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Abstract

Directly Optimizing Evaluation Metrics to Improve Text to

Motion

Yili Wang, MS
The University of Texas at Austin, 2023

SUPERVISOR: Raymond Mooney

There is a long-existing discrepancy between training and testing process of

most generative models including both text-to-text models like machine translation

(MT), and multi-modal models like image captioning and text-to-motion generation.

These models are usually trained to optimize a specific objective like log-likelihood

(MLE) in the Seq2Seq models or the KL-divergence in the variational autoencoder

(VAE) models. However, they are tested using different evaluation metrics such as

the BLEU score and Fréchet Inception Distance (FID). Our paper aims to address

such discrepancy in text-to-motion generation models by developing algorithms to

directly optimize the target metric during training time. We explore three major

techniques: reinforcement learning, contrastive learning methods, and differentiable

metrics that are originally applied to natural language processing fields and adapt

them to the language-and-motion domain.
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Chapter 1: Introduction

Text-to-motion generation task recently draws more and more attention to-

gether with the rapid development of other multi-modal generative models like text-

to-image and text-to-video. The goal of text-to-motion is to take as input a textual

prompt that describes a motion and output realistic enough motions that reflect the

input description. Various deep learning methods have been applied to the text-

to-motion task ranging from RNN-based Seq2Seq model Plappert et al. (2018); Lin

et al. (2018), transformer Tevet et al. (2022a) to the latest diffusion models Tevet

et al. (2022b); Zhang et al. (2022). However, fewer efforts focus on the evaluation of

the generated motions. Our project tries to approach the text-to-motion task from

the perspective of evaluation.

The evaluation has long been a challenge for the text-to-motion task. On the

one hand, most of the metrics including the average positional error (APE) and Féchet

Inception Distance (FID) Heusel et al. (2017) are inherited from other multi-modal

generative tasks like text-to-image. It is still questionable whether they can effectively

measure the quality of generated motions in terms of naturalness (whether the motion

looks real) and faithfulness (whether the motion corresponds to the text prompt). In

our recent work Voas et al. (2022), we analyze the effectiveness of different evaluation

metrics for text-to-motion by measuring their correlation with human judgment in

these two dimensions collected on the Amazon Mechanical Turk (AMT).

Our project extends previous work further to re-consider the training process

based on the findings in the evaluation aspect. One of the biggest problems with

many multi-modal generative models is that they often suffer from the discrepancy

between training and testing. More specifically, these models are trained on objectives

like log-likelihood probability (MLE) but tested on a different metric like FID. As a

result, the training performance is not directly related to the final evaluation results.

Moreover, many metrics are not differentiable with respect to the model parameters
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and we are unable to incorporate them directly into the training loss. Therefore, we

see a large gap in this field and attempt to initiate efforts to address the discrepancy

problem in our project.

1.1 Research Statement

In our project, our ultimate goal is to directly optimize the evaluation metrics

during training to address the problem of discrepancy between training and testing

of text-to-motion generation models. We adopt existing ideas from the text-to-text

generation domain including contrastive learning Liu et al. (2022) and differentiable

metric Wang et al. (2019) to our text-to-motion task to directly optimize the metrics

we examined in Voas et al. (2022) during training. The motivation for this project is

that if we can optimize the metric that best correlates with human judgment during

training, our model should achieve a better performance in terms of human evaluation.

1.2 Contributions

Our main contributions are:

• A review of different machine learning methods in the text generation domain

that aim to directly optimize evaluation metrics during the training process.

• The development of algorithms including contrastive learning approach and

differentiable metrics approach by adapting techniques in the text generation

domain to text-to-motion generation task.

• Thorough experiments and analysis to show the effectiveness of our proposed

algorithms to improve text-to-motion generation performance by directly opti-

mizing evaluation metrics during training.
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Chapter 2: Related Work

In this section, we provide a background literature review of the three research

areas that are the most related to our project: Text-to-motion Generation, Training

methods and Evaluation metrics.

2.1 Text-to-Motion Generation

Text-to-motion as a specific multi-modal generation task develops rapidly with

the progress in deep generative models. At the early stage, most models follow the

sequence-to-sequence manner. Plappert et al. (2018) and Lin et al. (2018) applied

RNN-based text encoder and motion decoder to generate pose distribution and raw

joint values respectively. To mitigate the large gap between the modality of language

and motion, JL2P Ahuja and Morency (2019) added an additional RNN-based motion

encoder to train an autoencoder for motion modality and then map text features to

learn a joint embedding space. Ghosh et al. (2021) extended the work in JL2P by

applying hierarchically learn representations for different body parts and involving

an additional motion discriminator for training which enable the GAN-like training

process.

The downside of the Seq2Seq models is that they deterministically generate

motions conditioned on input texts which means that texts and motions have a one-

to-one correspondence that is unable to capture the diversity of motions in reality.

More recent works moved to stochastic generative models like variational autoencoder

(VAE) Petrovich et al. (2022); Guo et al. (2022a) which instead of directly generating

the motion sequence, tried to model the latent distribution of motion and sample

generation from it. Other attempts applied tokenized modeling Guo et al. (2022b)

that used CNN to create a codebook of motion tokens and applied Seq2Seq model to

generate the motion token sequence. Although this process is determinate, it involves
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diversity in the decoding process from motion tokens to the final motion sequence.

Furthermore, Diffusion models recently gain much attention because of their

great success in the language-and-vision domain. This group of models learns to

predict the noise at each time step of diffusing an image to the Gaussian noise so that

the actual generation process is modeled as the denoising process which corresponds

to the reversed diffusion. There are also some latest models that apply the diffusion

method to the text-to-motion generation task, such as Tevet et al. (2022b); Zhang

et al. (2022) which have achieved state-of-the-art performance.

2.2 Training Methods

Most Seq2Seq models in both text-to-text and multi-modal domains are trained

with respect to the maximum likelihood estimation (MLE) which aims to optimize

the conditional probability of the target word (motion) sequence. However, at testing

time, the generated sequences are evaluated using completely different metrics such

as BLEU score (text generation) Papineni et al. (2002) or FID Heusel et al. (2017).

There are more existing works to address the discrepancy in text-to-text gener-

ation tasks like machine translation and text summarization. Reinforcement learning

(RL) methods are the most straightforward ones. Ranzato et al. (2016) was the ear-

liest to model text generation tasks as an RL problem by treating the Seq2Seq model

as the policy and BLEU scores as rewards. At each time step, the policy model out-

puts a word in the vocabulary as taking an action based on the current state which

may involve the input condition, word sequence generated so far and current time

step. There are also related works in the multi-modal domain like image captioning

Qi and Peng (2018); Liu et al. (2017). However, there are two significant limitations

of RL methods. As is pointed out in Wu et al. (2018); Choshen et al. (2020), the

training process of RL methods is time-consuming and not data efficient, and the lack

of enough training trials often leads to large variances of results. Secondly, these RL

methods rely on the discrete nature of text generation task and none of them can be
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directly extended to generation in continuous domains such as image and motion.

Other works focus on aligning training loss with the target metrics in a metric-

agnostic manner which means that the evaluation metrics can be included in the train-

ing objectives even if they are not necessarily differentiable. Minimum risk training

(MRT) Shen et al. (2016) computes the expected loss over a number of candidates

using online sampling methods to allow arbitrary non-differentiable loss functions. In

recent work, BRIO Liu et al. (2022) adopts contrastive learning and ranking-based

loss over a non-deterministic distribution of candidates so that the model can gen-

erate higher-scoring texts with higher probability. This contrastive learning method

achieves good performance on the text summarization task.

Finally, there are a limited number of works on the differentiable version of

evaluation metrics like DEBLEU Wang et al. (2019) but their effectiveness needs

further investigation because the paper did not explicitly show the correlation be-

tween DEBLEU and BLEU and the experiments did not prove whether training with

DEBLEU can directly improve BLEU score.

2.3 Evaluation Metrics for Text-to-motion Generation

2.3.1 Coordinate Error (CE) Metrics

The key idea of CE metrics is to take the sequence of 3D coordinates from

generated motions and the ground truths and compute the distance as the evalua-

tion of generation quality. Ghosh et al. (2021) proposed two categories of average

positional error (APE) which are defined as the averaged Euclidean distance between

candidates and references, and the average variance error (AVE) is defined as the

mean Euclidean distance between the motion variance along the temporal dimension.

Voas et al. (2022) further extended the CE metrics to introduce more vari-

ants that take into consideration the difference between the root joint (Root), body

joints (Joint) and all together (Pose) denoted by pose joints. In addition, coordi-

nates beyond position were also explored including velocity (VEL) and acceleration
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(ACCE) by computing the first and second-order derivatives of 3D joint coordinates.

By permuting all categories of variants, there are a total of 18 CE metrics.

2.3.2 Féchet Inception Distance

Féchet Inception Distance (FID) is first proposed in Heusel et al. (2017) and

is widely applied to the evaluation of image generations and is adopted by Guo et al.

(2020) to the motion domain. FID measures the distance between the distributions of

candidates and ground truth motion features extracted by the pre-trained Inception

network Szegedy et al. (2016). For two feature distributions D1, D2, the FID is

computed as:

FID = ||µ1 − µ2||2 + tr(Σ1 + Σ2 − 2
√

Σ1Σ2) (2.1)

Where µ1, µ2 are the mean feature vectors and Σ1,Σ2 are the covariance matrices

of the two distributions. tr is the matrix trace operation. Because FID measures

the distance between motion features at the distribution level, it can only serve as a

model-level naturalness metric.

2.3.3 Representation-based Metrics

Representation-based metrics rely on pre-trained encoders for the textual de-

scription and motion to map sequential data to vector representations in the embed-

ding space.

Guo et al. (2022a) proposed two representation-based metrics: R-precision and

MultiModal distance as complementary metrics to evaluate faithfulness. R-precision

is defined by the average accuracy at top-1 to top-3 places where the ground truth tex-

tual description is correctly retrieved from 31 randomly selected texts using Euclidean

distance between the generated motion features and text features. MultiModal dis-

tance is computed as the average Euclidean distance between features of the generated

motion and the corresponding textual description.
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Voas et al. (2022) proposed a novel representation-based metric called Nearest

Neighbor Captioning (NNC) method. Firstly, the generated motion is mapped to

the feature space using the motion encoder. Then, all the motions in the selected

reference set are also mapped to the same embedding space. The nearest neighbors

with the smallest distance from the generated motion are retrieved as candidates.

Finally, the quality of the motion generation is measured by comparing the original

texts with the corresponding texts of the neighbor motions.

2.4 Background Work

As our project can be regarded as the following work of Voas et al. (2022). In

this section, we will review some important findings from the previous work which

our project is mostly based on.

This paper collected generated motion candidates using four existing models:

T2M Guo et al. (2022a), TM2T Guo et al. (2022b), MDM Tevet et al. (2022b) and

MotionDiffuse Zhang et al. (2022) and conduct human study to score faithfulness

and naturalness of the candidate motions together with the ground truths from Hu-

manML3D dataset Guo et al. (2022a). Surprisingly, even though diffusion models

start to dominate text-to-image and text-to-video areas, human evaluation reveals

that diffusion models lack faithfulness and the encoder-decoder-based models can

achieve better faithfulness while still presenting natural enough motions. Among

these models, T2M model Guo et al. (2022a) receives the highest faithfulness scores

and the second highest naturalness score which is only slightly less than MDM Tevet

et al. (2022b).

Besides model evaluation, this paper also provides a thorough analysis of ex-

isting automated evaluation metrics for text-to-motion generation task ranging from

Coordinate Error (CE) metrics which simply compute the distance between the 3D

coordinates including joint positions, velocities and accelerations of generated motions

and ground truths, representation-based metrics such as FID Heusel et al. (2017) and
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others that proposed in Guo et al. (2020) including multi-modal distance, R-precision

and multi-modality. Although most of the current works prefer representation-based

metrics over CE metrics possibly because they capture more sequence-level seman-

tics, by computing the correlation with human judgment both at model level and

sample level, the paper shows that the CE metrics can still outperform metrics like

FID and R-precision. According to the paper, among different variants of CE metrics,

the pose position error (Pose POS APE) has the highest Pearson’s correlation with

human scores at the sample level while the velocity position error (Pose VEL APE).

Finally, the paper proposes a novel automated text-to-motion evaluation met-

ric called Nearest Neighbor Captioning (NNC) Method. Given the generated motion

and the textual description, the NNC method relies on the pre-trained encoder to first

map the motion to the embedding space and retrieves the nearest neighbor motion

representations with the smallest Euclidean distance and also their corresponding

from a reference dataset. The measurement of the generated motion quality can be

transferred to the evaluation of their corresponding textual descriptions. There are

several existing and mature tools in the text domain including BLEU score Papineni

et al. (2002), BERTScore Zhang et al. (2019) and BLEURT Sellam et al. (2020).
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Chapter 3: Text-to-Motion Generation

In this section, we will introduce and provide the general definitions for the

important concepts and terminologies that we use throughout out the remaining sec-

tions. To keep consistency between different algorithms and simplicity of discussion,

we also use the same set of mathematical symbols as defined in this section.

3.1 Problem Formulation

We give some general notations for the text-to-motion generation task. Given

the textual description of totally L wordsX = {x1, ..., xL} as input, where xi is a word

in the vocabulary, we want to train a text-to-motion generation model to generate 3D

motion sequence P = {p1, ..., pT} of total length T where pt ∈ RJ×3 is the 3D pose

with totally J joints at time t.

3.2 Dataset

We use the HumanML3D dataset Guo et al. (2022a) which provides 14, 616

motions and 44, 970 textual descriptions. Each motion has at least three descriptions.

To augment the data and improve motion diversity in the dataset, each motion has

its mirrored version by flipping the keyword such as ’left’ to ’right’. For the skeleton

structure, the total number of joints is 22 and the pose is represented by the 3D

coordinates p ∈ RJ×3. Besides the skeleton representation, the HumanML3D dataset

also defines a vector (ṙa, ṙx, ṙz, ry, jp, jv, jr, cf ) of 263 dimensions to represent the pose

at each timestep. The components include root angular velocity along Y-axis ṙa ∈ R,

root linear velocity on the XZ-plane ṙx, ṙz ∈ R, root height ry ∈ R, and local joints

positions jp ∈ R3j, velocities jv ∈ R3j, rotations in the root space jr ∈ R6j where

j = J − 1 = 21 is the total number of body joints, and the final binary features

indicating foot ground contacts cf ∈ R4. The two representations are equivalent and
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can be transferred to each other using rotational and transitional matrices which are

implemented in Guo et al. (2022a). In our project, we also adopt the same train-

val-test split of the dataset. There are 23, 384, 1, 460 and 4, 382 distinct motions

including the mirrored ones in the training, validation and testing sets respectively.

Figure 3.1 presents the example motions from the HumanML3D dataset.

Figure 3.1: Sampled motion frames with corresponding textual descriptions from the
HumanML3D dataset.
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Chapter 4: Contrastive Learning Approach

4.1 Methods

We adopt the contrastive learning algorithm BRIO Liu et al. (2022) which is

originally applied to text summarization to the text-to-motion generation task. For

the generative model, we choose TM2T Guo et al. (2022b) as the backbone.

TM2T proposes the motion token method to discretize 3D pose sequences by

using a series of 1D convolutions along the temporal dimension to encode continuous

sequences into motion tokens and then map them into the closest entries of a pre-

defined motion token codebook. The token encoder CNN is pre-trained as an auto-

encoder with a corresponding token decoder.

For conditional motion generation, TM2T utilizes the attention-based bi-directional

GRU as text encoder and motion decoder and autoregressively predicts the proba-

bility distribution for the next token over all the entries in the token codebooks as

pϕ(p̂t|P̂1:t−1, X) where the motion decoder is parameterized as ϕ. We can regard this

decoding process as standard word-by-word text generation over the vocabulary. Af-

ter that, the motion token sequence is transformed back to the real motion sequence

using the pre-trained token decoder.

The discrete decoding process of motion tokens allows us to apply the con-

trastive loss introduced in the BRIO paper. For each input textual description, we

generate multiple motions as candidates, the contrastive loss is computed as:

Lctr =
∑
i

∑
j>i

max(0, f(P̂ i, P )− f(P̂ j, P ) + λij) (4.1)

where P̂ i, P̂ j are two candidate motions such that ∀i, j, i < j, S(P̂ i, P ) > S(P̂ j, P ),

in other words, P̂ i, P̂ j are the ith, jth candidates ranked by the score S. P is the

corresponding ground truth motion and S is our target evaluation metric to optimize.
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λij = (j−i)∗λ where λ is the margin hyperparameter. f(P̂ i) is the length-normalized

estimated log-probability of the candidate:

f(P ) =

∑T
t=1 logpϕ(pt|P1:t−1, X)

Tα
(4.2)

where α is the length penalty hyperparameter. The contrastive loss function gives the

backbone TM2T model the ability to evaluate different motions as a discriminator.

The reason is that the predicted motion probabilities are aligned with the evaluation

metric S. In other words, the model assigns higher probabilities to the motions that

have higher S scores.

In addition, following the analysis in the BRIO paper, we keep the original

MLE loss to preserve the ability of the model as a motion generator. The final loss

is computed as:

LMLE = −
T∑
t=1

logpϕ(p̂t|P̂1:t−1, X) (4.3)

L = µmleLMLE + µctrLctr (4.4)

where µmle, µctr are the weights for the MLE loss and contrastive loss respectively.

In our experiment, we follow the work Lin et al. (2018) to use Dynamic Time

Warped Mean Absolute Error (DTW-MAE) as our scoring function. DTW-MAE is an

align-based metric that uses the dynamic time warping algorithm Salvador and Chan

(2007) to align different lengths of motions and compute the mean absolute error (L1

distance) between the candidates and the references. Consider two motion sequences

P1 = {p11, ..., p1T1}, P2 = {p21, ..., p2T2}, DTW-MAE returns the optimal sequence of

length K of the mapping between p1i , p
2
j indicated by tuples (i, j) which minimizes the

total L1 distance between the mapping. Then the optimal sequence to kth mapping

(ik, jk) is defined as:

Dmin(ik, jk) = min
ik−1,jk−1

Dmin(ik−1, jk−1) + d(ik, jk|ik−1, jk−1) (4.5)
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where d is the mean absolute error (L1 distance) between pik and pjk . The DTW-MAE

over the two entire motion sequences is computed as:

D(P1, P2) =
∑

1≤k≤K

d(ik, jk) (4.6)

where i1 = 1, iK = T1 and j1 = 1, jK = T2.

By further fine-tuning TM2T model based on the pre-trained checkpoints using

the contrastive loss, our goal is to align the probabilities of candidates predicted by

the model with the target evaluation metric that we want to optimize so that the

model can generate motions of higher evaluation scores with higher probabilities.

4.2 Experiments

We further fine-tune the pre-trained TM2T model using the loss in equation

4.4 with the same hyperparameter setting as BRIO µmle = 0.01, µctr = 10 and the

number of candidatesN = 10 for each text prompt in both the train-validation set and

test set of the HumanML3D dataset Guo et al. (2022a). For the backbone TM2T

model, we also inherit the same architecture from the pre-trained checkpoints and

apply early stopping when the validation loss starts to increase to prevent overfitting.

We record all the loss terms and show the training and validation loss curves in Figure

4.1. The model structure and hyperparameter setting of the original TM2T model

are shown in the appendix.

We use the DTW-MAE metric again to test the fine-tuned model on the test

split and compare the results with the pre-trained model. For each textual description,

we calculate the mean, max and min error values over the 10 candidate motions as

the corresponding score. The average scores over the test set are shown in Table 4.1

4.3 Analysis

As shown in Figure 4.1, the contrastive loss decreases through the entire train-

ing process which indicates the gradual improvement of the alignment between the
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(a) Training contrastive loss. (b) Training MLE loss.

(c) Training loss. (d) Validation loss.

Figure 4.1: Training and validation loss for fine-tuning TM2T model.

Pre-trained model Fine-tuned model
Min 10.837 12.291
Mean 17.451 15.400
Max 25.775 19.133

Table 4.1: Average DTW-MAE of the test set. The best results of each row are in
bold font.

model predictions and evaluation scores. On the other hand, the training MLE loss

first increases and then decreases with the contrastive loss. This is expected for our

further fine-tuning setting because the additional contrastive loss first disrupts the

pre-trained parameters through gradient descent and dominates the overall training

loss. As the contrastive loss converges, its influence on the model parameters becomes

less so that the MLE loss can also be optimized. For the validation loss, we see a

continuously decreasing trend which indicates the ability of the fine-tuned model to
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align unseen motions with the DTW-MAE scores.

From Table 4.1, we see that when we calculate the mean and max DTW-

MAE values for each textual description, the average result on the test set improves

from 17.451, 25.775 to 15.400, 19.133 respectively after fine-tuning with the additional

contrastive loss. The reduced average mean error indicates the overall effectiveness

of our contrastive learning method and the better quality of generated motions. On

the other hand, if we take the min value for each text prompt, the average test

error increases from 10.837 to 12.291. Together with the decreased max error, we

regard such performance differences as a good sign for reduced variance among motion

candidates because the distribution of error lies closer to the mean. In other words,

our fine-tuned model is able to generate motions that have higher quality in terms

of DTW-MAE (closer to ground truth) with higher probabilities compared with the

pre-trained model.

4.4 Discussion

Although our preliminary experiments show promising results, there is a sig-

nificant limitation for our proposed contrastive learning method. This method only

applies to Seq2Seq models that predict the exact probabilities of generated candi-

dates and relies on the discrete nature of motion tokens which is often unachievable

for continuous motion sequences. We notice the rapid trend recently of applying

diffusion models to the text-to-motion task such as MDM Tevet et al. (2022b) and

MotionDiffuse Zhang et al. (2022). In addition, as the recent work Voas et al. (2022)

shows, the variational autoencoder (VAE) model T2M Guo et al. (2022a) and diffusion

model MotionDiffuse Zhang et al. (2022) achieve competitive performance in human

evaluation in terms of naturalness (whether the motion looks real) and faithfulness

(whether the motion corresponds to the text prompt). Because either VAE which

predicts the noise vector sampled from prior and posterior distribution or diffusion

model which predicts the Gaussian noise does not calculate the exact log-probability
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for a candidate motion, there is no direct way to adopt the contrastive loss to these

state-of-the-art models. We will keep working on this topic in the future to find the

contrastive learning method compatible with the text-to-motion task.
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Chapter 5: Differentiable Metric Approach

5.1 Methods

Most currently used evaluation metrics for text-to-motion task, for example,

FID and R-precision Guo et al. (2022a) are not differentiable with respect to the

network parameters. This prevents us from incorporating these metrics directly into

the training objectives because the normal training process optimizes the objectives

through gradient descent and computing the gradient of these complex metric func-

tions is intractable. One solution to address the optimization problem is to develop

differentiable evaluation metrics that are either novel or derived from existing ones.

Previous works Wang et al. (2019) in text-to-text domain proposed a differen-

tiable version of the widely used metric BLEU and showed the effectiveness in machine

translation and image captioning tasks. However, it did not present solid evidence

that optimizing the differentiable version of this metric directly improves the model’s

performance on the original BLEU. In addition, as shown in our recent work Voas

et al. (2022) in which we examine different evaluation metrics for the text-to-motion

task, traditional coordinate error (CE) metrics like average positional error (APE),

average variance error (AVE) and their variances like velocity APE (VEL APE) are

still competitive with more complex learned metrics like FID and R-precision in terms

of the correlation with human judgment. The advantage of these metrics is that they

are originally differentiable so that they can be directly optimized through gradient

descent as training objectives.

We propose a novel training loss called metric loss which is computed as either

one single coordinate error (CE) or the weighted summation of multiple CE metrics.

For different variants of CE metrics, our implementation of AVE and APE is based

on the calculation in Ghosh et al. (2021); Voas et al. (2022). For the jth joint

P j = {pj1, ..., p
j
T}, the APE and AVE are computed as:
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APEj =
1

NT

∑
n∈N

∑
t∈T

||pjt − p̂jt ||2 (5.1)

P̄ j =
1

T

∑
t∈T

pjt (5.2)

σj =
1

T − 1

∑
t∈T

(pjt − p̄j)2 (5.3)

AVEj =
1

N

∑
n∈N

||σj − σ̂j||2 (5.4)

where N is the total number of motions in the dataset and P̄ j is the mean pose over

T time steps. For generated motions and ground truths with different lengths, we

choose T to be the minimum of the two values. σj is the variance of ground truth

motion and σ̂j is the variance of the generated motion. Note that APE and AVE are

all differentiable with respect to the model parameters, and thus our proposed metric

loss is also differentiable. For velocity and acceleration, we replace the 3D position

coordinates with 3D velocity vectors by subtracting the pose at time t + 1 and time

t and similarly for acceleration. Because the time gap is fixed, we omit the ∆t in the

denominator.

velt = pt+1 − pt (5.5)

accet = velt+1 − velt (5.6)

For the text-to-motion task, we choose our backbone model to be the varia-

tional autoencoder-based model called T2M Guo et al. (2022a). T2M achieves the

best performance on motion faithfulness and the second-best performance on natu-

ralness in human evaluation according to Voas et al. (2022).

Similar to the motion token technique in TM2T Guo et al. (2022b), T2M also

uses a pre-trained motion autoencoder to transform the motion sequence to a motion
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snippet code sequence but replaces the Seq2Seq generator with a variational autoen-

coder to achieve stochastic motion generation. The VAE architecture is composed of

three networks to model the generator Fθ, posterior Fϕ and prior Fψ. The VAE takes

the context embedding c of the textual description from the text encoder as the input

and generates the code snippet sequence ĉs1:T . At each time step, the posterior and

prior network sample the noise vector zt from the approximated distribution as:

Fϕ = qϕ(zt|ĉs1:t, c) (5.7)

Fψ = pψ(zt|ĉs1:t−1, c) (5.8)

The generator takes as input the noise vector zt, the attention vector watt
t by

attending the word features with the current generator hidden state and generated

snippet code sequence so far ĉs1:t−1, and output ĉst . The noise vector is sampled from

the posterior distribution qϕ during training time while from the prior distribution

pψ during the testing time due to the unavailable generated pose at time t. Finally,

the reconstructed motion snippet sequence ĉs1:T is decoded back to the actual motion

sequence P̂ using the pre-trained motion autoencoder. To train the posterior Fϕ and

prior networks Fψ in the VAE, the loss is defined as the KL-divergence between the

two distributions:

LKL =
∑
t∈T

KL(qϕ(zt|ĉs1:t, c)||pψ(zt|ĉs1:t−1, c)) (5.9)

To train the generator network Fθ, the reconstruction losses of both motion

snippet codes and motion sequence are computed as:

Lcode
rec =

∑
t∈T

||ĉst − cst ||1 (5.10)

Lmot
rec =

∑
t∈T

||p̂t − pt||1 (5.11)
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where ĉst , p̂t are the model generations and cst , pt are the ground truths.

Let Lmet be our proposed metric loss, the final loss is calculated as:

L = λcodeL
code
rec + λmotL

mot
rec + λKLLKL + λmetLmet (5.12)

where λcode, λmot, λmet are the loss weights controlling the relative magnitudes of dif-

ferent loss terms. The complete model structure of T2M is beyond the scope of our

project and we present the architecture in the appendix.

5.2 Experiments Results and Analysis

We conduct comprehensive experiments from different perspectives to study

how our proposed metric loss influences the performance of the T2M model. For all

the hyperparameters except the ones related to the proposed metric loss, we follow

the same setting as in T2M which is also shown in the appendix.

5.2.1 Preliminary Experiment

Our preliminary experiments investigate three different training processes:

• Fine-tune: Based on the pre-trained T2M checkpoints, we further fine-tune the

model using the loss 5.12.

• Train from scratch: We train a new model with respect to the loss 5.12 from

scratch.

• Fine-tune with only metric loss: We further fine-tune the pre-trained T2M

checkpoint using only the metric loss Lmet.

One thing to note is that for the Train from scratch option, we follow the same

curriculum as the original paper. The model is first optimized to generate motion

snippet sequences of length 1, if the training loss converges, the predicted length adds

1 and the training process continues until the maximum length 49 is reached.
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Our preliminary experiments involve 4 variants of metric loss:

• Root POS AVE

• Joint POS AVE

• Joint POS APE

• Pose VEL APE

where ”Root” stands for the root position of the skeleton and ”Joint” stands for all

the other body joints. ”POS” and ”VEL” stand for the 3D position and velocity

respectively. We select these variants of coordinate error because they are among the

best metrics that correlate with human judgment according to Voas et al. (2022).

Finally, we set the loss weights λmet for Root POS AVE + Joint POS AVE, Root

POS APE, Joint POS APE to 10, and Pose VEL APE to 100 during training. By

selecting these loss weights, we aim to make the magnitude of different CE metrics

relatively close to the original loss so that the impact of the additional metric loss is

neither too large that buries the original loss nor too small that contributes little to

the optimization. The corresponding evaluation results of different AVE and APE on

the test set before and after training the model are shown in Table 5.1.

Pre-train Fine-tune
Train from
scratch

Fine-tune with
only metric loss

Root POS AVE
+ Joint POS AVE

0.6266 0.8039 0.7629

Root POS APE 0.6001 0.7918
Joint POS APE 0.6501 0.6909 0.7072 1.0643
Pose VEL APE 0.0283 0.0265 0.0277

Table 5.1: Average errors of the test set using 3 training methods. The best result of
each variant of metric loss (row) is in bold font.

Note that we black out the Fine-tune with only the metric loss column because

we see the huge performance drop from 0.6501 to 1.0643, so we omit the results on
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the other models and drop this option for the rest of our experiments. For all the

experiments, we find that the model achieves better performance when we fine-tune it

than the other two options in general. Therefore, we choose to focus on the Fine-tune

method when we do training. Another finding is that the only metric that is actually

improved is the Pose VEL APE through fine-tuning or training from scratch. We also

evaluate the performance on the other metrics when training to optimize Pose VEL

APE and present the results in Table 5.2.

Pre-train
Fine-tune with
VEL APE

Train from scratch
with VEL APE

Root POS AVE +
Joint POS AVE

0.6266 0.7123 0.6769

Root POS APE 0.6001 0.6401 0.6579
Joint POS APE 0.6501 0.6888 0.7104
Pose VEL APE 0.0283 0.0265 0.2768

Table 5.2: Evaluation results of the trained models with VEL APE on the other
metrics

As shown in Table 5.1, among the three training options: fine-tuning, training

from scratch, and fine-tuning with only metric loss, the last option leads to the largest

performance drop which indicates that the reconstruction loss and KL-divergence are

essential to the VAE model to control the basic motion shapes and generate reasonable

motions. On the other hand, we did not see very promising results by either fine-

tuning or training from scratch using our selected CE metrics except for Pose VEL

APE. When we fine-tune the model using Pose VEL APE as the metric loss, the

corresponding error reduces from 0.0283 to 0.0265. However, this fine-tuned model

does not achieve better performance on the other selected metrics over the pre-trained

model as shown in Table 5.2, which indicates that the latent interaction between

different CE metrics is complex and may not necessarily be a positive correlation.

One good sign we can see from Table 5.2 is that for the Root POS AVE + Joint

POS AVE and Joint APE, the fine-tuned model with VEL APE even outperforms the

models fine-tuned with the original metrics. Optimizing one metric may at the same
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time benefit the model performance on other metrics. This to some extent reflects the

importance of the choice of metric to optimize because different CE metrics influence

the overall model performance at different levels.

5.2.2 Optimizing Single Metric and Linear Combination

Our next step which is also our main focus is to systematically examine and

analyze the relationship between metric losses of different choices of one single CE

metric and the linear combination of multiple metric variants. In order to evaluate

the performance in a more systematic way, we select the three most important CE

metrics: Pose POS APE, Pose VEL APE and Pose ACCE APE from the total of 18

variants and measure the metric changes after fine-tuning. We use two simple linear

combinations:

• POS APE + 10×VEL APE

• POS APE + 10×VEL APE + 10×ACCE APE

Note that VEL APE and ACCE APE are scaled up by a factor of 10 because the

magnitudes of these values are small compared with POS APE. For simplicity of

expression, we denote these two weighted metrics by PV APE and PVA APE re-

spectively. In addition, we explore the loss weights that largely control the relative

magnitudes of metric losses with respect to the original reconstruction losses and

KL divergence. We also tune the hyperparameter, the metric loss weight λmet. We

follow a relatively empirical process for selecting the λmet values by starting with a

weight value that makes metric loss closest to the original losses and then dividing

it by 10 as a smaller weight because we notice that smaller loss weight, in general,

improves the overall performance. More details will be discussed in later paragraphs.

For hyperparameter tuning, grid search is actually a more systematic way. However,

because the original magnitudes of metric loss variants also vary, we may not directly

compare the performance of different models under the same λmet setting.
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Finally, besides the trivial metric combination, we try to train a linear combi-

nation of coordinate error (CE) metrics using the human evaluation data in Voas et al.

(2022). We have two options. We select the top-5 CE metrics with the highest Pear-

son’s correlation score with the human evaluation of faithfulness at both by-sample

level and by-model level. We train a linear regression model for each option separately

and optimize the L2 distance between the weighted summation of the 5 metrics and

the human scores using 5-fold validation. The weights that correspond to the highest

correlation on the held-out validation data are chosen as the metric loss. The losses

are denoted by LIN COMB S and LIN COMB M indicating the option that we select

CE metrics. We then fine-tune the model using our linear combination metric losses

and set the loss weight λmet = 0.01. Table 5.3 and Table 5.4 show the selected 5 CE

metrics and the trained linear combination with the corresponding correlation scores.

The values of the two weighted metrics before and after fine-tuning T2M are shown

in Table 5.5.

Pearson’s correlation
Joint POS APE 0.1677
Pose POS APE 0.1677
Joint POS AVE 0.1067
Joint VEL AVE 0.0635
Joint ACCE AVE 0.0504
LIN COMB S 0.2142

Table 5.3: Top-5 metrics that are best correlated with human evaluation of motion
faithfulness at by-sample level and the trained linear combination.

All the evaluation results of the single metric and linear combination models

mentioned above are shown in Table 5.6.

We also present some supplementary experiments in Table 5.7 that are not

categorized into any slots in Table 5.6 including training from scratch with PVA

APE, fine-tuning with the concatenation of POS APE, VEL APE and ACCE APE.

In addition, we also tested the performance of TM2T model Guo et al. (2022b). These
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Pearson’s correlation
Joint VEL APE 0.5665
Pose VEL APE 0.5665
Joint VEL AVE 0.4642
Joint ACEL APE 0.4016
Pose ACCE APE 0.4016
LIN COMB M 0.8467

Table 5.4: Top-5 metrics that are best correlated with human evaluation of motion
faithfulness at by-model level and the trained linear combination.

Pre-train Fine-tune
LIN COMB S 2.4853 2.4416
LIN COMB M 1.0935 1.0525

Table 5.5: Values of LIN COMB S and LIN COMB M before and after fine-tuning
with respect to the corresponding metric losses.

Model\Pose CE POS APE VEL APE ACCE APE
Pre-train 0.6478 0.0283 0.0112
VEL APE (λmet=100) 0.6865 0.0265 0.0089
VEL APE (λmet=10) 0.6732 0.0277 0.0099
VEL APE (λmet=1) 0.6701 0.0282 0.0110
POS APE (λmet=1) 0.6675 0.0275 0.0110
POS APE (λmet=0.1) 0.6611 0.0287 0.0114
PV APE (λmet=1) 0.6810 0.0278 0.0101
PV APE (λmet=0.1) 0.6666 0.0283 0.0110
PV APE (λmet=0.01) 0.6489 0.0276 0.0108
PVA APE (λmet=10) 0.7394 0.0283 0.0103
PVA APE (λmet=1) 0.6860 0.0279 0.0103
LIN COMB S 0.6362 0.0274 0.0110
LIN COMB M 0.6373 0.0280 0.0113

Table 5.6: Evaluation results of single and linear combined metric losses and hyper-
parameter (λmet) tuning. The best results among all variants of metric losses are
marked in red. The best results of a metric loss with different loss weights are in bold
font. All models are fine-tuned using the corresponding metric losses,

results are not essential to our main focus but we can draw some findings from them.

More details will be discussed in the following Analysis section.
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POS APE VEL APE ACCE APE
PVA APE (λmet=10)
Train from scratch

0.73504 0.0288 0.0092

Concatenation (λmet=1) 0.8574 0.0320 0.0126
TM2T 0.6967 0.0289 0.0085

Table 5.7: Evaluation results of supplementary experiments.

We draw several important findings from Table 5.6. For different choices of

single CE metric POS APE vs. VEL APE, although we cannot directly improve the

performance on POS APE compared with the pre-trained model, optimizing metric

loss of single VEL APE can lead to the best performance on VEL APE itself and also

ACCE APE. The fine-tuned model with POS APE still outperforms the one with

VEL APE in terms of the corresponding metric, which indicates that optimizing the

metric loss are still correlated with the performance of the corresponding CE metric.

We also note that POS APE is the most difficult metric to optimize, and only PV

APE (λmet = 0.01) and the LIN COMB model achieves competitive or better results

on it. However, we see that most fine-tuned models can reduce VEL APE and ACCE

APE.

For the two trivial linear combination metrics, PV APE consistently outper-

forms the PVA APE when λmet = 1 while the learned LIN COMB model achieves

the best POS APE which outlines the importance of carefully computed weights for

different metrics in the linear combination when the components of metric loss be-

come complex which makes it harder to optimize. For the trained linear combination,

we first show in Table 5.5 that both linear combination losses are actually improved

through fine-tuning. The sample level model (LIN COMB S) outperforms the model

level model (LIN COMB M) on all three APE metrics. We attribute the differences

in model performance to the training process of the linear combination. Because

we reuse the human scores from Voas et al. (2022) which only contains four models,

Pearson’s correlation is highly unstable when we conduct 5-fold training of the linear

combination.
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We notice that the loss weight λmet has a large impact on the model per-

formance. Results in Table 5.6 show that, in general, a smaller λmet will lead to a

better result of POS APE but slightly worse results of VEL APE and ACCE APE

except for the case for PVA APE model where all the three measurements have im-

provement for a smaller λmet. We contribute such improvement of POS APE to the

smaller magnitude of metric loss compared with the original reconstruction loss and

the KL divergence. We hypothesize the additional metric loss can cause disturbance

to the pre-trained model parameters that are trained with respect to only the original

losses. A smaller loss weight has less disturbance to the pre-trained motion dynamics

with respect to human capturing data which directly corresponds to POS APE. As a

result, the fine-tuned models with metric loss all to different extents diverge from the

pre-trained model and have worse results in terms of POS APE except for the two

LIN COMB models. The possible reason for the good performance of LIN COMB

S and LIN COMB M on POS APE is that there are average variance error (AVE)

metrics as part of the loss which implicitly mitigates the direct disturbance to POS

APE. On the other hand, for VEL APE and ACCE APE, because they are the first

and second derivatives of POS APE and are not directly associated with the original

losses, we can optimize them by introducing the corresponding CE metrics to the

loss.

According to Table 5.7 using the concatenation of the three components as

the metric loss does not contribute to any improvement of errors because it blurs

the derivatives in different orders and different influences of CE metrics towards the

model. Also, the bad performance of TM2T is consistent with the human evaluation

results in Voas et al. (2022).

5.2.3 Results of Non-differentiable Metrics

In order to make our model comparable with existing models, we also evaluate

the fine-tuned models with the metric loss on some non-differentiable metrics includ-

ing FID, Multi-Modal Distance (MM Dist) and R-Precision that are used in previous
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works Guo et al. (2022a,b). For R-Precision, we use the top-3 accuracy. Finally,

we present the performance on our novel nearest neighbor captioning metric (NNC)

Voas et al. (2022), we use the Euclidean distance (L2 Dist) and cosine distance (COS

Dist) to evaluate the similarity between the input and retrieved texts. The results

are shown in Table 5.8

MM Dist ↓ FID ↓ R-Precision
(Top-3) ↑

NNC
(L2 Dist) ↓

NNC
(COS Dist) ↓

Pre-train 3.3615 1.2552 0.7378 8.7349 0.2515
VEL APE
(λmet=100)

4.3744 2.2491 0.5931 8.7930 0.2631

VEL APE
(λmet=10)

3.5161 1.1128 0.7128 8.7748 0.2527

VEL APE
(λmet=1)

3.3644 1.0108 0.7353 8.7806 0.2525

PV APE
(λmet=1)

3.8834 1.1703 0.6656 8.7971 0.2566

PV APE
(λmet=0.1)

3.4663 1.1457 0.7221 8.7131 0.2512

PV APE
(λmet=0.01)

3.4415 1.0777 0.7306 8.7374 0.2503

PVA APE
(λmet=10)

5.0322 4.3125 0.4914 8.8601 0.2675

PVA APE
(λmet=1)

3.8879 1.2392 0.6555 8.7762 0.2565

LIN COMB S 3.4347 0.9781 0.7256 8.7393 0.2515
LIN COMB M 3.4942 1.2215 0.7163 8.7126 0.2507

Table 5.8: Evaluation results on non-differentiable metrics.

From Table 5.8, we see a promising result that many models often achieve

better performance on FID and NNC. As FID and NNC are metrics that evaluate

motion naturalness and faithfulness respectively, we regard these improvements as a

good sign that we are able to optimize the model using the proposed metric loss on

both dimensions. For different metric loss weights, we still see the general trend that

a smaller λmet leads to better performance on these non-differentiable metrics which

is consistent with our analysis of CE metrics in Table 5.6. On the other hand, this
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indicates that these non-differentiable metrics are potentially more correlated with

POS APE than VEL APE and ACCE APE.

5.3 Discussion

We conduct experiments from different angles to explore the effectiveness of our

proposed metric loss including different CE metric variants, hyperparameter tuning

of loss weight λmet and draw several findings from the experiment results. However,

we also want to point out the limitations.

We only cover a subset of CE metrics and their linear combination. There

are still many variants whose influence on the model performance is still unknown,

especially the average variance error (AVE). We exclude the AVE metrics because

in general, they have a weaker correlation with human judgment according to Voas

et al. (2022). However, optimizing different types of metrics can implicitly influence

each other. As the good performance of the LIN COMB model shows, although AVE

metrics may not be good metrics on their own, they can benefit the final results of

both CE metrics and non-differentiable metrics when we include them in the linear

combination. In fact, because the internal relationship between different types of CE

metrics is so complicated that the best way to investigate the metric loss is to explore

every variant and see the performance of single and linear combined metrics. Limited

by the scope of our experiments, many of our findings may not universally apply to

every different situation when factors such as CE metric choices and hyperparameter

(λmet) settings vary.

our experiments on metric loss with the linear combination of CE are also not

sufficient. We only evaluate one type of linear combination metric loss and we train

the linear combination in an empirical way without enough theoretical justification.

Firstly, the CE metrics in the loss are selected by the faithfulness score while natural-

ness as another important aspect of motion evaluation is not considered. In addition,

it is also necessary to train the linear combination with respect to faithfulness and
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naturalness scores at the same time such as their weighted summation. Given the

already good performance of the LIN COMB model, we plan to conduct more exper-

iments to cover a larger range of hyperparameters to search for a proper subset of CE

variants to compose the linear combination metric loss.

Finally, We do not involve an important concept ”root scaling factor” intro-

duced in Voas et al. (2022) which separately considers the root joint and body joints

in the CE metric. The reason is that it may lead to more complex metric losses

and make it difficult to control the influence factors of the experiments. For all the

limitations discussed above, we leave them to future works.
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Chapter 6: Conclusion and Future Work

6.1 Conclusion

In our project, we review existing works in mostly the text-to-text generation

domain that addresses the discrepancy between the training objectives and testing

metrics. We develop algorithms including the contrastive learning approach and the

differentiable metric approach to directly optimize the evaluation metrics through the

training process.

In the contrastive learning approach, we show that by fine-tuning TM2T Guo

et al. (2022b) model with a ranking-based contrastive loss Liu et al. (2022), we can

align the model predictions of candidate motions with the target evaluation metric

values. For the differentiable metric approach, we propose a novel metric loss based on

the differentiable coordinate error (CE) metrics as an additional training objective.

We examine variants of metric loss including different CE metrics and their linear

combination and present improvement of TM2T model performance on both CE and

non-differentiable metrics by training with our proposed metric loss.

6.2 Future Work

6.2.1 Human Evaluation

As the origin and ultimate goal, improving the human evaluation of motion

generation is always essential to our project. Because we have achieved relatively

promising results of the differentiable approach and hypothesize that directly train-

ing to optimize these automated evaluation metrics will also improve the human

evaluation of the generated motions. To justify our hypothesis, we will select one

model with a single CE as the metric loss and one model with the linear combination

metric loss for human evaluation. We will use the fine-tuned Pose VEL APE which

has the best results on Pose VEL APE and Pose ACCE APE and the fine-tuned
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LIN COMB model which outperforms others on Pose POS APE to generate motions

with the same textual description used in Voas et al. (2022). We will also follow the

same human annotation procedure to collect the motion faithfulness and naturalness

scores. These human evaluation scores can be used to compare our trained model

with existing ones that are tested in our previous work Voas et al. (2022).

6.2.2 Reinforcement Learning Approach

Considering directly optimizing a specific evaluation metric through the train-

ing process, reinforcement learning is one of the most promising future directions. We

can easily model the complex metrics or even human evaluations Ziegler et al. (2019)

that are often non-differentiable and thus intractable to optimize through gradient

descent as reward functions in the RL domain.

We propose the general setting of the reinforcement learning framework for

the text-to-motion generation task as follows.

• State: At each time frame t, the state st = {ct, P̂1:t−1} consists of the context

vector ct and the motion generated so far P̂1:t−1 = p̂1, ..., p̂t−1. The context

vector may include the encoded input textual description and other contextual

information such as the attention vector and the hidden vector from the previous

time step. The specific definition of context vector depends on the text-to-

motion generation model, for example, in the VAE model Guo et al. (2022a),

the context vector is the concatenation of the attention vector with respect to

the textual description embedding, previous hidden state and a time-to-arrival

positional encoding indicating the current time step.

• Action: The action at to take at time t is the 3D pose representation to generate

at the current time step p̂t ∈ RJ×3

• Transition function: The transition function takes the previous state and the

action at time t, and outputs the next state. st+1 = trans(st, at) where st+1 =
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{ct+1, P̂1:t}. For the generated motion sequence so far, we just concatenate p̂t

with P̂1:t−1. The transition for the context vector also depends on the generative

model type. In the VAE model, the hidden state and TTA encoding move from

time t to t− 1 while the text embedding stays unchanged.

• Policy: We want to adopt existing text-to-motion models as the policy network

which takes the current state as input and predicts deterministically the next

pose (e.g. Seq2Seq models) or stochastically the distribution to sample the next

pose (e.g. VAE models).

• Reward: The rewards are the scores given by the evaluation metrics that we

want to optimize like FID Heusel et al. (2017). Under this setting, rewards can

only be received after the entire motion sequence has been generated.

Note that for text-to-motion generation, both state space and action space

are continuous, we want to use the Deep Deterministic Policy Gradient (DDPG)

algorithm Lillicrap et al. (2016) which is based on the actor-critic framework in which

both actor (Policy) and critic (Value) are represented as deep neural networks.

Due to the lack of related work on RL for language-conditioned multi-modal

generative models and the complexity of implementation, our proposed idea on RL

methods is still at the beginning stage. Future works will include fitting the text-to-

motion model into the DDPG settings. More technical details especially the policy

gradient computation need further investigation.
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Appendix A: Text-to-Motion Generation Model

We show the detailed network architectures and hyperparameter settings of

the backbone models TM2T Guo et al. (2022b) for the contrastive learning method

and T2M Guo et al. (2022a) for the differentiable metric method.

A.1 TM2T

A.1.1 Hyperparameter Setting

The hyperparameter settings for the TM2T model retrieved from the original

implementation are shown as follows:

batch size: 32

codebook size: 1024

d inner hid: 2048

d k: 64

d model: 512

d v: 64

dim mot hid: 1024

dim txt hid: 512

dim vq dec hidden: 1024

dim vq enc hidden: 1024

dim vq latent: 1024

dropout: 0.1

early or late: early

label smoothing: False

lambda beta: 1

lambda m2t: 1.0

lr: 0.0002
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m2t v3: False

max epoch: 100

max text len: 20

n dec layers: 6

n down: 2

n enc layers: 6

n head: 8

n mot layers: 1

n resblk: 3

num candidates: 10

proj share weight: False

q mode: cmt

start m2t ep: 0

text aug: False

tf ratio: 0.4

top k: -1

unit length: 4

A.1.2 Appendix section

The detailed TM2T model architecture as printed out by the original imple-

mentation is shown as follows:

Seq2SeqText2MotScorer(

(text encoder): TextEncoderBiGRU(

(input emb): Linear(in features=300, out features=512, bias=True)

(gru): GRU(512, 512, batch first=True, bidirectional=True)

)

(motion decoder step): MotionEarlyAttDecoder(

(input emb): Embedding(1027, 1024)
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(z2init): Linear(in features=1024, out features=1024, bias=True)

(gru): ModuleList(

(0): GRUCell(1024, 1024)

)

(att layer): AttLayer(

(W q): Linear(in features=1024, out features=1024, bias=True)

(W k): Linear(in features=1024, out features=1024, bias=False)

(W v): Linear(in features=1024, out features=1024, bias=True)

(softmax): Softmax(dim=1)

)

(att linear): Sequential(

(0): Linear(in features=2048, out features=1024, bias=True)

(1): LayerNorm((1024,), eps=1e-05, elementwise affine=True)

(2): LeakyReLU(negative slope=0.2, inplace=True)

)

(trg word prj): Linear(in features=1024, out features=1027, bias=False)

)

)

A.2 T2M

A.2.1 Hyperparameter Setting

The hyperparameter settings for the T2M model retrieved from the original

implementation are shown as follows:

batch size: 32

dim att vec: 512

dim dec hidden: 1024

dim movement dec hidden: 512
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dim movement enc hidden: 512

dim movement latent: 512

dim pos hidden: 1024

dim pri hidden: 1024

dim text hidden: 512

dim z: 128

early stop count: 3

estimator mod: bigru

feat bias: 5

lambda kld: 0.01

lambda metric: 0.0001

lambda rec mot: 1

lambda rec mov: 1

lr: 0.0002

max sub epoch: 50

max text len: 20

n layers dec: 1

n layers pos: 1

n layers pri: 1

text enc mod: bigru

tf ratio: 0.4

unit length: 4

A.2.2 Model Architecture

The detailed T2M model architecture as printed out by the original implemen-

tation is shown as follows:

TextEncoderBiGRU(

(pos emb): Linear(in features=15, out features=300, bias=True)
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(input emb): Linear(in features=300, out features=512, bias=True)

(gru): GRU(512, 512, batch first=True, bidirectional=True)

)

TextDecoder(

(emb): Sequential(

(0): Linear(in features=1024, out features=1024, bias=True)

(1): LayerNorm((1024,), eps=1e-05, elementwise affine=True)

(2): LeakyReLU(negative slope=0.2, inplace=True)

)

(gru): ModuleList(

(0): GRUCell(1024, 1024)

)

(z2init): Linear(in features=1024, out features=1024, bias=True)

(positional encoder): PositionalEncoding()

(mu net): Linear(in features=1024, out features=128, bias=True)

(logvar net): Linear(in features=1024, out features=128, bias=True)

)

TextDecoder(

(emb): Sequential(

(0): Linear(in features=1536, out features=1024, bias=True)

(1): LayerNorm((1024,), eps=1e-05, elementwise affine=True)

(2): LeakyReLU(negative slope=0.2, inplace=True)

)

(gru): ModuleList(

(0): GRUCell(1024, 1024)

)

(z2init): Linear(in features=1024, out features=1024, bias=True)

(positional encoder): PositionalEncoding()

(mu net): Linear(in features=1024, out features=128, bias=True)

47



(logvar net): Linear(in features=1024, out features=128, bias=True)

)

TextVAEDecoder(

(emb): Sequential(

(0): Linear(in features=1152, out features=1024, bias=True)

(1): LayerNorm((1024,), eps=1e-05, elementwise affine=True)

(2): LeakyReLU(negative slope=0.2, inplace=True)

)

(z2init): Linear(in features=1024, out features=1024, bias=True)

(gru): ModuleList(

(0): GRUCell(1024, 1024)

)

(positional encoder): PositionalEncoding()

(output): Sequential(

(0): Linear(in features=1024, out features=1024, bias=True)

(1): LayerNorm((1024,), eps=1e-05, elementwise affine=True)

(2): LeakyReLU(negative slope=0.2, inplace=True)

(3): Linear(in features=1024, out features=512, bias=True)

)

)

AttLayer(

(W q): Linear(in features=1024, out features=512, bias=True)

(W k): Linear(in features=1024, out features=512, bias=False)

(W v): Linear(in features=1024, out features=512, bias=True)

(softmax): Softmax(dim=1)

)
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