous of the present work, ould partiularly ben-e�t from transfer.We assume the following set-up. A soure MLN islearned in the original task and is provided to thelearner, along with a mapping from the prediates ofthe original domain to those of the target domain. Re-overing this mapping automatially is another veryinteresting researh problem, but for now we assumethe mapping is simply given. A similar assumption ismade by Torrey et al. (2005).The urrent state-of-the-art struture learning algo-rithm (Kok & Domingos, 2005), whih we will allAlhemy after the open-soure system that implementsit1 (Kok et al., 2005), an start learning either fromsrath or from a provided MLN and an therefore beused for transfer. However, Alhemy does not expli-itly attempt to assess the similarities between tasks ortake advantage of them. As a result, it ould searhthrough an unneessarily large number of struturesand take a long time to omplete. Our proposed al-gorithm suessfully diagnoses the soure MLN andexploits the similarities between the tasks by fousingon relearning only the inaurate parts. In this way, itsigni�antly dereases both the learning time and thenumber of hypotheses onsidered, while maintaining alevel of learning auray similar to that of Alhemy.2. Bakground2.1. Markov Logi NetworksAn MLN (Rihardson & Domingos, 2006) onsists ofa set of �rst-order logi formulae, eah with a weightattahed, and provides a model for the joint distri-bution of a set of variables. A useful way of view-ing MLNs is as templates for produing fully-groundedMarkov networks (Pearl, 1988) when a set of onstantsis provided. As desribed by Rihardson and Domin-gos (2006), an MLN, L, an be used to onstrut aMarkov network by inluding a node for eah ground-ing of eah prediate appearing in L and a feature for1In addition to implementing this algorithm, Alhemyalso inludes apabilities for performing inferene andweight learning.



Transfer Learning with Markov Logi Networkseah formula in L. The value of a partiular node isgiven by the truth value of the orresponding groundliteral; similarly, the value of eah feature is 1 if theorresponding ground formula is true and 0 otherwise.To answer a query about the probability of a set ofground literals or formulae, one an perform Gibbssampling over the Markov Network. Gibbs samplingstarts by assigning a random truth value to eah queryliteral. It then proeeds in rounds, reomputing theprobability of a ground literal X given its MarkovBlanket MBX (i.e. its neighboring nodes). As givenby Rihardson and Domingos (2006), this probabilityis reomputed using the following equation:P (X = xjMBX = m) = eSX(x;m)eSX(0;m) + eSX(1;m) (1)where, if F is the set of ground formulae in whih Xpartiipates, SX is de�ned as follows.SX(x;m) = Xfi2F wifi(X = x;MBx = m) (2)It is not neessary to fully ground the MLN in orderto perform inferene on it|formulae that are alreadytrivially satis�ed by the evidene an be omitted be-ause they have no e�et on the value of Equation (1),and the only ground literals that need to appear inthe Markov network are the query variables and thosethat are present in the Markov blanket of a literal withan unknown value.Kok and Domingos (2005) introdue an algorithm forlearning MLN struture that an start either froman empty MLN or from a previously-onstruted one.Candidate lauses are generated by onsidering all pos-sible additions and deletions of literals to the exist-ing lauses as well as all possible sign ips. Twosearh strategies are proposed|beam searh, whihmaintains a beam of best lauses, and shortest-�rstsearh, whih onsiders adding shorter lauses beforemoving on to longer ones. Candidates are sored us-ing a weighted pseudo-log-likelihood measure. In thispaper, we ompare to the faster, beam searh, versionof the algorithm, whih we all Alhemy after its opensoure implementation (Kok et al., 2005).3. New AlgorithmReall that the learner is given the MLN obtained fromthe soure domain and a mapping from the prediatesin the soure domain to those in the target domain. Inaddition, we assume that the formulae of the providedMLN are disjuntions of literals. The learner is nottold whih parts of the soure MLN are useful in thenew task and whih may need to be relearned. Thus,the algorithm �rst needs to diagnose the given MLN.The general skeleton of our algorithm proeeds in twostages and is similar to that of Forte (Rihards &Mooney, 1995), whih revises �rst-order theories.

1. Self-Diagnosis: In this step, the algorithm in-spets the given MLN and determines for eahformula whether it is too general, too spei�, orrequires no hange. The purpose of this step is tofous the searh for new formulae to those partsof the MLN that truly need to be updated.2. Struture Update: In this step we arry outthe atual updates to the lauses by speializingthe ones marked as too general and generalizingthose marked as too spei�.Next, we desribe these steps in more detail.3.1. Self-DiagnosisOne natural approah to self-diagnosis is to attempt touse the soure MLN while observing where its formulaefail. In the ase of Forte where the formulae are partof a �rst-order theory, this is done by attempting toprove positive examples in the data. Our self-diagnosisalgorithm proeeds analogously.At the onset, the learner is provided with a soureMLN and a relational dataset. Eah of the prediatesin the target domain is examined in turn. The urrentprediate under examination is denoted as P �. Thealgorithmperforms a slightlymodi�ed version of Gibbssampling with P � serving as a query prediate whosegroundings have their values set to unknown, whileevidene is given by the values of all other prediategroundings in the data. In eah round of sampling, inaddition to realulating the probability of a groundliteral X , the algorithm onsiders all lauses in whihX partiipates. Even though the truth value of X isset to unknown for the purposes of sampling, its valueis known from the data. Let the atual value of X bev (true or false).Eah partiipating lause C an be plaed in one offour bins with respet to X . For the purposes of ex-position, let � = false if X appears negated in Cand � = true if X appears non-negated in C. Fora running example, we will use the following simplerelational database: fStudent(Ann), :HasJob(Ann),Sleepy(Ann), Soiable(Ann), InClass(Ann)g whereP � = Student, X = Student(Ann), and v = true.� [Applies;Good℄The value ofX is ruial in eval-uating C, with C being true only when X = v, asin :InClass(Ann) _ Student(Ann).� [Applies;Bad℄ C is true only when X = :v, e.g.:Soiable(Ann) _ :Student(Ann).� [Does not apply;Good℄ C is true regardless ofthe value of X (i.e. it holds trivially), and � 6= v.For example, Sleepy(Ann) _ :Student(Ann).



Transfer Learning with Markov Logi Networks� [Does not apply;Bad℄ C is trivially true, and� = v, e.g. :HasJob(Ann) _ Student(Ann).This taxonomy is motivated by a lose inspetion ofEquation (1). The probability of X = x is inreasedonly by lauses in the [Applies;Good℄ bin and is de-reased by lauses in the [Applies;Bad℄ bin. Clausesin the other two bins do not have an e�et on thisequation. However, if some of the literals other thanX in a [Does not apply;Bad℄ lause, are deleted sothat it no longer holds trivially, it will be moved tothe [Applies;Good℄ bin and will help to inrease theprobability of the orret value of X . Similarly, if weadd some literals to an [Applies;Bad℄ lause so thatit beomes trivially satis�ed, it will enter the [Doesnot apply;Good℄ bin and will no longer derease theprobability of the orret value of X .With these observations in mind, we an omplete thedesription of the self-diagnosis step. As the probabil-ity of a literal is realulated in eah iteration of Gibbssampling, for eah lause in whih the literal partii-pates, we keep a tally of the number of times it fallsinto eah of the bins. Finally, if a lause was plaed inthe [Applies;Bad℄ bin more than p perent of time, itis marked for speialization and if it fell in the [Doesnot apply; Bad℄ bin more than p perent of time, it ismarked for generalization. We antiipated that in thehighly sparse relational domains in whih we tested,lauses would fall mostly in the [Does not apply;Good℄ bin. To prevent this bin from swamping theother ones, we set p to the low value of 10%.This proess is repeated for eah prediate, P �, in thetarget domain.3.2. Struture UpdatesThe updates are performed using beam searh start-ing from the lauses identi�ed in the previous step.Unlike Kok and Domingos (2005), however, we do notonsider all possible additions and deletions of a literalto eah lause. Rather, we only try removing literalsfrom the lauses marked as too spei� and we try lit-eral additions only to the lauses marked as too gen-eral. These restritions apply also to the andidatesprodued from a partiular lause. The andidates aresored using the weighted pseudo-log-likelihood mea-sure of Kok and Domingos (2005). Thus, the searhspae is onstrained �rst by limiting the number oflauses onsidered for updates, and seond, by restrit-ing the kind of update performed on eah lause.4. Experimentation4.1. Data and MethodologyWe used two syntheti domains|Aademi (thesoure), whih provides knowledge about aademi de-

Aademi IndustrialPresident(X) Chair(X)Professor(X) Employee(X)Student(X) Intern(X)AdvisedBy(X, Y) SupervisedBy(X, Y)Publiation(P, X) Projet(P, X)Area(A, X) Department(A, X)None Seretary(X)None AssistedBy(X, Y)Figure 1. Prediate mappings in the two domainspartments and is similar to that of Rihardson andDomingos (2006) but ontains fewer prediates, andIndustrial (the target), whih provides an analogousdesription of a ompany. Figure 1 lists the mappingbetween the prediates in the two domains. The do-mains additionally ontain equality prediates. Eahtraining example represents a single organization andontains between 50 to 150 true ground literals. Toemphasize the size of eah example, we all it a mega-example. Mega-examples are arti�ially generated by�rst produing a skeleton by �xing the values of thegroundings of the unary prediates and partially spe-ifying some of the binary ones and then performingmaximum aposteriori inferene over a hand-writtenMLN to assign values to the unspei�ed groundings.We ompared the performane of our new algo-rithm (TransferNew) to that of Alhemy, startingboth from srath (SrathAlhemy) and from thesame soure MLN provided to the new algorithm(TransferAlhemy). Our auray metris were thearea under the preision-reall urve (AUC) and theonditional log-likelihood (CLL), as used in prior work(Kok & Domingos, 2005). Eah point on the learn-ing urves is the average of 5 independent learningruns where auray at eah point was measured onan independently generated mega-example, di�erentfor eah run. Testing was done for the prediatessupervisedBy and seretary. The former was pikedbeause it represents an interesting relation, and thelatter|beause it was absent in the soure domain.The algorithms were not told on whih prediates theywould be tested. All timing experiments were run oneby one on the same dediated mahine.4.2. ResultsFigures 2 and 3 ompare the auray of the three sys-tems on eah of the metris. The error bars give thestandard error at eah point. The auray of the twotransfer systems is losely mathed on both metris.The fat that it far exeeds that of SrathAlhemyand improves dramatially after observing a singlemega-example, demonstrates that the soure MLNaptures useful information about the target, whih
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TransferNewFigure 2. Auray on CLLan be easily reovered after only a few updates. Eventhough TransferNew and TransferAlhemy per-form similarly, the former onsiders muh fewer andi-date lauses during beam searh, as listed in Figure 4and has a signi�antly redued running time, as shownin Figure 5. Moreover, the running time of Trans-ferNew shows muh less variability aross trainingruns. This demonstrates the e�etiveness of the self-diagnosis step and suggests that our algorithm wouldbe espeially well-suited to situations where quik on-line relearning is important, suh as when using MLNsto represent the model of a dynami environment.
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TransferNewFigure 3. Auray on AUCTransferNew TransferAlhemyNum. Exs. Mean Std. Dev. Mean Std. Dev.1 2,645 721 21,610 5,5032 2,311 1,003 10,555 3,3913 2,474 441 7,253 2,0904 2,025 623 7,332 1,393Figure 4. Average number of andidate lauses onsideredby the transfer systems5. Future Work and ConlusionsThis paper proposes a new MLN transfer learning al-gorithm that diagnoses the soure MLN and updatesonly the inaurate lauses, thus dereasing both thesearh spae and the learning time, while maintainingthe auray at the level of the urrent state-of-the-artMLN struture learning algorithm.
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