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Abstract

This paper describes a system, Wolfie (WOrd Learn-
ing From Interpreted Examples), that acquires a se-
mantic lexicon from a corpus of sentences paired with
semantic representations. The lexicon learned consists
of words paired with meaning representations. Wolfie
is part of an integrated system that learns to parse
novel sentences into semantic representations, such as
logical database queries. Experimental results are pre-
sented demonstrating Wolfie’s ability to learn useful
lexicons for a database interface in four different nat-
ural languages. The lexicons learned by Wolfie are
compared to those acquired by a similar system devel-
oped by Siskind (1996).

Introduction & Overview
The application of learning methods to natural-
language processing (NLP) has drawn increasing atten-
tion in recent years. Using machine learning to help au-
tomate the construction of NLP systems can eliminate
much of the difficulty of manual construction. The se-
mantic lexicon, or the mapping from words to meanings,
is one component that is typically challenging and time
consuming to construct and update by hand. This pa-
per describes a system, Wolfie (WOrd Learning From
Interpreted Examples), that acquires a semantic lexi-
con of word/meaning pairs from a corpus of sentences
paired with semantic representations. The goal of this
research is to automate lexicon construction for an in-
tegrated NLP system that acquires both semantic lexi-
cons and parsers for natural-language interfaces from a
single training set of annotated sentences.

Although a few others (Siskind 1996; Hastings &
Lytinen 1994; Brent 1991) have presented systems for
learning information about lexical semantics, this work
is unique in combining several features. First, inter-
action with a system, Chill (Zelle & Mooney 1996),
that learns to parse sentences into semantic representa-
tions is demonstrated. Second, it uses a fairly straight-
forward batch, greedy learning algorithm that is fast
and accurate. Third, it is easily extendible to new rep-
resentation formalisms. Fourth, no prior knowledge is

Copyright c©1999, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

required although it can exploit an initial lexicon if pro-
vided.

We tested Wolfie’s ability to acquire a semantic lex-
icon for an interface to a geographical database using
a corpus of queries collected from human subjects and
annotated with their logical form. In this test, Wolfie
was integrated with Chill, which learns parsers but
requires a semantic lexicon (previously built manu-
ally). The results demonstrate that the final acquired
parser performs nearly as accurately at answering novel
questions when using a learned lexicon as when us-
ing a hand-built lexicon. Wolfie is also compared
to an alternative lexicon acquisition system developed
by Siskind (1996), demonstrating superior performance
on this task. Finally, the corpus was translated into
Spanish, Japanese, and Turkish and experiments con-
ducted demonstrating an ability to learn successful lexi-
cons and parsers for a variety of languages. Overall, the
results demonstrate a robust ability to acquire accurate
lexicons directly usable for semantic parsing. With such
an integrated system, the task of building a semantic
parser for a new domain is simplified. A single repre-
sentative corpus of sentence/representation pairs allows
the acquisition of both a semantic lexicon and parser
that generalizes well to novel sentences.

Background
Chill uses inductive logic programming (Muggleton
1992; Lavrac̆ & Dz̆eroski 1994) to learn a determin-
istic shift-reduce parser written in Prolog. The input
to Chill is a corpus of sentences paired with semantic
representations, the same input required by Wolfie.
The parser learned is capable of mapping the sentences
into their correct representations, as well as generalizing
well to novel sentences. In this paper, we limit our dis-
cussion to acquiring parsers that map natural-language
questions directly into Prolog queries that can be ex-
ecuted to produce an answer (Zelle & Mooney 1996).
Following are two sample queries for a database on
U.S. geography, paired with their corresponding Pro-
log query:

What is the capital of the state with the biggest
population?

answer(C, (capital(S,C), largest(P,
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Figure 1: The Integrated System

(state(S), population(S,P))))).

What state is Texarkana located in?
answer(S, (state(S),

eq(C,cityid(texarkana, )), loc(C,S))).

Chill treats parser induction as a problem of learn-
ing rules to control the actions of a shift-reduce parser.
During parsing, the current context is maintained in
a stack and a buffer containing the remaining input.
When parsing is complete, the stack contains the rep-
resentation of the input sentence. There are three types
of operators used to construct logical queries. One is
the introduction onto the stack of a predicate needed in
the sentence representation due to the appearance of a
phrase at the front of the input buffer. A second type
of operator unifies variables appearing in stack items.
Finally, a stack item may be embedded as an argument
of another stack item. The introduction operators re-
quire a semantic lexicon as background knowledge. By
using Wolfie, the lexicon can be provided automati-
cally. Figure 1 illustrates the complete system.

Problem Definition

A semantic lexicon learner is presented with a set of
sentences, each consisting of an ordered list of words
and annotated with a semantic representation in the
form of a labeled tree; the goal is to find a seman-
tic lexicon consistent with this data. Such a lexicon
consists of (phrase, meaning) pairs (e.g., ([biggest],
largest( , ))), where the phrases and their mean-
ings are extracted from the input sentences and their
representations, respectively, such that each sentence’s
representation can be composed from a set of com-
ponents each chosen from the possible meanings of
a phrase appearing in the sentence. Such a lexi-
con is said to cover the corpus. We will also re-
fer to the coverage of components of a representa-
tion (or sentence/representation pair) by a lexicon en-
try. Ideally, the goal is to minimize the ambiguity

For each phrase, p (of at most two words):
1.1) Collect the training examples in which p appears
1.2) Calculate LICS from (sampled) pairs of these

examples’ representations
1.3) For each l in the LICS, add (p, l) to the set

of candidate lexicon entries
Until the input representations are covered, or there are

no remaining candidate lexicon entries do:
2.1) Add the best (phrase, meaning) pair to the lexicon
2.2) Update candidate meanings of phrases occurring

in the same sentences as the phrase just learned
Return the lexicon of learned (phrase, meaning) pairs.

Figure 2: Wolfie Algorithm Overview

and size of the learned lexicon, since this should im-
prove accuracy and ease parser acquisition. Note that
this notion of semantic lexicon acquisition is distinct
from learning selectional restrictions (Manning 1993;
Brent 1991) or clusters of semantically similar words
(Riloff & Sheperd 1997).

Note that we allow phrases to have multiple mean-
ings (homonymy) and multiple phrases to have the same
meaning (synonymy). Also, some phrases may have
a null meaning. We make only a few fairly straight-
forward assumptions. First is compositionality: the
meaning of a sentence is composed from the mean-
ings of phrases in that sentence. Since we allow multi-
word phrases in the lexicon (e.g., ([kick the bucket],
die( ))), this assumption seems fairly unproblematic.
Second, we assume each component of the represen-
tation is due to the meaning of exactly one word or
phrase in the sentence, and not more than one or to
an external source such as noise. Third, we assume the
meaning for each word in a sentence appears at most
once in the sentence’s representation. Finally, we as-
sume that a phrase’s meaning is a connected subgraph
of a sentence’s representation, not a more distributed
representation. The second and third assumptions are
preliminary, and we are exploring methods for relaxing
them. If any of these assumptions are violated, Wolfie
may not learn a covering lexicon; however, the system
can still be run and produce a potentially useful result.

The Wolfie Algorithm and an Example
The Wolfie algorithm outlined in Figure 2 has been
implemented to handle two kinds of semantic represen-
tations: a case-role form based on conceptual depen-
dency (Schank 1975) and a logical query language il-
lustrated above. The current paper will focus on the
latter; the changes required for the former are minimal.
In order to limit search, a form of greedy set cover-
ing is used to find a covering lexicon. The first step is
to derive an initial set of candidate meanings for each
possible phrase. The current implementation is limited
to one and two word phrases, but easily extended to
longer phrases with a linear increase in complexity. For
example, consider the following corpus:
1. What is the capital of the state with the biggest

population?



answer(C, (capital(S,C),
largest(P, (state(S), population(S,P))))).

2. What is the highest point of the state with the biggest
area?

answer(P, (high point(S,P),
largest(A, (state(S), area(S,A))))).

3. What state is Texarkana located in?
answer(S, (state(S), eq(C,cityid(texarkana, )),

loc(C,S))).

4. What capital is the biggest?
answer(A, largest(A, capital(A))).

5. What is the area of the United States?
answer(A, (area(C,A), eq(C,countryid(usa)))).

6. What is the population of a state bordering Minnesota?
answer(P, (population(S,P), state(S),

next to(S,M), eq(M,stateid(minnesota)))).

7. What is the highest point in the state with the capital
Madison?

answer(C, (high point(B,C), loc(C,B), state(B),
capital(B,A), eq(A,cityid(madison, )))).

Although not required, for simplification, assume sen-
tences are stripped of phrases that we know have
empty meanings ([what], [is], [with], [the]) and that
it is known that some phrases refer directly to given
database constants (e.g., location names).

Initial candidate meanings are produced by comput-
ing the common substructures between pairs of rep-
resentations of sentences that contain a given phrase.
This is performed by computing their Largest Isomor-
phic Connected Subgraphs (LICS), taking labels into
account in the isomorphism. The Largest Common
Subgraph problem is solvable in polynomial time if,
as we assume, both inputs are trees (Garey & John-
son 1979). The exact algorithm is complicated a bit by
variables and conjunction. Therefore, we use LICS with
an addition similar to computing the Least General
Generalization (LGG) of first-order clauses (Plotkin
1970), i.e., the most specific clause subsuming two given
clauses. Specifically, we find the LICS between two
trees and then compute the LGG of the resulting subex-
pressions. The sets of initial candidate meanings for
some of the phrases in the sample corpus (after remov-
ing the mandatory answer predicate) are:
Phrase LICS From Sent’s
[capital]: largest( , ) 1,4

(capital(A, ), state(A)) 1,7
[biggest]: largest( ,state( )) 1,2

largest( , ) 1,4;2,4
[state]: largest( ,state( )) 1,2

state( ) 1,3;2,3
(capital(A, ), state(A)) 1,7
(high point(B, ), state(B)) 2,7
(state(S),loc( ,S)) 3,7

[highest
point]: (high point(B, ), state(B)) 2,7

[located]: (state(S), loc( ,S)) 3
[in]: (state(S), loc( ,S)) 3,7

Note that [state] has five candidate meanings, each
generated from a different pair of representations of sen-
tences in which it appears. For phrases appearing in

only one sentence (e.g., [located]), the entire sentence
representation is used as an initial candidate meaning.
Such candidates are typically generalized in step 2.2 to
only the correct portion of the representation before
they are added to the lexicon.

After deriving initial candidates, the greedy search
begins. The heuristic used to evaluate candidates is
the sum of two weighted components, where p is the
phrase and m its candidate meaning:
1. P (m|p)× P (p|m)× P (m) = P (p)× P (m|p)2

2. The generality of m

The first component is analogous the the cluster evalua-
tion heuristic used by Cobweb (Fisher 1987). The goal
is to maximize the probability of predicting the correct
meaning for a randomly sampled phrase. The equality
holds by Bayes Theorem. Looking at the right side,
P (m|p)2 is the expected probability that meaning m is
correctly guessed for a given phrase, p. This assumes a
strategy of probability matching, in which a a meaning
m is chosen for p with probability P (m|p) and correct
with the same probability. The other term, P (p), bi-
ases the component by how common the phrase is. In-
terpreting the left side of the equation, the first term
biases towards lexicons with low ambiguity, the second
towards low synonymy, and the third towards frequent
meanings. The probabilities are estimated from the
training data and then updated as learning progresses
to account for phrases and meanings already covered.

The second component, generality, is computed as
the negation of the number of nodes in the meaning’s
tree structure, and helps prefer smaller, more general
meanings. In this example and all experiments, we use a
weight of 10 for the first component of the heuristic, and
a weight of 1 for the second. The first component has
smaller absolute values and is therefore given a higher
weight. Results are not overly-sensitive to the weights
and automatically setting them using cross-validation
on the training set (Kohavi & John 1995) had little ef-
fect on overall performance. To break ties, less ambigu-
ous (those with currently fewer meanings) and shorter
phrases are preferred. Below we illustrate the calcu-
lation of the heuristic measure for some of the above
twelve pairs, and the resulting value for all.
([capital], largest( , )): 10(22/3) + 1(−1) = 12.33,
([capital], (capital(A, ), state(A))): 11.33
([biggest], largest( , )): 29,
([biggest], largest( ,state( ))): 11.3,
([state], largest( ,state( ))): 8,
([state], state( )): 10(42/4) + 1(−1) = 39,
([state], (capital(A, ), state(A))): 8,
([state], (high point(B, ), state(B))): 8,
([state], (state(S), loc( ,S))): 8
([highest point], (high point(B, ), state(B))):

10(22/2) + 1(−2) = 18,
([located], (state(S), loc( ,S))):

10(12/1) + 1(−2) = 8,



([in], (state(S), loc( ,S))): 18.
The highest scoring pair is ([state], state( )), so it is
added to the lexicon.

Next is the candidate generalization phase (step 2.2).
One of the key ideas of the algorithm is that each
(phrase, meaning) choice can constrain the candidate
meanings of phrases yet to be learned. Given the as-
sumption that each portion of the representation is due
to at most one phrase in the sentence, once part of a
representation is covered, no other phrase in the sen-
tence can be paired with that meaning (at least for
that sentence). Therefore, in this step the meaning of a
new lexicon entry is potentially removed from the can-
didate meanings of other words occurring in the same
sentences. In our example, the learned pair covers all
occurrences of [state], so remaining meanings for it
are removed from the candidate set. However, now
that state( ) is covered, the candidates for several
other words are generalized. For example, the mean-
ing (capital(A, ), state(A)) for [capital], is gen-
eralized to capital( , ), with a new heuristic value
of 10(22/3) + 1(−1) = 12.3. Subsequently, the greedy
search continues until the resulting lexicon covers the
training corpus, or until no candidate phrase meanings
remain.

Experimental Results

This section describes results on a database query ap-
plication. The first corpus discussed contains 250 ques-
tions about U.S. geography. This domain was originally
chosen due to the availability of a hand-built natural
language interface, Geobase, to a database containing
about 800 facts. It was supplied with Turbo Prolog 2.0
(Borland International 1988), and designed specifically
for this domain. The corpus was assembled by asking
undergraduate students to generate English questions
for this database. To broaden the test, we had the
same 250 sentences translated into Spanish, Turkish,
and Japanese. The Japanese translations are in word-
segmented Roman orthography.

To evaluate the learned lexicons, we measured their
utility as background knowledge for Chill. This is
performed by choosing a random set of 25 test exam-
ples and then creating lexicons and parsers using in-
creasingly larger subsets of the remaining 225 exam-
ples. The test examples are parsed using the learned
parser, the resulting queries submitted to the database,
the answers compared to those generated by submit-
ting the correct representation, and the percentage of
correct answers recorded. By using the difficult “gold
standard” of retrieving a correct answer, we avoid mea-
sures of partial accuracy which we believe do not ade-
quately measure final utility. We repeated this process
for ten different random training and test sets and eval-
uate performance differences using a two-tailed, paired
t-test with a significance level of p ≤ 0.05.

We compared our system to an incremental (on-line)
lexicon learner developed by Siskind (1996), originally
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Figure 3: Accuracy on English Geography Corpus

evaluated only on artificial data. To make a more eq-
uitable comparison to our batch algorithm, we ran his
in a “simulated” batch mode, by repeatedly presenting
the corpus 500 times, analogous to running 500 epochs
to train a neural network. We also removed Wolfie’s
ability to learn phrases of more than one word, since
the current version of Siskind’s system does not have
this ability. We also made comparisons to the parsers
learned by Chill when using a hand-coded lexicon as
background knowledge.

In this and similar applications, there are many
terms, such as state and city names, whose mean-
ings can be automatically extracted from the database.
Therefore, all tests below were run with such names
given to the learner as an initial lexicon; this is helpful
but not required.

The first experiment was a comparison of the two
systems on the original English corpus. Figure 3
shows learning curves for Chill when using the lex-
icons learned by Wolfie (CHILL+WOLFIE) and by
Siskind’s system (CHILL+Siskind). The uppermost
curve (CHILL+handbuilt) shows Chill’s performance
when given the hand-built lexicon. CHILL-testlex
shows the performance when words that never appear
in the training data are deleted from the hand-built
lexicon (since a learning algorithm has no chance of
getting these). Finally, the horizontal line shows the
performance of the Geobase benchmark.

The results show that a lexicon learned by Wolfie
led to parsers that were almost as accurate as those
generated using a hand-built lexicon. The best accu-
racy is achieved by the hand-built lexicon, followed by
the hand-built lexicon with words only in the test set re-
moved, followed by Wolfie, followed by Siskind’s sys-
tem. All the systems do as well or better than Geobase
by 225 training examples. The differences between
Wolfie and Siskind’s system are statistically signifi-
cant at all training example sizes except 125. These
results show that Wolfie can learn lexicons that lead
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to successful parsers, and that are better from this per-
spective than those learned by a competing system.
Also, comparing to the CHILL-testlex curve, we see
that most of the drop in accuracy from a hand-built
lexicon is due to words in the test set that the system
has not seen during training.

One of the implicit hypotheses of our problem def-
inition is that coverage of the training data implies a
good lexicon. The results show a coverage of 100% of
the 225 training examples for Wolfie versus 94.4% for
Siskind. In addition, the lexicons learned by Siskind’s
system were more ambiguous and larger than those
learned by Wolfie. Wolfie’s lexicons had an average
of 1.1 meanings per word, and an average size of 56.5
words (after 225 training examples) versus 1.7 mean-
ings per word and 154.8 entries in Siskind’s lexicons.
For comparison, the hand-built lexicon had 88 entries
and 1.2 meanings per word on average. These differ-
ences undoubtedly contribute to the final performance
differences.

Figure 4 shows the results on the Spanish version of
the corpus. In these tests, we gave closed class words
to the lexicon learners as background knowledge since
a similar addition for English improved performance
slightly. Though the performance compared to a hand-
built lexicon is not quite as close as in English, the
accuracy of the parser using the learned lexicon is very
similar.

Figure 5 shows the results for all four languages with-
out any information about closed-class words. The per-
formance differences among the four languages are quite
small, demonstrating that our methods are not lan-
guage dependent.

Finally, we present results on a larger, more diverse
corpus from the geography domain, where the addi-
tional sentences were collected from computer science
undergraduates in an introductory AI course. The set
of questions in the previous experiments was collected
from students in a German class, with no special in-
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structions on the complexity of queries desired. The
AI students tended to ask more complex queries: their
task was to give 5 sentences and the associated logical
query representation for a homework assignment. They
were requested to give at least one sentence whose rep-
resentation included a predicate containing embedded
predicates, for example largest(S, state(S)), and
we asked for variety in their sentences. There were 221
new sentences, for a total of 471 (including the original
250 sentences).

For these experiments, we split the data into 425
training sentences and 46 test sentences, for 10 random
splits, then trained Wolfie and then Chill as before.
Our goal was to see whether Wolfie was still effective
for this more difficult corpus, since there were approxi-
mately 40 novel words in the new sentences. Therefore,
we tested against the performance of Chill with an
extended hand-built lexicon. For this test, we gave the
system access to background knowledge about closed
class words. We did not use phrases of more than one
word, since these do not seem to make a significant dif-
ference in this domain.

Figure 6 shows the resulting learning curves. None
of the differences between Chill and Wolfie are sta-
tistically significant, probably because the difficulty of
parsing overshadows errors in word learning. Also,
the improvement of machine learning methods over the
Geobase hand-built interface is much more dramatic for
this corpus.

Related Work
Work on automated lexicon and language acquisition
dates back to Siklossy (1972), who demonstrated a sys-
tem that learned transformation patterns from logic
back to natural language. More recently, Pedersen
& Chen (1995) describe a method for acquiring syn-
tactic and semantic features of an unknown word,
assuming access to an initial concept hierarchy, but
they give no experimental results. Manning (1993)
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and Brent (1991) acquire subcategorization informa-
tion for verbs, which is different from the information
required for mapping to semantic representation. Sev-
eral systems (Knight 1996; Hastings & Lytinen 1994;
Russell 1993) learn new words from context, assum-
ing that a large initial lexicon and parsing system are
already available. Tishby and Gorin (1994) learn as-
sociations between words and actions (as meanings of
those words). Their system was tested on a corpus
of sentences paired with representations but they do
not demonstrate the integration of learning a semantic
parser using the learned lexicon.

The aforementioned work by Siskind is the closest.
His approach is somewhat more general in that it han-
dles noise and referential uncertainty (multiple possi-
ble meanings for a sentence), while ours is specialized
for applications where a single meaning is available.
The experimental results in the previous section demon-
strate the advantage of our method for such an appli-
cation. His system does not currently handle multiple-
word phrases. Also, his system operates in an incre-
mental or on-line fashion, discarding each sentence as
it processes it, while ours is batch. While he argues for
psychological plausibility, we do not. In addition, his
search for word meanings is most analogous to a ver-
sion space search, while ours is a greedy search. Finally,
his system does not compute statistical correlations be-
tween words and their possible meanings, while ours
does.

His system proceeds in two stages, first learning what
symbols are part of a word’s meaning, and then learn-
ing the structure of those symbols. For example, it
might first learn that capital is part of the meaning
of capital, then in the second stage learn that capital
can have either one or two arguments. By using com-
mon substructures, we can combine these two stages in
Wolfie.

This work also has ties to the work on automatic
construction of translation lexicons (Wu & Xia 1995;

Melamed 1995; Kumano & Hirakawa 1994; Catizone,
Russell, & Warwick 1993; Gale & Church 1991). While
most of these methods also compute association scores
between pairs (in their case, word/word pairs) and use
a greedy algorithm to choose the best translation(s)
for each word, they do not take advantage of the con-
straints between pairs. One exception is Melamed
(1996); however, his approach does not allow for phrases
in the lexicon or for synonymy within one text segment,
while ours does.

Future Work

Although the current greedy search method has per-
formed quite well, a better search heuristic or alterna-
tive search strategy could result in improvements. A
more important issue is lessening the burden of build-
ing a large annotated training corpus. We are explor-
ing two options in this regard. One is to use active
learning (Cohn, Atlas, & Ladner 1994) in which the
system chooses which examples are most usefully anno-
tated from a larger corpus of unannotated data. This
approach can dramatically reduce the amount of an-
notated data required to achieve a desired accuracy
(Engelson & Dagan 1996). Initial promising results
for semantic parser acquisition are given in Thompson
(1998).

A second avenue of exploration is to apply our ap-
proach to learning to parse into more popular SQL
database queries. Such corpora should be easily con-
structible by recording queries submitted to existing
SQL applications along with their original English
forms, or translating existing lists of SQL queries into
English (presumably an easier direction to translate).
The fact that the same training data can be used to
learn both a semantic lexicon and a parser also helps
limit the overall burden of constructing a complete nat-
ural language interface.

Conclusions

Acquiring a semantic lexicon from a corpus of sen-
tences labeled with representations of their meaning is
an important problem that has not been widely studied.
Wolfie demonstrates that a fairly simple greedy sym-
bolic learning algorithm performs fairly well on this task
and obtains performance superior to a previous lexicon
acquisition system on a corpus of geography queries.
Our results also demonstrate that our methods extend
to a variety of natural languages besides English.

Most experiments in corpus-based natural language
have presented results on some subtask of natural lan-
guage, and there are few results on whether the learned
subsystems can be successfully integrated to build a
complete NLP system. The experiments presented in
this paper demonstrated how two learning systems,
Wolfie and Chill were successfully integrated to
learn a complete NLP system for parsing database
queries into executable logical form given only a sin-
gle corpus of annotated queries.
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