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Visual question answering (VQA) has recently emerged as a challenging

multi-modal task and has gained popularity. The goal is to answer questions that

query information associated with the visual content in the given image. Since the

required information could be from both inside and outside the image, common

types of visual features, such as object and attribute detection, fail to provide enough

materials for answering the questions. External information, such as captions,

explanations, encyclopedia articles, and commonsense databases, can help VQA

systems comprehensively understand the image, reason following the right path, and

access external facts. Specifically, they provide concise descriptions of the image,

precise reasons for the correct answer, and factual knowledge beyond the image. In

this dissertation, we present our work on generating image captions that are targeted

to help answer a specific visual question. We use explanations to recognize the
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critical objects to prevent the VQA models from taking language prior shortcuts.

We introduce an approach that generates textual explanations and utilizes them to

determine which answer is mostly supported. At last, we explore retrieving and

exploiting external knowledge beyond the visual content, which is indispensable, to

help answer knowledge-based visual questions.
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Chapter 1

Introduction

Visual question answering (VQA) is a recently introduced “AI-complete”

task that requires AI models to utilize multimodal knowledge beyond a single sub-

domain. Building more trustworthy VQA models has many beneficial real-world

daily life applications in education, medicine, and other areas that involve answering

questions that require both visual and textual information. Also, it provides direct

accessibility tools for helping the visually impaired. The goal of this task is to

answer questions that query information associated with the visual content in the

given image.

Question: Does this boy have 
a full wetsuit on?

Question: Is this in an Asian 
country?

Question: This plush toy was 
named after what US president?

Figure 1.1: Different types of visual questions.

VQA [Antol et al., 2015, Agrawal et al., 2018, Park et al., 2018, Wang

et al., 2018, Marino et al., 2019] is a broad topic that covers different categories
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of questions requiring different types of information and reasoning skills. General

visual questions mainly query the visual attributes of a specific object in the image,

for example, the first question in Figure 1.1 asks about whether the man is wearing a

full wetsuit. These questions require VQA models first to comprehend the question

and the image and then localize the relevant objects or scenes to find the desired

attributes. The middle one shows a commonsense visual question that the necessary

information could be from both inside and outside the image.

However, our world and language systems are complicated, and the common

types of visual features, such as object and attribute detection, fail to provide enough

information to answer the questions. For example, the relations among multiple

detected objects, the commonsense behind the objects, and the factual knowledge are

indispensable to answering some types of questions. External information, such as

captions, explanations, encyclopedia articles, and commonsense databases, can serve

as information supplements to the question and the given image. This information

helps VQA models better comprehend the image, understand the right reason for the

answers, and access external facts. For example, the middle question in Figure 1.1

requires the VQA models to understand the common knowledge that the characters

are Japanese and that means that is an Asian country. The last question shows a

knowledge-based case where the external knowledge “Teddy bear is named after

President Roosevelt.” is needed.

In Chapter 3, we explore using automatically generated image captions as

the external information to help VQA. The captions highlight salient visual concepts

in the image with a concise description of their relationships, complementing the

2



individual objects’ features used in most VQA models. Moreover, we found that

the generated question-relevant captions using our approach can serve stronger

complements than normal image captions, further improving the VQA performance.

In Chapter 4, we utilize human explanations to debias the VQA model under

changing answer distribution. These explanations highlight objects the VQA model

should focus on when predicting the answer. We use visual and textual explanations

to find this set of influential objects. We force this set of objects to contribute to the

right answer more than other objects in the image.

In Chapter 5, we discuss our work on generating object-level faithful explana-

tions for VQA that focuses on the same set of objects as the VQA model. In Chapter

6, we show that explanations could also be helpful when the answer distribution is

unchanged. We generate explanations for a set of answer candidates and judge how

well the explanations support the answer candidates. We obtain the explanations

using either generation- or retrieval-based approaches.

In Chapter 7, we present our work on Outside-Knowledge VQA (OK-VQA),

where external commonsense or facts are required. We introduce a multimodal

answer validation (MAVEx) framework that judges the supportiveness of the re-

trieved knowledge for each answer candidate. On the knowledge side, we propose

an entity-focused retrieval model to retrieve question-relevant knowledge, focusing

on a set of critical objects for answering the question.
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Chapter 2

Background and Related Work

This chapter presents the related work and background knowledge supporting

this dissertation. To begin with, we introduce object detection, which serves as

standard visual features for VQA. Then, we present the task of VQA and discuss

some common challenges with typical VQA models. After that, we discuss three

tasks that equip VQA models with relevant external information beyond the question

and the image, i.e., image captioning, explanation generation, and passage retrieval.

2.1 Object Detection

Object detection is a foundation computer vision task aiming to discover

salient semantic objects or scenes in images or videos. Detection provides an abstract

characterization of the visual content and is commonly used as a visual feature for

downstream tasks, such as image captioning and VQA. In practice, objects in an

image or a single video frame are frequently expressed as bounding boxes [Ren et al.,

2015b] or points [Zhou et al., 2019]. We introduce this task in the following two

aspects, i.e., the categories of objects involved and common detection frameworks.

Categories of objects: Different from image classification, where only the image-

level categories need to be predicted, the object detection task requires an AI system
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to produce the precise bounding boxes of the objects of interest. Therefore, more

human annotations must be collected on the objects’ location. Despite the difficulties

of collecting required annotations, the scope of object categories has been widely

enlarged over the past decade. To begin with, the PASCAL VOC dataset [Everingham

et al., 2010] introduces 11 object categories, COCO dataset expands the categories to

80 common objects. Visual genome [Krishna et al., 2017] adopts coarse annotation

strategies, and [Anderson et al., 2018] cleans up the dataset to include 1,600 common

types of objects. LVIS [Gupta et al., 2019] collects more than 1,200 object categories

with a long-tail distribution. With the recent proliferation of large language models

(LM) [Vaswani et al., 2017, Devlin et al., 2019], there is a recent trend towards open

vocabulary object detection [Zareian et al., 2021] where the large LM is used to

match the detected object labels.

Object detection frameworks: Most object detection models can be categorized as

single- or two-stage framework. In the single-stage framework [Redmon et al., 2016],

the models learn to simultaneously predict whether the current location contains an

object and the object label. The advantages of the single-stage framework are the

end-to-end training nature and the detection speed. On the other hand, the two-stage

framework [Ren et al., 2015b] additional employs a region-proposal network (RPN)

that separately raises object candidates without knowing the detail categories, and

then a box classification network predicts the categories.
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2.2 Visual Question Answer (VQA)

Visual Question Answering (VQA) [Antol et al., 2015, Hudson and Manning,

2019, Singh et al., 2019, Marino et al., 2019] has emerged as a challenging task

where artificial intelligence systems predict answers by jointly analyzing both natural

language questions and visual content. The scope of the visual questions spans every

aspect of daily life that requires many capabilities for the VQA models, from basic

object recognition to commonsense reasoning and analyzing external knowledge

beyond the visual content. In this section, we first present some common challenges

in VQA and the datasets that try to address them. Then, we introduce some basic

VQA models designed for different types of visual questions.

2.2.1 Visual Question Datasets and Challenges

To begin with, Antol et al. [2015] defines the free form and open-ended VQA

task by collecting human-annotated visual questions and answers on COCO images.

The dataset has two main limitations, existing language priors and the scope of the

visual questions.

The language prior refers to the fact that question types and their answers are

highly correlated. For instance, questions that begin with “How many” are usually

answered by either two or three. These language priors allow VQA systems to take

a shortcut when answering questions by only focusing on the questions without

reasoning about the visual content. In order to prevent this shortcut, Goyal et al.

[2017] balanced the answer distribution so that at least two similar images with

different answers for each question exist in VQA v2. Recently, Agrawal et al. [2018]
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introduced a diagnostic reconfiguration of the VQA v2 dataset called VQA-CP,

where the distribution of the QA pairs in the training set is significantly different

from those in the test set. For example, most utensils in the training set are forks,

and knives are the most common answer in the test set.

For the question scope, questions in [Antol et al., 2015] mainly require basic

visual recognition instead of visual reasoning, commonsense and factual knowledge.

In order to stress the need for visual reasoning, VQA-X [Park et al., 2018] split out

some portion of VQAv2 where the questions are judged to require children older

than nine years to answer. VQA-X dataset also provides both visual and textual

explanations for the visual questions. Visual Commonsense Reasoning (VCR)

[Zellers et al., 2019] is another related topic that requires a machine learning system

to choose the right commonsense rationales. Knowledge base visual questions

[Wang et al., 2018, 2017] requires VQA systems to extract helpful question-relevant

knowledge from existing knowledge bases. Finally, there is a recent trend towards

outside knowledge visual question answering (OK-VQA) [Marino et al., 2019]

where open domain external knowledge outside the image is necessary.

2.2.2 VQA Models

As VQA requires VQA models to understand which part of the image is

question-relevant, a large amount of attention-based deep-learning methods have

been proposed for VQA, including top-down [Ren et al., 2015a, Fukui et al., 2016,

Wu et al., 2016a, Goyal et al., 2017, Li et al., 2018a] and bottom-up attention

methods [Anderson et al., 2018, Li et al., 2018b]. Specifically, a typical model
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first extracts image features using a pre-trained CNN and then trains an RNN to

encode the question, using an attention mechanism to focus on specific features of

the image. Finally, both question and attended image features are used to predict the

final answer. With the proliferation of large transformer models, more recent VQA

models [Lu et al., 2019, Tan and Bansal, 2019, Liu et al., 2019, Li et al., 2019, Yu

et al., 2019, Li et al., 2020a, Zhou et al., 2020, Chen et al., 2020, Lu et al., 2020]

feeds both visual and textual embeddings into a multi-modal transformer, which is

pre-trained on auxiliary tasks using large-scale multi-modal datasets such as [Sharma

et al., 2018, Hudson and Manning, 2019, Kazemzadeh et al., 2014].

To train a VQA system to be right for the right reason, recent research has

collected human visual attention [Das et al., 2017, Gan et al., 2017] highlighting

image regions that most contribute to the answer. Then, the VQA systems try to

align either the VQA system’s attention [Qiao et al., 2018, Zhang et al., 2019] or the

gradient-based visual explanation [Selvaraju et al., 2019] to the human attention.

In order to answer outside-knowledge visual questions, VQA models [Marino

et al., 2019, Gardères et al., 2020, Zhu et al., 2020, Li et al., 2020b, Narasimhan et al.,

2018, Marino et al., 2021, Gui et al., 2021] incorporate a retriever-reader framework

that first retrieves textual knowledge relevant to the question and image and then

“reads” this text to predict the answer. As an online free encyclopedia, Wikipedia is

often used as the knowledge source for OK-VQA.

We list a few VQA models that are used in this dissertation.

UpDn: This is the original Top-Down Bottom-Up VQA [Anderson et al., 2018]
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model, which uses a single layer GRU to encode questions. The question vector

is then used to compute single-stage attention over the detected objects to produce

attended visual features. Finally, a two-layer feed-forward network computes answer

probabilities given the joint features of the question and visual content.

LXMERT: In order to learn richer representations for both questions and visual

content, LXMERT [Tan and Bansal, 2019] uses transformers [Vaswani et al., 2017,

Devlin et al., 2019] that learn multiple layers of attention over the input. In particular,

it first learns nine layers over the input question and five layers over detected objects,

then finally, another five layers of attention across the two modalities to produce the

final joint representation.

ViLBERT-multi-task: ViLBERT-multi-task model utilizes auxiliary pretraining

tasks, such as VQA, VCR, and visual entailment, to help enrich multimodal repre-

sentation. Similar to LXMERT, the ViLBERT model incorporates large transformers

to encode the visual and textual inputs.

2.3 Image Captioning

Image captioning is the task of generating a textual description of the image.

The descriptions should typically cover salient objects and scenes and describe the

relationships among them. The COCO dataset [Chen et al., 2015] provides over

a million human captions (5 per image) focusing on the 80 categories of common

daily objects. Conceptual captions [Sharma et al., 2018] collect over 12 millions

image-caption pairs from the web.
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Automatically Evaluating generated image captions is challenging as it is

hard to tell whether a caption is good or not without human judgment. Machine

translation automatic evaluation metrics, for example, BLEU[Papineni et al., 2002],

ROUGE [Lin, 2004], and METEOR [Banerjee and Lavie, 2005] are frequently used

in the image captioning task. Besides, some metrics are designed specifically for

image captioning to evaluate different aspects, such as object hallucination issues

[Rohrbach et al., 2018]. SPICE metric [Anderson et al., 2016] is proposed to measure

the graph similarity between the generated captions and a set of human reference

captions.

Most image captioning models are attention-based deep-learning models

[Donahue et al., 2015, Karpathy and Fei-Fei, 2015, Vinyals et al., 2015, Luo et al., Liu

et al., 2018, Wu and Mooney, 2019b]. The output words’ probabilities at each step

are trained to maximize the human captions’ log-likelihood or some end evaluation

metric (e.g. CIDEr) directly using REINFORCE. Most of them encode the image

using a CNN and build an attentional RNN (i.e. GRU [Cho et al., 2014], LSTM

[Hochreiter and Schmidhuber, 1997]) on top of the image features as a language

model to generate image captions. As image captions are relatively easy to collect,

the captioning task is frequently used as a pretraining task for large multi-modal

transformer models.

2.4 Explanation Generation

While image captions provide general descriptions about the image, expla-

nations reveal the actual reasons for answering the visual questions. This section
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discusses three types of explanations for VQA, including visual, textual, and mul-

timodal explanations. First, we introduce human-annotated explanations and then

discuss common approaches to generate these explanations for each category.

2.4.1 Visual Explanation

The VQA-HAT dataset [Das et al., 2017] is a visual explanation dataset that

collects human attention maps by giving human experts blurred images and asking

them to determine where to deblur to answer a given visual question.

Many approaches have been proposed to visually explain decisions made by

vision systems by highlighting relevant image regions. For example, GRAD-CAM

[Selvaraju et al., 2017] analyzes the gradient space to find visual regions that most

affect the decision. Attention mechanisms in VQA models can also be directly used

to determine highly-attended regions and generate visual explanations.

2.4.2 Textual Explanation

Visual explanations highlight key image regions behind the decision but do

not explain the reasoning process and crucial relationships between the highlighted

regions. There are two textual explanation datasets, VQA-E [Li et al., 2018b]

and VQA-X [Park et al., 2018]. Explanations in VQA-E are automatically refined

versions of the most relevant captions from the COCO dataset [Chen et al., 2015],

which have a larger scale but are not strictly explanatory. In contrast, the VQA-X

dataset collects textual explanations for the questions that are judged to require

children older than nine years to answer by directly asking the crowdsourced human
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workers.

Therefore, there has been some work on generating textual explanations for

decisions made by visual classifiers [Hendricks et al., 2016]. These models typically

adopt a sequence-to-sequence framework that learns to generate the explanation by

taking the question and the visual representation as input.

2.4.3 Multimodal Explanation

Multimodal explanations link textual and visual explanations [Park et al.,

2018] together to present the critical image region and the reasons for the answer.

Besides textual explanations, the VQA-X dataset also annotates important image

segments, serving as a multimodal explanation dataset.

On the model side, previous works [Hendricks et al., 2018] mainly adopt a

post-hoc approach that first generates multiple textual explanations and then filters

out those that could not be grounded in the image.

2.5 Passage Retrieval

While image captions and explanations provide commonsense knowledge,

factual knowledge beyond the visual content are indispensable for some visual

questions, where we need to retrieve passages from online corpus. We present

passage retrieval in the section by introducing general sparse and dense retrievers

and then discussing the retrieval models for VQA.
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2.5.1 Sparse Retrieval

Before the recent proliferation of transformer-based dense passage retrieval

models [Karpukhin et al., 2020], previous works mainly explored sparse retrievers,

such as TF-IDF and BM25 [Robertson and Zaragoza, 2009], that measure the

similarity between the search query and candidate passage utilize weighted term

matching. These sparse retrievers require no training signals on the relevancy of

the passage and show solid baseline performances. However, exact term matching

prevents them from capturing synonyms and paraphrases and understanding the

semantic meanings of the query and the passages.

2.5.2 Dense Retrieval

To better represent semantics, dense retrievers [Karpukhin et al., 2020, Chen

et al., 2021b, Lewis et al., 2022, Lee et al., 2021] extract deep representations for

the query and the candidate passages using large pretrained transformer models.

Most dense retrievers are trained using a contrastive objective that encourages

the representation of the query to be more similar to the relevant passages than

other irrelevant passages. During training, the passage with a high sparse retrieval

score containing the answer is often regarded as a positive sample for the question-

answering task. However, these positive passages may not fit the question’s context

and only serve as weak supervision. Therefore most dense retrievers fail to explicitly

discover and utilize critical entities for the question [Chen et al., 2021b]. This often

leads to overly general knowledge without a specific focus.

Dense passage retrieval for VQA: Motivated by the trends toward dense retrievers,
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previous work has also applied them to OK-VQA. Qu et al. [2021] utilize Wikipedia

as a knowledge source. Luo et al. [2021] crawl Google search results on the training

set as a knowledge source. However, the weak training signals of passage retrieval

become more problematic for VQA as the visual context of the question makes

it more complex. Therefore, the “positive passage” become less likely to fit the

visual context and provide suitable supervision. In order to better incorporate visual

content, Gui et al. [2021] adopt an image-based knowledge retriever that employs

the CLIP model [Radford et al., 2021] pretrained on large-scale multi-modal pairs as

the backbone. However, question relevancy is not considered, so the retriever has to

retrieve knowledge on every aspect of the image for different possible questions.

Phrase-based dense passage retrieval: The most relevant work to ours is phrase-

based dense passage retrieval. Chen et al. [2021b] employ a separate lexical model

that is trained to mimic the performance of a sparse retriever better at matching

phrases. Lee et al. [2021] propose a DensePhrase model that extracts each possible

phrase feature in the passage and only uses the most relevant phrase to measure the

similarity between the query and passage. However, the training signals are still

from the exact matching of the ground truth answers, and the phrases are parsed

from the candidate passage, limiting the search scope.
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Chapter 3

Generating Image Captions for VQA

3.1 Motivation and Chapter Overview

In recent years, VQA [Antol et al., 2015] and image captioning [Donahue

et al., 2015, Rennie et al., 2017] have been widely studied in both the computer

vision and NLP communities. Most recent VQA research [Lu et al., 2017, Pedersoli

et al., 2017, Anderson et al., 2018, Lu et al., 2018] concentrates on directly utilizing

visual input features, including detected objects, attributes, and relations between

pairs of objects.

However, little VQA research works on exploiting textual descriptions of

the image which are able to tersely encode the necessary information to answer

the questions. This information could be richer than the visual features in that the

sentences have fewer structural constraints and can easily include the attributes

of and relationships among multiple objects. In fact, we observe that appropriate

captions can be very useful for many VQA questions. In particular, we trained a

model to answer visual questions for the VQA v2 challenge [Antol et al., 2015] only

using the human-annotated captions without images and achieved a score of 59.6%,

outperforming a large number of VQA models that use image features. Existing

work using captions for VQA has generated question-agnostic captions using a

15



Human Captions :
1) A man on a blue surfboard on top of some rough water.

2) A young surfer in a wetsuit surfs a small wave.

3) A young man rides a surf board on a small wave while 

a man swims in the background.

4) A young man is on his surf board with someone in the background.

5) A boy riding waves on his surf board in the ocean.

Question 1: Does this boy have a full wetsuit on?

Caption: A young man wearing wetsuit surfing on a wave.

Question 2: What color is the board?

Caption: A young man riding a wave on a blue surfboard.

Figure 3.1: Examples of our generated question-relevant captions. During the
training phase, our model selects the most relevant human captions for each question
(marked by the same color).

pretrained captioner [Li et al., 2018a]. This approach can provide additional general

information; however, this information is not guaranteed to be relevant to the given

VQA question.

Therefore, we explore a novel approach that generates question-relevant

image descriptions, which contain information that is directly relevant to a particular

VQA question. Figure 3.1 shows examples of our generated captions given different

questions. Then, we integrate the generated question-relevant captions as additional

inputs to aid VQA.

This chapter is based on the [Wu et al., 2019]. In the following sections, we
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present the captioning and VQA models in detail and then discuss the experimental

results.

3.2 Question-Relevant Image Captioning Model

In this section, we present the question-relevant image captioning model that

takes as input the question and the image. We start with the question and image

representations and then introduce the caption generation model with the question

relevancy criterion. We use f(x) to denote fully-connected layers, where f(x)

= LReLU(Wx + b) with input features x and ignore the notation of weights and

biases for simplicity, where these fc layers do not share weights. LReLU denotes a

Leaky ReLU [He et al., 2015].

Image and question embedding: We use object detection as bottom-up attention

[Anderson et al., 2018], which provides salient image regions with clear boundaries.

In particular, we use a Faster R-CNN head [Ren et al., 2015b] in conjunction with a

ResNet-101 base network [He et al., 2016] as our detection module. The detection

head is first pre-trained on the Visual Genome dataset [Krishna et al., 2017] and

can detect 1, 600 objects categories and 400 attributes. To generate an output set of

image features V, we take the final detection outputs and perform non-maximum

suppression (NMS) for each object category using an IoU threshold of 0.7. Finally,

a fixed number of 36 detected objects for each image are extracted as the image

features (a 2, 048 dimensional vector for each object) as suggested by Teney et al.

[2017].
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For the question embedding, we use a standard GRU [Cho et al., 2014] with

1, 280 hidden units and extract the output of the hidden units at the final time step as

the question features q. Following Anderson et al. [2018], the question features q and

image feature set V are further embedded together to produce a question-attended

image feature set Vq via question visual-attention Aqv as illustrated in Figure 3.2.

Word 
Embedding GRU
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Image CNN ���
Caption

Generation
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Caption 
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Phase 1: Gold 
Standard Captions

%×2048

%×2048

%

%

+

, ,"

,"$

$Phase 2: Model  
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Figure 3.2: Overall structure of our model that generates question-relevant captions
to aid VQA. Our model is first trained to generate question-relevant captions as
determined in an online fashion in phase 1. Meantime, the human annotated captions
are also used to pretrain the VQA part of the model. Then, the VQA model is
fine-tuned with generated captions from the first phase to predict answers. ⊗ denotes
element-wise multiplication and ⊕ denotes element-wise addition. Blue arrows
denote fully-connected layers (fc) and yellow arrows denote attention embedding.

Caption generation model: We adopt an image captioning model similar to that

of [Anderson et al., 2018]. The key difference between our module and theirs lies

in the input features and the caption supervision. Specifically, we use the question-

attended image features Vq as inputs and only use the most relevant caption, which

is automatically determined in an online fashion (detailed below), for each question-

image pair to train the captioning module. This ensures that only question-relevant
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captions are generated.

Selecting relevant captions for Training: Previously, [Li et al., 2018b] selected rel-

evant captions for VQA based on word similarities between captions and questions;

however, their approach does not take into account the details of the VQA process.

In contrast, during training, our approach dynamically determines for each problem

the caption that will most improve VQA. We do this by updating with a shared

descent direction [Wu et al., 2018] which decreases the loss for both captioning and

VQA. This ensures a consistent target for both the image captioning module and the

VQA module in the optimization process.

During training, we compute the cross-entropy loss for the i-th caption

using Eq. 3.1, and back-propagate the gradients only from the most relevant caption

determined by solving Eq. 3.2.

Lc
i =−

T∑
t=1

log(p(wc
i,t|wc

i,t−1)) (3.1)

In particular, we require the inner product of the current gradient vectors from the

predicted answer and the human captions to be greater than a positive constant ξ,

and further select the caption that maximizes that inner product.

argmax
i

K∑
k=0

(
∂ŝpred

∂vq
k

)T
∂ log(p(Wc

i))

∂vq
k

s.t.
K∑
k=0

(
∂ŝpred

∂vq
k

)T
∂ log(p(Wc

i))

∂vq
k

> ξ

(3.2)
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where the ŝpred is the logit1 for the predicted answer, Wc
i denotes the i-th human

caption for the image and k traverses the K object features.

3.3 Integrating Captions in VQA

Now that we obtain the question-relevant captions, we present our approach

to embed the generated captions in the VQA model.

Word GRU

𝐀𝐜

Word Embedding 𝐖𝐞Πi, t
c

𝐕qv

Caption GRU

ℎ𝑖, 𝑡
2

ℎ𝑖, 𝑡
1

Figure 3.3: Overview of the caption embedding module. The Word GRU is used to
generate attention to identify the relevant words in each caption, and the Caption
GRU generates the final caption embedding. We use question-attended image
features Vqv to compute the attention. Blue arrows denote fc layers and yellow
arrows denote attention embedding.

Caption embedding: It takes as input the question-attended image feature set Vq,

question features q, and C captions Wc
i = {wc

i,1, w
c
i,2, ..., w

c
i,T}, where T denotes the

1The input to the softmax function.
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length of the captions and i = 1, ..., C are the caption indices, and then produces the

caption features c.

The goals of the caption module are to serve as a knowledge supplement to

aid VQA, and to provide additional clues to identify the relevant objects better and

adjust the top-down attention weights. To achieve this, as illustrated in Figure 3.3,

we use a two-layer GRU architecture. The first-layer GRU (called the Word GRU)

sequentially encodes the words in a caption Wc
i at each time step as h1

i,t.

h1
i,t = GRU(WeΠ

c
i,t, h

1
i,t−1) (3.3)

where We is the word embedding matrix, and Πc
i,t is the one-hot embedding for the

word wc
i,t.

Then, we design a caption attention module Ac which utilizes the question-

attended feature set Vq, question features q, and h1
i,t to generate the attention weight

on the current word in order to indicate its importance. Specifically, the Word GRU

first encodes the words embedding Πc
i,t in Eq. 3.3, and then we feed the outputs h1

i,t

and Vq to the attention module Ac as shown in Eq. 3.6.

vq =
K∑
k=1

vq
k (3.4)

aci,t = h1
i,t ◦ f(vq) + h1

i,t ◦ f(q) (3.5)

αc
i,t = σ(aci,t) (3.6)

where σ denotes the sigmoid function, and K is the number of objects in the bottom-

up attention.
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Next, the attended words in the caption are used to produce the final caption

representation in Eq. 3.7 via the Caption GRU. Since the goal is to gather more

information, we perform element-wise max pooling across the representations of all

of the input captions ci in Eq. 3.9.

h2
i,t = GRU(αc

i,tWeΠ
c
i,t, h

2
i,t−1) (3.7)

ci = f(h2
i,T ) (3.8)

c = max(ci) (3.9)

where max denotes the element-wise max pooling across all of caption representa-

tions ci of the image.

The generated captions are usually capable of capturing relations among

the question-relevant objects; however these relations are absent in the bottom-up

attention. Therefore, our VQA module utilizes the caption embeddings c to adjust

the top-down attention weights in VQA in order to produce the final caption-attended

features vqc in Eq. 3.12:

acvk = f(f(c) ◦ f(vq
k)) (3.10)

αcv
k = softmax(acvc,k) (3.11)

vqc =
K∑
k

vq
kα

cv
k (3.12)

where k traverses the K objects features.

To better incorporate the information from the captions into the VQA process, we

add the caption features c to the attended image features vqc, and then element-wise
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multiply by the question features as shown in Eq. 3.13:

h = q ◦ (f(vqc) + f(c)) (3.13)

ŝ = σ(f(h)) (3.14)

We frame the answer prediction task as a multi-label regression problem

[Anderson et al., 2018]. In particular, we use the soft scores in the gold-standard

VQA-v2 data (which are used in the evaluation metric), as labels to supervise the

sigmoid-normalized predictions as shown in Eq. 6.3:

Lvqa = −
N∑
j=1

sj log ŝj + (1− sj) log(1− ŝj) (3.15)

where the index j runs over N candidate answers and s are the soft answer scores.

In case of multiple feasible answers, the soft scores capture the occasional

uncertainty in the ground-truth annotations. As suggested by Teney et al. [2017], we

collect the candidate answers that appear more than 8 times in the training set, which

results in 3, 129 answer candidates. The overview of our caption aided VQA model

is shown in Figure 3.2. We use a modified UpDn attention model as the suggested

in [Singh et al., 2018].

3.4 Experimental Setup and Results

We perform extensive experiments and ablation studies to evaluate our joint

model on VQA.

23



3.4.1 Datasets and evaluation metrics

VQA dataset: We use the VQA v2.0 dataset [Antol et al., 2015] for the evaluation

of our proposed joint model, where the answers are balanced in order to minimize

the effectiveness of learning dataset priors. This dataset is used in the VQA 2018

challenge and contains over 1.1M questions from the over 200K images in the

MSCOCO 2015 dataset [Chen et al., 2015].

Following Anderson et al. [2018], we perform standard text pre-processing

and tokenization. In particular, questions are first converted to lower case and then

trimmed to a maximum of 14 words, and the words that appear less than 5 times are

replaced with an “<unk>” token. To evaluate answer quality, we report accuracies

using the official VQA metric using soft scores, which accounts for the occasional

disagreement between annotators for the ground truth answers.

Image captioning dataset: We use the MSCOCO 2014 dataset [Chen et al., 2015]

for the image caption module. To maintain consistency with the VQA tasks, we

use the dataset’s official configuration that includes 82, 372 images for training and

40, 504 for validation. Similar to the VQA question pre-processing, we first convert

all sentences to lower case, tokenizing on white spaces, and filtering words that do

not occur at least 5 times.

Training and implementation details: We train our joint model using the AdaMax

optimizer [Kingma and Ba, 2015] with a batch size of 384 and a learning rate of

0.002 as suggested by Teney et al. [2017]. We use the validation set for VQA

v2 to tune the initial learning rate and the number of epochs, yielding the highest
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overall VQA score. We use 1, 280 hidden units in the question embedding and

attention model in the VQA module with 36 object detection features for each image.

For captioning models, the dimension of the LSTM hidden state, image feature

embedding, and word embedding are all set to 512. We also use Glove vectors

[Pennington et al., 2014] to initialize the word embedding matrix in the caption

embedding module.

We initialize the training process with human annotated captions from the

COCO dataset [Chen et al., 2015] to pre-train the VQA model and caption-generation

modules for 20 epochs. After that, we generate question-relevant captions for all

question-image pairs in the COCO train, validation, and test sets. In particular,

we sample 5 captions per question-image pair. We fine-tune our model using the

generated captions with 0.25 × learning rate for another 10 epochs.

3.4.2 VQA Results

We first report the experimental results on the VQA task and compare our

results with the state-of-the-art methods in this section. After that, we perform

ablation studies to verify the contribution of additional knowledge from the generated

captions, and the effectiveness of using caption representations to adjust the top-down

visual attention weights.

As demonstrated in Table 3.1, our single model outperforms other state-of-

the-art single models by a clear margin, i.e. 2.06%, which indicates the effectiveness

of including caption features as additional inputs. In particular, we observe that

our single model outperforms other methods, especially in the ’Num’ and ’Other’
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Test-standard
Yes/No Num Other All

Prior [Goyal et al., 2017] 61.20 0.36 1.17 25.98
Language-only [Goyal et al., 2017] 67.01 31.55 27.37 44.26
MCB [Fukui et al., 2016] 78.82 38.28 53.36 62.27
Up-Down [Anderson et al., 2018] 82.20 43.90 56.26 65.32
VQA-E [Li et al., 2018b] 83.22 43.58 56.79 66.31
Ours(single) 84.69 46.75 59.30 68.37
Ours(Ensemble-10) 86.15 47.41 60.41 69.66

Table 3.1: Comparison of our results on VQA with the state-of-the-art methods on
the test-standard data. Accuracies in percentage (%) are reported.

categories. This is because the generated captions are capable of providing more nu-

merical clues for answering the ’Num’ questions, since the captions can describe the

number of relevant objects and provide general knowledge for answering the ’Other’

questions. Furthermore, an ensemble of 10 models with different initialization seeds

results in a score of 69.7% for the test-standard set.

Figure 3.4 shows several examples of our generated question-relevant cap-

tions. These examples illustrate how different captions are generated for the same

image when the question is changed. They also show how the objects in the image

that are important to answering the question are described in the question-relevant

captions.

Comparison between using generated and human captions: Next, we analyze

the difference between using automatically generated captions and using those

provided by human annotators. In particular, we train our model with generated

question-agnostic captions using the Up-Down [Anderson et al., 2018] captioner,
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Caption:

Caption:

Q: What is he doing?

Q: Is he wearing a hat?

Caption:

Caption:

Q: Is the cat watching TV?

Q: Is the tv on?

Q: What colors are on the couch?

Caption:

Q: Is there a picture on the wall?

Caption:

Caption:

Caption:

Q: What color is the vase?

Q: What color are the flowers?

A: Yes.A: Taking picture. A: Purple and white. A: White.

A: Yes.A: Yes. A: Yes. A: Red.

Figure 3.4: Examples of our generated question-relevant captions. The influential
objects with attention weights greater than 0.1 are indicated by bounding boxes
(annotated with their visual attention weights in the blue box), and the gray-scale
levels in the caption words indicate the word attentions from the caption embedding
module.

question-relevant captions from our caption generation module, and human annotated

captions from the COCO dataset.

As demonstrated in Table 3.2, our model gains about 4% improvement from

using human captions and 2.5% improvement from our generated question-relevant

captions on the validation set. This indicates the insufficiency of directly answering

visual questions using a limited number of detection features, and the utility of incor-

porating additional information about the images. We also observe that our generated

question-relevant captions trained with our caption selection strategy provide more

helpful clues for the VQA process than the question-agnostic Up-Down captions,
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Validation
Up-Down [Anderson et al., 2018] 63.2
Ours with Up-Down captions 64.6
Ours with our generated captions 65.8
Ours with human captions 67.1

Table 3.2: Comparison of the performance using generated and human captions.
Both of them provide significant improvements to the baseline model. However,
there is still a reasonable gap between generated and human captions.

outperforming their captions by 1.2%.

Question: What colors is the surfboard?

Answer: Yellow and blue Answer: Yellow and red

Answer: yellow and red

Visual attention Caption adjusted visual attention
Caption: A group of people standing next to yellow board.

Figure 3.5: An example of caption attention adjustment. The question-relevant
caption helps the VQA module adjust the visual attention from both the yellow board
and the blue sail to the yellow board onl, which further leads to the right answer.

Effectiveness of adjusting top-down attention: In this section, we quantita-

tively analyze the effectiveness of utilizing captions to adjust the top-down attention

weights, in addition to the advantage of providing additional information. In particu-

lar, we compare our model with a baseline version where the top-down attention-

weight adjustment factor Acv is manually set to 1.0 (resulting in no adjustment).
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As demonstrated in Tables 3.3 and 3.4, we observe an improvement when

using caption features to adjust the attention weights. This indicates that the caption

features help the model to more robustly locate the objects that are helpful to the

VQA process. We use w CAA to indicate with caption attention adjustment and

w/o CAA to indicate without it. Figure 3.5 illustrates an example of caption

attention adjustment. Without CAA, the top-down visual attention focuses on both

the yellow surfboard and the blue sail, generating the incorrect answer “yellow and

blue.”. However, with “yellow board” in the caption, the caption attention adjustment

(CAA) helps the VQA module focus attention just on the yellow surfboard, thereby

generating the correct answer “yellow and red” (since there is some red coloring in

the surfboard).

Test-standard
All Yes/No Num Other

Up-Down 65.3 82.2 43.9 56.3
Ours w/o CAA 67.4 84.0 44.5 57.9
Ours w CAA 68.4 84.7 46.8 59.3

Table 3.3: Evaluation of the effectiveness of caption-based attention adjustment
(CAA) on the test-standard data. Accuracies in percentage (%) are reported.

Validation
All Yes/No Num Other

Up-Down 63.2 80.3 42.8 55.8
Ours w/o CAA 65.2 82.1 43.6 55.8
Ours w CAA 65.8 82.6 43.9 56.4

Table 3.4: Evaluation of the effectiveness of CAA on the validation data. Accuracies
in percentage (%) are reported.
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3.5 Chapter Summary

In this chapter, we have explored how generating question-relevant image

captions can improve VQA performance. In particular, we present a model which

jointly generates question-related captions and uses them to provide additional

information to aid VQA. This approach only utilizes existing image-caption datasets,

automatically determining which captions are relevant to a given question. In

particular, we design the training algorithm to only update the network parameters

in the optimization process when the caption generation and VQA tasks agree on

the direction of change. As a result, our single model joint system outperforms the

state-of-the-art single model for VQA at the time of submission (May 2018).
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Chapter 4

Self-Critical Reasoning for Debiasing VQA

4.1 Motivation and Chapter Overview

The state-of-the-art VQA systems [Fukui et al., 2016, Anderson et al., 2018,

Agrawal et al., 2018, Andreas et al., 2016, Hu et al., 2018, Yang et al., 2016, Selvaraju

et al., 2019, Wu et al., 2019, Jiang et al., 2018, Kim et al., 2018, Ramakrishnan et al.,

2018] achieve high performance when the training and test question-answer (QA)

pairs are sampled from the same distribution. However, most of these systems fail to

generalize to test data with a substantially different QA distribution. In particular,

their performance drops catastrophically on the recently introduced Visual Question

Answering under Changing Priors (VQA-CP) [Agrawal et al., 2018] dataset. The

strong language priors encourage systems to blindly capture superficial statistical

correlations in the training QA pairs and simply output the most common answers,

instead of reasoning about the relevant image regions on which a human would focus.

For example, about 40% of questions that begin with “what sport” have the answer

“tennis”; systems tend to learn to output “tennis” for these questions regardless of

image content.

A number of recent VQA systems [Trott et al., 2018, Zhang et al., 2019,

Selvaraju et al., 2019, Qiao et al., 2018] learn to not only predict correct answers but
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also be “right for the right reasons” [Ross et al., 2017, Selvaraju et al., 2019]. These

systems are trained to encourage the network to focus on regions in the image that

humans have somehow annotated as important (which we will refer to as “important

regions.”). However, the network often focuses on these important regions even

when it produces a wrong answer. Previous approaches do nothing to actively

discourage this phenomenon, which we have found occurs quite frequently.1 For

example, as shown in Figure 4.1, we ask the VQA system, “What is the man eating?”.

Unfortunately, the baseline system predicts “hot dog” but focuses on the banana

because the hot dog appears much more frequently in the training data. What’s

worse, this error is hard to detect when only analyzing the correct answer “banana”

that has been successfully grounded in the image.

We present a “self-critical” approach that directly criticizes incorrect answers’

sensitivity to the important regions to address this issue. First, for each QA, we

determine the important region that most influences the network’s prediction of the

correct answer. We then penalize the network for focusing on this region when its

predicted answer for this question is wrong.

This chapter is based on [Wu and Mooney, 2019c]. In the following sections,

we present the approach to construct a set of potentially influential objects and then

discuss the two new objectives that encourage the VQA model to focus on them.

1We exam these situations by designing a metric called false sensitivity rate (FSR) in the
experiment section in this chapter.
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     Hot dog 
    (baseline) > Banana 

(self-critical) 
Hot dog 
(self-critical)

Human Visual 
    Attention

Banana 
(baseline) <

41 39

30

20

Pizza   Hot  Donut  Sand
           Dog             wich

13
12

4

2

Cake   Banana  No  burrito

Question: What is the man eating?                 Baseline Prediction: Hot Dog (wrong)                                           Our Prediction: Banana (correct)    

Test Answer 
Distribution

Training Answer 
    Distribution

(a) (g)(f)(e)(d)(c)(b)

Figure 4.1: example of a common answer misleading the prediction even though
the VQA system has the right reasons for the correct answer. Figure (a) shows the
important regions extracted from human visual attention. Figure (b), (e) show the
answers’ distribution for the question “What is the man eating?” in the training
and test dataset. Figure (c), (d) show the most influential region for the prediction
“hot dog” and “banana” using the baseline UpDn VQA system and Figure (f), (g)
show the influential region for the prediction “hot dog” and “banana” using the
VQA system after being trained with our self-critical objective. The number on the
bounding box shows the answer’s sensitivity to the object.

4.2 Human Explanation Hints

Our approach ideally requires identifying important regions that a human

considers most critical in answering the question. However, directly obtaining such a

clear set of influential objects from either visual or textual explanations is hard, as the

visual explanations also highlight the neighbor objects around the most influential

one, and grounding textual explanations in images is still an active research field.

We relax this requirement by identifying a proposed set of influential objects I for

each QA pair. This set may be noisy and contain some irrelevant objects, but we

assume that it at least includes the most relevant object. We explore three separate

methods for constructing this proposal set, as described below:
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Construction from visual explanations: Following HINT [Selvaraju et al., 2019],

we use the VQA-HAT dataset [Das et al., 2017] as the visual explanation source. HAT

maps contain a total of 59, 457 image-question pairs, corresponding to approximately

9% of the VQA-CP training and test set. We also inherit HINT’s object scoring

system that is based on the normalized human attention map energy inside the

proposal box relative to the normalized energy outside the box. We score each

detected object from the bottom-up attention and build the potential object set by

selecting the top |I| objects.

Construction from textual explanations: Recently, [Park et al., 2018] introduced a

textual explanation dataset that annotates 32, 886 image-question pairs, correspond-

ing to 5% of the entire VQA-CP dataset. To extract the potential object set, we first

assign part-of-speech (POS) tags to each word in the explanation using the spaCy

POS tagger [Honnibal and Montani, 2017] and extract the nouns in the sentence.

Then, we select the detected objects whose cosine similarity between the Glove

embeddings [Pennington et al., 2014] of their category names and any of the ex-

tracted nouns’ is greater than 0.6. Finally, we select the |I| objects with the highest

similarity.

Construction from questions and answers: Since the above explanations may not

be available in other datasets, we also consider a simple way to extract the proposal

object set from just the training QA pairs alone. The method is quite similar to the

way we construct the potential set from textual explanations. The only difference is

that instead of parsing the explanations, we parse the QA pairs and extract nouns

from them.
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What utensil is pictured? 

∇"𝑝(𝑓𝑜𝑟𝑘|𝑄,𝒱)

Influence 
Strengthen
Loss

OR

There is a fork 
near the cake.

Self Critical 
Loss

Answer 
Prediction

∇"𝑝(𝑘𝑛𝑖𝑓𝑒|𝑄, 𝒱)
Knife
(0.72)

Fork
(0.66)

Proposal object set

Explaining prediction “fork”

Explaining prediction “knife”

Extracting the most influential object

Visual feature set 𝒱Original image

Human visual explanation

Human textual explanation

The most influential object

Figure 4.2: Model overview. In the left top block, the base UpDn VQA system
first detects a set of objects and predicts an answer. We then analyze the correct
answer’s sensitivity (Fork) to the detected objects via visual explanation and extract
the most influential one in the proposal object set as the most influential object,
which is also further strengthened via the influence strengthen loss (left bottom
block). Finally, we analyze the competitive incorrect answers’ sensitivities (Knife)
to the most influential object and criticize the sensitivity until the VQA system
answers the question correctly (right block). The number on a bounding box is the
answer’s sensitivity to the given object.

4.3 Debiasing VQA Model

In this section, we present our self-critical approach to prevent the most

common answer from dominating the correct answer given the proposal sets of

influential objects. Figure 4.2 shows an overview of our approach. Besides the UpDn

VQA system (left top block), our approach contains two other components, we first

recognize and strengthen the most influential objects (left bottom block), and then

we criticize incorrect answers that are more highly ranked than the correct answer
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and try to make them less sensitive to these key objects (right block). As recent

research suggests that gradient-based methods more faithfully represent a model’s

decision making process [Selvaraju et al., 2019, Zhang et al., Wu et al., 2018, Jain

and Wallace, 2019], we use a modified GradCAM [Selvaraju et al., 2017] to compute

the answer a’s sensitivity to the i-th object features vi as shown in Eq. 4.1.2

S(a, vi) :=
(
∇viP (a|V, q)

)T
1 (4.1)

There are two modifications to GradCAM: (1) ReLU units are removed, (2) gradients

are no longer weighted by their feature vectors. This is because negative gradients on

the inputs to a ReLU are valuable evidence against the current prediction. Therefore,

there is no need to zero them out with a ReLU. Also, before they are weighted by the

feature vectors, the gradients indicate how small changes in any direction influence

the final prediction. If weighted by the feature vectors, the output tends to reflect

the influence caused only by existing attributes of the objects, thereby ignoring other

potential attributes that may appear in the test data.

4.3.1 Recognizing and Strengthening Influential Objects

Given a proposal object set I and the entire detected object set V , we identify

the object that the correct answer is most sensitive to and further strengthen its

sensitivity. We first introduce a sensitivity violation term SV(a, vi, vj) for answer

a and the i-th and j-th object features vi and vj as the amount of sensitivity that vj

21 denotes a vector with all 1’s.

36



surpasses vi, as shown in Eq. 4.2.

SV(a, vi, vj) = max
(
S(a, vj)− S(a, vi), 0

)
(4.2)

Based on the assumption that the proposal set contains at least one influential object

that a human would use to infer the answer, we impose the constraint that the most

sensitive object in the proposal set should not be less sensitive than any object outside

the proposal set. Therefore, we introduce the influence strengthen loss Linfl in Eq.

4.3:

Linfl = min
vi∈I

( ∑
vj∈V\I

SV(agt, vi, vj)
)

(4.3)

where the agt denotes the ground truth answer. The key differences between our

influence strengthen loss and the ranking-based HINT loss are that (1) we relax the

unnecessary constraint that the objects should follow the exact human ranking, and

(2) it is easier to adapt to different types of explanation (e.g. textual explanations)

where such detailed rankings are not available.

4.3.2 Criticizing Incorrect Dominant Answers

Next, for the incorrect answers ranked higher than the correct answer, we

attempt to decrease the sensitivity of the influential objects. For example, in VQA-

CP, bedrooms are the most common room type. Therefore, during testing, systems

frequently incorrectly classify bathrooms (which are rare in the training data) as

bedrooms. Since humans identify a sink as an influential object when identifying

bathrooms, we want to decrease the influence of sinks on concluding bedroom.

37



In order to address this issue, we design a self-critical objective to criticize

the VQA systems’ incorrect but competitive decisions based on the most influential

object v∗ to which the correct answer is most sensitive as defined in Eq. 4.4.

v∗ = argmin
vi∈I

( ∑
vj∈V\I

SV(agt, vi, vj)
)

(4.4)

Specifically, we extract a bucket of at most B predictions with higher confidence

than the correct answer B = {a1, a2, ..., a|B|} and utilize the proposed self-critical

loss Lcrit to directly minimize the weighted sensitivities of the answers in the bucket

B to the selected most influential object, as shown in Eq. 4.5.

Lcrit =
∑
a∈B

w(a)(S(a, v∗)− S(agt, v∗)) (4.5)

where agt denotes the ground truth answer. Because several answer candidates

could be similar (e.g. cow and cattle), we weight the sensitivity gaps in Eq. 4.5

by the cosine distance between the answers’ 300-d Glove embeddings [Pennington

et al., 2014], i.e. w(a) = cosine dist(Glove(agt), Glove(a)). In the multi-word

answer case, the Glove embeddings of these answers are computed as the sum of the

individual word’s Glove embeddings.

4.4 Experimental Setup and Results

First, we present experiments on a simple synthetic dataset to illustrate basic

aspects of our approach. We then present experimental results on the VQA-CP

(Visual Question Answering with Changing Priors) [Agrawal et al., 2018] dataset

where the QA pairs in the training data and test data have significantly different
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distributions. We compare our self-critical system’s VQA performance with the

start-of-the-art systems via the standard evaluation metric. After that, we perform

ablation studies to verify the contribution of strengthening the influential objects

and criticizing competitive answers. Finally, we show some qualitative examples to

illustrate the effectiveness of criticizing the incorrect answers’ sensitivity.

4.4.1 Synthetic Task Results

We manually created a dataset where the inputs are drawn from a mixture of

two Gaussians, i.e. N1 = N ([−3, 3]T , 2I2) and N2 = N ([3, 3]T , 2I2), where each

distribution defines a category. In order to ensure the training and test data have

different category distributions, we intentionally assign different weights to the two

components. In particular, during training, the examples are drawn from N1 with

probability p, and during test, the examples are drawn from N1 with probability

1 − p. We examine the effectiveness of our self-critical approach varying p from

0.05 to 0.5 (i.e. 0.05, 0.1, 0.2, 0.5) (0.5 means no train/test difference). In these

experiments, we use the obvious human explanation that the first channel (x-axis) is

important for all training examples. We use a 15-layer feed-forward neural network

with 256 hidden units and 1000 examples for both training and test in all of our

experiments. We use Adam to optimize our model with a learning rate of 1e-3 during

pre-training (100 epochs) with binary cross-entropy loss, and 1e-5 during fine-tuning

(50 epochs) with our self-critical approach. The influence strengthening loss weight

and self-critical loss weight are set to 20 and 1000, respectively. The results in Fig.

4.3 shows that the self-critical approach helps shift the decision boundary towards

39



  

 Baseline: 77.4%       Self-critical: 79.8%       Baseline: 80.3%     Self-critical: 86.2%         Baseline: 88.5%      Self-critical: 89.6%       Baseline: 95.1%     Self-critical: 95.0%

Figure 4.3: Decision boundaries and test set accuracies on synthetic data with various
class ratios p, which is varied from 0.05, 0.1, 0.2, to 0.5 from left to right. The
training data is shown in the top row, testing in the bottom. Red and blue colors
denote different categories. Dashed lines and solid lines denote the boundaries of
the pretrained and fine-tuned models, respectively.

the correct, unbiased position, increasing robustness and accuracy on the test data.

4.4.2 VQA Results

Implementation and Training Details:

Training Details: We first pre-train our base UpDn VQA system on the VQA-

CP training set using standard VQA loss Lvqa (binary cross-entropy loss with soft

scores as supervision) with the Adam optimizer [Kingma and Ba, 2015] for at most

20 epochs. As suggested in [Teney et al., 2017], the learning rate is fixed to 10e-3

with a batch size of 384 during the pre-training process, and we use 1, 280 hidden

units in the base UpDn VQA system. We use a modified UpDn attention model as

the suggested in [Singh et al., 2018]. Then, we fine-tune our system to recognize

important objects using Lvqa + λinflLinfl with a learning rate of 10e-5 for at most

15 epochs on the intersection of VQA-X and VQA-CP training set. We initialize

the model with the best model from the pre-train stage. In this stage, we also find

the best influence strengthening loss weight λ⋆
infl. Finally, we fine-tune the system

40



with the joint loss L = Lvqa + λ⋆
inflLinfl + λcritLcrit for at most 15 epochs with

a learning rate of 10e-5 on the intersection of VQA-X and VQA-CP training set.

The bucket size |B| of the competitive answers is set to 5 because we observed that

the top-5 overall score of the pre-trained system on the VQA-CP dataset achieves

80.4%, and increasing the bucket size only marginally improves the score.

Implementation: We implemented our approach on top of the original UpDn

system. The base system utilizes a Faster R-CNN head [Ren et al., 2015b] in conjunc-

tion with a ResNet-101 base network [He et al., 2016] as the object detection module.

The detection head is pre-trained on the Visual Genome dataset [Krishna et al., 2017]

and is capable of detecting 1, 600 objects categories and 400 attributes. UpDn takes

the final detection outputs and performs non-maximum suppression (NMS) for each

object category using an IoU threshold of 0.7. Then, the convolutional features for

the top 36 objects are extracted for each image as the visual features, i.e. a 2, 048

dimensional vector for each object. For question embedding, following [Anderson

et al., 2018], we perform standard text pre-processing and tokenization. In particular,

questions are first converted to lower case and then trimmed to a maximum of 14

words, and the words that appear less than 5 times are replaced with an “<unk>”

token. A single layer GRU [Cho et al., 2014] is used to sequentially process the

word vectors and produce a sentential representation for the pre-processed question.

We also use Glove vectors [Pennington et al., 2014] to initialize the word embedding

matrix when embedding the questions. The size of proposal object set is set to 6.

VQA performance on VQA-CP v2 datasets: Table 4.1 shows results on the VQA-

CP generalization task, comparing our results with the state-of-the-art methods.
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Expl. VQA-CP v2 test
All Yes/No Num Other

GVQA[Agrawal et al., 2018] 31.3 58.0 13.7 22.1
UpDn [Anderson et al., 2018] 39.7 42.7 11.9 46.1
UpDn+AttAlign [Selvaraju et al., 2019] 38.5 42.5 11.4 43.8
UpDn+AdvReg. [Ramakrishnan et al., 2018] 41.2 65.5 15.5 35.5
UpDn+SCR (ours) QA 48.47 70.41 10.42 47.29
UpDn+HINT [Selvaraju et al., 2019] HAT 47.7 70.0 10.7 46.3
UpDn+SCR (ours) HAT 49.17 71.55 10.72 47.49
UpDn+SCR (ours) VQA-X 49.45 72.36 10.93 48.02

Table 4.1: Comparison of the results on VQA-CP test with the state-of-the-art
systems. The upper part includes VQA systems without human explanations during
training, and the VQA systems in the bottom part use either visual or textual human
explanations. The “Expl.” column shows the source of explanations for training
the VQA systems. SCR is the short hand for our self-critical reasoning approach.
The results with a precision of 2 decimal points denote the mean of three runs with
different random initial seeds.

Our system significantly outperforms other state-of-the-art system (e.g.,

HINT [Selvaraju et al., 2019]) by 1.5% on the overall score for VQA-CP when using

the same human visual explanations (VQA-HAT), which indicates the effectiveness

of directly criticizing the competitive answers’ sensitivity to the most influential

objects. Using human textual explanations as supervision is even a bit more effective.

With only about half the number of explanations compared to VQA-HAT, these

textual explanations improve VQA performance by an additional 0.3% on the overall

score, achieving a new state-of-the-art of 49.5%.

Without human explanations, our approach that only uses the QA proposal

object set as supervision clearly outperforms all of the previous approaches, even

those that use human explanations. We further analyzed the quality of the influential
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object proposal sets extracted from the QA pairs by comparing them to those from

the corresponding human explanations. On average, the QA proposal sets contain

57.1% and 54.3% of the objects in the VQA-X and VQA-HAT proposal object sets,

respectively, indicating a significant but not perfect overlap.

Note that our self-critical objective particularly improves VQA performance

in the ’Yes/No’ and ’Other’ question categories; however, it does not do as well in

the ’Num’ category. This is understandable because counting problems are generally

harder than the other two types, and requires the VQA system to consider all of the

objects jointly. Therefore, criticizing only the most sensitive ones does not improve

the performance.

Effectiveness of criticizing false sensitivity: In this section, we quantitatively

evaluate the effectiveness of the proposed self-critical objective. In particular, we

evaluate the fraction of false sensitivity where the predicted incorrect answer’s

sensitivity to the influential object (to which the correct answer is most sensitive) is

greater than the correct answer’s sensitivity. We formally define the false sensitivity

rate in Eq. 4.6:

FSR =

∑
Q,V 1[S(apred, v∗)− S(agt, v∗) > 0, score(apred) = 0]∑

Q,V 1
(4.6)

where 1[·] denote the function that returns 1 if the condition is satisfied and

returns 0 otherwise.

For the original UpDn VQA system, we observe a false sensitivity rate of

35.5% among all the test QA pairs in the VQA-CP. After the self-critical training,
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What is the sitting on?

Key object for “bench”
(Self-Critical, Predicted)

Key object for “ground”
(Self-Critical)

Key object for “bench”
(Baseline, GT)

key object for “ground”
(Baseline, Predicted)

What color is the net?

Key object for “blue”
(Self-Critical, Predicted)

Key object for “white”
(Self-Critical)

Key object for “blue”
(Baseline, GT)

Key object for “white”
(Baseline, Predicted)

What is the man holding?

Key object for “kite”
(Self-Critical, Predicted)

Key object for “tennis racket”
(Self-Critical)

Key object for “kite”
(Baseline, GT)

Key object for “tennis racket”
(Baseline, Predicted)

Figure 4.4: Positive examples are showing that our self-critical reasoning approach
prevents the incorrectly predicted answer in the UpDn baseline system from being
sensitive to the most influential object. For each example, the top two figures show
the object to which the ground truth (left) and incorrectly predicted (right) answers
are sensitive. The bottom two figures show the corresponding most influential object
after our self-critical training. Note that the attention for the incorrect answer shifts to
a more relevant part of the image for that answer. The number around the bounding
box is the answer’s sensitivity to the object.

UpDn UpDn + QA UpDn + HAT UpDn + VQA-X
FSR 35.5% 22.6% 20.4% 19.6%

Table 4.2: False sensitivity rate (FSR) comparison of using different types of human
explanations.

the false sensitivity rate reduces to 20.4% using the VQA-HAT explanations, and to

19.6% using VQA-X explanations. This indicates that false sensitivity is a common

problem in VQA systems and shows the utility of addressing it.

Some examples of how our self-critical approach mitigates false sensitivity

are shown in Figure 4.4. Note that for the correct answer, our approach increases

the influence of the most influential object, which we attribute to the influence

strengthening part. More importantly, we observe that this object’s influence on the
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incorrect answer decreases and sometimes falls below other objects.

Ablation study on proposal influential object set size: Table 4.3 reports results

with various set sizes indicating the two objectives are fairly robust. We use VQA-

HAT visual explanations to construct the influential object sets and both losses to

fine-tune our model.

|I| 4 5 6 7 8 10
VQA-CP v2 test 48.8% 49.1% 49.2% 49.1% 48.7% 48.3%

Table 4.3: Ablation study on the size of the proposal influential object set when
computing the two losses.

4.5 Chapter Summary

In this chapter, we have explores how to improve VQA performance by

criticizing the sensitivity of incorrect answers to the most influential object for the

correct answer. Our “self-critical” approach helps VQA systems generalize to test

data where the distribution of question-answer pairs is significantly different from

the training data. The influential objects are selected from a proposal set extracted

from human visual or textual explanations, or simply from the mentioned objects in

the questions and answers.
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Chapter 5

Generating Multimodal Faithful Explanations

5.1 Motivation and Chapter Overview

Question: What sport is pictured?
Explanation: Because the man is riding a wave on a surfboard.

Answer: Surfing

Figure 5.1: Example of our multimodal explanation. It highlights relevant image
regions together with a textual explanation with corresponding words in the same
color.

Most systems [Fukui et al., 2016, Anderson et al., 2018, Yang et al., 2016,

Jiang et al., 2018] based on deep neural networks are difficult to comprehend because

of many layers of abstraction and a large number of parameters. This makes it hard
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to develop user trust. Partly due to the opacity of current deep models, there has

been a recent resurgence of interest in explainable AI, systems that can explain their

reasoning to human users. In particular, there has been some recent development of

explainable VQA systems [Selvaraju et al., 2017, Park et al., 2018, Hendricks et al.,

2016, 2018].

One approach to explainable VQA is to generate visual explanations, which

highlight image regions that most contributed to the system’s answer, as determined

by attention mechanisms [Lu et al., 2016] or gradient analysis [Selvaraju et al., 2017].

However, such simple visualizations do not explain how these regions support the

answer. An alternate approach is to generate a textual explanation, a natural-language

sentence that provides reasons for the answer. Some recent work has generated

textual explanations for VQA by training a recurrent neural network (RNN) to

directly mimic examples of human explanations [Hendricks et al., 2016, Park et al.,

2018]. A multimodal approach that integrates both a visual and textual explanation

provides the advantages of both. Words and phrases in the text can point to relevant

regions in the image. An illustrative explanation generated by our system is shown

in Figure. 5.1.

Recent research on such multimodal VQA explanation is presented in [Park

et al., 2018] that employs a form of “post hoc justification” that does not truly

follow and reflect the system’s actual processing. As suggested in [Bilgic and

Mooney, 2005], we believe that explanations should more faithfully reflect the

actual processing of the underlying system in order to provide users with a deeper

understanding of the system, increasing trust for the right reasons, rather than trying
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to simply convince them of the system’s reliability. In order to be faithful, the

textual explanation generator should focus on the set of objects that contribute to

the predicted answers, and receive proper supervision from only the gold standard

explanations that are consistent with the actual VQA reasoning process. Towards

this end, our explanation module directly uses the VQA-attended features and is

trained to only generate human explanations that can be traced back to the relevant

object set using a gradient-based method called GradCAM [Selvaraju et al., 2017].

This chapter is based on [Wu et al., 2019]. In the following sections, we

present the design and evaluation of explanation generation model.

5.2 Explanation Generation Model

Our goal is to generate more faithful multimodal explanations that specifically

include the segmented objects in the image that are the focus of the VQA module.

Figure 5.2 illustrates our model’s pipeline in the training phase, consisting of the

VQA module , and textual explanation module. We first segment the objects in

the image and predict the answer using the VQA module, which has an attention

mechanism over those objects. Next, the explanation module is trained to generate

textual explanations conditioned on the question, answer, and VQA-attended features.

To faithfully train the explanation module, we filter out human textual explanations

whose gradient-based visual explanation is not consistent with that of the predicted

answer. For example, in Figure 5.2 “Explanation 1” is accepted as the textual

explanation since it is mainly focused on the surfer and “Explanation 2” is rejected.

As suggested in [Park et al., 2018], we encode questions and answers as
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Accept

Answer:  Yes

Question: Is the man getting wet?

Explanation 1:

He is surfing in 

the ocean.

Answer

Embedding

Explanation 2:

There are waves 

around the surfer.

Visual

Attention

Word 

Embedding
GRU Explanation 

Module

Instance

Segmentation

Reject

Answer

Visual

Explanation

Figure 5.2: Model overview: We first segment the image and then predict the answer
for the visual question with a pretrained VQA module. Then, we learn to embed the
question, answer, and the VQA-attended features to generate textual explanations.
During training, we only use the faithful human explanation whose gradient-based
visual explanation is consistent with that of the predicted answer. In the example, our
explanation module is only trained to generate “Explanation 1” and further enforces
the consistency between this explanation and the predicted answer. “Explanation 2”
is filtered out since its visual explanation is mainly focused on the waves and is not
consistent with VQA module’s focus on the surfer. Dashed arrows denote gradients,
gray and yellow arrows denote fixed and trainable parameters, respectively. The
three smaller images denote the gradient-based visual explanations for the predicted
answer and the two textual explanations.

input features to the explanation module. In particular, we regard the normalized

answer prediction output as a multinomial distribution, and sample one answer

from this distribution at each time step. We re-embed it as a one-hot vector as =

one-hot(multinomial(s)).

ui = vq
i ⊙ f(as)⊙ f(q) (5.1)

Next, we element-wise multiply the embedding of q and as with vq
i to

compute the joint representation ui. Note that u faithfully represents the focus of
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the VQA process, in that it is directly derived from the VQA-attended features. We

use f to denote the fully-connected fc layers of the neural network, and these fc

layers do not share parameters. We notate the sigmoid functions as σ. The subscript

i indexes the elements of the segmented object sets from images. Bold letters denote

vectors, overlining · denotes averaging, and [·, ·] denotes concatenation.

The explanation module has a two-layer-LSTM architecture whose first layer

produces an attention over the ui, and whose second layer learns a representation for

predicting the next word using the first layer’s features.

!"# = [&' ; )"*#+ ; ,"]
)"*## Attention LSTM

)"#

Attention
module

Source
identifier

Language LSTM

'.

/0 /#

)"+
)"*#+

1' 2

Figure 5.3: Overview of the explanation module that has a two-layer-LSTM archi-
tecture.

In particular, the first visual attention LSTM takes the concatenation x1
t of

the second language LSTM’s previous output h2
t−1, the average pooling of ui, and

the previous words’ embedding as input and produces the hidden presentation h1
t .
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Then, an attention mechanism re-weights the image feature ui using the generated

h1
t as input shown in Eq. 5.2. Please refer to [Anderson et al., 2018] for the detailed

structure.

ai,t = f(tanh(f(ui) + f(h1
t ))) (5.2)

αt = softmax(αt) (5.3)

For the purpose of faithfully grounding the generated explanation in the

image, we argue that the generator should be able to determine if the next word

should be based on image content attended to by the VQA system or on learned

linguistic content. To achieve this, we introduce a “source identifier” to balance

the total amount of attention paid to the visual features ui and the recurrent hidden

representation h1
t at each time step. In particular, given the output h1

t from the

attention LSTM and the average pooling ui over ui, we train a fc layer to produce

a 2-d output s = σ(f([h1
t , ui])) = (s0, s1) that identifies which source the current

generated word should be based on (i.e. s0 for the output of the attention LSTM1

and s1 for the attended image features).

s = σ(f([h1
t , ui])) (5.4)

We use the following approach to obtain training labels ŝ for the source

identifier. For each visual features ui, we assign label 1 (indicating the use of attended

1We tried to directly use the source weights s0 in the language LSTM’s hidden representation
h2
t−1 and found that using h1

t works better. The reason is that directly constraining h2
t−1 makes

the language LSTM forget the previously encoded content and prevents it from learning long term
dependencies.
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visual information) when there exists a segmentation ui whose cosine similarity

between its category name’s GloVe representation and the current generated word’s

GloVe representation is above 0.6. Given the labeled data, we train the source

identifier using cross entropy loss Ls as shown in Eq. 5.5:

Ls = −(
1∑

j=0

ŝj log sj + (1− ŝj) log(1− sj)) (5.5)

where the ŝ0, ŝ1 are the aforementioned labels.

With the hidden states h2
t in the Language LSTM, the output word’s proba-

bility is computed using Eq. 5.6:

p(yt|y1:t−1) = softmax(f(h2
t )) (5.6)

where yt denotes the t-th word in the explanation y and y1:t−1 denotes the first t− 1

words.

Faithful explanation supervision. Directly collecting faithful textual explanations

is infeasible because it would require an annotation process where workers provide

explanations based on the attended VQA features. Instead, we design an online

algorithm that automatically filters unfaithful explanations from the human ones

in the VQA-X data [Park et al., 2018] based on the idea that a proper explanation

should focus on the same set of objects as the VQA module and be locally faithful.

As recent research suggested that gradient-based methods more faithfully present the

models’ decision making process [Zhang et al., Wu et al., 2018, Jain and Wallace,

2019], we define a faithfulness score Sf as the cosine similarity between the Grad-

CAM [Selvaraju et al., 2017] visual explanation vectors of the textual explanation
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and the predicted answer as shown in Eq. 5.7:

Sf (y) = cos(g(svqapred, vq), g(log p(y), vq)) (5.7)

where g denotes the Grad-CAM operation and the result is a vector of length |V |

indicating the contribution of each segmented object. svqapred is the logit for the

predicted answer.

Then, we filter out the explanations in the training set whose faithfulness

scores are less than ξmax(0.02 it, 1), where ξ is a threshold and the max(0.02 it, 1)

term is used to jump-start the randomly initialized explanation module. For example,

during training, we only accept “Explanation 1” in Figure 5.2 because the visual

explanations of the predicted answer and the textual explanation are consistent and

reject “Explanation 2”.

Since the VQA-X dataset only has explanations for the correct answers,

we also discard the explanations when the predicted answers are wrong. With the

remaining human explanations, we minimize the cross-entropy loss LXE in Eq. 5.8:

LXE =
T∑
t=1

log(p(yt|y1:t−1)) (5.8)

As a last step, we link words in the generated textual explanation to image

segments in order to generate the final multimodal explanation. To determine which

words to link, we extract all common nouns whose source identifier weight s1 in Eq.

5.4 exceeds 0.5. We then link them to the segmented object with the highest attention

weight αt in Eq. 5.2 when that corresponding output word yt was generated, but
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only if this weight is greater than 0.2.2

5.3 Experimental Setup and Results

In this section, we present the evaluations of our model on both textual

and multimodal aspects. We pre-train the VQA module on the entire VQA v2

training set for 15 epochs using the Adam optimizer [Kingma and Ba, 2015] with

a learning rate of 0.001. After that, the parameters in the VQA module are frozen.

Our VQA module is capable of achieving 82.9% and 80.3% in the VQA-X val and

test split respectively. and 63.5% in the VQA v2 validation set which is comparable

to the baseline Up-Down model (63.2%) [Anderson et al., 2018]. Note that VQA

performance is not the focus of this work, and our experimental evaluation focuses

on the generated explanations. Finally, we train the explanation module using the

human explanations in the VQA-X dataset [Park et al., 2018] filtered for faithfulness.

VQA-X contains 29,459 question answer pairs and each pair is associated with a

human explanation. We train to minimize the joint loss L, and ξ is empirically set to

0.3. We ran the Adam optimizer for 25 epochs with a batch size of 128. The learning

rate for training the explanation module is initialized to 5e-4 and decays by a factor

of 0.8 every three epochs.

Automated evaluation: Similar to [Park et al., 2018], we first evaluate our textual

explanations using automated metrics by comparing them to the gold-standard

human explanations in the VQA-X test data using standard sentence-comparison

2Due to duplicated segments, we use a lower threshold.
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Textual
Ls F B-4 M R-L C S

PJ-X [Park et al., 2018] 19.5 18.2 43.7 71.3 15.1
Ours (Justification) ✓ 24.1 18.6 46.2 83.4 16.2
Ours (Explanation) ✓ ✓ 24.7 19.2 47.0 85.1 16.6

Table 5.1: Explanation evaluation results. F denotes whether to filter out the
unfaithful training explanations. Ls denotes the losses of the source identifier. B-4,
M, R-L, C and S are short hand for BLEU-4, METEOR, ROUGE-L, CIDEr and
SPICE, respectively.

metrics: BLEU-4 [Papineni et al., 2002], METEOR [Banerjee and Lavie, 2005],

ROUGE-L [Lin, 2004], CIDEr [Vedantam et al., 2015] and SPICE [Anderson et al.,

2016]. Table 5.1 reports our performance, including ablations.

Question: What sport is shown?
Answer: Frisbee
Explanation: The man is
catching a frisbee.

Question: What is he eating?
Answer: Banana
Explanation: He is eating a 
yellow fruit with a peel.

Question: What sport is this?
Answer: Snowboarding
Explanation: The man is going 
down a snowy hill on single board.

Figure 5.4: Sample positively-rated explanations. The generated explanations reveal
that important objects for answering the visual question in both the visual and the
textual modalities.

Human evaluation: We also asked AMT workers to evaluate our final multimodal

explanations that link words in the textual explanation directly to segments in the

image. Specifically, we randomly selected 1,000 correctly answered question and
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0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Very suportative Supportive Neural Unsupportive Completely unsupportative

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Very well well Neutral Not well Poor

Relevance of the highlighted segments

Quality of the textual-visual links

Figure 5.5: Human evaluation results. About 70% of the evaluations are positive and
about 45% of them are strongly positive.

asked workers “ How well do the highlighted image regions support the answer to

the question?” and provided them a Likert-scale set of possible answers: “Very sup-

portive”, “Supportive”, “Neutral”, ‘Unsupportive” and “Completely unsupportive”.

The second task was to evaluate the quality of the links between words and image

regions in the explanations. We asked workers “How well do the colored image

segments highlight the appropriate regions for the corresponding colored words in

the explanation?” with the Like-scale choices: “Very Well”, “Well”, “Neutral”, “Not

Well”, “Poorly”. We assign five questions in each AMT HIT with one “validation”

item to control the HIT’s qualities.

As shown in Figure 5.5, in both cases, about 70% of the evaluations are

positive and about 45% of them are strongly positive. This indicates that our

multimodal explanations provide good connections among visual explanations,

textual explanations, and the VQA process. Figure 5.4 presents some sample

positively-rated multimodal explanations.
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5.4 Chapter Summary

This chapter has presented a new approach to generating multimodal explana-

tions for visual question answering systems that aims to more faithfully represent the

reasoning of the underlying VQA system while maintaining the style of human expla-

nations. The approach generates textual explanations with words linked to relevant

image regions actually attended to by the underlying VQA system. Experimental

evaluations of the explanations using both automated metrics and crowdsourced

human judgments were presented that demonstrate the advantages of this approach

compared to a previously-published competing method.
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Chapter 6

Comparing Competing Explanations to Improve VQA

6.1 Motivation and Chapter Overview

Candidate 1:  No     VQA confidence: 0.88
Sample Retrieved Explanations: 
1. The train looks European as well as the railings and 
surrounding area.
2. The wording on the train is in English.
3. 4…. 8…
Verification score: 0.17
Final Confidence: 0.15

Question:  Is this in an Asian country?
Human Explanation: The information provided on the 
train’s marquee is comprised of Asian characters.

Candidate 2:  Yes    VQA Confidence: 0.79 
Sample Retrieved Explanations: 
1. It does not look like a standard American train.
2. The signs are all in Japanese.
3. 4…. 8…
Verification score: 0.97
Final confidence: 0.77

Figure 6.1: An example of utilizing retrieved explanations to correct the original
VQA prediction. Though the original VQA confidence of the correct answer “Yes”
is lower than that of the incorrect answer “No”, the retrieved explanations for “Yes”
that states the signs are all in Japanese support their answer better, resulting in a
higher verification score and a final correct decision.
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Most state-of-the-art VQA systems [Anderson et al., 2018, Kim et al., 2018,

Ben-Younes et al., 2017, Jiang et al., 2018, Cadene et al., 2019, Lu et al., 2019,

Liu et al., 2019, Tan and Bansal, 2019] are trained to fit the answer distribution

using question and visual features and achieve high performance on simple visual

questions. However, these systems often exhibit poor explanatory capabilities and

take shortcuts by only focusing on simple visual concepts or question priors instead

of finding the right answer for the right reasons [Ross et al., 2017, Selvaraju et al.,

2019]. This problem becomes increasingly severe when the questions require more

complex reasoning and commonsense knowledge.

For more complex questions, VQA systems need to be right for the right

reasons in order to generalize well to test problems. Two ways to provide these

reasons are to crowdsource human visual explanations [Das et al., 2017] or textual

explanations [Park et al., 2018]. While visual explanations only annotate which

parts of an image contribute most to the answer, textual explanations encode richer

information such as detailed attributes, relationships, or commonsense knowledge

that is not necessarily directly found in the image. Therefore, we adopt textual

explanations to guide VQA systems.

Recent research utilizing textual explanations adopts a multi-task learning

strategy that jointly trains an answer predictor and an explanation generator [Li et al.,

2018b, Park et al., 2018]. However, this approach only considers explanations for

the one chosen answer. Our approach considers explanations for multiple competing

answers, comparing these explanations when choosing a final answer, as shown in

Figure 6.1.
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This chapter is based on [Wu et al., 2020]. There are a few ways to obtain

such explanations, and we present a generation-based approach and a retrieval-based

approach in the following section. After that, we present the VQA model that

compares these explanations.

6.2 Retrieving Competing Explanations

This section presents our approach to retrieving the most supportive human

textual explanation from the training set for each answer candidate. Ideally, we

would dynamically retrieve explanations for each answer at each iteration. However,

this would be very computational costly because the question and visual features

have to be computed for each image from the training set. Therefore, we adopt

the below relaxation for computational efficiency that only needs to compute the

features once.

In particular, we first pretrain the VQA model, and extract the question and

visual embeddings, denoted as q and v, for each example in the training set. We

consider two VQA model in this scetion, i.e. UpDn and LXMERT. For UpDn,

we use the attended visual features and the question GRU’s last hidden state as

the visual and question embeddings. For LXMERT, we use the last cross-modal

attention layer’s visual and question output as the embeddings.

Then, for each question, we only compute the top-10 answer candidates

since the top-10 answers together achieve high recall. After that, for each answer

candidate a, we extract explanations from the training set that have the same ground
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truth answer 1 as the current candidate. We then sort these explanations by the L2

distance between the explanations’ QV embeddings, q ⊙ v, and the example’s and

pick the closest 8 explanations as the competing explanations set denoted as Xa.

6.3 Generating Competing Explanations

Next,the retrieved explanations for similar VQA examples from the training

set are used to help generate even better explanations.

We adopt the explainer from Chapter 6, a two-layer LSTM network similar

to the UpDn captioner [Anderson et al., 2018], as our baseline.2 Since the current

VQA systems are built upon detected objects, we use them as the visual inputs

instead of segmentations.

The baseline explainer first computes a set of question-attended visual fea-

tures, U , and an average pooled version, ū. The explainer then uses ū and U together

with question and answer embeddings as inputs to produce explanations.

Our approach simply replaces the average pooled question-attended visual

features ū with the retrieved explanations’ features, x. We use a single-layer GRU to

encode all of the retrieved explanations for the correct answer, and then max pool the

last hidden states among these explanations to compute x. We sample 8 explanations

for each answer candidate to construct the generated explanation set.

1More specifically, the soft score of the answer candidate in the retrieved explanation’s example
is over 0.6

2We replace segmentation features to detection features.
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6.4 Comparing Competing Explanations for VQA

After obtaining textual explanations, we discuss how to use them to learn

a verification score for each answer candidate and use it to re-rank these answer

candidates. Precisely, as shown in Figure 6.2, after the base VQA system computes

the top-k answers, our approach retrieves the most supportive explanations for each

answer from the training set to construct the set of competing explanations. Then,

these explanations are used to help generate explanations for the current question.

Next, we learn to predict verification scores that indicate how well the retrieved or

generated explanations support the predictions given the input question and visual

content. The final answer is determined by jointly considering the original answer

probabilities and these verification scores.

Answer 
Prediction

No
(0.88)

Yes
(0.79)

VQA
Encoder

Question:  Is this in an 
Asian country? 𝒒 𝒗 𝒂

…
…

OR

Retrieved Explanation Set :
1. It does not look like a standard American train.
2. The signs are all in Japanese.
3. 4. ….8…

Explanation 
System

Generated Explanation Set :
1. The signs are typical with Japanese. 
2. All the signs are displayed in an Japanese city.
3. 4. ….8…

𝒒 𝒗 𝒂

Verification 
System

𝒒 𝒗

Verifying Answer “Yes”

𝒂

Verifying Answer “No”

Yes
(0.77)

No
(0.15)

(0.97)

(0.17)

Figure 6.2: Our approach first predicts a set of answer candidates and retrieves
explanations for each based on the answer, question, and visual content. These ex-
planations are then used to generate improved explanations. Finally, either retrieved
or generated explanations are employed to predict verification scores that are used to
reweight the original predictions and compute the final answer.
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6.4.1 Learning Verification Scores

A verification system is trained to score how well a generated or retrieved

explanation supports a corresponding answer candidate given the question and visual

content. The verification system takes four inputs: the visual, question, answer

and its explanation features; and outputs the verification score, i.e. S(Q,V , a, x) =

σ(f2(f(q), f(v), f(a), f(ϕ(x))). where a is the one-hot embedding of the answer,

and ϕ(x) is the feature vector for the explanation, x, encoded using a GRU [Cho

et al., 2014], ϕ. We use fn to denote n consecutive feed-forward layers (for simplicity

n is omitted when n = 1). We use σ to denote the sigmoid function. The verification

system is similar to the answer predictor in architecture except for the number of

outputs.

Given the VQA examples with their explanations in the VQA-X dataset, we

use binary cross-entropy loss Lm to maximize the verification score for the matching

human explanations, i.e. Lm = − log(S(Q,V , a, x)).

Intuitively, we want the verification score S to be high only when the explana-

tion is matched to the VQA example, i.e. replacement of any of the four input sources

should lower the score. Therefore, we designed the five kinds of replacements below

for constructing negative examples.

Replacement of visual and question features: Ideally, we would replace the visual

and question features with the complementary features [Antol et al., 2015] that lead

to the opposite answer. For example, for the question “Is this a vegetarian pizza?”,

with an image of a vegetarian pizza, we should replace the image with one of a meat
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pizza, i.e. counter-factual images. However, such replacement requires retrieving

and computing the visual features v for the meat pizza, which is computationally

inefficient. Therefore, we simply randomly choose a Q′ or V ′ replacement from the

current batch and minimize the binary cross entropy loss Lq
r, Lq

r for the verification

scores, i.e. Lq
r = − log(1− S(Q′,V , a, x)), Lv

r = − log(1− S(Q,V ′, a, x)).

Replacement of answer features: We sample the answer for replacement according

to the current VQA’s predicted incorrect probabilities. At each step, we try to

minimize the expectated binary cross-entropy loss La
r for the incorrect predictions,

i.e. La
r = Ea′∼p(a′|QV ), s(a′)<0.6[− log(1 − S(Q,V , a′, x))] where s(a′) denotes the

human VQA soft score for answer a′. In practice, we only sample one incorrect

answer during training.

Replacement of explanation features: We try to replace the matched human

explanations with the most supportive explanations for the sampled incorrect answer

and train our verification system to disprefer that explanation using the loss La
r =

maxx′∈Xa′
[− log(1 − S(Q,V , a, x′))]. In particular, given the sampled incorrect

answer a′ from the previous section, we compute the verification score for each

retrieved or generated explanation x′ from the set Xa′ for that wrong answer and

regard the one with maximum verification score as the most supportive one.

Replacement of answer and explanation features: To further prevent the system

from being falsely confident in the sampled incorrect answer a′, we also minimize

the verification score for its most supportive explanation for the incorrect answer a′,

i.e. Lax
r = − log(maxx′∈Xa′

(1− S(Q,V , a′, x′))).
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Finally, the total verification loss is the sum of the aforementioned 6 losses

as shown in Eq. 6.1:

Lverification = λLm + Lq
r + Lv

r + La
r + Lx

r + Lax
r (6.1)

Since we have more negative examples (5 ways to form negative examples) and

only one positive example, we assign a larger loss weight (i.e. λ = 10) for the only

positive example.

6.4.2 Using Verification Scores

The original VQA system provides the answer probabilities conditioned on

the question and visual content, i.e. P (a|Q,V). The verification scores S(Q,V , a, x)

are further used to reweight the original VQA predictions so that the final predictions

P̃ (a|Q,V), shown in Eq. 6.2, can take the explanations into account.

P̃ (a|Q,V) = P (a|Q,V)max
x∈Xa

S(Q,V , a, x) (6.2)

where Xa denotes the generated or retrieved explanation set for the answer a.

Since we try to select the correct answer with its explanation, the prediction

P̃ (a|Q,V) should only be high when the answer a is correct and the explanation x

supports a, which is enforced using the loss in Eq. 6.3:

Lvqae = − log(P (a|Q,V)S(Q,V , a, xa))− log(1− P̃ (a′|Q,V)) (6.3)

where xa denotes the human explanation for the answer a.

During testing, we first extract the top 10 answer candidates A, and then

select the explanation for the answer candidate with the highest verification score.
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Then, we compute the explanation-reweighted score for each answer candidate to

determine the final answer a⋆ = argmaxa∈A P̃ (a|Q,V).

6.5 Experimental Setup and Results

Training Details: We first pre-train our base VQA system (UpDn or LXMERT)

on either VQA v2 training set for 20 epochs or only the VQA-X training set for

30 epochs with the standard VQA loss (binary cross-entropy loss with soft scores

as supervision) and the Adam optimizer [Kingma and Ba, 2015]. As the VQA-X

validation and test set are both from the VQA v2 validation set that is covered in the

LXMERT pretraining, we do not use the officially released LXMERT parameters.

The learning rate is fixed to 5e-4 for UpDn and 5e-5 for LXMERT, with a batch

size of 384 during the pre-training process. For answer prediction part, we use

1, 280 hidden units in UpDn and 768 hidden units in LXMERT, and for verification

part, we use 1, 280 hidden units in both systems. We fine-tune our system using the

verification loss and VQA loss Lverification + 0.1Lvqae on the VQA-X training set

for another 40 epochs. For the verification systems, the initial learning rate is set

to 5e-4. The learning rate for every parameter is decayed by 0.8 every 5 epochs.

During test, we consider the top-10 answer candidates for the VQA systems and use

the reweighted prediction as the final answer.

Implementation: We implemented our approach on top of the original UpDn and

LXMERT. Both base systems utilize a Faster R-CNN head [Ren et al., 2015b] in

conjunction with a ResNet-101 base network [He et al., 2016] as the object detection

module. Convolutional features for the top 36 objects are then extracted for each
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VQA-X Pretrain VQA v2 Pretrain
Gen. Expl. Ret. Expl. Gen. Expl. Ret. Expl.

UpDn [Anderson et al., 2018] 74.2 74.2 83.6 83.6
UpDn+E (ours) 78.0 78.7 85.1 85.4
LXMERT [Tan and Bansal, 2019] 76.8 76.8 83.7 83.7
LXMERT+E (ours) 77.3 78.0 84.1 84.7

Table 6.1: Question answering accuracy on VQA-X using both UpDn and LXMERT
as a base system,“+E” denotes using our competing explanations approach. “Gen.
Expl.” and “Ret. Expl.” denote using generated and retrieved explanations, respec-
tively.

image as the visual features, i.e. a 2, 048 dimensional vector for each object. For

question embedding, following [Anderson et al., 2018], we perform standard text

pre-processing and tokenization for UpDn. In particular, questions are first converted

to lower case, trimmed to a maximum of 14 words, and tokenized by white spaces. A

single layer GRU [Cho et al., 2014] is used to sequentially process the word vectors

and produce a sentential representation for the pre-processed question. We also use

Glove vectors [Pennington et al., 2014] to initialize the word embedding matrix

when embedding the questions. For LXMERT, we also follow the original BERT

word-level sentence embedding strategy that first splits the sentence into words

w1, ..., wn with length of n by the same WordPiece tokenizer [Wu et al., 2016c]

in [Devlin et al., 2019]. Next, the word and its index (i.e. absolute position in the

sentence) are projected to vectors by embedding sub-layers, and then added to the

index-aware word embeddings. We use a single-layer GRU and three-layer GRU to

encode the generated or retrieved explanation in the verification system when using

UpDn and LXMERT as base system, respectively.
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VQA main results: We present the VQA results on the VQA-X [Park et al., 2018]

dataset. We combine the validation set (1,459 examples) and test set (1,968 examples)

of the VQA-X dataset as our larger test set (3,427 examples) for more stable results

since both are relatively small. We compare our system’s VQA performance against

two corresponding base systems using the standard protocol. In addition, we examine

the quality of explanations by comparing our system against a baseline model as

well as human explanations. Finally, we perform ablation studies to show that both

improved feature representation and explanation reweighting are key aspects of the

improvements.

Table 6.1 reports the results of our competing explanation approach. Our

approach combined with UpDn pretrained on the entire VQA v2 dataset achieves

the best results. When training only on the VQA-X training set, we improve the

original UpDn and LXMERT by 4.5 % and 1.2 %, respectively. UpDn benefits

more from using competing explanations than LXMERT, but both improve. By

using transformers, LXMERT already creates better, but less flexible, representations

which are harder to improve upon by using explanations. Because we do not use the

official LXMERT model parameters pretrained on multiple large datasets (VQA-X

test set is used as training set for the official released model) and only train the

LXMERT on VQA v2 dataset, the performance of LXMERT is not better than

UpDn.

Effect of using different explanations: Table 6.2 reports overall VQA scores using

UpDn pretrained on the VQA-X train set. We include two baseline settings, “UpD”

and “UpDn + VQA-E”, where the model is trained to jointly predict the answer and
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generate the explanation, using a two-layer attentional LSTM on top of the VQA

shared features. This version models the approach used in [Li et al., 2018b].

In the first human explanation setting, denoted by RR, we only Replace the

retrieved explanation for the Right answer with the corresponding human ones, and

still use the retrieved explanation for the incorrect answer. This setting shows how

much retrieved explanations for correct answers impacts the results. The second

human explanation setting, denoted by RA, assumes that human explanations are

used to Replace the retrieved explanations for All the potential answer candidates.

This setting provides an upper bound on our approach that uses textual explanations.

VQA-X
UpDn [Anderson et al., 2018] 74.2
UpDn + VQA-E [Li et al., 2018b] 76.0
UpDn + generated explanations 78.0
UpDn + retrieved explanations 78.7
UpDn + human explanations (RR) 79.3
UpDn + human explanations (RA) 80.2

Table 6.2: VQA performance using different explanations. “VQA-E” denotes model
trained to jointly predict the answer and generate the explanation.

The results indicate that using explanations even in a simple multi-task

learning model [Li et al., 2018b] is helpful, providing 2% improvement on the

overall score. However, our competing explanation approach with either generated

or retrieved explanations significantly outperforms both baseline models.

Our system with retrieved explanations performs slightly better than the one

with generated explanations. This is probably because there are no guarantees that

the generated explanations will support the answers upon which they are conditioned.
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Since all the explanation training examples are for correct answers, the explanation

generation system tends to support the ground truth answer regardless of the answer

candidate it is generated to support. Also, the generated explanations sometimes

ignore or hallucinate [Rohrbach et al., 2018] visual content when explaining the

answer. Therefore, although ideally, generated explanations could work better than

retrieved ones, they are currently less helpful to the VQA performance due to their

imperfections.

Not surprisingly, the human oracle explanations help the VQA system more

than the retrieved ones. It indicates that our approach could achieve even better

performance with more informative explanations, which could be achieved by either

developing a better explanation generator, or enlarging the explanation training set

from which human explanations are retrieved. Our system’s results using retrieved

explanations are only 0.6% lower than with human oracle explanations for the correct

answers. This indicates that the retrieved explanations (for related questions) are a

reasonable approximation to human explanations for the specific question.

Ablation study on each kind of replacement: Table 6.3 reports the results of

ablating each one kind of replacement for raising negative examples during training

the verification model. We use the UpDn model pretrained on VQA-X dataset. It

verifies the value of each term in Eq. 6.1.

Full w/o q w/o v w/o a w/o x w/o ax
UpDn+Re.Expl. (ours) 78.7 77.2 77.4 77.9 78.4 78.3

Table 6.3: Ablation study on each kind of replacements when learning the verification
score.
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Evaluating representation improvement: This section presents an ablation in-

vestigating how our approach improves the learned representations. The “w/o

reweighting” ablation still uses the fine-tuned representation trained using explana-

tions, but it does not reweight the final predictions, therefore it tests the improvement

solely due to better joint representations for the question and the visual content. The

“fixed VQA” ablation uses reweighting, but does not fine-tune the VQA parameters

during verification-score training (i.e. only the verification parameters are trained).

VQA-X
UpDn [Anderson et al., 2018] 74.2
UpDn + VQA-E [Li et al., 2018b] 76.0
UpDn+E (w/o reweighting) 77.8
UpDn+E (fixed VQA) 75.3
UpDn+E 78.7

Table 6.4: Ablation studies on representation improvements. We use the retrieved
explanations.

Table 6.4 reports the results of the UpDn system pretrained on the VQA-

X dataset. Using explanations as additional supervision helps the VQA systems

build better representations for the question and answer, improving performance

by 3.6%. This is because minimizing the verification loss Lverification prevents the

VQA system from taking shortcuts. First, the Lm component forces the VQA system

to produce visual and question features whose mapping can match the explanation

features. Second, by minimizing Lv
r and Lv

r , the system is forced not to solely focus

on question and/or visual priors. Finally, our full system gains 1.1% improvement

due to reweighting, and achieves our best results.
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More qualitative examples: Figure 7.6 shows some qualitative examples with

sampled explanations. The left column shows examples using generated explanations

and the right column shows examples using retrieved explanations. For each example,

we present the predictions of the original VQA system in the first line, and final

predictions using competing explanations in the second line. The numbers in the

parentheses are the ground-truth scores for the given answer, and the three scores

after the parentheses are the original VQA prediction score, the verification score,

and the final prediction score, respectively.

What is this piece of furniture used for?
Reading(0.0): 0.2923, 0.0116, 0.0034
There is a chair sitting around a table.
Sleep(0.6): 0.0262, 0.8768, 0.0230
There is a bed and pillows in the room.

What type of facial hair style does 
the man have?
Black(0.0): 0.0717, 0.0394, 0.0028
He has long hair.
Mustache(1.0): 0.0103, 0.9808, 0.0101
He has wispy lines above his lip.

What beverage is in the cup?
Milk(0.0): 0.2044, 0.5371, 0.1098
It is a liquid and white.
Beer(1.0): 0.1267, 0.9101, 0.1153
It is amber in color.

Is the train moving?
No(1.0): 0.9403, 0.9723, 0.9143
The train is waiting at a station.
Yes(0.0): 0.9321, 0.9810, 0.9144
The train is on the tracks with no lights
for passengers.

Is this a dog park?
Yes(0.3): 0.7031, 0.3019, 0.2123
The sky is bright blue and a few clouds only in 
the distance.
No(1.0): 0.6973, 0.8727, 0.6085
There are many people in the field flying kites.

What type of fruit toy is the cat holding?
Cat(0.0): 0.1181, 0.0009, 0.0001
A fluffy animal with ears and a tail is there.
Banana(1.0): 0.0906, 0.9103, 0.0825
It is long with a yellow peel.

Should the man on the right be wearing gloves?
No(0.3): 0.6612, 0.8797, 0.5817
The sky is gray and covered in clouds.
Yes(1.0): 0.5986, 0.9849, 0.5896
It looks cold.

What kind of garment is the woman wearing?  
Suit(1.0): 0.4197, 0.4224, 0.1773
It is all the same color, he has a tie on, and 
there are three buttons in the front.
Boots(0.0): 0.3752, 0.9674, 0.3630
The footwear is right below the knee.

Figure 6.3: More qualitative examples with sample explanations. The first three
rows show positive examples and the last row presents two failure cases.

The first three rows show examples where the verification system improves

the performance. These examples show that the explanations help the VQA system

clarify some commonsense knowledge (e.g. people wear gloves when cold, beer
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is amber colored, etc.) and key features of the important objects for the visual

questions, leading to better predictions.

The last row shows examples where the verification system actully degrades

the original VQA systems’ performance. However, the explanations for the incorrect

answers are still reasonable and a better verification module should be able to further

improve performance on examples like these.

6.6 Chapter Summary

In this work, we have explored how to exploiting explanations to improve

VQA performance. We first present two sets of competing explanations, generated

and retrieved explanations. Then, the VQA model exploiting the explanation sup-

porting each answer candidate to learn a verification score to re-rank the answer

confidence. Our approach also helps the system learn better visual and question

representations. As a result, the VQA models avoid taking shortcuts and is able to

handle difficult visual questions better, improving results on the challenging VQA-X

dataset.
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Chapter 7

Utilizing External Knowledge for OK-VQA

7.1 Motivation and Chapter Overview

In previous chapters, we discuss the several challenges in VQA. Despite

challenging, a common assumption hold true that the required information could be

found in the image. In this chapter, we will discuss a recent trend towards Outside

Knowledge VQA (OK-VQA) [Wang et al., 2017, 2018, Marino et al., 2019] which re-

quires information beyond the content of the images. Besides visual recognition, the

model needs to perform logical reasoning and incorporate external knowledge about

the world to answer these challenging questions correctly. These knowledge facts

can be obtained from various sources, such as image search engines, encyclopedia

articles, and knowledge bases about common concepts and their relations.

Figure 7.1 illustrates a few visual questions and the knowledge from different

external sources that helps answer them. Each question needs a different type of

external knowledge. For example, to identify the movie that featured a man telling

his life story to strangers, we need to link the image content and question to some

textual facts; Vegetarian food and eating vegetables are related to the concept of

health; the retrieved images for a “golden retriever.” are visually similar to the dog

in the question image. The challenge is to retrieve and correctly incorporate such
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Q: Is this a healthy dish?

• Forrest gump, named after general 
Nathan Bedford Forrest, narrates the 
story of his life.

• Gump is portrayed as viewing the …

Wikipedia facts

• Vegetarian food 

ConceptNet relations

• Eating vegetables
• Beans

HasProperty

HasProperty
RelatedTo

Healthy
Healthy
Healthy

Q: Which movie featured a 
man in this position telling 
his life story to strangers?

Q: What breed of dog is
the dog in this photo?

Image knowledge

Ours: Yes

Ours: Forrest Gump

Ours: Golden retriever

Baseline: Cloth

Baseline: No

Baseline: Shepherd

Figure 7.1: We address the problem of knowledge-based question answering. Re-
trieving relevant knowledge among diverse knowledge sources (visual knowledge,
textual facts, concepts, etc.) is quite challenging because the broad scope of the
visual questions.

external knowledge effectively in an open domain question answering framework.

Following these two threads, we first present a multimodal answer validation frame-

work (MAVEx) that utilizes retrieved knowledge from multiple sources to predict

the mostly supported answer. Then, we explore a entity-focused retrieval (EnFoRe)

model that retrieves knowledge specifically focused on critical entities.

7.2 Multi-Modal Answer Validation (MAVEx)

Most current knowledge-based VQA systems [Marino et al., 2019, Wang

et al., 2018, Zhu et al., 2020, Marino et al., 2021] follow a two-stage framework,

where a retriever first looks up knowledge relevant to the question and the image,

and then a separate comprehension model predicts the answer. However, knowledge
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retrieved directly for the question and image is often noisy and not helpful in

predicting the correct answer. For example, as shown in Figure 7.2, the sentences

retrieved using only the words in questions and objects in images (top) or a wrong

answer (middle) are hardly helpful to answer the question. This increases the burden

on the answer predictor, leading to only marginal improvements from the use of

retrieved knowledge [Marino et al., 2019]. Interestingly, with the correct answer

“Wimbledon” (bottom), the quality of the retrieved fact is significantly improved,

making it suitable for answering the question. This observation motivates us to use

retrieved knowledge for answer validation rather than for producing the answer.

What English city is famous 
for a tournament for the 
sport this man is playing?

The modern game of tennis originated in Birmingham, England, in the late 
19th century as lawn tennis.

It is popular for sports fixtures and hosts several annual events including a
free opera concert at the opening of the opera season, other open-air
concerts, carnival and labour day celebrations, and the Copenhagen historic
grand prix, a race for antique cars.

Wimbledon is notable for the longest running sponsorship in sports history
due to its association with slazenger who have supplied all tennis balls for the
tournament since 1902.

Question +   
Image

Question +
Image +
Incorrect Answer
(Copenhagen)

Question +
Image +
Correct Answer
(Wimbledon)

Figure 7.2: Examples of retrieved Wikipedia sentences using different sets of search
words. The sentences retrieved using only the words in questions and objects in
images (top) and the wrong answer (middle) are hardly helpful to answer the question.
However, with the correct answer “Wimbledon” (bottom), the quality of the retrieved
fact is significantly improved.

To address this challenge, we propose a new system called MAVEx or Multi-

modal Answer Validation using External knowledge. We use a three-stage frame-

work that first generates a set of promising answer candidates, retrieves knowledge

guided by these answer candidates, and finally validates these answer candidates.

76



7.2.1 Answer Candidate Generation

In order to use answer candidates to inform knowledge retrieval, we use

ViLBERT-multi-task system [Lu et al., 2019], a state-of-the-art VQA model, to

generate answer candidates. In particular, we finetune a ViLBERT-multi-task model

on the OK-VQA dataset that outputs a score for each answer collected from the

training set. The highest-scoring answers are used as the candidates. Note that any

VQA model or other approaches (for example, querying ontology knowledge bases)

can be used for this purpose. However, as we will discuss in the experiments section,

we found ViLBERT to be particularly effective at generating a small set of promising

candidates.

7.2.2 Rule-based Answer Guided Knowledge Retrieval

Visual knowledge Pool (S2)

Visual knowledge

: Strangers 

Q: Which movie featured a man in 
this position telling his life story to 
strangers?

Forrest Gump featured a man in this position…

: Which movie
Noun Chunks (S1)

: Forrest Gump

 Movie 
 Man
 Sitting Man

…
 

nq
0

Queries (S1)

Searched Images

Concepts Pool (S2)

    Forrest Gump 
    Speed  Strangers  

 Forrest Gump 
 Gump 
 Speed

…
 

: Speedna2

Speed is a 1994 American action thriller film 
directed by Jan de Bont …

A man is an adult male human.

Forrest Gump narrated his life's story at the …,  
as he sat at a bus stop bench

Forrest Gump is a film 

A Gentleman is at a movie 

WikiPedia Knowledge

ConceptNet Knowledge

Forrest Gump is a film 

sqa1 :
sqa2 :

..
..

Speed featured a man in this position telling… 

Forrest Gump narrated his life’s 
 … sat at a bus stop bench. 

Detected objects

WikiPedia Pool (S2)

The novel also features Gump as an astronaut, a 
professional wrestler, and a chess player.

..

..
..

Strangers is related to people

..

Matched Knowledge (S3)

a1 :
a2 :

: Man in this position … 

… 

… 

… 

… 

sitting man

man
movie

Forrest Gump

sitting man
movie

nq
1

nq
N

na1

…
 

Figure 7.3: An example of the retrieval process for one question-answer pair. The
numbers in parentheses denote the step number in Section 7.2.2. The noun phrase,
its generated queries, and the matched visual knowledge are marked in the same
color.

Given a question q about an image I and a set of answer candidates A, we

retrieve external knowledge supporting A in three main steps. Figure 7.3 shows the
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entire process for an example question and a candidate answer.

S1: Query extraction: We first collect short phrases in q, each answer candidate in

A, and concepts represented in I as a starting point for retrieving external information.

This involves the following sub-steps:

Extract noun phrases from question and answers: We parse the question and

the candidate answers using a constituency parser to obtain the parse tree. Then,

we extract all the nouns on the leaves of the parse tree together with the words that

describe the nouns and belong to one of the types from ADJP, ADVP, PP, SBAR,

DT or JJ. We extract three kinds of noun phrases for modeling: (1) The target noun

phrase that contains ‘wh’ or ‘how’ word (e.g. ‘which movie’), denoted by nq
0. (2)

Question noun phrases from the rest of the question (e.g., ‘man in this position’),

denoted by nq
i , i ∈ {1, . . . , N}. N is the number of noun phrases in the question.

(3) Answer noun phrase for each answer ai, denoted by nai (e.g., ‘Forrest Gump’).

These nouns help us link the mentioned objects to the images.

Link phrases to objects: As images usually contain plenty of question-irrelevant

content, making the retrieval process hard, we propose narrowing the search to the

objects referred to by the question or the answer candidates. In particular, we use

a separate ViLBERT-multi-task [Lu et al., 2020] model as the object linker, where

it takes as inputs a set of detected objects and a noun phrase from the question,

and outputs a linking score for each detected object to indicate how likely the noun

phrase refers to the object. We approve the linking when the score is higher than 0.5

and extract the linked objects.
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Generate search query set: We further generate a set of search queries to

search the external knowledge base. For each noun phrase, we first extract the

head of a phrase by finding the innermost NP from the dependency tree. Then, we

obtain the visual attributes of the head of the noun phrase by using a pre-trained

object-with-attribute detector [Anderson et al., 2018] for the corresponding linked

objects. For example, the visually grounded queries for ‘man in this position’ are

‘man’ and ‘sitting man’ where sitting is inferred from visual attributes. We denote

the set of queries as rni , i ∈ {1, . . . , K}, where n is the corresponding noun phrase,

K is the maximum number of queries per noun phrase.

S2: Answer guided knowledge pool construction: We now use the visually

grounded queries from step S1 to construct knowledge pool as follows:

Conversion to a natural language statement: In order to use the answer can-

didate a to inform the retrieval step, we convert q and a ∈ A into a natural language

statement sqa using a T5 model [Raffel et al., 2020] finetuned on the QA-NLI dataset

[Demszky et al., 2018]. Such conversion is effective as statements occur much more

frequently than questions in textual knowledge sources [Khot et al., 2017]. These

statements are later used to compute the relevance of the retrieved facts as described

below.

Retrieval of textual facts and concepts: We search each query in the query

set generated from the last sub-step in S1 in Wikipedia and ConceptNet. We compute

the BERTScore [Zhang et al., 2020a] between each sentence from the retrieved article

and each statement sqa. For each statement, the top-15 sentences (according to the

BERTScore) from each retrieved article are pushed to the sentence pool. Then, we
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decontextualize [Choi et al., 2021] each sentence in the Wikipedia pool for better

knowledge quality.

Retrieval of visual knowledge: Pure textual knowledge is often insufficient

due to two main reasons: (1) textual knowledge might be too generic and not specific

to the question image, (2) it might be hard to describe some concepts using text, and

an image might be more informative (e.g., the third question in Figure 7.1). Hence,

visual knowledge can complement textual information, further enriching the external

knowledge space. We consider both internal and external visual knowledge. For

the given image, we utilize a MaskRCNN [He et al., 2017] object detector to detect

common objects as internal knowledge. We use Google image search to retrieve the

top-5 images using the statement sqa as the query for each answer candidate a as the

external visual knowledge.

S3: Matching knowledge pool to queries: Instead of simply using each query’s top

retrieved sentences as the query’s knowledge, we propose matching the sentences

from the entire pool to each query. The intuition is that most queries cannot directly

retrieve helpful facts; however, they can help retrieve important aspects that should

be contained in the external knowledge.

Matching Textual Knowledge: For each query, the sentences from both

Wikipedia and ConceptNet pool with a mean recall greater than 0.6 are consid-

ered the retrieved results. Mean recall is the average cosine similarity between

the Glove embedding of the words in the query and their most similar word in the

sentence. To ensure knowledge relevance, we remove sentences that are matched

to only a single query. For each query rni , according to the maximum BERTScore
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between the sentence and all of the statements Sq, we extract at most m sentences

from both Wikipedia and ConceptNet pools, denoted by W (rni ) and C(rni ).

Matching Visual Knowledge: For each noun phrase in the question, we can

directly use the results from the object linker defined in S1. Specifically, we find the

top-3 referenced objects in the image for each question noun phrase, denoted M(n).

For each answer noun phrase nai , we use Google image search to retrieve

the top-5 images, denoted M(nai).

7.2.3 Answer Candidate Validation

The answer validation module takes as input an answer candidate ai and the

supporting knowledge, and outputs a scalar score indicating how well the knowledge

supports ai. As we will discuss, in order to better aggregate the knowledge, we first

compute the knowledge embedding for each query. Then, we compute an embedding

for each noun phrase that aggregates the embedding for the queries generated from

the noun phrase1. Finally, the embedding for the entire question aggregates the

embedding computed for all noun phrases.

We build MAVEx on top of the ViLBERT system. Given a question q and an

image I , ViLBERT provides textual features U ∈ R|q|×d, visual features V ∈ R|V |×d

from the last layer, where |q| is the number of tokens in q, d is the feature dimension,

|V | is the number of objects in the image plus one for the representation for the

entire image, and a joint visual-textual representation z ∈ Rd. For each sentence

1Recall that our queries rni are created based on noun phrase n.
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in the retrieved textual knowledge W (rni ) and C(rni ), we use TinyBERT (T-BERT)

model [Turc et al., 2019] to extract the corresponding features. We further average

the sentence features for each query rni , resulting wn
i and cni .

For each image in the retrieved visual knowledge M(na), we use MaskRCNN

[He et al., 2017] to extract object features. Then, we average the object features of

visual detection results as the image features and denote them as mn
i . Note that we

directly use the object features for the linked objects. Figure 7.4 shows the overview

of the model.

… 

Which movie featured a man 
in this position telling his life 
story to strangers?
Incorrect answer:

Correct answer:
Speed

Forrest Gump
MHAtt

…

z fans(a)

Answer: Speed
Answer: Forrest Gump Pm

Pc

Pw

PJm(a , a )

J (a , a)

J c(a , a )

Jw(a , a )

U
Knowledge  

Module  
(Image)

FFN

FFN

Knowledge  
Module  

(Concept)

FFN

FFN

Knowledge  
Module  

(WikiPedia)

FFN

FFN

C
… 

…

… 

…
MHAtt

MHAtt

…

sitting man

man

movie 

Gump 
Forrest Gump 

MHAtt

man in this position

strangers

which movie

Forrest Gump narrated his 
life's story at the …, as he 
sat at a bus stop bench

…

CForrest Gump narrated his 
life's story at the …, as he 
sat at a bus stop bench

…

Forrest Gump is a 1994  
American drama film…

…

Figure 7.4: Model overview for validating two candidate answers. We explore three
sources of external knowledge, i.e. Wikipedia, ConceptNet, and Google Images
presented by the three parallel knowledge embedding modules. The black blocks
denote features shared by all answer candidates, and the green blocks denote answer-
specific features. Different colors denotes the features for different noun phrases and
their queries.

Multi-granular knowledge embedding module: In order to better aggregate the

retrieved knowledge, we employ a multi-granular knowledge embedding module

that learns to recognize the critical queries for each noun phrase, and then the critical
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noun phrases for answering the question.

Note that our knowledge embedding module is identical for each knowledge

source but with different learnable parameters. We only show knowledge from

Wikipedia for brevity. Given the knowledge embeddings wn
i for each query rni in

the question, we compute the knowledge embedding w̃n for each noun phrase in

question as follows:

w̃n = MHAtt(un, {wn
i }i∈{1,...,K}, {wn

i }i∈{1,...,K}), (7.1)

where MHAtt(query,key,value) is the multi-head attention operator. un is the

attentive pooled [Lee et al., 2017] ViLBERT features according to the span {s, e} of

the phrase n. We use un as the query in MHAtt module to aggregate the retrieved

knowledge, where the corresponding knowledge embeddings {wn
i }i∈{1,...,K} serve

as key and value.

Similarly, for each answer a2, we compute the knowledge embedding wa

using a MHAtt module over the knowledge features wna
i as follows:

wa = MHAtt(z, {wna
i }i∈{1,...,K}, {wna

i }i∈{1,...,K}), (7.2)

where the joint visual-textual embeddings z from ViLBERT system is used as the

keys.

Then, another MHAtt module is used to gather the knowledge from each

noun phrase n ∈ {nq
1, . . . , n

q
N}. Specifically, given the knowledge embedding for

2For simplicity we omit the subscript index of the answer in this section when there is only one
answer involved in the current step.
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each noun phrase, the knowledge embeddings w is computed as follows:

ŵ = MHAtt(w̃nq
0 , {w̃nq

i }i∈1,...,N , {w̃nq
i }i∈1,...,N) (7.3)

Answer prediction and validation module: Given the knowledge embedding

k ∈ {ŵ, ĉ, m̂} from each one of the three knowledge sources, MAVEx predicts

the answers’ probability as P k = FFN(k + z), where FFN denotes a feed-forward

layer. The final prediction P is the answer that has the maximum confidence over

the three knowledge sources for each answer, i.e. P = max
k

{P k}.

The validation module takes as inputs the answer candidate a and the knowl-

edge features ka′ ∈ {wa′ , ca
′
,ma′} from the three sources to learn how well the

knowledge supports the answer candidate. We first embed the answer candidate

using the summation of the BERT features of the corresponding statement and the

glove features of the answer itself, i.e. fans(a) = (BERT(sqa)+glove(a)). Then, the

validation score J(a, a′) for answer candidate a using the knowledge retrieved for a′

(a different candidate) is computed as Jk(a, a′) = FFN(fans(a) ◦ ka′), where the ◦

means element-wise multiplication. The final validation score is the maximum vali-

dation confidence over the three knowledge sources, i.e. J(a, a′) = max
k

{Jk(a, a′)}.

Consistency criteria: The intuition behind our consistency criteria is that for the

correct answer a, the knowledge retrieved for a from the most confident source (the

one with the highest supportiveness score J for a) should support a more than it

supports other answer candidates, and it should also support a more than knowledge

retrieved for other answer candidates. Specifically, we approve the answer validation

score J(a, a) only if it is higher than the scores computed using this knowledge
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for all other answers as well as the score for a when using knowledge retrieved

for other answers. We also eliminate the case where the top-1 prediction from P

is not in the answer candidate set. Mathematically, the consistency criteria checks

that J(a, a) > J(a′, a) and J(a, a) > J(a, a′) for all a′ ̸= a. If the above condition

is not met, we output the answer with the maximum VQA prediction score P (a);

otherwise, we output the answer with the maximum VQA-weighted validation score

J(a, a)P (a).

Training and Implementation Details:

Implementation. We implemented our approach on top of ViLBERT-multi-

task [Lu et al., 2019], which utilizes a Mask-RCNN head [He et al., 2017] in

conjunction with a ResNet-152 base network [He et al., 2016] as the object detection

module. Convolutional features for at most 100 objects are then extracted for each

image as the visual features, i.e. a 2,048-dimensional vector for each object. We used

the constituent parser from AllenNLP to extract the nouns phrases in the question.

For linking the mentioned objects, we adopt a separate ViLBERT-multi-task system.

For converting the question and answer, we finetuned a T5-base model [Raffel et al.,

2020] on the QA-NLI dataset [Demszky et al., 2018] for 4 epochs. We detected 100

objects using Mask-RCNN to encode the retrieved Google images. For question

embedding, following [Devlin et al., 2019], we use a BERT tokenizer on the question

and use the first 23 tokens as the question tokens. We encode at most 4 sentences

per query, 3 queries per noun phrase. The number of hidden units in the multi-head

attention modules is set to 512. We use Pytorch 1.4 on a single TITAN V GPU with

12M memory for each run, and it generally costs 22 hours to train a single model.
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Training. The OK-VQA test images are a subset of COCO validation images

that are used to pre-train most transformer-based vision and language models [Lu

et al., 2019, Tan and Bansal, 2019, Li et al., 2019]. Although the test questions

never appear in the pre-training process, other questions on the test images may help

the system understand the image better, leading to higher performance. Besides,

there is also data contamination from extra object annotations from Visual Genome

(VG) dataset, which also contains some OK-VQA test images. As the VG dataset is

used to pre-train the object detector, those test images can access the ground truth

object annotations. Therefore, we carefully remove all OK-VQA test images from

the pre-training and re-train the ViLBERT-multi-task model and the object detector

from scratch using the default configurations.

We finetune the ViLBERT-multi-task model on OK-VQA using the default

configuration for 150 epochs for answer candidate generation. Binary cross-entropy

loss and VQA soft score are employed to optimize the system. OK-VQA provides

five annotations for each question. Soft scores are 0, 0.6, and 1 corresponding to 0,

1, more than 1 matching answer annotations. We use the finetuned model to extract

the top 5 answers for each question in the training and test set. We follow the default

settings of ViLBERT and apply the BertAdam optimizer [Devlin et al., 2019] with a

linear warmup learning rate.

For the training of the answer validation module, we optimize the validation

score J(a, a′) using the loss in Eq. 7.4 for the three knowledge sources, where s(a)

denotes the VQA soft scores for answer a. We also add the standard VQA losses on

the predictions from the three external sources. We train the system for 75 epochs
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using a learning rate of 2e-5 for the ViLBERT parameters and 5e-5 for the additional

parameters introduced in the validation module. We freeze the first 10 layers of the

ViLBERT base network. We use Lbce to denote binary cross-entropy loss.

LMAVEx = Lbce

(
max

a
s.t. a ̸= a′

J(a, a′), 0
)

+ Lbce

(
max
a′

s.t. a ̸= a′

J(a, a′), 0
)

+ Lbce

(
J(a, a), s(a)

)
(7.4)

7.3 Entity-Focused Passage Retrieval for OK-VQA (EnFoRe)

Passage retrieval under a multi-modal setting is a critical prerequisite for ap-

plications such as outside-knowledge visual question answering (OK-VQA) [Marino

et al., 2019], which requires effectively utilizing knowledge external to the image.

Recent dense passage retrievers with deep semantic representations powered by large

transformer models show appealing performance over traditional sparse retrievers

such as BM25 [Robertson and Zaragoza, 2009] and TF-IDF under both textual

[Karpukhin et al., 2020, Chen et al., 2021b, Lewis et al., 2022] and multi-modal

settings [Luo et al., 2021, Qu et al., 2021, Gui et al., 2021]. In this work, we investi-

gate two main drawbacks of recent dense retrievers [Karpukhin et al., 2020, Chen

et al., 2021b, Lewis et al., 2022, Luo et al., 2021, Qu et al., 2021, Gui et al., 2021],

which are typically trained to produce similar representations for input queries and

passages containing ground-truth answers.
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Being omnivores they enjoy eating 
live crickets and other insects and 
small amounts of chopped fruits and 
vegetables such as …
Bell pepper The bell pepper is … in 
different colours, including red, 
yellow, orange, …they are commonly 
used as a vegetable ingredient …

Q: What holiday is this? 
A: Thanksgiving.

Q: This plush toy was named 
after what US president? 
A: Theodore Teddy Roosevelt.

critical entity: teddy bear critical entity: turkey

Q: Is the large yellow object a fruit or a vegetable?   
A: vegetable.                     critical entity: bell pepper  

Figure 7.5: Top: Examples of critical entities upon which retrieval models should
focus; Bottom: Example of improved supervision for passage retrieval using critical
entities.

First, as most retrieval models encode the query and passages as a whole,

they fail to explicitly discover entities critical to answering the question [Chen et al.,

2021b]. This frequently leads to retrieving overly-general knowledge lacking a

specific focus. Ideally, a retrieval model should identify the critical entities for the

query and then retrieve question-relevant knowledge specifically about them. For

example, as shown in the top half of Figure 7.5, retrieval models should realize that

the entities “turkey” and “teddy bear” are critical.
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Second, on the supervision side, the positive signals are often passages con-

taining the right answers with top sparse retrieval scores such as BM 25 [Robertson

and Zaragoza, 2009] and TF-IDF. However, this criterion is inadequate to guarantee

question relevancy, and good positive passages should reveal facts that support

the correct answer using the critical entities shown in the image. For example,

as shown in the bottom of Figure 7.1, both passages mention the correct answer

“vegetable” but only the second one which focuses on the critical entity “bell pepper”

is question-relevant.

In order to address these shortcomings, we propose an Entity-Focused

Retrieval (EnFoRe) model that improves the quality of the positive passages for

stronger supervision. EnFoRe automatically identifies critical entities for the ques-

tion and then retrieves knowledge focused on them. We recognize the entities that

help improve a sparse retriever’s performance if emphasized during retrieval as

critical entities. We use the top passages containing both critical entities and the

correct answer as positive signals. Then, our EnFoRe model learns two scores to

indicate (1) the importance of each entity given the question and the image and (2)

the score of each entity fitting in the context of each candidate passage.

7.3.1 Entity Set Construction

Our EnFoRe model is empowered by a comprehensive set of extracted entities

that serves as a unified modality. It is worth noting that the entities are flexible and

not limited to the phrases from the question and passages as in [Lee et al., 2021]. We

collect entities from the following sources.
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Question-based entities:

Entities from questions: First, the noun phrases in questions usually reveal

critical entities in answering the visual question. Similar to MAVEx retrieval in Sec.

7.2.2, we parse the question using a constituency parser [Gardner et al., 2018] and

extract noun phrases at the leaves of the parse tree. Then, we link each phrase to

the image and extract the referred object with its attributes. We use a pretrained

VilBERT model [Lu et al., 2020] as the object linker.

Entities from sub-questions: OK-VQA often requires systems to solve visual

reference problems as general visual questions and comprehend relevant outside

knowledge. Therefore, we employ a general VQA model to find answers to the visual

aspect of the question. In particular, we collect a set of sub-questions by appending

each noun phrase in the parse tree to the common question phrases “What is...” and

“How is...” Then, we utilize the answer from a pretrained VilBERT model [Lu et al.,

2020] when the VQA confidence exceeds 0.5 and add the approved answers to the

entity set.

Entities from answer candidates: The answer candidate provides guidance

that helps the retriever retrieve noisy facts, and state-of-the-art VQA models are

surprisingly effective at generating a small set of promising answer candidates. We

finetune a ViLBERT model [Lu et al., 2019] on the OK-VQA data set and extract

the top 5 answer candidates for the training and test set.

Image-based entities:

Question-based entities are high precision and narrow down the search space
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for knowledge retrievers. To complement this, we also collect image-based entities

to help achieve higher recall.

Entities from azure tagging: Following Yang et al. [2022], we use Azure

OCR and brand tagging to annotate the detected objects in the images using a Mask

R-CNN detector [He et al., 2017].

Entities from Wikidata: As suggested by Gui et al. [2021], common image

and object tags can be generic with a limited vocabulary, leading to noise or irrelevant

knowledge. Therefore, we also leverage recent advanced visual-semantic matching

approaches, i.e. CLIP [Radford et al., 2021], to extract image-relevant entities

from Wikidata. In particular, the entities with their description in Wikidata and

sliding windows of the images are used as inputs. Then, at most 18 entities with top

maximum CLIP scores over these sliding windows are preserved.

Entities from captions: Captions provide a natural noting of salient objects

in the image and do not suffer from the limited vocabulary issue of object detection.

Similar to extracting entities from the question, we parse captions and extract noun

phrases at the parse tree’s leaves. During training, we use the human captions

provided by the COCO dataset to provide richer entities, and during testing, we use

generated captions from the OFA captioning model [Wang et al., 2022].

7.3.2 Oracle Critical Entity Detection

Given the comprehensive set of entities E covering different aspects of the

question and image, we introduce an approach to automatically find critical entities

and the passages containing them. Then, those entities and passages are used during
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training to provide more substantial supervision. The intuition is that a good passage

that fits the visual question’s context should mention both the key entities and

the correct answer. Also, emphasizing critical entities should improve retrieval

performance.

Given a question q, we use BM253 [Robertson and Zaragoza, 2009] as the

sparse retriever to retrieve a set of initial passages Pinit = {p1, ..., pK}. We calculate

a baseline score SRRinit for these K passages using summed reciprocal ranking

(SRR) as shown in Eq. 7.5.

SRR(P) =
K∑
i=1

1[ans ∈ pi]

i
(7.5)

We adopt summed reciprocal ranking instead of reciprocal ranking. It provides more

stable scores for evaluating the set of retrieved passages and is not over-ruled by

ranking the first appeared passage.

Then, for each entity e ∈ E , we retrieve another set of passages Pe using an

entity-emphasizing query where the entity is appended to the end of the question.

Note that the BM25 retriever does not take the order of the words in the question

input account, and simply appending entities will not lead to undesired results due

to the linguistic fluency of the query.

The scores for the entity S(e) is computed as the different between the SRR

of these two sets of retrieved passages, i.e. S(e) = SRR(Pe) − SRR(Pinit). We

regard entities with S(e) over a threshold θ as critical entities, i.e. Eoracle = {e ∈

E|S(e) > θ}.

3https://github.com/castorini/pyserini.git
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Qu et al. [2021] extract the top-k passages containing the correct answer from

Pinit to construct the positive passage set P+
init. As we have identified oracle entities,

the passage that contains both the right answer and the oracle entity is more likely to

fit in the context of the question. Therefore, we augmented the positive passage set

to include those passages for each oracle entity, i.e. P+
E =

⋃
e∈Eoracle({p

+
e }), where

p+e denotes the first passage that contains both the right answer and the oracle entity.

7.3.3 Entity-Focused Retrieval

We introduce our Entity-Focused Retrieval (EnFoRe) model that automati-

cally recognizes critical entities and retrieves question-relevant knowledge specif-

ically focused on them. “proj” denotes a projection function that consists of an

MLP layer.

Encoders:

Query encoder: As observed by Qu et al. [2021], Luo et al. [2021], multi-

modal transformers can better encode questions and visual content than uni-modal

transformers, so we adopt LXMERT [Tan and Bansal, 2019] as our query encoder.

In particular, we project the “pooled output” at the last layer from LXMERT as

the feature vector fq ∈ Rd given the query q that contains a visual question Q and

the set of detected objects V in the image as shown in Eq. 7.6. See the LXMERT

paper for further details.

fq = proj(LXMERT(Q,V)) (7.6)

Passage encoder: Following Qu et al. [2021], we use BERT[Devlin et al.,
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QueryEntity set construction    (Sec 3) 

Passage 1

…
Entities

…

…

plush toy 
president 
teddy bear (oracle) 
infant  …

Q: This plush toy was named 
after what US president?

A teddy bear is a stuffed toy in the 
form of a bear …, and named after 
President Theodore Roosevelt …, 
the teddy bear …

Passages

query features       
(Sec 4.1) 

fq

entity features        
(Sec 4.1) 

fe

passage features       
(Sec 4.1) 

fp

…
…

…

…

query-entity  
importance   (Sec 4.2) Sqe

passage-entity 
importance  (Sec 4.2) Spe

Query-passage 
matching 
(Sec 4.2)

+

Passage N

Entity 
matching 
(Sec 4.2)

Figure 7.6: EnFoRe model overview. We first extract a set of entities from the
query consisting of a question and an image. Those entities serve as an intermediate
modalities for the visual and textual inputs. Then, the EnFoRe model computes the
features for the query, the entities, and the passages. Query features and passage
features, together with entity features, are used to compute a query-entity score and
a passage-entity score to indicate the importance of the entities given the query and
the passages, respectively. These two importance scores are combined to produce
an entity-matching score, and the features of the query and the passages are used to
predict a query-passage matching score.

2019] as the passage encoder and project the “[CLS]” representation to compute

the vector features for each passage p.

fp = proj(BERT(p)) (7.7)

Entity encoder: In order to provide query context for each entity, we append

the question and a generated image caption [Wang et al., 2022] after each entity. The

input to the Entity encoder is “[CLS] entity [SEP] question [SEP]

caption”. Similar to the passage encoder, we use BERT [Devlin et al., 2019] as
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the entity encoder and project the “[CLS]” representation to compute the features

for each entity.

fe = proj(BERT(e)) (7.8)

Retrieval scores: Our EnFoRe model aims to retrieve question-relevant knowledge

that explicitly focuses on critical entities. Therefore, the similarity metric consists of

two parts: a question relevancy term and an entity focus term.

Modeling question relevancy: We model the question relevancy term Sqp as

the inner-product of the query and passage features, i.e. Sqp(q, p) = fT
q fp. During

inference, as the query and passage features are decomposable, maximum inner

product search (MIPS) can be applied to efficiently retrieve top passages for the

query.

Modeling entity focus: The entity focus term consists of two parts, where

query features are used to identify critical entities from the set of entities in Sec. 3,

and passage features are used to determine whether it contains these key entities. For

each entity, we compute the query-entity score Sqe(q, e) as the inner-product of the

projected query and entity feature, i.e. Sqe(q, e) = proj(fq)Tproj(fe), and we

compute the passage-entity score as Spe(p, e) = proj(fp)Tproj(fe). Then, we

combine all of the entities and compute the entity-focused score Sqpe per Eq. 7.9:

Sqpe(q, p, E) =
∑

e∈E σ(Sqe(q, e))× Spe(p, e)∑
e∈E σ(Sqe(q, e))

(7.9)

where σ denotes the sigmoid function. The final score S(q, p) for the query q and

passage p linearly combines both terms, i.e. S(q, p) = Sqp(q, p) + λSqpe(q, p, E),

where the weight λ controls the balance between the these two terms.
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Training: We train our EnFoRe model with a set of training instances consisting of

a query containing the visual question with an image, a positive passage, a retrieved

negative passage, and the set of entities. We adopt the “R-Neg+IB-All” setting

introduced by Qu et al. [2021] that regards the retrieved negatives, along with all

other in-batch passages, as negative samplings. Following previous work [Karpukhin

et al., 2020], we use cross-entropy loss to maximize the relevancy score Sqp(q, p)

and the entity focusing score Sqpe(q, p, E) of the positive passage given the negatives

identified above. In addition, we regard the oracle entities, defined in Sec. 7.3.2, as

positive entities and others as negative entities. We use binary cross-entropy loss to

supervise the importance score Sqe(q, e). We use AdamW [Loshchilov and Hutter,

2018] with a learning rate of 1e-5 to train the EnFoRe model for 8 epochs where

10% of the iterations are used to warm up the model linearly. The batch size is set

to 6 per GPU, and we use 4 GPUs (Tesla V100) for each experiment. The training

process takes about 45 hours for each model. We save the parameters every 5000

steps and present the best results (MRR@5) on the validation set. The hidden states

size is set to 768 following Qu et al. [2021] for fair comparison. The threshold θ

for recognizing critical entities is set to 0.8. As our model consists of two BERT

encoder and an LXMERT encoder, resulting in 430M parameters in total.

Inference: As the question relevancy term is decomposable, we again adopt MIPS

to retrieve the top-80 passages. Then, we evaluate the entity focus term for each

passage and use the combined score S(q, p) to rerank the retrieved passages.

Reader: We employ the current state-of-the-art KAT model [Gui et al., 2021] as our

VQA reader. The KAT model is a generation-based reader that learns to generate the
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answer given the retrieved knowledge. It adopts an FiD [Izacard and Grave, 2021]

architecture to incorporate both implicit knowledge, generated by a frozen GPT-3

model, and explicit knowledge. For implicit GPT-3 knowledge, the input format

is “question:ques? candidate:cand. evidence:expl.”, where the

ques, cand and expl. denotes the question, answer and its explanation generated

by the GPT-3 model [Brown et al., 2020]. For the explicit knowledge, the input for-

mat is “question:ques? entity:ent. description:desc.”, where

ent, desc denote the retrieved entity and its description. We refer our readers to

the original paper [Gui et al., 2021] for further details.

We change the original explicit knowledge to the knowledge retrieved by

our EnFoRe model. As the retrieved passage contains multiple sentences, and

usually, not all are relevant, we select the most relevant sentence for each passage.

Specifically, we convert the question and the candidate answers to a set of statements.

Then, we decontextualize each sentence for each passage and compute the BertScore

[Zhang et al., 2020a] between the decontextualized sentences and each statement.

The sentence with the highest BertScore across these statements is extracted for

each passage. The input format for us is “question:ques?entity:ents.

description:desc.”, where the ents, desc denote the top-10 entities judged

by the query-entity importance score Sqe(q, e) and the extracted sentence.

Following Gui et al. [2021], we perform experiments for two KAT settings:

(1) “KAT-base + EnFoRe” setting is a single model that employs T5-base [Raffel

et al., 2020] as the backbone encoder and decoder. (2) “KAT-full + EnFoRe” is

an ensemble model, where each model employs T5-large as the backbone encoder
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and decoder. As our knowledge is question-aware, we only encode top-10 retrieved

sentences in contrast to the 40 sentences in the original KAT model. We adopt the

same training scheme as the KAT model.

7.4 Experimental Setup and Results

We evaluate our framework on the OK-VQA dataset. We first briefly describe

the dataset and then present our results, comparing with the current state-of-the-art

systems.

OK-VQA dataset: [Marino et al., 2019] is the largest knowledge-based VQA

dataset at present. The questions are crowdsourced from Amazon Mechanical

Turkers, leading to two main advantages: (1) the questions indeed require outside

knowledge beyond images; (2) there are no existing knowledge bases that cover

all the questions, thus requiring systems to explore open-domain resources. The

dataset contains 14,031 images and 14,055 questions covering a variety of knowledge

categories (i.e. 9,009 for training and 5046 for test). The metric is the VQA soft

score. For the experiments of this paper, we used version 1.1 of the dataset. For

knowledge retrieval, we adopt the same data configuration as Qu et al. [2021] that

evenly splits the test set of the OK-VQA dataset into a validation set and a test set,

and we refer to these as RetVal and RetTest, respectively.

7.4.1 MAVEx Results

Answer candidate accuracy: Our answer candidate generation module, based on

the finetuned ViLBERT-multi-task model, outputs its top-5 answers as the candidates.
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We found that the best answer in this small candidate set achieves a VQA soft score

of 59.7 on the test set, substantially higher than other state-of-the-art systems without

data contamination. We also evaluate the score achieved by slightly larger candidate

sets, consisting of the top 6, 8, and 10 candidates. These achieve VQA soft scores of

62.1, 65.1, and 67.1, respectively. Since our answer validation framework needs to

retrieve and encode answer-specific knowledge, we use only top-5 answer candidates

as a reasonable trade-off between efficiency, answer coverage, and overall accuracy.

Note that our method cannot produce answers not in the candidate set.

Method Knowledge Resources VQA
ArticleNet (AN) [Marino et al., 2019] Wikipedia 5.3
Q-only [Marino et al., 2019] — 14.9
MLP [Marino et al., 2019] — 20.7
BAN [Kim et al., 2018] — 25.2

+ AN [Marino et al., 2019] Wikipedia 25.6
+ KG-AUG [Li et al., 2020b] Wikipedia + ConceptNet 26.7

MUTAN [Ben-Younes et al., 2017] — 26.4
+ AN [Marino et al., 2019] Wikipedia 27.8

Mucko [Zhu et al., 2020] Dense Caption 29.2
ConceptBert [Gardères et al., 2020] ConceptNet 33.7
KRISP [Marino et al., 2021] Wikipedia + ConceptNet 38.9∗

RVL† [Shevchenko et al., 2021] Wikipedia + ConceptNet 39.0†

MAVEx (ours) Wikipedia + ConceptNet 39.45∗

MAVEx (ours) Wikipedia + ConceptNet + Google Images 40.28∗

MAVEx (ours) (Ensemble 3) Wikipedia + ConceptNet + Google Images 41.37∗

Table 7.1: MAVEx outperforms current state-of-the-art approaches on OK-VQA.
The middle column lists the external knowledge sources, if any, used in each system.
† indicates that the system uses a pretrained model contaminated by OK-VQA test
images. ∗ indicates that the results have been reported on version 1.1 of the dataset.

MAVEx main results: Table 7.1 shows that MAVEx consistently outperforms prior

approaches by a clear margin. For example, MAVEx single model outperforms recent

state-of-the-art models, KRISP [Marino et al., 2021] by 1.4 points, respectively. An
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ensemble of three MAVEx models with different initializations provides 2.47 points

improvement compared to KRISP. All of our results, except for the ensemble model,

are averaged across 3 different initialization seeds.

What is the complimentary 
color to the frisbee

Blue (MAVEx)

Because orange and blue are 
complementary colors, life 
rafts and life vests are 
traditionally orange, to 
provide the highest contrast 
and visibility when seen from 
ships or aircraft over the 
ocean

In the indian subcontinent, 
red is the traditional color of 
bridal dresses, and is 
frequently represented in the 
media as a symbolic color for 
married women

Red (VQA)

Umpire,related to, referee
Umpire, synonym, referee
Umpire, related to, baseball 
official

Umpire (MAVEx)Who is the official in this 
sport

Pitcher (VQA)

Chandelier(MAVEx)What kind of lamp is this Lava(VQA)

Figure 7.7: Examples where the VQA model is wrong but MAVEx with the three
external knowledge sources (Wikipedia, Conceptnet and Google images) answers
correctly. The correct answer is in the green box and the incorrect answer is shown in
the red box. The grey box shows the question. Sample retrieved knowledge content
is shown in the boxes under the predicted answers.

Ablation studies on knowledge sources: We report the performance of using the

different combinations of knowledge sources in Table 7.2. We see that the three

sources (WikiPedia, ConceptNet, and Images) improve the performance by 3.4, 3.3,
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and 3.1, respectively, compared to the base ViLBERT system. This indicates the

effectiveness and value of all three sources of external information. The decontextu-

alization technique [Choi et al., 2021] improves the performance compared to using

only the Wikipedia source by 0.4%. The decontextualization partially helps address

the co-reference issue since the retrieved sentences provide more information from

their paragraph. Combining the three sources achieves a net performance gain of 5%

over the ViLBERT baseline, supporting the intuition that the three sources together

provide complementary pieces of knowledge.

We show some qualitative examples in Figure 7.7, where the VQA model

(ViLBERT) is wrong but provides good answer candidates. Our MAVEx gathers the

external knowledge from the three sources and predicts the correct answers.

System
Knowledge Source Score
ViLBERT 35.20
Wikipedia (w/o decontextualization) 38.21
Wikipedia 38.63
ConceptNet 38.56
Images 38.30
Wikipedia + ConceptNet 39.45
ConceptNet + Images 39.60
Wikipedia + Images 39.37
Wikipedia + ConceptNet + Images 40.28
Wikipedia + ConceptNet + Images (Oracle) 47.76

Table 7.2: Ablation study using different combinations of knowledge sources.

Answer validation step: We consider a MAVEx baseline model that uses the

retrieved knowledge (w̃, c̃, m̃) as additional inputs but without answer validation.
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This model achieves an overall score of 39.2, 4% higher than the ViLBERT base

model and 1.1% lower than the full model, indicating that using answer-guided

retrieved knowledge is helpful, and answer validation further improves performance.

Oracle source selector: We report an oracle score obtained by manually choosing

the best verification score Jk(a, a) from the three sources k ∈ {w̃, c̃, m̃} to weigh

the prediction P . As a result, our answer validation framework achieves an oracle

score of 47.76 as reported in Table 7.2. This indicates that the three knowledge

sources provide complementary features, leaving further potential to improve the

system.

How is this form of transportation 
powered?

Answer candidates:  clay, dirt, 
concrete, tennis court, pavement
Sample fact: 
Clay has context of tennis
Clay is related to surface
Predicted answer: tennis court
GT answers: clay

Answer candidates: electricity, 
diesel, gas, gasoline, engine
Sample fact: 
Some locomotives use two-stroke 
diesel engines
Predicted answer: diesel
GT answers: electricity

What other surfaces might this 
sport be played on?

Answer candidates: time zone, 
tell time, time, storage, to tell time
Sample fact: 
The primary purpose of a clock is 
to display the time
Predicted answer: tell time
GT answers: time zone

What purpose is there to having 
all of these clocks on the wall?

Figure 7.8: Some typical failure cases of our model have been shown. In these
examples, the model falsely focuses on the retrieved fact (left), visual content
(middle), or does not generate proper search word for knowledge retrieval (right).

Failures cases analysis: Figure 7.8 shows some common types of failure examples.

In the left example, the model over-relies on the retrieved fact “some locomotives

use diesel engines” and ignores the key visual clue in the image (the wires above
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the train). In the middle example, the model relies on the visual content “tennis

court” and does not use the retrieved knowledge. In the example shown on the right,

the model fails to realize that the key clue is the difference in displayed time on the

clocks.

Category Sources
w i c wci

VT 35.6 33.2 34.6 36.1
GHL 34.8 36.2 36.6 35.8
BCP 30.5 26.3 29.1 30.0
PEL 34.7 33.4 34.3 35.4
OMC 35.5 34.8 35.6 36.9
PA 38.4 40.0 39.3 40.2
SR 46.4 45.4 46.3 48.9
ST 34.1 36.7 32.6 35.4
CF 41.9 42.6 41.7 43.7
WC 50.3 49.5 52.3 52.6
Other 37.8 38.1 37.6 40.5
All 38.6 38.3 38.6 40.3

Table 7.3: Per category performance. The categories are Vehicles and Transportation
(VT), Brands, Companies and Products (BCP), Objects, Material and Clothing
(OMC), Sports and Recreation (SR), Cooking and Food (CF), Geography, History,
Language and Culture(GHL), People and Everyday life (PEL), Plants and Animals
(PA), Science and Technology (ST), and Weather and Climate (WC).

Per category performance: We report per category performance for the three

external sources in Table 7.3. The detailed question categories are presented in the

caption. The best category performance for the single-source models are shown

in bold. We observe that different knowledge sources help the system achieve

higher scores for different types of question, indicating the complementarity of those

retrieved knowledge.
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Methods Val Test
MRR@5 P@5 MRR@5 P@5

BM25-Obj 0.3772 0.2667 0.3686 0.2541
BM25-Cap 0.4727 0.3483 0.4622 0.3367
BM25 w. entities 0.3620 0.2558 0.3732 0.2620
BM25 w. oracle entities 0.6591 0.4548 0.6401 0.4345
DPR-LXMERT [Qu et al., 2021] 0.4704 0.3364 0.4526 0.3329
EnFoRe-LXMERT 0.4881 0.3488 0.4800 0.3444
EnFoRe-LXMERT w. oracle entities 0.4898 0.3533 0.4853 0.3451

Table 7.4: MRR and precision retreival results on OK-VQA. The first four rows
present sparse retrieval results and the others are dense retrieval results.

7.4.2 Passage Retrieval Results

We present our passage retriever results in Table 7.4, comparing them with

the current state-of-the-art systems. We adopt MRR and Precision at a cut of 5

as our automatic evaluation metric. The first four rows present sparse retrieval

results. The BM25 approach using our oracle entities achieves an MRR@5 of

0.6401, and a precision@5 of 0.4345 on the OK-VQA RetTest set, indicating the

comprehensiveness and the potential helpfulness of the extracted entities. With the

help of these entities, EnFoRe-LXMERT outperforms the previous SOTA DPR-

LXMERT (with the same architecture for visual and textual embedding) by 2.74%

MRR@5 and 1.15% precision@5.

Ablation study on entity sources: We also performed an ablation study on entity-

based re-ranking shown in Table 7.5. The EnFoRe backbone without re-ranking

achieves an MRR of 0.4632, outperforming DPR [Qu et al., 2021] by 1.06%. This

indicates that using our entities during training helps the retriever build better rep-
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Image-based Question-based MRR@5 P@5
DPR-LXMERT 0.4526 0.3329
EnFoRe (Backbone) 0.4632 0.3317
EnFoRe (Image) ✓ 0.4688 0.3351
EnFoRe (Question) ✓ 0.4750 0.3409
EnFoRe (Full) ✓ ✓ 0.4800 0.3444

Table 7.5: Ablation study on the entity sources used during re-ranking.

resentations. It is because (1) we add additional supervision that tells the retriever

which entities are more likely to lead to the correct answers, and (2) we add addi-

tional training passages that contain both the oracle entities and the right answers.

Image-based and Question-based entities help our EnFoRe model achieve MRR of

0.4688 and 0.4750, respectively. Our full model, taking advantage of both image-

and question-based entities, achieves an MRR of 0.4800, showing that these two

types of entities are complementary.

We present a further study on individual entity sources in Table 7.6. We

introduce a particularly challenging “RetTest Hard” split that collects all of the

examples in “RetTest” where none of the correct answers is in the entity set. Our

EnFoRe model consistently achieves better retrieval performance (i.e. MRR@5 and

P@5) by incorporating entities extracted from each source. On the normal RetTest

set, removing entities from candidate answers yields the largest decrease in MRR@5.

This is due to the fact that the candidate answers cover plenty of correct answers

in the OK-VQA test split and therefore provide direct hints to the desired content.

On the RetTest Hard set, image-based entities generally help improve the retrieval

performance more, indicating the need for explicitly discovering critical visual clues.
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Sources RetTest RetTest Hard
MRR@5 P@5 MRR@5 P@5

None 0.4632 0.3329 0.2525 0.1553
Image-based entities 0.4688 0.3351 0.2709 0.1637
Question-based entities 0.4750 0.3409 0.2594 0.1612
Full 0.4800 0.3444 0.2643 0.1632
w/o. Tags 0.4788 0.3410 0.2624 0.1606
w/o. Wikidata 0.4775 0.3429 0.2617 0.1574
w/o. Caption 0.4794 0.3449 0.2626 0.1611
w/o. Question 0.4786 0.3442 0.2647 0.1627
w/o. Sub-Question 0.4784 0.3411 0.2625 0.1605
w/o. Candidate 0.4693 0.3332 0.2664 0.1622

Table 7.6: Ablation study on entity sources.

Utilizing retrieved knowledge for VQA: We present the VQA performance of

incorporating our EnFoRe knowledge in the state-of-the-art KAT model in Table

7.7. While a plain KAT-base model, which uses GPT-3 and CLIP [Radford et al.,

2021] to retrieve image-based knowledge, achieves a score of (50.58)4, switching to

our EnFoRe knowledge brings a 1.7 point improvements, achieving a score of 51.34

(52.24). Our ensemble model (KAT-full + EnFoRe) achieves a new SOTA score of

54.35 (55.23).

Qualitative results: We present sample results in Figure 7.9 where (a)–(d) show

cases where our EnFoRe model correctly identifies the critical entities (i.e. the

orange, the kite, the calico cat, and the teddy bear) and retrieved question-relevant

knowledge focused on them. Case (e) shows an example where the retrieved sentence

misleads the reader, because the reader currently only receives the textual input,

4The additional result shown in parentheses is computed by an unofficial evaluation metric that
takes the max over 1.0 and number of annotators agreements divided by 3.

106



Method Knowledge Resources VQA Scores
Q-only [Marino et al., 2019] — 14.9
BAN [Kim et al., 2018] — 25.2
MUTAN [Ben-Younes et al., 2017] — 26.4
Mucko [Zhu et al., 2020] Dense Caption 29.2
ConceptBert [Gardères et al., 2020] ConceptNet 33.7
KRISP [Marino et al., 2021] Wikipedia + ConceptNet 38.9
RVL [Shevchenko et al., 2021] Wikipedia + ConceptNet 39.0
PICa [Yang et al., 2022] Frozen GPT-3 48.0
KAT-base Frozen GPT3 + Wikidata (50.58)
KAT-base + EnFoRe Frozen GPT3 + Wikipedia 51.34 (52.24)
KAT-full Frozen GPT3 + Wikidata (54.41)
KAT-full + EnFoRe Frozen GPT3 + Wikipedia 54.35 (55.23)

Table 7.7: EnFoRe knowledge boosts the current state-of-the-art approaches on
OK-VQA. The middle column lists the external knowledge sources if any, used in
each system. The additional result shown in parentheses is computed by an unofficial
evaluation metric that takes the max over 1.0 and number of annotators agreements
divided by 3.

and it fails to verify whether the pizza actually has a thin crust. Case (f) shows an

example where the retriever properly focuses on the critical entity “NORWOOD”

but fails to understand that this is the destination for the bus.

Human evaluation: We also conducted a human evaluation on AMT of the re-

trieved entities and sentences to demonstrate that EnFoRe retrieved knowledge better

supports the correct answers. We first randomly sampled 1,000 test questions that

are correctly answered by both the original KAT-base model and our “KAT-base +

EnFoRe” model. Next, we extracted the top-3 sentences with the highest attention

score averaged over all attention heads from the last decoder layer for both models.

We also extracted the top-3 visual entities. For EnFoRe, the top-3 entities with the
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Question: What healthy properties do 
these fruit contain?   
Prediction: potassium 
Top Entities: plantain, Washington 
Navel, blood orange. 
Knowledge: Naturally, the fruit of the 
Hassaku orange is a good source of 
vitamin C, folic acid, potassium and fiber. 

Question: Who is famous for allegedly 
doing this in a lightning storm? 
Prediction: Benjamin Franklin 
Top Entities: kite flying, human-lifting 
kite, kite. 
Knowledge: The electricity attraction 
from a lightning storm was done by 
Benjamin Franklin himself in the kite 
experiment that he talked about in a 
letter to Collinson dated October 19

Question: This plush toy was named after 
what us president?   
Prediction:  teddy roosevelt 
Top Entities: stuffed bear, teddy bear, 
brown bear. 
Knowledge: The teddy bear, for example, 
was named for President Theodore 
Roosevelt, because of a popular story in 
which the then-President objected to cruel 
treatment of a bear by hunters.

Question: What type of cat is this?
Prediction: calico 
Top Entities: calico cat, British Semi-
longhair, Himalayan. 
Knowledge: Calico cat A calico cat 
is a domestic cat with a coat that is 
typically 25% to 75% white with large 
orange and black.

Question: What kind of crust does this 
pizza have?   
Prediction:  thin 
Top Entities: thin, pepperonis, 
pepperoni 
Knowledge: The thin-crust pizza crust is 
thin and firm enough to have a 
noticeable crunch, unlike a New York-
style pizza.

Question: Where is this bus going? 
Prediction:  downtown 
Top Entities: NORWOOD, 
community bus, street. 
Knowledge: The vast majority of 
Chinatown bus lines are based out of 
the Northeast U.S.

(a) (b) (c)

(d) (e) (f)

Figure 7.9: Qualitative results on EnFoRe; (a)-(d) present cases where EnFoRe
correctly identifies the critical entities and retrieved question-relevant knowledge
properly focuses on them; (e) and (f) present two failure cases.

highest attention scores in the input prompts are selected. For the original KAT

model, we use the three entities from the three top retrieved sentences. Next, we show

AMT workers the question, the predicted answer, the image with bounding boxes for

the top entities, and the three retrieved sentences, for both systems randomly ordered.

Finally, workers are asked to judge which system’s set of highlighted entities and

sentences best supports the given answer. Experimental results show that judges

pick our EnFoRe knowledge 61.8% of the time, indicating a clear preference over

the original KAT knowledge. Such information can be considered an explanation or

rationale for the system’s answer, and improved explanations can engender greater

trust and acceptance from users and provide additional transparency of the system’s

operation. Figure 7.10 shows a sample question from a HIT. We eliminate data

where the quality control is not passed, but pay the workers 80 cents for finishing the

HIT regardless of passing the quality control example. The average time workers

spent on each HIT is 2 min and 33 sec.
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Figure 7.10: Sample question for the human evaluation. We ask the turkers to judge
which system’s set of highlighted entities and sentences best supports the given
answer.

7.5 Chapter Summary

In this chapter, we present the work on utilizing external knowledge for

outside-knowledge VQA. We present an answer validation (MAVEx) framework that

incorporate multimodal knowledge supporting a set of promising answer candidates.

As the quality of the retrieved knowledge is crucial to the OK-VQA performance, we

further developed a entity-focused retrieval (EnFoRe) model that retrieves question-

relevant knowledge for the entities that are critical to answering the question.
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Chapter 8

Future Directions

In this chapter, we discuss a few future directions motivated by existing

works in this dissertation, including building explainable VQA models and retrieving

helpful information for VQA.

8.1 Explainable VQA Model

While we present our explanation generation model in Chapter 6, it suffers

from the unfaithful issue of simply generating the justification instead of revealing

what the model learns. We try to alleviate this issue by forcing the generated

explanation, and the VQA model focuses on the same set of objects. However, it is

not enough to explain the logic and reasoning behind the model decision.

We present a framework for explaining VQA models by introducing a “in-

terpretable space” that contains a set of human interpretable units. The explanation

model examines each item in the interpretable space and generates a final explana-

tion. The previous explanation model in Chapter 5 sets the interpretable space as

the set of detected objects and attributes and uses a gradient-based method as the

examination approach. We discuss the future work below concerning the span of the

interpretable space, the examination methods, and the final explanation generation
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approach.

Span of the interpretable space: The span of the interpretable space is of great im-

portance in this framework. It not only influences the choice of the examination and

the explanation generation approaches but also determines the maximum capacity of

the faithfulness that this framework can achieve. The vanilla Grad-CAM and visual

attention treat the image grid features as interpretable space and achieve pixel-level

faithfulness. Our explanation model ensures the generated explanation and the VQA

model focus on the same set of objects and achieves object-level faithfulness. In the

future, we would like to expand the space to include commonsense rationale triplets

to allow the explanation generation model to elaborate on the relations between

objects and scenes using commonsense.

Examination of the VQA model: Given the interpretable space, the examination

methods find out which item influences the VQA model most. Previous works [Zhou

et al., 2018] mainly model these items individually that simultaneously predict a

weight for each of them. As the interpretable space has been expanded, we would

like to explore graph structure examination to determine which sub-graph in the

interpretable space influences the VQA model most.

Explanation generation: With identified important items in the interpretable space,

the explanation generation model aims to generate the final explanation in a human

interpretable format. To illustrate the reasoning process, textual explanations are

widely adopted as the output format. In the future, we would like to explore

generating faithful textual explanations with the sub-graph in the interpretable space

that are identified as influential. In order to achieve faithfulness, it is not feasible
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for the explanation generation model to directly learn from the human annotations

using the subgraph as inputs. Instead, we would like to incorporate an auto-encoder

approach that introduces an explanation grounding model to project the human

explanation to the interpretable space and then generate the explanation back during

training. We can use the generation taking the subgraph features as inputs during the

test.

8.2 Information Retrieval

Retrieving question helpful information is the fundamental prerequisite for

answering visual questions. In this dissertation, we have explored using image

captions, explanations, Wikipedia articles, commonsense rationales, and google

images as information resources. However, this retrieved knowledge is still inade-

quate because of the imperfection of the retrieval model and the insufficiency of the

covered material. We list a few future directions following these two threads below.

Retrieval model: As presented in chapter 7, knowledge retrieval literature has

witnessed a shift from the sparse retriever to the dense retrievers in order to better

capture the semantic of the query and the candidate passage. However, most question-

answer models adopt the two-stage framework where the knowledge retriever is

not aware of the actual reasoning process in the answer predictor. It forces the

retriever to “guess” the right answer given the query and retrieve query-relevant

knowledge containing the guessed answer. In order to alleviate this issue, we would

like to explore logic-aware knowledge retrieval approaches. We first break down

the question into a sequence of sub-questions and use each step as an intermediate

112



criterion to measure the query’s relevancy and the candidate passage.

Information source: While we have explored retrieving knowledge from Wikipedia

and Conceptnet, there is much richer knowledge from the internet articles. We have

witnessed a trend toward web knowledge retrieval and would like to pursue this

direction in the future. Unlike articles in Wikipedia, web articles reveal more com-

monsense and event knowledge in time. However, a few issues limit the performance

of the current retrieval model. (1) As the passage candidate pool is extremely large,

the retrieval model needs to filter out better irrelevant passages. This requires the

retrieval model to understand the questions better and the logic of answering the

question. We propose to use sub-questions as a hint to reveal that logic. (2) As the

web articles are uncertified, that does not guarantee the correctness of the knowledge;

the retrieval model also needs to judge the confidence that the knowledge is correct.

8.3 Incorporating Open Knowledge for Other Tasks

Multimodal pretraining: Nowadays, large multimodal transformers are pretrained

using general caption datasets, e.g. COCO [Chen et al., 2015], Conceptual Captions

[Sharma et al., 2018]. This large volume of caption data equips the large transformers

with some commonsense knowledge. However, it is still inadequate because real

world applications often require specific knowledge beyond commonsense. In this

case, external open knowledge is necessary and we believe injecting this open

knowledge will be beneficial to a number of downstream tasks including VQA,

visual dialog, VCR, information retrieval, etc. In future, we would like to work on

this topic.
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Object detection: We notice a recent trend toward open vocabulary object detection,

where captions [Zareian et al., 2021] are used as the source of vocabulary. However,

most captions describe objects and scenes in a casual way that only present common

objects (e.g. cats and dogs) or common names for specific objects (e.g. clock

tower for the “Big Ben”). There is less work on utilizing external knowledge to

construct the attributes for fine-grained object detection. In the future, we would

like to explore in the direction toward building a knowledge-augmented fine-grained

object detection.
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Chapter 9

Conclusion

This dissertation presents our work on incorporating external information for

VQA. Specifically, we consider image captions, visual question explanations, exter-

nal factual, commonsense, and visual knowledge as the complementing information.

We study the VQA task on both the performance and the explainability sides. We

list a summary of individual contributions below.

In Chapter 3, we proposed framework that generates and integrates question-

relevant captions for improving VQA performance. The relevancy criterion is fully

automated and motivated by the assumption that question-relevant captions describe

the objects on which the VQA model focuses.

In Chapter 4, human explanations are used to tell the VQA model where to

focus so that the VQA model can be right for the right reason even during changing

answer distribution.

In Chapter 5 and Chapter 6, we generate object-level faithful explanations

for VQA. Then, we present a verification scheme that compares the explanations

(retrieved or generated) for competing answer candidates. This new scheme helps

both the VQA performance and its interpretability.

In Chapter 7, we focused on outside-knowledge VQA and proposed an
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answer validation framework and an entity-focused retrieval model.

Finally, we discuss future directions towards (1) an explainable VQA model;(2)

incorporating richer web information and (3) utilizing open knowledge for other

tasks such as object detection and multimodal pretraining.
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