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Knowledge Base Population using Stacked Ensembles of

Information Extractors

Vidhoon Viswanathan, M.S.Comp.Sci.

The University of Texas at Austin, 2015

Supervisor: Raymond Mooney

The performance of relation extractors plays a significant role in automatic

creation of knowledge bases from web corpus. Using automated systems to create

knowledge bases from web is known as Knowledge Base Population. Text Analysis

Conference conducts English Slot Filling (ESF) and Slot Filler Validation (SFV)

tasks as part of its KBP track to promote research in this area. Slot Filling systems

are developed to do relation extraction for specific relation and entity types. Several

participating universities have built Slot Filling systems addressing different aspects

employing different algorithms and techniques for these tasks.

In this thesis, we investigate the use of ensemble learning to combine the

output of existing individual Slot Filling systems. We are the first to employ Stack-

ing, a type of ensemble learning algorithm for the task of ensembling Slot Filling

systems for the KBP ESF and SFV tasks. Our approach builds an ensemble classi-

fier that learns to meaningfully combine output from different Slot Filling systems

and predict the correctness of extractions. Our experimental evaluation proves that

Stacking is useful for ensembling SF systems. We demonstrate new state-of-the-art

results for KBP ESF task. Our proposed system achieves an F1 score of 47.
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Given the complexity of developing Slot Filling systems from scratch, our

promising results indicate that performance on Slot Filling tasks can be increased

by ensembling existing systems in shorter timeframe. Our work promotes research

and investigation into other methods for ensembling Slot Filling systems.
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Chapter 1

Introduction

The World Wide Web overflows with data of all formats. A vast majority

of it belongs to text and multimedia formats. Even most of the printed contents

published prior to Internet age have been ported successfully to digital age. The

sheer volume of this data presents a great challenge in comprehending it. Almost

all of this knowledge is rendered useless due to its implicit structural heterogeneity.

For the same reason, this knowledge base is termed unstructured.

Several efforts are being lead to make data in World Wide Web (WWW)

structurally homogeneous. Since it is impossible for humans to manually annotate

the entire WWW, there is great interest in automating this organizing task (Sur-

deanu, 2013) (Surdeanu and Ji, 2014). Specifically, the goal is to build Information

Extraction (IE) systems producing annotated data conforming to standard data for-

mats and ontologies defined by humans. This task is referred to as Knowledge Base

Population (KBP) (Surdeanu, 2013).

1.1 Relation Extraction

Several extraction systems have been developed to suit different domains

and types of information to be extracted. Relation Extraction systems (sometimes

known as Relation Extractors) are a particular group of IE systems that focus on

extracting relations between entities such as Person (PER) and Organization (ORG).
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Inspite of great interest in building Relation Extractors (Bach and Badaskar, 2007),

it continues to be a challenging task due to the wide variety of relations possible

between different entities. The Text Analysis Conference (TAC) promotes related

research in its KBP track and conducts the English Slot Filling (ESF) and Slot

Filler Validation (SFV) tasks as part of it. There is great scope for improving the

performance of these systems as the state-of-the-art performance is only about 40

(F1 score) (Angeli et al., 2014) in the ESF 2014 task. We use the ESF and SFV

tasks in Knowledge Base Population (KBP) track as our benchmark task for all

Relation Extraction experiments.

1.2 Motivation for Ensembling

The performance of several systems built to address challenging natural lan-

guage problems such as parsing (Henderson and Brill, 1998), word sense disam-

biguation (Pedersen, 2000) and sentiment analysis (Whitehead and Yaeger, 2010)

have been dramatically improved by ensembling. In ensembling, multiple systems

that take different approaches to solve a problem are combined to improve the in-

dividual performance. The performance boost of ensembled system is proportional

to the variance in error between different systems (that is, the errors produced by

individual systems differ from each other). Hence, if the individual systems have

good error variance, the ensembled system is expected to have a significant perfor-

mance boost (Dietterich, 2000). The KBP ESF and SFV tasks are well suited to

investigate ensembling solutions. There are two motivations for this. First, several

individual slot filling systems that employ different approaches are already devel-

2



oped and readily available. Second, slot filling systems are complex and comprise

of several components in their pipeline. It requires lot of effort to develop a slot

filling system (or relation extractor) from scratch. Hence, exploring methods to

ensemble Slot Filling systems might lead to development of better performing sys-

tems in shorter timeframe. In this thesis work, we use ensembling to improve the

state-of-the-art performance of Slot Filling Systems for KBP English Slot Filling

and Slot Filler Validation tasks.

1.3 Contributions of this Thesis

The following are the contributions of this thesis work:

1. We are the first to use Stacking (Wolpert, 1992) for ensembling multiple slot

filling systems for KBP English Slot Filling and Slot Filler Validation tasks.

2. We demonstrate new state-of-the-art results from our experimental evalua-

tion. Our ensembled system achieves F1 score of 47 which beats the best

KBP ESF 2014 system by 8 points.
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1.4 Publications

From the findings of this thesis work, we were able to author the following

publication:

1. (Accepted) Vidhoon Viswanathan, Nazneen Fatema Rajani, Raymond Mooney,

Stacked Ensembles of Information Extractors for Knowledge Base Popula-

tion, Submitted to Association of Computational Linguistics 2015, Beijing,

China.

1.5 Structure of thesis

The remainder of this thesis document is organized as follows. Chapter

2 presents background needed for remainder of the thesis. Chapter 3 details our

proposed approach and Chapter 4 reports our experimental results and discussions.

Chapter 5 presents related work. Finally, in Chapter 6 we discuss future work and

conclude this thesis report.
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Chapter 2

Background

In this section, we introduce the problem of relation extraction. We briefly

detail some approaches used to build relation extraction systems. We also intro-

duce and detail two relavant tasks: Slot Filling and Slot Filler Validation, organized

under Knowledge Base Population track by the Text Analysis Conference (TAC).

Finally, we introduce ensemble learning and provide a brief overview of different

methods used for ensembling. All these topics provide necessary background for

the remainder of this thesis report.

2.1 Relation Extraction

A relation is defined of the form of a tuple t = (e1, e2, ..., en) where the ei

are entities in a predefined relation r within a document D (Bach and Badaskar,

2007). Relations could be of any order. Binary relations are common and observed

frequently. For instance, located-in(Austin, Texas) and spouse-of(Michelle Obama,

Barack Obama) are examples of binary relations. But higher arity relations are

also found in several domains. As an example, At codons 12, the occurrence of

point mutations from G to T were observed contains a 4-ary biomedical relation

point mutation(codon, 12, G, T).

Relation Extraction can be viewed as a supervised or unsupervised learning

problem. Several approaches (Bunescu and Mooney, 2005b) (Culotta and Sorensen,
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2004) have been developed to pose relation extraction as a supervised learning prob-

lem in which the task is to learn a classifier that predicts if a given relation type is

expressed between two entities in a candidate sentence. The major drawback of

supervised approaches is the need for labelled training data. The interest in au-

tomated systems to populate knowledge bases is to avoid human annotation. But

the requirement of human annotation for developing such systems itself is a huge

setback. Given the cost and effort involved in producing training data, some ap-

proaches (Yan et al., 2009) (de Lacalle and Lapata, 2013) cast relation extraction

as an unsupervised learning problem. They apply familiar clustering (Grira et al.,

2004) and topic modeling (Blei, 2012) ideas to extract relations. Few other ap-

proaches (Yarowsky, 1995) (Blum and Mitchell, 1998) develop semi supervised

schemes to extract relations by proposing schemes to generate training data using

existing resources.

Relation extraction is a broad problem over different domains with numer-

ous types of relations. This makes it a challenging task and it is equally harder

to compare different approaches used to build RE systems. In order to provide

an platform to compare different approaches, the Text Analysis Conference (TAC)

conducts tasks under its Knowledge Base Population (KBP) track. The goal of

these tasks is to promote research of systems that automatically discover informa-

tion about named entities from unstructured text producing a structured knowledge

base (Surdeanu, 2013) (Surdeanu and Ji, 2014). The English Slot Filling (ESF) task

and Slot Filler Validation (SFV) task are restricted versions of relation extraction in

terms of the number of relations and entity types being considered. Next, we discuss
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them in detail as they are the benchmark tasks we use for relation extraction.

2.2 English Slot Filling Task

2.2.1 Task Description

Slot Name Type List valued?
per:alternate names Name Yes

per:date of birth Value
per:age Value

per:country of birth Name
per:stateorprovince of birth Name

per:city of birth Name
per:origin Name Yes

per:date of death Value
per:country of death Name

per:stateorprovince of death Name
per:city of death Name

per:cause of death String
per:countries of residence Name Yes

per:statesorprovinces of residence Name Yes
per:cities of residence Name Yes
per:schools attended Name Yes

per:title String Yes
per:employee or member of Name Yes

per:religion String Yes
per:spouse Name Yes

per:children Name Yes
per:parents Name Yes
per:siblings Name Yes

per:other family Name Yes
per:charges String Yes

Table 2.1: Slot names, filler entity types and slot type for PER slots
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Slot Name Type List valued?
org:country of headquarters Name

org:stateorprovince of headquarters Name
org:city of headquarters Name

org:shareholders Name Yes
org:top members employees Name Yes

org:political religious affiliation Name Yes
org:number of employees members Value

org:alternate names Name Yes
org:founded by Name Yes

org:date dissolved Value
org:website String

org:date founded Value
org:members Name Yes

org:member of Name Yes
org:subsidiaries Name Yes

org:parents Name Yes

Table 2.2: Slot names, filler entity types and slot type for ORG slots

The goal of the TAC KBP-ESF task is to collect information (fills) about

specific attributes (slots) for a set of entities (queries) from a given corpus. The

attributes are similar to relation types in the context of relation extraction. The

queries vary for each year of the task and consist of either person (PER) or organi-

zation (ORG) entities. The slots are fixed and some are single-valued while others

are list-valued i.e., they can take multiple slot fillers. Tables 2.1 & 2.2 list the slots

by query and entity types for PER and ORG slots respectively. They also indicates

if they are single valued or list valued. There are 25 slot types for PER entities and

16 for ORG entities. In the case of list-valued slots, multiple fillers for the same

(query,slot) pair should refer to different entities. It is not just sufficient for them to

be distinct strings. For instance, if there are two fillers Barack Obama and Barack
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Hussein Obama for a particular list valued slot of a query entity, then the system

must return only one of them since both strings refer to the same person.

2.2.2 Input and Output

Field Description
id Query ID

name String name of entity
docid Document ID
beg Start Offset
end End Offset

enttype Entity type

Table 2.3: Fields and description for each Query entity

Figure 2.1: Sample query for KBP ESF task

The input to the English SF task is set of query entities provided in XML

format. Each query consists of the fields listed in Table 2.3. The name and type

fields are straightforward. The document id field identifies the file in the training

corpus where the entity name appears. The start and end offset fields point to the

location in the document where the entity name appears. These fields are useful for

disambiguating entities based on the context. A sample query is shown in Figure
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Column No. Description
Column 1 Query Id
Column 2 Slot type
Column 3 Run Id
Column 4 Provenance for relation between query entity and filler
Column 5 Slot Filler
Column 6 Provenance for Slot Filler String
Column 7 Confidence score

Table 2.4: Output fields and description

2.1. In the previous two years (2013 and 2014), there were 100 queries consisting

of 50 PERSON type entities and 50 ORGANIZATION type entities.

For each query entity, the output consists of at least one line for each slot type

defined for that entity (from Tables 2.1 & 2.1). In 2014, the task required that each

output line must contain seven tab separated columns if it identifies a valid slot filler

for that query and slot. Table 2.4 lists each column and the information contained

in each column. If no slot filler is identified for a (query, slot) pair, then the output

line contains only four fields. The first three columns are straightforward indicating

the ID of the query, slot type and unique run ID string for the system. The fourth

column contains a NIL string if no valid slot filler was found. If a valid slot filler

has been extracted, this field contains a provenance for the relation detected. Prove-

nance is a triple of the form: < docid >:< start− offset >:< end− offset >.

The fields are synonymous to their counterparts in query input format. docid de-

notes the document ID that uniquely identifies each document in training corpus.

start-offset and end-offset indicate the location where the relation provenance be-

gins and ends within the document. So, the fourth column contains relation prove-

nance which is the provenance for the relation between the query entity and the

10



filler entity extracted. Up to 4 provenance triples are allowed and they must be sep-

arated by commas. The fifth column contains the filler string. The sixth column

contains the provenance for the filler extracted by the system. This follows exactly

the same format as the relation provenance. But the number of provenance triples

for filler is limited to maximum of 2 entries. While relation provenance(Column

4) provides the provenance for the text between the two entities, filler provenance

(Column 6) provides provenance for the filler text itself. The last (seventh) column

contains the confidence score which is a numeric measure between 0 and 1 indicat-

ing the confidence of the system in the relation detected between query entity and

filler extracted by it.

2.2.3 Scoring

The scoring process is challenging because it is difficult to prepare a com-

prehensive answer key for all queries and relations from the entire corpus. Hence,

this is approximated by pooling the results from all the slot filling systems. Then,

human assessors evaluate all the fillers extracted by the system for correctness. In

addition, a human generated manual key containing answers that are particularly

difficult for automated systems to extract is also included in the pooled responses.

This is done to promote extraction of such difficult responses. Each non NIL filler

extracted is evaluated and belongs to one of the four categories: (1)Correct (2)In-

exact (3)Redundant and (4) Wrong.

If the slot filler string contains only part of the answer and includes addi-

tional content with the correct answer, then it is marked as Inexact. If multiple slot
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filler strings for the same (query,slot) pair represent the same entity, then except

one, rest of them are marked as Redundant. If the filler is wrong or if provenance is

wrong or if the format is wrong, the filler is marked Wrong. These rules are more

elaborately discussed in (Surdeanu, 2013). Using these rules, pooled responses are

evaluated and the following counts are computed:

• Correct = Number of correct responses

• System = Number of non NIL responses produced by the system

• Reference = Number of overall correct non NIL responses produced by all

systems

Using the above counts, the following performance metrics are computed for offi-

cial scoring:

• Precision = Correct/System

• Recall = Correct/Reference

• F1 = 2 ∗ Precision ∗Recall/(Precision+Recall)

The F1 score is the primary metric used for comparing the performance of

different systems.
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2.3 Slot Filler Validation Task

2.3.1 Task Description

The goal of Slot Filler Validation (SFV) task is to refine the output of indi-

vidual slot filling systems by either applying more intensive linguistic processing to

validate individual candidate slot fillers or by combining the output of multiple slot

filling systems. The motivation is to develop a validation component for slot fillers

that can be used as part of full Slot Filling system pipeline. The idea is that when

slot fillers from multiple systems are available, a validation system could be devel-

oped that takes into account the extent of agreement or disagreement between the

systems on each output line produced. This could be useful in deciding or model-

ing the correctness of the slot fillers produced from SF system. Though ensembling

(Dietterich, 2000) is not the explicit goal of this task, several participating systems

(Wang et al., 2013) (Sammons et al., 2014) use ensemble learning algorithms to

achieve a meaningful combination of outputs from multiple slot filling systems.

2.3.2 Input and Output

The input to SFV task is from the English Slot Filling (ESF) task. Each Slot

Filling system produces an output file in the format discussed in previous section

for every run submitted. The SF output files contain several useful information

such as the filler itself, relation and filler provenance, confidence scores for the

extraction etc. These SF output files from different systems are grouped together

and provided as input for the SFV task. In addition to this, the input queries for
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the ESF task consists of an SF systems profile (containing useful details about the

systems) and a key file with assessments for a small amount of (query,slot) pairs.

To experiment with different configurations of SF systems, each system is allowed

upto 5 runs for the KBP ESF task. As a result, the input for SFV task may contain

multiple runs from the same system. The SF output files from different systems

are anonymized in a way that multiple runs from same SF system can be identified.

This is to facilitate system diversity for cross-system voting for an SFV system if

needed.

The output of SFV run is a single tab delimited file and follows the same

format as Slot Filling system output file. Each line consists of details of a single

slot filler extracted by SF systems. In addition to the SF output fields, another field

which takes two values: +1 or -1 is added. This field determines if the slot filler is

determined as Correct (+1) or Wrong (-1) by the SFV system.

2.3.3 Data

The SFV task also provides previous year KBP SFV task data to facilitate

SFV system development. Several SFV systems use this data as training data, for

instance, to determine threshold values.

2.3.4 Scoring

Scoring is done in a manner similar to the KBP ESF task. From the output

file, we compute the number of correct responses (Correct), number of non-NIL re-

sponses (System) produced by the system and number of correct non NIL responses
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produced by all systems (Reference). Using them, three performance metrics: pre-

cision, recall and F1 are computed similar to ESF task. The F1 score is used to

compare performance of different SFV systems.

2.4 Ensembling

An ensemble system is a set of classifiers whose individual decisions are

combined in some way to classify new examples (Dietterich, 2000). Usually, tech-

niques like weighted or unweighted voting are used to combine the decisions. Gen-

erally, ensemble systems end up performing better than the individual classifiers.

Hansen and Salamon (1990) identify that the necessary condition for ensemble sys-

tems to perform better is that the individual classifiers should be diverse and accu-

rate. An accurate classifier has error rate better than random guessing. Classifiers

are diverse if they make errors on different data points.

2.4.1 Ensemble Learning Methods

Several methods are used to construct ensembles. We discuss some promi-

nent techniques here. Voting or Bayesian Voting is a popular ensemble construction

method in which the hypothesis of individual classifiers are weighted by their poste-

rior probabilities to get the final output of the ensemble system. This is useful when

the training data is small in which case different hypotheses can be learned for

the given problem. Another popular idea is to manipulate training data to develop

ensembles. This technique has several specific methods that have been explored.

Bagging or Bootstrap aggregation (Breiman, 1996) samples training data with re-

15



placement into smaller subsets and uses them to construct multiple individual clas-

sifiers. The output is then combined using averaging or voting. In ADABOOST

(Freund et al., 1996), training examples are weighted. In each iteration, the idea is

to minimize the weighted error on the training set and update the weights of training

examples accordingly. This results in placing more weights on examples that were

misclassified compared to correctly classified examples.

Ensembles can also be constructed by manipulating input features. In this

case, individual classifiers are constructed using different subsets of features and

their results are aggregated to produce the final output. Finally, we can also modify

the output or target classes to create ensemble systems. For this, if there are K

output classes, initially the training set is partitioned into two random subsets and

labels in one subset are replaced with 0 and other subset is given label 1. The

process is repeated for say Ltimes to produce the individual classifiers. Now, using

the outcome of all L classifiers, the target class is chosen as the one which received

the maximum number of votes.

16



Chapter 3

System Design and Implementation

In this section, we discuss in detail our Ensemble system for Slot Filling. We

do so by first describing the algorithm used for ensembling the output of multiple

Slot Filling systems and merging alias extractions. Then, we elaborate on the sys-

tem design and provide detailed description of various components in the system.

Finally, we describe the implementation details of the Ensemble system.

3.1 Ensemble Slot Filling System

Given a set of query entities and fixed set of slots, the goal of an Ensemble

Slot Filling system is to effectively combine the output of multiple individual slot

filling systems. As input it takes the output of multiple SF systems. This contains

several useful information such as confidence scores, filler and relation provenance,

source document ID, slot type, query entity type etc. The output of the Ensemble

Slot Filling system is a prediction for each input relation extraction indicating if it

is Correct (1) or Wrong(0).

In designing an Ensemble slot filling system, there are at least two major

tasks. First, we need to design a meaningful way to capture the agreement or

disagreement between multiple slot filling systems for different (query,slot) pair

extractions. This is important, because, by the statistical principle of ensembling

(Dietterich, 2000), this helps in reducing the risk of choosing the wrong slot filling

17



system and facilitates averaging the output of multiple slot filling systems. Sec-

ond, we need to identify alias extractions for the same (query,slot) pair. This is

important for two reasons. One, by merging such aliass extractions, we combine

all available information from multiple SF systems for a (query,slot,entity) triple.

Without a merging mechanism, this information could be spread across multiple

such triples. Also, the scoring criteria for ESF task marks strings which point to the

same entity as redundant and gives no credit. Hence, it is important to merge such

extractions. The task of detecting repeated extractions is non-trivial because two

different strings could point to the same entity (Example: Barack Obama vs Barack

Hussein Obama).

We achieve these tasks using an ensemble algorithm and an aliasing tech-

nique. We discuss them in the following subsections.

3.1.1 Ensemble Algorithm

An ensemble algorithm captures the agreement or disagreement of multi-

ple slot filling systems when provided with relevant features. We choose Stacking

(Wolpert, 1992) or stacked generalization as our ensemble algorithm to achieve

this. Stacking has provided promising performance in several previous ensembling

works (Sigletos et al., 2005) (Sill et al., 2009) but it has not been explored to ensem-

ble SF systems. In the context of SF systems, we use Stacking to combine useful

information present in the output of multiple slot filling systems.

The basic idea in stacking is to learn a meta-level classifier (or level 1 classi-

fier) based on the output of base level classifiers (level 0 classifiers) (Sigletos et al.,
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2005). In our ensembling problem, the individual SF systems form the base level

classifiers. So, a stacked meta-classifier is a binary classifier that takes the output

of individual SF systems as input and predicts if the extraction is Correct (1) or

Wrong (0). The output of individual SF systems contains several pieces of useful

Figure 3.1: Stacked Meta-classifier

information. In this work, we utilize the confidence scores and slot type associated

with each extraction from SF systems as input to our stacked meta-classifier. This

is meaningful because of the following reasons. First, a high (low) confidence score

means according to the corresponding SF system, the relation between (query,slot)

pair is more (less) probable. If an extraction has high or low confidence scores

from all SF systems, it implies that they agree on the extraction. But if some sys-

tems have high confidence scores while others have low confidence scores, then

they disagree on the extraction. Hence, a meta classifier taking confidence scores

from individual SF systems as input learns to minimize the risk of choosing the

wrong SF system output by properly weighting the confidence scores of individual

systems for particular slots. This exactly meets our ensembling goal which is to
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capture the agreement or disagreement between the individual SF systems. Second,

if an extraction is missing from some SF systems, it can be easily represented with

a 0.0 confidence score which in turn translates to, The SF system has no confidence

in the relation between the (query,slot) pair.

Figure 3.1 provides a pictorial view of Stacking applied for ensembling an

output extraction from multiple SF systems. Our stacked-meta classifier is a binary

classifier that takes confidence scores from individual SF systems and slot type as

input and predicts if the extraction is Correct (1) or Wrong (0). We use a single

meta-classifier for all slots and entity types. This meta-classifier can be trained

using any machine learning model such as Logistic Regression, Naive Bayes or

Support Vector Machines (SVM). All the classifier models performed equivalently

and we randomly chose an L1-regularized linear kernel SVM (Fan et al., 2008) for

our stacked meta-classifier.

3.1.2 Aliasing

When combining the output of multiple SF systems, it is possible that some

extractions are aliases of each other. An SF system A could extract a filler F1 for a

slot S while another SF system B extracts another filler F2 for the same slot S. If

the extracted fillers F1 and F2 are aliases (i.e. different names for the same entity),

then the two extractions are alias extractions. Identifying alias extractions for a

(query,slot) pair provides additional information spread across different extractions

and also eliminates redundant extractions.

To detect alias extractions, we employ a technique derived by inverting the
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scheme used by the LSV (Roth et al., 2014a) SF system for query expansion. The

LSV SF system uses a Wikipedia anchor-text model (Roth and Klakow, 2010) to

generate aliases for given query entities. By including aliases for query names, the

SF systems increase the number of candidate sentences fetched for the query.

The Wikipedia anchor-text model (Roth and Klakow, 2010) uses the text

associated with anchor tags in Wikipedia to find aliases for an entity. For a given

entity, the text and frequency of anchor links in Wikipedia that point to the corre-

sponding Wikipedia article of the entity are computed. This Wikipedia Link data

is available readily with the LSV system (Roth et al., 2014a) and can be parsed to

obtain the required aliases. Using this data, the top N aliases for the given entity are

identified.

To eliminate filler aliases, we apply the same technique and generate aliases

for all slot fillers of a given (query,slot) pair. We choose N=10 (top 10 aliases)

for our Alias merging system. Given a slot filler, we obtain the corresponding

Wikipedia page for the filler entity and retrieve the top 10 anchor texts. They are

added to the aliases pool for the (query,slot) pair. The same process is repeated for

other fillers for the same (query,slot) pair. Any other filler for the same (query,slot)

pair that overlaps or matches with any entry in the aliases pool are marked as alias

extractions.

We explored two methods to handle alias extractions. Our first approach

was to detect and filter alias extractions from the output of the ensemble meta-

classifier. Our second approach was to merge the alias extractions present in the

input given to the ensemble meta-classifier. The alias extractions are merged as
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follows. The filler string is chosen as the one extracted by the most number of SF

systems. The missing confidence scores for this filler string are updated from the

confidence values of alias extractions. The output of alias merging is provided as

input to the stacked-meta classifier. The performance of these two schemes was

statistically indistinguishable and we use the latter approach for our experiments

with aliasing.

3.2 System Design and Components

Figure 3.2: Ensemble SF system: Holistic View

Figure 3.2 provides a holistic view of the Ensemble Slot Filling system with
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all associated elements. The Alias Merging and Stacked Ensemble Classifier com-

ponents belong to the Ensemble SF system. It can be seen that individual SF sys-

tems are run on the provided SF queries using the supplied corpus to produce their

respective outputs. The Ensemble classifier takes merged input and produces En-

semble output which contains predictions classifying the supplied extractions as

Correct or Wrong.

Figure 3.3: Ensemble SF system: Components and Pipeline

Figure 3.3 presents the pipeline showing the various components involved

in the operation of the Ensemble SF system. First, the outputs from different SF

systems are passed through a Feature Extraction component. This component is re-

sponsible for putting together confidence values of each filler for every (query,slot)

pair from multiple SF systems. The Feature Extraction component produces a sin-

gle output file comprising of all unique extractions from multiple SF systems with

the confidence values from the respective systems. This component is responsible

for inserting 0.0 confidence values for fillers that are missing in the output of some

SF systems.

The output of Feature Extractor is passed to the Alias Detecting and Merging

component. This component functions as described in previous section and merges

all alias filler entries for a given (query,slot) pair. The output of alias merging
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component is supplied as input to the stacked-meta classifier.

The stacked-meta classifier outputs a prediction for each given extraction.

The post processing component collects all extractions predicted as Correct by the

ensemble classifier and puts them in the required SF output format. Finally, the

scorer runs the official scorer of Slot Filling task to determine the performance of

Ensembled SF system.

3.3 Implementation Details

All components of the Ensemble SF system were implemented in Java. For

training and testing the ensemble classifier, we used the Weka (Hall et al., 2009)

package version 3.7. Weka provides a wide array of machine learning algorithms

implemented and ready to use. We chose the Support Vector Machine (SVM) model

for our ensemble classifier. Weka internally uses the LibSVM (Chang and Lin,

2011) implementation for its SVM classifier. We used L1-regularized linear kernel

SVM (Fan et al., 2008) as our stacked meta-classifier. For this, in Weka, we set the

cost parameter to 1 and chose kernel type as linear. All other parameters use their

default values. The scorer is implemented in Java and provided as part of the KBP

ESF task.
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Chapter 4

Experiments and Results

In this chapter, we describe our methodology for evaluating our ensembled

SF system. We begin by explaining the methodology followed and goals for evalu-

ating our system. We continue describing the datasets used and detail the baselines

used for comparing the performance of our systems. We also introduce our setup for

running experiments. We finally present results from our experiments and discuss

our observations.

4.1 Experiments

4.1.1 Methodology and Goals

We run two sets of experiments to evaluate our ensembled slot filling sys-

tem. In the first set, we use the official key provided by KBP ESF 2014 task. This

facilitates comparison with other ESF systems that took part in 2014. In the second

set, we use an unofficial key obtained by pooling the results of all KBP ESF 2014

participating systems. There are two motivations for choosing this evaluation. First,

it removes results added by humans which are particularly hard for automated sys-

tems to extract. Since these extractions are not going to be generated by ensembling

the results of individual SF systems, removing these results are going to have the

same impact on individual SF systems. Second, previous work on ensembling SF

systems (Sammons et al., 2014) uses this key to generate their results. Hence, using
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this unofficial key will generate results comparable to their system. In both set of

experiments, we compare the performance of system with and without performing

Alias merging.

Using these two sets of experiments, we produce results that can be com-

pared with official scores from KBP ESF task and results reported from other com-

parable ensembled SF systems.

4.1.2 Datasets

LSV IIRG
UMass IESL Stanford
BUPT PRIS RPI BLENDER

CMUML Compreno
NYU UWashington

Table 4.1: Common systems which participated in KBP ESF 2013 and 2014

As our ensembled slot filling system consists of a stacked meta-classifier,

it must be trained with suitable training data. To evaluate the performance of our

ensembled slot filling system, we require both training and test data. Hence, we

use the KBP SFV dataset from 2013 and 2014 to identify the common systems that

took part in both years. We found 10 common systems and they are listed in Table

4.1. Since, each system has varying number of runs in 2013 and 2014, we choose

only one run from each common system and build our common systems dataset

(CDATASET ). We treat these systems as black boxes and do not discriminate

them based on their approach or relative performance. We use 2013 data for training

and 2014 data for testing our ensembled slot filling system. Although systems
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change from year to year, our results indicate that the learning transfers with this

change.

We also use KBP SFV 2013 and 2014 dataset which consists of outputs

from all individual SF systems in the respective years (FDATASET ). We use this

complete dataset for baseline approaches that are not restricted by training process

since they will not require compatibility between 2013 and 2014 datasets. The

FDATASET consists of 52 outputs from 2013 and 66 outputs from 2014. These

outputs also include multiple runs from the same system.

4.1.3 Baselines

We choose two baselines to compare the performance of our ensembled slot

filling system. First, we compute a union baseline (Baseline Union). This is

an all − Y ES scheme in which we include all unique extractions from individual

SF systems in the ensemble result. If the slot is single-valued, then we choose to

include the extraction with highest confidence. This scheme is expected to produce

low precision but high recall results. This baseline is computed from the 2014

FDATASET since the restriction of the training process does not apply to them.

Second, we include a voting baseline (Baseline V ote). For this baseline, we use

2013 FDATASET to identify a threshold on the number of individual SF systems

that must agree to include a candidate extraction. Using this learned threshold, we

compute the results for the voting baseline on the 2014 FDATASET .
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4.1.4 Setup

Our experimental setup toggles between Java modules and the Weka Ma-

chine learning toolbox. We perform feature extraction and apply alias merging to

our datasets using Java implementations. We train our ensemble classifier in Weka

using the training portion (2013) of the datasets. After the training process, we eval-

uate our test data on the trained meta-classifier in Weka and obtain the prediction

results. We switch back to our Java modules for post processing the predictions

from ensemble classifier and feed it to the scorer to generate the results.

4.2 Results

4.2.1 Results using Official Key

System P R F1
Baseline Union 0.066 0.762 0.122
Baseline Vote 0.641 0.288 0.397

Best ESF system 2014 (UIUC) 0.585 0.298 0.395

Table 4.2: Baseline results and Best ESF system (2014)

Approach With Aliasing Without Aliasing
P R F1 P R F1

Stacking 0.632 0.34 0.441 0.637 0.339 0.442
Stacking + Slot Type 0.642 0.371 0.47 0.646 0.369 0.469

Table 4.3: Results with Official Key

Table 4.2 and 4.3 present results from our first set of experiments. These are

obtained using the official key provided by KBP ESF 2014. The entries in Table 4.2
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present the baseline evaluations using just the FDATASET and the performance

of the official best scoring system from KBP ESF 2014 task. The entries in Table 4.3

indicate our two approaches: (1) Stacking with only confidence values (2) Stacking

with confidence values and slot type. We also present results with and without

performing Alias merging. Our approaches use CDATASET .

4.2.2 Results using Unofficial Key

System P R F1
Baseline Union 0.053 0.872 0.101
Baseline Vote 0.637 0.406 0.496

Best SFV system 2014 (UIUC) 0.457 0.507 0.481

Table 4.4: Baseline results and Best SFV system (2014)

Approach With Aliasing Without Aliasing
P R F1 P R F1

Stacking 0.632 0.482 0.547 0.637 0.481 0.548
Stacking + Slot Type 0.642 0.526 0.578 0.646 0.523 0.578

Table 4.5: Results with Unofficial Key

Tables 4.4 and 4.5 present results from our second set of experiments. These

are obtained using the unofficial key obtained by pooling all KBP ESF 2014 partic-

ipating systems. The first two entries in Table 4.4 present the baseline evaluations

using just the FDATASET . Note that the Union baseline does not produce re-

call of 1 even after removing human assessments from the key. This is because,

we choose the slot fill with highest confidence for single valued slots. The last en-

try reports performance of the official best scoring system from KBP SFV 2014
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task. Table 4.5 presents performance of our two approaches: (1) Stacking with

only confidence values (2) Stacking with confidence values and slot type. We also

present results with and without performing Alias merging. Our approaches use

CDATASET .

4.3 Discussion

From the results, it can be observed that stacking is effective as an ensem-

bling method for slot filling systems. The stacked meta-classifier using just the

confidence values produces an F1 score of 44 using the official key. This is better

than the best KBP ESF system in 2014 (Angeli et al., 2014) by 5 points. In spite of

using extractions from all ESF 2014 systems (FDATASET ), the union baseline

achieves F1 score of 12 while the voting baseline achieves F1 score of 39. The per-

formance of our ensembled SF system beats both the baselines at least by 5 points

in F1 score.

The slot type feature provides an additional improvement of 3 points in F1

score. The stacked meta-classifier taking slot type along with confidence values

achieves an F1 score of 47. This is 8 points greater than the best ESF system in

2014. This indicates that additional features for the stacked meta-classifier could

enhance the performance of the ensembled SF system. From the results, it can

be observed that alias merging did not have any impact on the performance of the

system.

A similar trend is observed from the results using the unofficial key. In this

case, our stacked meta-classifier beats the top performing system (UIUC) (Sam-
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mons et al., 2014) in the KBP SFV 2014 task. The simple stacking approach with

just the confidence values provides an F1 score of 54 which is better than UIUC

system by 6 points while stacking with confidence values and slot type achieves an

F1 score of 57 while in comparison performs better than UIUC system by 9 points

in terms of F1 score.

As expected the union baseline achieves best recall, while our stacking scheme

using confidence values and slot type achieves best precision and overall best F1

score.
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Chapter 5

Related Work

In this section, we will discuss in detail literature relevant to relation extrac-

tion and the problem of ensembling relation extractors. First, we talk about different

relation extraction systems and approaches used for developing English Slot Filling

systems. Then, we briefly describe how ensembling has been applied to different

natural language problems. We also detail different approaches used to combine

relation extractors and slot filling systems.

5.1 Relation Extraction

In this section, we review different supervised, unsupervised and semi-supervised

methods to perform relation extraction from text data. Most of the methods involve

extracting binary relations while there are other techniques that focus on higher

order relations. But we will not be covering higher order relations in this report.

5.1.1 Supervised Methods

Given a sentence S = w1, w2, ..., e1, ...wj, ..., wn where e1 and e2 are enti-

ties, the problem of relation extraction for a particular relation R can be posed as a

supervised classification task. In that case, the goal is to learn a mapping function

f(.) which determines if a given sentence describes a relation between two entities.

The mapping function can be represented as:
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fR(T (S)) = 1, if relation R exists between entities e1 and e2 in sentence S

0, otherwise

where, T (S) is the set of features extracted from sentence S. Thus, the

mapping function detects if relation R is represented in sentence S between entities

e1 and e2. If we have enough positive and negative samples, then any well known

classifier like logistic regression, Support vector machines etc. can be trained to

perform this classification task. The supervised methods for relation extraction are

further divided into two categories based on the input provided to the classifiers

namely, Feature based methods and Kernel based methods.

Several syntactic and semantic features can be extracted from a sentence

to detect the representation of a relation. A large number of such features have

been explored in Kambhatla (2004), Zhao and Grishman (2005) & GuoDong et al.

(2005). Some of the popular syntactic features used for this task include:

1. the entities

2. entity types

3. word sequence between entities

4. number of words between the entities

5. path in the parse tree containing the entities.

Similarly, semantic features like the dependency path between the two en-
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tities in the sentence have also been used. Kambhatla (2004) build a maximum

entropy model using some of the features described before for the Automatic Con-

tent Extraction (ACE) Relation Detection Task, which is an evaluation conducted

by NIST. About 24 relation types are used in ACE and only 6 of them are symmetric

in nature. While the number of features used in Kambhatla (2004) are limited, Zhao

and Grishman (2005) use kernels like argument kernel, bigram kernel and depen-

dency path kernel to include syntactic features. These kernels can be extended to

include higher order features. Support Vector Machines (SVM) are used to decide

which of these features are important. GuoDong et al. (2005) also train an SVM

classifier with some of the standard syntactic features but do not use any specialized

feature based kernels.

Kernel based methods have also worked well for relation extraction. String

kernels proposed in Lodhi et al. (2002) have been used extensively in text classifi-

cation. Given two strings x and y, string kernel computes their similarity based on

the number of subsequences that are common to both of them. Using dynamic pro-

gramming, the complexity for computing the kernel function has been demonstrated

to be much less that the expected exponential complexity (Lodhi et al., 2002). The

principle of string kernels has been successfully applied to the problem of relation

extraction in different works (Bunescu and Mooney, 2005b) (Culotta and Sorensen,

2004) (Zelenko et al., 2003). It is illustrated as follows. For relation extraction, if

x+ and x− are positive and negative examples for a given relation and y is a test

sample, then with kernel K, we can determine if y represents the relation based on

the values of K(x+, y) and K(x−, y). If K(x+, y) > K(x−, y), then y represents
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the given relation and if K(x+, y) < K(x−, y) otherwise. In the case of relation

extraction, the kernel could compute similarity between x+, x- and y in terms of

characters or words or parse trees. The kernel based on words is known as bag

of features kernel and the kernel based on parse trees is called as expected, Tree

kernels.

Bunescu and Mooney (2005b) use a bag of features kernel based on the

idea that context around entities can be used to determine if a given relation exists

between them. In particular, they use the word context around the entities. That

is, given a sentence S = w1...e1...w2...e2...w3, the proposed method utilizes the

context before, in the middle and after the entities. They develop three word based

kernels to compute the similarity for word-context of the above three types in a

manner similar to string kernels. Then, they use another combined kernel that sums

the sub kernels to compute the overall similarity and use this to determine relations

between entities.

Tree kernels have also been used for specific relations like person-affiliation

and organization-location by Culotta and Sorensen (2004). As described above, in

the case of tree kernels, the subsequences are replaced by parse trees to compute

similarity between sentences. Culotta and Sorensen (2004) use shallow parse trees

to leverage their relative stability and robustness. Zelenko et al. (2003) explore the

use of dependency parse trees for the same purpose. Overall, tree kernels compute

the structural similarity or commonality between sentences which have proven use-

ful in predicting certain relation types. Like subsequences, the similarity measure is

proportional to the number of common parse subtrees between the two given parses.
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Bunescu and Mooney (2005a) refine this tree kernel approach by determining that

dependency path between two entities carries sufficient information to determine

the relation between them.

5.1.2 Semi Supervised Methods

In spite of the simplicity of supervised methods, an important shortcoming

is the requirement for labelled data to train classifiers. This has been recognized as

a critical issue in developing relation extraction systems as produced labelled train-

ing data is expensive, labor intensive and error prone. Several systems have been

proposed to do overcome this shortcoming by posing relation extraction as a semi

supervised or unsupervised problem. Yarowsky (1995), Blum and Mitchell (1998)

and Surdeanu et al. (2012) propose methods which facilitate training classifiers in

a semi supervised way to perform relation extraction. The crux of the approach by

Yarowsky (1995) is to train a weak classifier from a limited labelled data and use the

output this weak learner to incrementally re train in several iterations and produce

a classifier for relation extraction with a desirable performance. Blum and Mitchell

(1998) use Co-training where limited labelled training data is used to produce two

different conditionally independent views (ie., disjoint feature sets). Classifiers are

individually trained on each view and most confident predictions are used to label

unlabelled data. In this manner, more labelled data is produced to train the final

classifier for relation extraction. Surdeanu et al. (2012) propose distant supervision

in which the focus is to use open databases such as DbPedia (Lehmann et al., 2014)

and Freebase (Bollacker et al., 2007) to produce labelled data for training a relation
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extractor.

Dual Iterative Pattern Relation Expansion (DIPRE) (Brin, 1999) and Snow-

ball (Agichtein and Gravano, 2000) are two somewhat similar semi supervised re-

lation extraction systems. The former focuses on (author, book) relations while the

latter identifies (organization, location) relation. Both systems start with a small

set of seed relations and build a pattern matching classifier. Using the seed relations,

they crawl the web to extract more sentences containing those entities and generate

a 5-tuple record for each sentence: < order, author, book, prefix, suffix,middle >

or [prefix, organization,middle, location, suffix]. In DIPRE, the extracted tu-

ples are grouped based on some fields in the tuple such as middle and patterns are

induced by taking the longest common prefix and suffix strings. The newly induced

patterns are used to crawl more sentences for the the next iteration of the process.

This process is repeated till no new sentences are extracted by the induced pat-

tern. Snowball follows a similar process except that it employs a similarity function

instead of exact matching leading to more flexibility in the matching mechanism.

Snowball also employs a Named Entity Recognition (NER) system to identify all

location and organization entities in the data and then uses the sentences with loca-

tion, organization entity pairs to induce new patterns for extraction the relation.

Both DIPRE and Snowball focus on specific relation types. In order to

build a generic relation extraction system, Banko et al. (2007) proposed TextRun-

ner which does not require the relation and its format to be specified as input. It

consists of three components which work in a pipeline namely learner, extractor

and assessor. The learner uses a 7-step process which involves generating its own
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labeled training data and produces a trained classifier that can be used by the ex-

tractor. The learner uses dependency parsers and syntactic parsers as part of this

process. The extractor then parses web pages and applies the classifier to each sen-

tence containing entity pairs to detect and identify relations. Finally, the assessor

tries to assign confidence on each extracted relation based on probability scores

derived from evidence and thresholds weak relations.

Surdeanu et al. (2012) proposed MIMLRE which employs distant supervi-

sion to train a model for extracting relations between two entities. The basic idea is

to use existing structured data sources such as Freebase, DbPedia to identify entity

pairs that are involved in different relations of interest. Then, we extract candidate

sentences by crawling the crawling with a heuristic that any sentence containing the

entity pairs identified in previous step describe the relationship between two enti-

ties. Now, using these labelled candidate sentences, Surdeanu et al. (2012) train a

multi label classifier that is capable of assigning more than one relation for a given

entity pair. For instance, in the case of the tuple (BarackObama, UnitedStates),

two types are relations exist namely employedBy and bornIn. While most of the

previous methods deal with extracting only one type of relation, MIMLRE model

identifies and assigns more than one relation type for a given entity pair.

Overall, all systems discussed in this section have parameters which require

configuration based on the domain on which they are applied. While these parame-

ters are defined clearly, there is no discussion on how to choose optimal values for

these parameters based on a given experimental setting. The values are mostly hard

coded and selected only by experience.
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5.1.3 Unsupervised Methods

Much of the research on relation extraction and detection has focussed on ap-

plying supervised methods of machine learning. Some techniques discussed above

employ seed data to achieve the same in a semi-supervised manner. In this section,

we review some systems that employ unsupervised algorithms such as clustering

(Grira et al., 2004) and topic modeling (Blei, 2012) to perform relation extraction

without using any seed data. Yan et al. (2009) and Gonzalez and Turmo (2009)

employ clustering to group entity pairs that belong to same relation tuple. de La-

calle and Lapata (2013) take a different approach and uses topic modeling with First

order logic to perform relation extraction.

Yan et al. (2009) exploit the implicit structural organization of Wikipedia

articles to derive entity pairs that are related. That is, they use anchor links from a

given entity page to identify target entity. With the derived entity pairs, they identify

candidate sentences from snippets returned by search engines and use them to ex-

tract three kinds of useful information: (1) ranked relation terms (2) surface patterns

and (3) dependency patterns. Ranked relation terms are indicators of particular re-

lation types between entity pairs. Surface patterns are derived from sentences by

classifying words between entities as content and functional words. Dependency

patterns are derived from the dependency path between the two entities. First, us-

ing k-means clustering algorithm and a custom defined distance function, entity

pairs are clustered using dependency patterns. Then, another level of clustering

is performed using surface patterns since dependency patterns could be restrictive.

Finally, the ranked relation labels are used to assign labels for the grouped clusters.
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Gonzalez and Turmo (2009) use two components, scorer and filterer to per-

form clustering on entity tuples. They identify candidates using target instant types

from a training corpus and extract distance and POS features from the candidate

sentences. These instances are clustered using probabilistic generative clustering

models. Then, they are scored for quality based on size and homogeneousness. The

filterer is a simple boundary classifier that is used to identify if a given instance

belongs to a cluster or not. It learns a threshold to do this classification by choosing

the point of maximum compression of the instance set. Now using the filterer, each

instance from the test set is assigned to a particular relation cluster while taking

account of relative quality of the clusters from scorer.

de Lacalle and Lapata (2013) combine relational LDA (Yao et al., 2011)

with first order logic (FOL) rules to build a system for relation extraction. In rela-

tional LDA, each document is a mixture of relations over tuples. They use features

including the source entity, destination entity, dependency path, entity types and

trigger words. They interface FOL rules with a relational LDA model to perform

clustering. Using two kinds of auto generated rules from a training corpus namely

must-link and cannot-link tuple rules, they produce clusters for each target relation

type from the entity pairs.

5.2 Slot Filling Systems

From the specification of the KBP English Slot Filling (ESF) Task, it can be

observed that ESF task is same as relation extraction with some added constraints.

In the ESF task, the source entity types are restricted to be one of the following two
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types: (1)PERSON (PER) (2) ORGANIZATION (ORG). Similarly, in the case of

ESF task, the target relation types are defined and fixed. There are 25 relation types

for PERSON query entities and 16 relation types for ORGANIZATION query enti-

ties. No other relation types and corresponding entities are expected to be extracted

in this task. These restrictions make ESF task less challenging compared to relation

extraction in general and makes the problem more defined. Hence, it has generated

great interest in building systems specifically for the ESF task and several such sys-

tems have been participating in the KBP ESF task track during the past few years.

In this section, we will highlight few different approaches taken to built Slot Filling

systems taking its specifications into account.

In 2014, Stanford’s slot filling system (Angeli et al., 2014) based on the

DeepDive framework (Niu et al., 2012) was the top performing system in KBP

ESF task. DeepDive works in three phases: (1) Feature extraction (2) Engineered

constraints (3) Statistical inference and learning. Candidate sentences are extracted

by distant supervision and their respective entity and relation mentions are derived.

Using this, a factor graph is constructed and Gibbs sampler is run to obtain relation

probabilities. They use Freebase as their source for obtaining distantly supervised

training data. Their system obtained an F1 score of 36.7 on the official KBP ESF

evaluation.

RPI Blender (Hong et al., 2014) is another slot filling system that employs

Multidimensional truth finding (Yu et al., 2013) to filter candidate sentences that

may express potential relations between target entities. To search for entities, they

use their Apache Lucene based search engine with fuzzy matching techniques. Us-
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ing co occurrence frequency, they obtain top terms to perform query expansion

which helps increase the relevance and reduces noise of candidate sentences. Then,

justifications are extracted from the candidate sentences and supplied to their pro-

posed truth finding model. The truth finding model builds a knowledge graph using

entities, relations and multiple sources from the corpus. They use several heuristic

measures to assign credibility scores for the identified relations in this graph. In

addition, they also encode several hard constraints such as entity types based on

relation types and soft constraints such as informativeness as part of this graph to

further refine the identified relations. Using these signals as features, they build

a supervised SVM classifier to finally determine if a relation is true or false. The

RPI Blender system achieved an F1 score of 34.07 in the official KBP 2014 evalu-

ation.

The BLP-TI system from University of Texas at Austin (Bentor et al., 2013)

is built on top of Saarland Universitys RelationFactory system (Roth et al., 2014a)

to explore the impact of their textual inference schemes in the Slot Filling task.

The pipeline of the RelationFactory system comprises of two stages: (1) candidate

generation, where relevant documents are retrieved and sentences that might have

possible relations expressed are filtered using entity type checking (2) candidate

validation, where an SVM classifier is used to determine if candidate sentences

express a valid relation for the query entities. Their online rule learning system

(Raghavan and Mooney, 2013) is used to do learn first order logic (FOL) rules from

the set of identified relations. In the inference stage, these rules are used to generate

additional relations from the candidate relations extracted directly from the text.
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The BLP-TI system achieved an F1 score of 29.15 in the KBP ESF task official

evaluation.

The slot filling system from University of Massachusetts known as UMass IESL

(Roth et al., 2014b) applies matrix factorization to perform relation prediction.

They also use distant supervision to identify candidate sentences. Relation pre-

diction by Universal Schema Matrix Factorization (Riedel et al., 2013) extracts

entity pairs, relations and context between entities from these candidate sentences

and leverages the implicit co occurrence information. Each row in the schema ma-

trix represents an entity and each column represents a relation type. They employ

factorization based on logistic regression (Collins et al., 2001) for the given matrix

construction. Their system was able to achieve an F1 score of 27.39 in the official

KBP ESF evaluation.

We can observe that different systems employ different techniques to per-

form slot filling. As a result, these systems have different strengths and capabilities

that prove useful when combined.

5.3 Ensemble Systems

In this section, we review the application of ensemble learning algorithms

for different NLP problems. We also look at ensemble systems specifically devel-

oped for Relation Extraction and Slot Filling in the past.
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5.3.1 Applications in NLP

All these principles for designing ensemble systems have been applied to

ensemble NLP systems in different problem domains. Let us look at few such

ensemble systems used for language problems in this section.

Henderson and Brill (1998) build an ensemble system for parsing treebanks

which performs better than standalone parser. They try two approaches to hybridize

their parses. First, they pick the constituents of a parse by majority voting. Second,

they try to build a naive bayes classifier that learns which constituents should be

included in the parse. Effectively, the classifier determines how much each parser

should be trusted. Their ensemble parsing system uses three individual parsers and

performs better than the best individual parsing system.

Pedersen (2000) build an ensemble system for word sense disambiguation

task. They use a variation of bag of words method using binary features to rep-

resent context in both left and right directions of the target word to be disam-

biguated. They choose 9 different window sizes for both left and right directions:

0, 1, 2, 3, 4, 5, 10, 25, 50 words. For every combination of left and right window

size, a naive Bayes classifier is trained. This step produces 81 candidate naive

bayes classifiers. These models are grouped into three broad categories namely (1)

narrow (0, 1, 2 words) (2) medium (3, 4, 5, 10 words) (3) wide (25, 50 words). For

each target word, the top performing classifiers in each of the nine combinations

(left & right) of these categories is picked to participate in the ensemble system.

Finally, the sense that receives maximum votes is used to disambiguate the target

word. This approach improves the accuracy for disambiguating nouns line and in-
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terest by 1% and 2% respectively.

Whitehead and Yaeger (2010) apply standard ensemble learning algorithms

to perform sentiment analysis from text. The ensemble methods they tried include

bagging, boosting, random subspace and bagging random subspaces. They choose

to use Support Vector Machines (SVM) as their base classifier. For bagging, they

used 50 subsets of training data to produce 50 models. In ADABOOST, they chose

50 iterations for the training process. They used K-fold cross validation with 10-

folds to compare the results of different methods. They observed that bagging ran-

dom subspaces model performs better than other methods.

5.3.2 Ensembling RE Systems

Google proposed their Knowledge Vault system (Dong et al., 2014) to ag-

gregate information from different sources across the web and build a knowledge

base. They employ different relation extractors for a variety of information sources

such as text documents, HTML tables, HTML trees and human annotated pages

across the Web. They fuse the output of these extractors by building a binary meta-

classifier. The feature vector for this classifier consists of the following informa-

tion from individual extractors to be fused: (1) number of source documents (2)

mean confidence score from different sources. They choose to use a boosted deci-

sion stump for their final binary classifier (Reyzin and Schapire, 2006). This work

demonstrates a mechanism for combining the output of heterogeneous relation ex-

tractors.
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Sigletos et al. (2005) use stacking (Wolpert, 1992) to combine the output

of Information Extraction (IE) systems. This addresses the situation where most

systems could be wrong in which case majority voting would fail. They propose

the construction of a merged template which combines the output of different IE

systems. They have designated representation for extractions that are missing in

some IE systems. Using this merged template, they train a meta-classifier which fi-

nally decides which extractions are correct. They show that disagreement between

different IE systems are exploited by stacking them and also report improved per-

formance.

5.3.3 Ensembling SF Systems

All approaches described above could also be used to build ensemble sys-

tems for KBP English Slot Filling (ESF) task. As described before, the goal of KBP

Slot Filler Validation (SFV) task is to combine the output from multiple slot filling

systems or use language processing to validate the fillers from those systems. The

objective here is to maximize the F1-score. Several ensemble systems have been

proposed to combine results of slot filling. Let us look at different approaches used

to ensemble slot filling systems.

Some systems use rule based consistency checks to perform filler validation.

Angeli et al. (2013) employ such a scheme using weighted constraint satisfaction

problem (CSP). The constraints are hand engineered and establish rules either on

specific slots or between pairs of slots or even global constraints. Here, the objective

of constraint satisfaction is to maximize the sum of confidences of fillers subject to
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the hand engineered constraints on slots. Two classes of rules are used: (1) Filter

rules (2) Rewrite rules. Examples of useful filter rules could be Filter slot fillers

that do not match entity type for a relation or Filter slot fillers that exceed particular

length. Example of a rewrite rule could be rewrite filler with its canonical mention

as determined by coreferencing. Such rules are helpful in combining results from

different slot filling systems.

Cheng et al. (2013) pose SFV as Recognizing Textual Entailment (RTE) task

and uses rules to check if a relation is satisfied by the (query,filler) pair reported by

the slot filling systems. They preprocess the entire ESF task corpus using tokenizer,

POS tagger and NER tool as the first step. Similar to previous work on consistency

checking, they employ filter rules for slot fillers based on entity types of arguments

for different relation types. In addition, they add hand engineered rules to do rela-

tion matching, a task that makes sure if a relation is entailed by a candidate sentence

and its arguments. These rules specify lexical patterns and enforce positional con-

straints for entities (query and filler) based on the type of relation. By doing error

analysis, they have identified and added around 600 such rules which form the core

of their SFV system.

In another work, Sammons et al. (2014) develop a trust based SFV system.

The principle here is to use the source of slot filler as valuable information for eval-

uating the correctness of it. They employ majority voting to achieve this. They use

learned threshold values on the number of systems that extract a particular filler to

decide if it must be included in the result. In general, the threshold values increase

with decreasing frequency of the filler. For instance, the most frequent filer is in-
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cluded if it occurs at least 5 times while the second most frequent filler is included

only if it occurs at least 10 times. When thresholds are high, the system tends

to produce high precision, low recall behavior as expected. They also filter fillers

based on offset checks using the offsets reported by individual slot filling systems.

Wang et al. (2013) attempt to use the confidence values returned by indi-

vidual SF systems with each extracted filler. They use constrained optimization to

aggregate the individual confidence values and produce a single aggregated confi-

dence score. This score is used to determine if the filler must be included in the

final result. They apply this scheme to both single valued and list valued slots.

In addition, they also explore the possibility of learning weights for individual SF

systems based on their overall performance and use them in computing aggregated

confidence scores.

Though several systems have been developed to ensemble SF systems, none

of them use stacking to combine the results of individual SF systems. From our lit-

erature survey, we observe that we are the first to employ Stacking for KBP English

Slot Filling and Slot Filler Validation tasks. This makes our contribuition unique

and the results from our experiments only increase the significance of Stacking in

ensembling SF systems.
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Chapter 6

Future Work and Conclusion

In this section, we discuss possible directions of future work in the area of

ensembling slot filling systems and conclude this thesis report.

6.1 Future Work

The problem of ensembling slot filling systems is not fully explored. The

system proposed in this report uses only confidence score and slot type fields to

ensemble the output of SF systems. Many other systems developed for SFV task

also use basic ensembling techniques like voting Sammons et al. (2014) based on

slot filler strings.

There are two strong motivations to explore further into ensembling SF sys-

tems. First, ESF is a challenging task since the best performing system achieves

F1 score of 40 only. Second, it is hard to develop ESF systems from scratch. Each

system involves several components and a complex pipeline. Hence, further explo-

ration in the lines of ensembling existing systems could lead to promising improve-

ments in relatively shorter timeframe. In this section, we discuss some ideas that

could be explored in future to improve the system proposed in this report and in

general to ensemble SF systems.

It would be interesting to investigate adding more features to ensemble SF

system. The output from SF systems contain two types of provenances: (1) relation
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provenance (2) filler provenance. Relation provenance provides the offset of text in

the source document that describes the relation between the query entity and filler

entity. Filler provenance provides the offset of filler entity. Many SFV systems use

provenance information to perform consistency checks and filter mechanisms. But,

it is possible to design features from these provenances that capture the agreement

or disagreement between SF systems in a more fine grained fashion (Viswanathan

et al., 2015). For instance, slot fillers can be assigned ranks based on the extent of

agreement in their provenances. Also, we can use these provenances to identify the

number of unique sources for a particular filler text and use it as a feature. More

detailed research could lead to better engineered features.

Alias information could also be used to engineer new features for the ensem-

ble classifier. If a number of SF systems extract the same entity for a (query, slot)

pair, it indicates their agreement. After alias merging, we know the number of

systems that extracted the same entity for a (query, slot) pair. We can use this to

again compute a score that measure agreement at filler entity level. These additional

provenance and alias features could strengthen the performance of stacking based

Ensemble SF system detailed in this report.

Another promising direction is to explore different ensemble methods for

combining the individual SF systems. Sammons et al. (2014) used Voting for en-

sembling SF systems. We are the first to use Stacking for ensembling SF systems.

There are several other methods that can be readily tried with SF systems. If there is

sufficient training data, we could try extending the stacked meta-classifier for each

slot type instead of using one for all slot types. At the moment, the data from KBP
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ESF 2013 and 2014 is not sufficient to train a separate meta-classifier for each slot

type. Another method is to use subsets of features to train different ensemble clas-

sifiers and then use voting to determine final predictions. All these ideas could be

explored to understand the relative performance of different methods in ensembling

SF systems.

6.2 Conclusion

Relation Extraction is a significant problem that is useful to automatically

populating structured knowledge bases. TAC conducts English Slot Filling (ESF)

and Slot Filler Validation (SFV) tasks as part of its Knowledge Base Population

(KBP) track to promote research in this area. This thesis dealt with developing an

Ensembled SF system.

The contributions of this thesis can be summarized as follows. We are the

first to use Stacking to develop an Ensemble SF system. We use confidence scores

from multiple SF systems and slot type information for our stacked meta-classifier.

We have demonstrated through our experiments that stacking is a promising ap-

proach and further establish new state-of-the-art results on TAC KBP ESF task.

Our stacked meta-classifier provides an F1 score of 47 on KBP ESF task and per-

forms better than the top performing systems in both ESF and SFV tasks (2014).

We have developed a scheme by inverting a query expansion technique and used

it to merge alias extractions from different SF systems. From our experimental re-

sults, we observe that this scheme did not have an impact on the performance of the

Ensembled SF system.
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In future, additional information from output of SF systems such as prove-

nance, alias fillers, query entity type and filler entity type can be used to engineer

more features for the Ensemble classifier. Also, other ensemble learning methods

such as bagging can be applied for the task of Ensembling SF systems.

The promising results from our stacked Ensemble SF system indicate that

ensembling boosts the performance of SF systems to a good extent. It is known that

Slot Filling is a challenging task since the best performing individual SF system

achieves only an F1 score of 39. Also, developing new SF systems is time consum-

ing due to the numerous pre processing steps and complex components involved in

the pipeline. These facts coupled with the results presented in this thesis report in-

dicate that exploring ensembling methods using existing SF systems might produce

better performing SF systems in a shorter time frame.
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