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Abstract

This paper investigates how linguistic knowl-
edge mined from large text corpora can aid the
generation of natural language descriptions of
videos. Specifically, we integrate both a neu-
ral language model and distributional seman-
tics trained on large text corpora into a recent
LSTM-based architecture for video descrip-
tion. We evaluate our approach on a collection
of Youtube videos as well as two large movie
description datasets showing significant im-
provements in grammaticality while modestly
improving descriptive quality.

1 Introduction

The ability to automatically describe videos in nat-
ural language (NL) enables many important appli-
cations including content-based video retrieval and
video description for the visually impaired. The
most effective recent methods (Venugopalan et al.,
2015a; Yao et al., 2015) use recurrent neural net-
works (RNN) and treat the problem as machine
translation (MT) from video to natural language.
Deep learning methods such as RNNs need large
training corpora; however, there is a lack of high-
quality paired video-sentence data. In contrast, raw
text corpora are widely available and exhibit rich
linguistic structure that can aid video description.
Most work in statistical MT utilizes both a language
model trained on a large corpus of monolingual tar-
get language data as well as a translation model
trained on more limited parallel bilingual data. This
paper explores methods to incorporate knowledge
from language corpora to capture general linguistic
regularities to aid video description.

This paper integrates linguistic information into
a video-captioning model based on Long Short
Term Memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997) RNNs which have shown state-of-the-art
performance on the task. Further, LSTMs are also
effective as language models (LMs) (Sundermeyer
et al., 2010). Our first approach (early fusion) is
to pre-train the network on plain text before train-
ing on parallel video-text corpora. Our next two ap-
proaches, inspired by recent MT work (Gulcehre et
al., 2015), integrate an LSTM LM with the existing
video-to-text model. Furthermore, we also explore
replacing the standard one-hot word encoding with
distributional vectors trained on external corpora.

We present detailed comparisons between the ap-
proaches, evaluating them on a standard Youtube
corpus and two recent large movie description
datasets. The results demonstrate significant im-
provements in grammaticality of the descriptions
(as determined by crowdsourced human evaluations)
and more modest improvements in descriptive qual-
ity (as determined by both crowdsourced human
judgements and standard automated comparison to
human-generated descriptions). Our main contribu-
tions are 1) multiple ways to incorporate knowledge
from external text into an existing captioning model,
2) extensive experiments comparing the methods on
three large video-caption datasets, and 3) human
judgements to show that external linguistic knowl-
edge has a significant impact on grammar.

2 LSTM-based Video Description

We use the successful S2VT video description
framework from Venugopalan et al. (2015a) as our
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Figure 1: The S2VT architecture encodes a sequence of frames

and decodes them to a sentence. We propose to add knowledge

from text corpora to enhance the quality of video description.

underlying model and describe it briefly here. S2VT
uses a sequence to sequence approach (Sutskever
et al., 2014; Cho et al., 2014) that maps an input
~x = (x1, ... , xT ) video frame feature sequence to a
fixed dimensional vector and then decodes this into
a sequence of output words ~y = (y1, ... , yN ).

As shown in Fig. 1, it employs a stack of two
LSTM layers. The input ~x to the first LSTM layer
is a sequence of frame features obtained from the
penultimate layer (fc7) of a Convolutional Neural
Network (CNN) after the ReLu operation. This
LSTM layer encodes the video sequence. At each
time step, the hidden control state ht is provided as
input to a second LSTM layer. After viewing all the
frames, the second LSTM layer learns to decode this
state into a sequence of words. This can be viewed
as using one LSTM layer to model the visual fea-
tures, and a second LSTM layer to model language
conditioned on the visual representation. We modify
this architecture to incorporate linguistic knowledge
at different stages of the training and generation pro-
cess. Although our methods use S2VT, they are
sufficiently general and could be incorporated into
other CNN-RNN based captioning models.

3 Approach

Existing visual captioning models (Vinyals et al.,
2015; Donahue et al., 2015) are trained solely on text
from the caption datasets and tend to exhibit some
linguistic irregularities associated with a restricted
language model and a small vocabulary. Here, we
investigate several techniques to integrate prior lin-
guistic knowledge into a CNN/LSTM-based net-
work for video to text (S2VT) and evaluate their ef-
fectiveness at improving the overall description.

Early Fusion. Our first approach (early fusion), is
to pre-train portions of the network modeling lan-
guage on large corpora of raw NL text and then
continue “fine-tuning” the parameters on the paired
video-text corpus. An LSTM model learns to esti-
mate the probability of an output sequence given an
input sequence. To learn a language model, we train
the LSTM layer to predict the next word given the
previous words. Following the S2VT architecture,
we embed one-hot encoded words in lower dimen-
sional vectors. The network is trained on web-scale
text corpora and the parameters are learned through
backpropagation using stochastic gradient descent.1

The weights from this network are then used to ini-
tialize the embedding and weights of the LSTM lay-
ers of S2VT, which is then trained on video-text
data. This trained LM is also used as the LSTM LM
in the late and deep fusion models.

Late Fusion. Our late fusion approach is similar
to how neural machine translation models incorpo-
rate a trained language model during decoding. At
each step of sentence generation, the video caption
model proposes a distribution over the vocabulary.
We then use the language model to re-score the fi-
nal output by considering the weighted average of
the sum of scores proposed by the LM as well as the
S2VT video-description model (VM). More specif-
ically, if yt denotes the output at time step t, and if
pVM and pLM denote the proposal distributions of
the video captioning model, and the language mod-
els respectively, then for all words y′ ∈ V in the
vocabulary we can recompute the score of each new
word, p(yt = y′) as:

α · pVM (yt = y′) + (1− α) · pLM (yt = y′) (1)

Hyper-parameter α is tuned on the validation set.

Deep Fusion. In the deep fusion approach (Fig. 2),
we integrate the LM a step deeper in the genera-
tion process by concatenating the hidden state of the
language model LSTM (hLMt ) with the hidden state
of the S2VT video description model (hVM

t ) and
use the combined latent vector to predict the out-
put word. This is similar to the technique proposed
by Gulcehre et al. (2015) for incorporating language
models trained on monolingual corpora for machine
translation. However, our approach differs in two

1The LM was trained to achieve a perplexity of 120
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Figure 2: Illustration of our late and deep fusion ap-
proaches to integrate an independently trained LM to aid
video captioning. The deep fusion model learns jointly
from the hidden representations of the LM and S2VT
video-to-text model (Vid-LSTM), whereas the late fusion
re-scores the softmax output of the video-to-text model.

key ways: (1) we only concatenate the hidden states
of the S2VT LSTM and language LSTM and do not
use any additional context information, (2) we fix
the weights of the LSTM language model but train
the full video captioning network. In this case, the
probability of the predicted word at time step t is:

p(yt|~y<t, ~x) ∝ exp(Wf(hVM
t , hLMt ) + b) (2)

where ~x is the visual feature input, W is the weight
matrix, and b the biases. We avoid tuning the LSTM
LM to prevent overwriting already learned weights
of a strong language model. But we train the full
video caption model to incorporate the LM outputs
while training on the caption domain.

Distributional Word Representations. The
S2VT network, like most image and video cap-
tioning models, represents words using a 1-of-N
(one hot) encoding. During training, the model
learns to embed “one-hot” words into a lower
500d space by applying a linear transformation.
However, the embedding is learned only from
the limited and possibly noisy text in the caption
data. There are many approaches (Mikolov et
al., 2013; Pennington et al., 2014) that use large
text corpora to learn vector-space representations
of words that capture fine-grained semantic and
syntactic regularities. We propose to take advantage
of these to aid video description. Specifically, we
replace the embedding matrix from one-hot vectors
and instead use 300-dimensional GloVe vectors
(Pennington et al., 2014) pre-trained on 6B tokens
from Gigaword and Wikipedia 2014. In addition
to using the distributional vectors for the input, we

also explore variations where the model predicts
both the one-hot word (trained on the softmax loss),
as well as predicting the distributional vector from
the LSTM hidden state using Euclidean loss as the
objective. Here the output vector (yt) is computed
as yt = (Wght + bg), and the loss is given by:

L(yt, wglove) = ‖(Wght + bg)− wglove‖2 (3)

where ht is the LSTM output, wglove is the word’s
GloVe embedding and W , b are weights and biases.
The network then essentially becomes a multi-task
model with two loss functions. However, we use
this loss only to influence the weights learned by the
network, the predicted word embedding is not used.

Ensembling. The overall loss function of the
video-caption network is non-convex, and difficult
to optimize. In practice, using an ensemble of net-
works trained slightly differently can improve per-
formance (Hansen and Salamon, 1990). In our work
we also present results of an ensemble by averaging
the predictions of the best performing models.

4 Experiments

Datasets. Our language model was trained on
sentences from Gigaword, BNC, UkWaC, and
Wikipedia. The vocabulary consisted of 72,700
most frequent tokens also containing GloVe embed-
dings. Following the evaluation in Venugopalan et
al. (2015a), we compare our models on the Youtube
dataset (Chen and Dolan, 2011), as well as two large
movie description corpora: MPII-MD (Rohrbach et
al., 2015) and M-VAD (Torabi et al., 2015).

Evaluation Metrics. We evaluate performance
using machine translation (MT) metrics ME-
TEOR (Denkowski and Lavie, 2014) and BLEU
(Papineni et al., 2002) to compare the machine-
generated descriptions to human ones. For the
movie corpora which have just a single description
we use only METEOR which is more robust.

Human Evaluation. We also obtain human judge-
ments using Amazon Turk on a random subset of
200 video clips for each dataset. Each sentence was
rated by 3 workers on a Likert scale of 1 to 5 (higher
is better) for relevance and grammar. No video was
provided during grammar evaluation. For movies,
due to copyright, we only evaluate on grammar.
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Model METEOR B-4 Relevance Grammar

S2VT 29.2 37.0 2.06 3.76
Early Fusion 29.6 37.6 - -
Late Fusion 29.4 37.2 - -
Deep Fusion 29.6 39.3 - -
Glove 30.0 37.0 - -

Glove+Deep
- Web Corpus 30.3 38.1 2.12 4.05*
- In-Domain 30.3 38.8 2.21* 4.17*

Ensemble 31.4 42.1 2.24* 4.20*

Table 1: Youtube dataset: METEOR and BLEU@4 in %,
and human ratings (1-5) on relevance and grammar. Best
results in bold, * indicates significant over S2VT.

4.1 Youtube Video Dataset Results

Comparison of the proposed techniques in Table 1
shows that Deep Fusion performs well on both ME-
TEOR and BLEU; incorporating Glove embeddings
substantially increases METEOR, and combining
them both does best. Our final model is an ensem-
ble (weighted average) of the Glove, and the two
Glove+Deep Fusion models trained on the external
and in-domain COCO (Lin et al., 2014) sentences.
We note here that the state-of-the-art on this dataset
is achieved by HRNE (Pan et al., 2015) (METEOR
33.1) which proposes a superior visual processing
pipeline using attention to encode the video.

Human ratings also correlate well with the ME-
TEOR scores, confirming that our methods give a
modest improvement in descriptive quality. How-
ever, incorporating linguistic knowledge signifi-
cantly2 improves the grammaticality of the results,
making them more comprehensible to human users.

Embedding Influence. We experimented multiple
ways to incorporate word embeddings: (1) GloVe in-
put: Replacing one-hot vectors with GloVe on the
LSTM input performed best. (2) Fine-tuning: Ini-
tializing with GloVe and subsequently fine-tuning
the embedding matrix reduced validation results by
0.4 METEOR. (3) Input and Predict. Training the
LSTM to accept and predict GloVe vectors, as de-
scribed in Section 3, performed similar to (1). All
scores reported in Tables 1 and 2 correspond to the
setting in (1) with GloVe embeddings only as input.

2Using the Wilcoxon Signed-Rank test, results were signifi-
cant with p < 0.02 on relevance and p < 0.001 on grammar.

Model MPII-MD M-VAD
METEOR Grammar METEOR Grammar

S2VT† 6.5 2.6 6.6 2.2
Early Fusion 6.7 - 6.8 -
Late Fusion 6.5 - 6.7 -
Deep Fusion 6.8 - 6.8 -
Glove 6.7 3.9* 6.7 3.1*
Glove+Deep 6.8 4.1* 6.7 3.3*

Table 2: Movie Corpora: METEOR (%) and human
grammar ratings (1-5, higher is better). Best results in
bold, * indicates significant over S2VT.

Figure 3: Two frames from a clip. Models generate visu-
ally relevant sentences but differ from groundtruth (GT).

4.2 Movie Description Results

Results on the movie corpora are presented in Ta-
ble 2. Both MPII-MD and M-VAD have only a sin-
gle ground truth description for each video, which
makes both learning and evaluation very challeng-
ing (E.g. Fig.3). METEOR scores are fairly low
on both datasets since generated sentences are com-
pared to a single reference translation. S2VT† is a
re-implementation of the base S2VT model with the
new vocabulary and architecture (embedding dimen-
sion). We observe that the ability of external lin-
guistic knowledge to improve METEOR scores on
these challenging datasets is small but consistent.
Again, human evaluations show significant (with
p < 0.0001) improvement in grammatical quality.

5 Related Work

Following the success of LSTM-based models on
Machine Translation (Sutskever et al., 2014; Bah-
danau et al., 2015), and image captioning (Vinyals
et al., 2015; Donahue et al., 2015), recent video de-
scription works (Venugopalan et al., 2015b; Venu-
gopalan et al., 2015a; Yao et al., 2015) propose
CNN-RNN based models that generate a vector rep-
resentation for the video and “decode” it using an
LSTM sequence model to generate a description.
Venugopalan et al. (2015b) also incorporate exter-
nal data such as images with captions to improve
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video description, however in this work, our focus
is on integrating external linguistic knowledge for
video captioning. We specifically investigate the use
of distributional semantic embeddings and LSTM-
based language models trained on external text cor-
pora to aid existing CNN-RNN based video descrip-
tion models.

LSTMs have proven to be very effective language
models (Sundermeyer et al., 2010). Gulcehre et
al. (2015) developed an LSTM model for machine
translation that incorporates a monolingual language
model for the target language showing improved re-
sults. We utilize similar approaches (late fusion,
deep fusion) to train an LSTM for translating video
to text that exploits large monolingual-English cor-
pora (Wikipedia, BNC, UkWac) to improve RNN
based video description networks. However, unlike
Gulcehre et al. (2015) where the monolingual LM is
used only to tune specific parameters of the transla-
tion network, the key advantage of our approach is
that the output of the monolingual language model is
used (as an input) when training the full underlying
video description network.

Contemporaneous to us, Yu et al. (2015), Pan et
al. (2015) and Ballas et al. (2016) propose video de-
scription models focusing primarily on improving
the video representation itself using a hierarchical
visual pipeline, and attention. Without the attention
mechanism their models achieve METEOR scores
of 31.1, 32.1 and 31.6 respectively on the Youtube
dataset. The interesting aspect, as demonstrated in
our experiments (Table 1), is that the contribution of
language alone is considerable and only slightly less
than the visual contribution on this dataset. Hence,
it is important to focus on both aspects to generate
better descriptions.

6 Conclusion

This paper investigates multiple techniques to in-
corporate linguistic knowledge from text corpora to
aid video captioning. We empirically evaluate our
approaches on Youtube clips as well as two movie
description corpora. Our results show significant
improvements on human evaluations of grammar
while modestly improving the overall descriptive
quality of sentences on all datasets. While the pro-
posed techniques are evaluated on a specific video-
caption network, they are generic and can be ap-

Figure 4: Representative frames from clips in the movie de-

scription corpora. S2VT is the baseline model, Glove indicates

the model trained with input Glove vectors, and Glove+Deep

uses input Glove vectors with the Deep Fusion approach. GT

indicates groundtruth sentence.

plied to many captioning models. The code and
models are shared on http://vsubhashini.
github.io/language_fusion.html.
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