
Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI-05),
pp. 1062--1068, Pittsburgh, PA, July 2005.

Learning to Transform Natural to Formal Languages

Rohit J. Kate Yuk Wah Wong Raymond J. Mooney
Department of Computer Sciences
The University of Texas at Austin

1 University Station C0500
Austin, TX 78712-0233, USA

{rjkate,ywwong,mooney}@cs.utexas.edu

Abstract

This paper presents a method for inducing transformation
rules that map natural-language sentences into a formal query
or command language. The approach assumes a formal gram-
mar for the target representation language and learns trans-
formation rules that exploit the non-terminal symbols in this
grammar. The learned transformation rules incrementally
map a natural-language sentence or its syntactic parse tree
into a parse-tree for the target formal language. Experimental
results are presented for two corpora, one which maps En-
glish instructions into an existing formal coaching language
for simulated RoboCup soccer agents, and another which
maps English U.S.-geography questions into a database query
language. We show that our method performs overall better
and faster than previous approaches in both domains.

Introduction
The ability to map natural language to a formal query
or command language is critical to developing more
user-friendly interfaces to many computing systems (e.g.
databases (Woods 1977)). However, relatively little re-
search in empirical natural-language processing (NLP) has
addressed the problem of learning such semantic parsers
from corpora of sentences paired with their formal-language
equivalents. Most recent work in corpus-based semantic
parsing has focused on shallow thematic (case-role) analysis
(Gildea & Jurafsky 2002). By learning to transform natural
language (NL) to a complete formal language, NL interfaces
to complex computing and AI systems can be more easily
developed.

In this paper, we consider two formal languages for per-
forming useful, complex tasks. The first one is a database
query language as used in a previously-developed corpus
of U.S. geography questions (Zelle & Mooney 1996). The
second formal language is a coaching language for robotic
soccer developed for the RoboCup Coach Competition, in
which AI researchers compete to provide effective instruc-
tions to a coachable team of agents in a simulated soccer
domain (Chenet al. 2003).

The few previous systems for directly learning such NL
interfaces have employed complex and slow inductive-logic-
programming (ILP) methods to acquire parsers for map-

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

ping sentences to a logical query language (Zelle & Mooney
1996; Tang & Mooney 2001). In this paper, we introduce
a simpler, more-efficient approach based on learning string-
to-tree or tree-to-tree transformation rules. The approach is
shown to be more effective in the RoboCup domain. It as-
sumes that a deterministically-parsable grammar for the tar-
get formal language is available. Transformation rules are
learned that map substrings in NL sentences or subtrees in
their corresponding syntactic parse trees to subtrees of the
formal-language parse tree. The non-terminal symbols in
the formal-language grammar provide convenient interme-
diate representations that enable the construction of general,
effective transformation rules.

Our approach has been implemented in a system called
SILT (Semantic Interpretation by Learning Transforma-
tions). One version of the system assumes that a syntactic
parse-tree for the NL sentence is provided by an existing
parser, the other version maps directly from the original NL
string. Using an assembled corpus of 300 RoboCup coach-
ing instructions and an existing corpus of 250 geography
database queries, we present experimental results evaluat-
ing SILT ’s ability to efficiently learn accurate NL interfaces
and compare it to previously developed ILP approaches.

Target Formal Languages
We restrict our formal languages to those with deterministic
context-free grammars (a.k.a. LR grammars), so that a given
formal representation always has a unique parse tree that is
used when learning to transform from natural language. Al-
most all computer languages fall into this category, includ-
ing the following two that motivate our work.

CLANG: the RoboCup Coach Language
RoboCup (www.robocup.org) is an international AI re-
search initiative using robotic soccer as its primary domain.
In the Coach Competition, teams of agents compete on a
simulated soccer field and receive advice from a team coach
in a formal language called CLANG. In CLANG, tactics and
behaviors are expressed in terms of if-then rules. As de-
scribed in (Chenet al. 2003), its grammar consists of 37
non-terminal symbols and 133 productions.

We augmented CLANG with additional expression types
for several concepts that are easily expressible in natural
language but not in CLANG. An example isall players



except player 4, which in CLANG has to be written as
{1 2 3 5 6 7 8 9 10 11}. These new expression
types are automatically converted into the original language.
Below is a sample rule with its English translation:

((bpos (penalty-area our))
(do (player-except our {4})

(pos (half our))))

“If the ball is in our penalty area, all our players except
player 4 should stay in our half.”

The semantic parsers we have developed for CLANG
are part of a larger research project on advice-taking
reinforcement-learning agents that accept advice stated in
natural language (Kuhlmannet al. 2004).

GEOQUERY: a Database Query Application
GEOQUERY is a logical query language for a small database
of U.S. geography containing about 800 facts. This do-
main was originally chosen to test corpus-based seman-
tic parsing due to the availability of a hand-built natural-
language interface, GEOBASE, supplied with Turbo Prolog
2.0 (Borland International 1988). The GEOQUERYlanguage
consists of Prolog queries augmented with several meta-
predicates (Zelle & Mooney 1996). Below is a sample query
with its English translation:

answer(A,count(B,(city(B),loc(B,C),
const(C,countryid(usa))),A))

“How many cities are there in the US?”

Semantic Parsing using Transformations
SILT is a new approach to mapping NL sentences into their
formal representations using transformation rules. Although
transformation rules have been used in other NLP tasks such
as part-of-speech tagging (Brill 1995), our approach differs
substantially from Brill’s method. In SILT , transformation
rules associate patterns found in natural language with tem-
plates that are based on productions of the formal-language
grammar. The pattern of a rule is matched against phrases
in the sentence, and when successfully matched, the corre-
sponding template is instantiated to create part of the formal
representation.

Throughout the paper, we use the phraseformal gram-
mar to refer to the grammar of the target formal language.
Productionsandnon-terminalsalways refer to those in the
formal grammar. Arule is always a transformation rule that
maps NL phrases to formal expressions.

Rule Representation
Every transformation rule in SILT associates a pattern with a
template. We have developed two versions of SILT based on
the representation of their patterns. The first version (string-
based) uses strings of words as patterns and matches them
directly against natural language sentences. The second ver-
sion (tree-based) uses trees (words and syntactic markers)
as patterns and matches them against syntactic parse-trees
of the NL sentences. For both versions, the rule templates
are based on the productions of the formal grammar.

A sample rule with a string-based pattern and a template
based on a CLANG production is:

“ TEAM UNUM has the ball”
CONDITION → (bowner TEAM {UNUM})

Here TEAM, UNUM (uniform number) and CONDITION are
non-terminals of the CLANG grammar. When the pattern
is matched, an instance of the associated template is intro-
duced as part of the formal representation. The next subsec-
tion illustrates this process with a running example.

Below is a sample tree-based pattern in prefix notation,
associated with the same template:

(S (NP TEAM UNUM) (VP (VBZ has) (NP (DT the)
(NN ball))))

Here S, NP, NNetc. in the pattern are syntactic markers.
Notice that in a tree-based pattern, CLANG non-terminals
are always at the leaves of the tree.

Example of Semantic Parsing
SILT builds the formal representation by repeatedly applying
transformation rules to the given NL sentence. We illustrate
the bottom-up version of this process with an example. This
example uses string-based transformation rules, but it canbe
easily extended to tree-based rules. Consider the sentence:

“If our player 4 has the ball, our player 4 should
shoot.”

First, the following rules whose patterns match the sen-
tence are applied. Notice that none of these patterns contain
CLANG non-terminals.

“our” TEAM → our
“player 4” UNUM → 4
“shoot” ACTION → (shoot)

The matched portions of the sentence are replaced by the
left-hand-side (LHS) non-terminals of the associated rule
templates, namely TEAM, UNUM and ACTION. These non-
terminals are treated the same as words in the sentence,
and each is associated with a formal representation instan-
tiated from the right hand side (RHS) of the rule template,
as shown below by the downward arrows. These representa-
tions are later used to assemble the complete formal repre-
sentation of the sentence.

“If TEAM
↓

our

UNUM
↓

4

has the ball,TEAM
↓

our

UNUM
↓

4

should

ACTION
↓

(shoot)

.”

Next, the rule shown in the previous subsection is applied
since its pattern“ TEAM UNUM has the ball”now matches
the sentence. The matched portion of the sentence is re-
placed with the LHS non-terminal of the template, CONDI-
TION. In turn, this non-terminal is associated with the rep-
resentation(bowner our {4}), obtained by instantiat-
ing the RHS of the template,(bowner TEAM {UNUM}),
substituting the representations associated with the matched
TEAM and UNUM non-terminals. The result is:



“If CONDITION
↓

(bowner our {4})

, TEAM
↓

our

UNUM
↓

4

should

ACTION
↓

(shoot)

.”

This rule illustrates the constraint that a pattern must con-
tain the same set of non-terminal symbols as the RHS of
the associated template. The matched non-terminals in the
sentence supply the arguments needed to instantiate the tem-
plate. Next, the rule:

“ TEAM UNUM shouldACTION”
DIRECTIVE → (do TEAM{UNUM} ACTION)

applies and the sentence becomes:

“If CONDITION
↓

(bowner our{4})

, DIRECTIVE
↓

(do our{4}(shoot))

.”

Finally, the sentence matches the rule:

“if CONDITION , DIRECTIVE .”
RULE → (CONDITION DIRECTIVE)

and a complete formal representation is obtained:

“ RULE
↓

((bowner our{4})(do our{4}(shoot)))

”

The parsing process can also proceed in a top-down fashion,
by reversing the order in which rules are applied.

Variations of Rule Representation
To increase the coverage of a transformation rule, SILT
allows patterns that skip some number of words (or tree
nodes). The skipped words (or nodes) are called agap,
and the maximum gap size is specified in the pattern. For
example, the pattern“if CONDITION , 〈1〉 DIRECTIVE .”
allows at most one word to be skipped between“,” and
“ DIRECTIVE” , and allows matching the sentence“If CON-
DITION, thenDIRECTIVE” , skipping the word “then”.

SILT ’s rule representation also allows for constraints on
the context surrounding the pattern to be transformed. For
example, a rule that transforms“in REGION” to CONDI-
TION → (bpos REGION)1 is more accurate when the pre-
ceding context is required to be“the ball 〈1〉” . Specifying
additional context instead of including the constraint in the
pattern reduces the number of words consumed when apply-
ing the rule. This is useful in cases like “player 4 has the
ball in REGION”, where “the ball” contributes to more than
one CLANG predicate (namelybowner andbpos). This
is an example of non-compositionality, in which the phrases
in a sentence do not have a one-to-one correspondence with
subexpressions of the formal representation.

Another way of handling non-compositionality is to use
templates with multiple productions. For example, a trans-
formation rule that maps“ TEAM playerUNUM has the ball
in REGION” to CONDITION → (and (bowner TEAM
UNUM) (bpos REGION)), introduces a combination of
three CLANG productions, eliminating the need for con-
straints on surrounding context.

1In CLANG, (bpos r) means the ball is in the regionr.

Input: A training setT of NL sentences paired with formal rep-
resentations; a set of productionsΠ in the formal grammar
Output: A learned rule base,L
Algorithm:
Parse all formal representations inT usingΠ.
Collect positivePπ and negative examplesNπ for all π ∈ Π.
L = ∅
Until all positive examples are covered, or no more good rules
can be found for anyπ ∈ Π, do:

R∗ = FINDBESTRULES(Π,PΠ,NΠ) // see text
L = L ∪ R∗

Apply rules inL to sentences inT .

Figure 1: LEARNRULES(T,Π): SILT ’s learning algorithm

Currently, the string-based version of SILT uses con-
straints on surrounding context and the tree-based version
uses rule templates for multiple productions. However, we
expect both approaches could be made to work with either
string-based or tree-based patterns.

Learning Transformation Rules
SILT induces transformation rules from a set of NL sen-
tences paired with their formal representations. Figure 1
shows an overview of the algorithm (LEARNRULES). First,
unique parse trees are computed for each formal represen-
tation, which are well defined because the formal grammar
is deterministic. Next, positive and negative examples are
collected for each productionπ in the formal grammar as
follows. Given an NL sentences, if π is used in the parse
tree of the formal representation ofs, thens is a positive
example ofπ, otherwises is a negative example ofπ. SILT
starts with an empty rule base and iteratively adds the best
rules to it. The procedure for finding the best rules to add
(FINDBESTRULES) is described in the following two sec-
tions. After the rule base is updated, all rules in it are applied
to all training sentences. When a rule is applied, the parts
of the sentences that are matched by it are replaced by the
LHS non-terminal of its template. This allows subsequently-
learned rules to use these non-terminals in their patterns.
Rule learning is complete when all positive examples of all
productions are covered by the rule base, or when no more
good rules can be found for any production.

For the rule learning to be successful, two impor-
tant issues need to be addressed. The first one is non-
compositionality, which was discussed in the previous sec-
tion. The second one is finding a set of rules that coop-
erate with each other to produce complete, correct formal-
language translations. This is not trivial because rules are
learned in a particular order. When a learned ruler is overly-
general, it is possible that all subsequently-found candidate
rules are overly-general, and no rules can be found to coop-
erate withr at a global level. We propose two approaches
to this problem in SILT . The first one is to avoid learning
overly-general rules by finding the single best rule for all
competing productions in each iteration. The second one is
to over-generate rules, and then find a subset of the learned
rules that cooperate with each other. Currently, the string-



Input: A set of productionsΠ in the formal grammar; sets of
positivePπ and negative examplesNπ for eachπ in Π
Output: The best ruler∗

Algorithm:
R = ∅
For each productionπ ∈ Π:

Let Rπ be the maximally-specific rules derived fromPπ.
Repeat for k = 1000 times:

Chooser1, r2 ∈ Rπ at random.
g = GENERALIZE(r1, r2, π) // see text
Add g to Rπ.

R = R ∪ Rπ

r∗ = arg maxr∈R goodness(r)
Remove positive examples covered byr∗ fromPπ∗ .

Figure 2: FINDBESTRULES(Π,PΠ,NΠ): Finding the best
string-based rule to be included in the rule base

based version of SILT uses the former approach, and the
tree-based version uses the latter. However both approaches
are expected to work with either version.

Learning String-Based Transformation Rules
In order to find a set of inter-dependent cooperating rules,
the procedure FINDBESTRULES of the string-based version
of SILT simultaneously generates candidate rules for all pro-
ductions and returns the overall best rule to be included in
the rule base. Figure 2 shows a summary of this procedure.
For every productionπ in the formal grammar, bottom-up
rule induction is performed using a set of positive examples
Pπ. Rule induction starts with maximally-specific rules, one
rule for each positive example whose pattern is the complete,
original sentence. These rules form the initial set of can-
didate rules,Rπ, which are repeatedly generalized to form
more general rules. In each of thek = 1000 iterations, two
rules are randomly chosen fromRπ and their generalization
computed. The generalized rule is then added back toRπ for
further generalization. This process is similar to the learning
algorithm of GOLEM (Muggleton & Feng 1990). After can-
didate rules are found for all productions in the formal gram-
mar, all rules are ranked using a goodness measure based on
the number of positivepos(r) and negative examplesneg(r)
that a rule covers:

goodness(r) =
(pos(r))2

pos(r) + neg(r)

The goodness of a rule is the product of its accuracy and
coverage. The overall best ruler∗ is then chosen, and the
positive examples that it covers are removed fromPπ∗ . This
approach allows rules for different productions to effectively
compete with each other during the learning process in order
to eventually produce an accurate, complete set of interact-
ing transformations. The approach is similar to the one used
for Multiple Predicate Learning (De Raedt, Lavrac, & Dze-
roski 1993), in which Prolog clauses for several different
inter-dependent concepts are learned simultaneously.

The key operation in the above rule induction procedure
is the generalization of two candidate rules (GENERALIZE).
Given two rules for a productionπ, GENERALIZE first

Pattern 1: TEAM ’s penalty box
Pattern 2: TEAM penalty area
Generalization: TEAM 〈1〉 penalty

Figure 3: Output of GENERALIZE with two string-based pat-
terns, withπ being REGION→ (penalty-area TEAM)

computes all common subsequences of the rules’ patterns
that contain all non-terminals present in the RHS ofπ.
Parameterized gaps are inserted between every two adja-
cent words in a common subsequence. GENERALIZE then
chooses a subsequence which is long and has small gaps.
Longer subsequences are preferred since they are less likely
to match negative examples. It is also desirable that the
words are nearby, so large gaps are discouraged. Each sub-
sequencec = c1c2 . . . cn is scored usingσ(c) = n −

η
∑n−1

i=0
g(ci, ci+1), whereη = 0.4 is the penalizing pa-

rameter andg(ci, ci+1) is the gap size betweenci andci+1.
GENERALIZE returns the rule whose pattern is the subse-
quence with the highestσ(c). Figure 3 shows the output of
GENERALIZE given two sample string-based patterns.

The string-based version of SILT addresses the problem
of non-compositionality by making part of the pattern a con-
straint on the surrounding context. Given a ruler returned
by FINDBESTRULES, SILT heuristically finds the portion of
its pattern that determines the subsequence of the sentence
to be replaced by the transformation (called thereplacement
subpattern). The rest of the pattern only constrains the sur-
rounding context. For every contiguous subpatternr′of r,
the number of positive and negative examples matched byr′

is computed and the subpattern that maximizes the heuristic
v(r′) = (neg(r′)−neg(r))/(pos(r′)−pos(r)+ ǫ) is made
the replacement subpattern. The small valueǫ = 0.01 pre-
vents the denominator from becoming zero. This heuristic
captures the idea that the replacement pattern should cover
basically the same positive examples covered by the com-
plete pattern since it represents the NL phrase whose “mean-
ing” is the formal subexpression introduced by the transfor-
mation. The goal of the remainder of the pattern is to elim-
inate negative examples, thereby disambiguating the given
NL phrase (which may also have other “meanings”) based
on surrounding context.

Learning Tree-Based Transformation Rules

Similar to the string-based version, the tree-based version of
SILT generates candidate rules using bottom-up rule induc-
tion. The rule generalization procedure (GENERALIZE) is
based on computing common subgraphs of patterns. Given
two rules,r1 andr2, GENERALIZE returns rules whose pat-
terns are the largest common subgraphs of the subtrees of
r1’s andr2’s patterns. For simplicity, gaps are not allowed
in a pattern except above a non-terminal or below a syntac-
tic marker at the leaf position. Figure 4 shows the output of
GENERALIZE given a pair of sample tree-based patterns.

To handle non-compositionality, rules are learned with
templates that simultaneously introduce multiple produc-
tions. Before LEARNRULES is invoked, the set of produc-



Pattern 1: (NP (NP TEAM (POS’s)) (NN penalty) (NN box))
Pattern 2: (NP (PRP$ TEAM) (NN penalty) (NN area))
Generalizations: (NP TEAM (NN penalty) (NN)), TEAM

Figure 4: Output of GENERALIZE with two tree-based pat-
terns, withπ being REGION→ (penalty-area TEAM)

tionsΠ is augmented withmacro-productions, chains of two
or more productions. Macro-productions are created for all
combinations of up tom productions observed in the train-
ing data. The optimal values ofm for CLANG and GEO-
QUERY are 3 and 5, respectively. Macro-productions are
then treated the same as original productions in the learn-
ing algorithm.

To find a cooperative set of rules, rules are first over-
generated. This is done by performing a form of beam
search, where at mostβ = 5 different rules are allowed to
redundantly cover the same positive example in the training
data. The FINDBESTRULES procedure for the tree-based
version of SILT is similar to the string-based version (Fig-
ure 2). A major difference is that instead of returning a sin-
gle best rule, up toβ best rules are now returned. The pos-
itive examples covered by these rules are not removed from
the training set until they are redundantly covered byβ dif-
ferent rules. Also in each invocation of FINDBESTRULES,
only theπ that has the most positive examples inPπ is ex-
amined, which is less time-consuming than examining all
π ∈ Π at once.

To find a subset of the learned rules that cooperate with
each other, rules that seldom lead to complete, correct
formal-language translations for the training data are re-
moved from the rule base, as a post-processing step after
LEARNRULES. The pruned rule base is further refined by
learning additional constraints for each rule. These con-
straints specify the maximum number of words that can be
skipped when a rule is applied, and the words that can or
cannot be skipped. These constraints are learned by simple
counting. For example, if for all sentences in the training
data, at mostn words are skipped when a ruler is applied
and the application ofr leads to a complete, correct parse,
then the gap size ofr is set ton.

Since the size of the resulting rule base is potentially
large, a sentence usually gives rise to many formal-language
translations. These translations are ranked using a heuristic
functionρ(f) =

∑
r∈Rf

a(r)× (w(r)+1), whereRf is the
set of rules used in deriving the formal representationf , a(r)
the accuracy of ruler, andw(r) the number of words that
the pattern ofr contains. The formal representationf with
the highestρ(f) is then chosen as the output. This heuristic
captures the idea that as many words should be matched as
possible using rules that are reasonably accurate.

Experiments
Methodology
Two corpora of NL sentences paired with formal representa-
tions were constructed as follows. For CLANG, 300 pieces
of coaching advice were randomly selected from the log files

of the 2003 RoboCup Coach Competition. Each formal in-
struction was translated into English by one of four annota-
tors. The average length of an NL sentence in this corpus
is 22.52 words. For GEOQUERY, 250 questions were col-
lected by asking undergraduate students to generate English
queries for the given database. Queries were then manu-
ally translated into logical form (Zelle & Mooney 1996).
The average length of an NL sentence in this corpus is 6.87
words. The queries in this corpus are more complex than
those in the ATIS database-query corpus used in the speech
recognition community (Zue & Glass 2000) which makes
the GEOQUERY problem harder, as also shown by the re-
sults in (Popescuet al. 2004).

SILT was evaluated using standard 10-fold cross valida-
tion. Syntactic parses required by SILT ’s tree-based version
were generated by Collins’ parser (Bikel 2004) trained with
the WSJ treebank and gold-standard parse trees of the train-
ing sentences. The test sentences were then transformed us-
ing the learned semantic parser. We computed the number of
test sentences that produced complete translations, and the
number of these translations that were correct. For CLANG,
a translation is correct if it exactly matched the correct repre-
sentation, up to reordering of the arguments of commutative
operators likeand. For GEOQUERY, a translation is cor-
rect if the resulting query retrieved the same answer as the
correct representation when submitted to the database. Then
the performance of the parser was measured in terms of pre-
cision (the percentage of completed translations that were
correct) and recall (the percentage of all sentences that were
correctly translated).

We compared SILT ’s performance with that of CHILL ,
an ILP framework for learning semantic parsers. We ran
two versions of CHILL , one based on the CHILLIN induc-
tion algorithm (Zelle & Mooney 1996), the other based on
COCKTAIL (Tang & Mooney 2001), which uses multiple
clause constructors based on the CHILLIN and mFOIL algo-
rithms (Lavrac & Dzeroski 1994). We also compared SILT
with GEOBASE (Borland International 1988), a hand-built
NL interface for the GEOQUERYdomain.

The original formal queries in GEOQUERY were in Pro-
log; however, SILT ’s transformation mechanism is best
suited for functional or imperative command languages like
CLANG. Hence, when applying SILT to GEOQUERY, the
logical queries were automatically translated into an equiv-
alent variable-free functional form using a simple conver-
sion program. In an exact opposite manner, CHILL ’s parsing
mechanism is best suited for logical languages. Hence in or-
der to apply it to the CLANG corpus, the advice expressions
were automatically translated into an equivalent Prolog form
using another simple conversion program.

Results
Figures 5 and 6 show the precision and recall learning curves
for GEOQUERY, and Figures 7 and 8 for CLANG. The la-
bels “SILT-string” and “SILT-tree” denote the string-based
and tree-based versions of SILT , respectively. Table 1 gives
the training time in minutes for all the systems for the last
points on the learning curves. Since COCKTAIL is memory
intensive, it could not be run with larger training sets of the



GEOQUERY CLANG

SILT -string 0.35 3.2
CHILLIN 6.3 10.4
SILT -tree 21.5 81.4

COCKTAIL 39.6 -

Table 1: Average training time in minutes for the last points
on the learning curves

CLANG corpus.
On the GEOQUERY corpus, COCKTAIL has the best re-

call but the worst precision. On the CLANG corpus, both
versions of SILT do a lot better than either COCKTAIL or
CHILLIN . There are two main reasons for this. First, COCK-
TAIL and CHILLIN do not exploit the formal grammar of the
target language. The intermediate non-terminals of CLANG
are very suitable for expressing good generalizations, and
SILT uses them to its advantage. Second, COCKTAIL and
CHILLIN use a shift-reduce parsing framework to parse a
sentence from left to right. This type of parsing is restrictive
because if the system fails to parse the left side of the sen-
tence then it will fail to parse the entire sentence. In contrast,
SILT can parse a sentence starting from anywhere; for ex-
ample, it may first parse the right side of the sentence which
may help it in parsing the left side leading to a complete
parse. It may also be noted that the CLANG corpus is the
harder corpus since it has longer sentences with larger for-
mal representations.

The two versions of SILT give comparable precisions but
the tree-based version gives much higher recalls. The string-
based version, however, runs much faster. The tree-based
version uses the additional information of English syntax
and does a much more thorough search for finding inter-
dependent co-operating rules which contributes to its better
performance.

Results on a larger GEOQUERY corpus with 880 queries
have been reported for PRECISE(Popescu, Etzioni, & Kautz
2003): 100% precision and 77.5% recall. On the same cor-
pus, the tree-based version of SILT obtains 87.85% preci-
sion and 53.41% recall. However, the figures are not com-
parable. PRECISEcan return multiple distinct SQL queries
when it judges a question to be ambiguous and it is con-
sidered correct whenany of these SQL queries is correct.
Our measure only considers the top result. Moreover, PRE-
CISE is designed to work only for the specific task of NL
database interfaces. By comparison, SILT is more general
and can work with other target formal languages as well (e.g.
CLANG).

Future Work
Compared to previous ILP-based methods, SILT allows for
a more global approach to semantic parsing that is not con-
strained to making correct local decisions after incremen-
tally processing each word. However, it still lacks some of
the robustness of statistical parsing. A more recent approach
by Ge & Mooney (2005) adds detailed semantics to a state-
of-the-art statistical parser. Their system learns a statistical

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250

P
re

ci
si

on
 (

%
)

Training sentences

SILT-string
SILT-tree
CHILLIN

COCKTAIL
GEOBASE

Figure 5: Precision learning curves for GEOQUERY

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250

R
ec

al
l (

%
)

Training sentences

SILT-string
SILT-tree
CHILLIN

COCKTAIL
GEOBASE

Figure 6: Recall learning curves for GEOQUERY

parser that generates asemantically augmented parse tree,
in which each internal node is given both a syntactic and
a semantic label. By integrating syntactic and semantic in-
terpretation into a single statistical model and finding the
globally most probable parse, an accurate combined syn-
tactic/semantic analysis can be obtained. However, this ap-
proach requires semantically augmented parse trees as addi-
tional training input.

Currently, the hard-matching symbolic rules of SILT are
sometimes too brittle to appropriately capture the range of
contexts in which a concept in the formal language should
be introduced. We are currently developing an improved
version of SILT by exploiting the use of string and treeker-
nels(Lodhi et al. 2002). This will allow a more robust and
flexible mechanism for triggering transformations compared
to hard-matching regular expressions.

Finally, we are also developing a more unified implemen-
tation of the string-based and tree-based versions of SILT
that will allow a direct comparison that evaluates the benefit
of using initial syntactic parses. The current two versions
differ along several dimensions that are independent of the



0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300

P
re

ci
si

on
 (

%
)

Training sentences

SILT-string
SILT-tree
CHILLIN

COCKTAIL

Figure 7: Precision learning curves for CLANG

0

10

20

30

40

50

60

0 50 100 150 200 250 300

R
ec

al
l (

%
)

Training sentences

SILT-string
SILT-tree
CHILLIN

COCKTAIL

Figure 8: Recall learning curves for CLANG

use of a syntactic parser, which prevents attributing the per-
formance advantage of SILT -tree to this aspect alone.

Conclusions

We have presented a novel approach, SILT , for learning
transformation rules that map NL sentences into a formal
representation language. The system learns these transfor-
mation rules from the training data by doing bottom-up rule
induction using the target language grammar. It was ap-
plied to two very different domains and was shown to per-
form overall better and faster than previous ILP-based ap-
proaches.

Acknowledgments

We would like to thank Ruifang Ge and Gregory Kuhlmann
for their help in annotating the CLANG corpus. This
research was supported by Defense Advanced Research
Projects Agency under grant HR0011-04-1-0007.

References
Bikel, D. M. 2004. Intricacies of Collins’ parsing model.
Computational Linguistics30(4):479–511.
Borland International. 1988.Turbo Prolog 2.0 Reference
Guide. Scotts Valley, CA: Borland International.
Brill, E. 1995. Transformation-based error-driven learning
and natural language processing: A case study in part-of-
speech tagging.Computational Linguistics21(4):543–565.
Chen, M.; Foroughi, E.; Heintz, F.; Kapetanakis,
S.; Kostiadis, K.; Kummeneje, J.; Noda, I.; Obst,
O.; Riley, P.; Steffens, T.; Wang, Y.; and Yin, X.
2003. Users manual: RoboCup soccer server manual
for soccer server version 7.07 and later. Available at
http://sourceforge.net/projects/sserver/.
De Raedt, L.; Lavrac, N.; and Dzeroski, S. 1993. Multiple
predicate learning. InProc. of IJCAI-93, 1037–1042.
Ge, R., and Mooney, R. J. 2005. A statistical semantic
parser that integrates syntax and semantics. To appear in
Proc. of CoNLL-05.
Gildea, D., and Jurafsky, D. 2002. Automated labeling of
semantic roles.Computational Linguistics28(3):245–288.
Kuhlmann, G.; Stone, P.; Mooney, R.; and Shavlik, J. 2004.
Guiding a reinforcement learner with natural language ad-
vice: Initial results in RoboCup soccer. InProc. of the
AAAI-04 Workshop on Supervisory Control of Learning
and Adaptive Systems.
Lavrac, N., and Dzeroski, S. 1994.Inductive Logic Pro-
gramming: Techniques and Applications. Ellis Horwood.
Lodhi, H.; Saunders, C.; Shawe-Taylor, J.; Cristianini, N.;
and Watkins, C. 2002. Text classification using string ker-
nels.JMLR2:419–444.
Muggleton, S., and Feng, C. 1990. Efficient induction
of logic programs. InProc. of 1st Conf. on Algorithmic
Learning Theory. Tokyo, Japan: Ohmsha.
Popescu, A.-M.; Armanasu, A.; Etzioni, O.; Ko, D.; and
Yates, A. 2004. Modern natural language interfaces to
databases: Composing statistical parsing with semantic
tractability. InProc. of COLING-04.
Popescu, A.-M.; Etzioni, O.; and Kautz, H. 2003. To-
wards a theory of natural language interfaces to databases.
In Proc. of IUI-03, 149–157. Miami, FL: ACM.
Tang, L. R., and Mooney, R. J. 2001. Using multiple clause
constructors in inductive logic programming for semantic
parsing. InProc. of ECML-01, 466–477.
Woods, W. A. 1977. Lunar rocks in natural English: Ex-
plorations in natural language question answering. In Zam-
poli, A., ed.,Linguistic Structures Processing. New York:
Elsevier North-Holland.
Zelle, J. M., and Mooney, R. J. 1996. Learning to parse
database queries using inductive logic programming. In
Proc. of AAAI-96, 1050–1055.
Zue, V. W., and Glass, J. R. 2000. Conversational inter-
faces: Advances and challenges. InProc. of the IEEE, vol-
ume 88(8), 1166–1180.


