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Despite rapid advances in language and vision models, current robots still lag

far behind human physical capabilities due to the relative scarcity of real-world data

compared to online text and images. How can we leverage abundant language data to

advance robotic capabilities? Language provides semantic structure that facilitates

the understanding of diverse data, improving sample efficiency in scarce data regimes.

It also provides a natural communicative medium when interacting with and learning

from humans.

To leverage the first benefit of language, we first take inspiration from how

humans teach each other in video tutorials, through simultaneous video and language

streams, to more efficiently teach robots new skills. We then show that language can

bridge wide visual sim2real gaps, enabling robots to learn tasks with just a few real-

world demonstrations by leveraging knowledge from imperfect simulation data. To

leverage the second benefit of language, we explore how bidirectional dialog can enable

robots to solve complex manipulation tasks by communicating to and collaborating

with a wide distribution of human collaborators in the real-world. We develop a

robotic framework that requests and proactively offers help through mixed-initiative,

free-form dialog, enabling the robot to adapt to changing human preferences and each

agent’s physical capabilities to be strategically utilized. Finally, we discuss avenues of
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future work, such as how human-robot collaboration can be facilitated through dialog-

based replanning, how both agents can improve through bidirectional feedback, and

how language-based guidelines extracted from manuals can enable robots to behave

more safely and learn more quickly.

3



Table of Contents

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 The Purpose of Robotics . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Robots in Unstructured Environments . . . . . . . . . . . . . . . . . . 6

1.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 What Language Can Contribute to Robotics . . . . . . . . . . . . . . 7

1.5 Proposal Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 2: Background and Related Work . . . . . . . . . . . . . . . . . . . 10

2.1 Imitation Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Multitask Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Vision and Language . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Natural Language for Robot Task Specification . . . . . . . . . . . . . 14

2.6 Natural Language for Human-Robot Interaction . . . . . . . . . . . . 15

Chapter 3: Using Both Demonstrations and Language Instructions to Efficiently
Learn Robotic Tasks . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Multi-task Imitation Learning . . . . . . . . . . . . . . . . . . . 19

3.3.2 Task Encoder Networks . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.2 Training and Losses . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5.2 Generalization Performance on Novel Tasks . . . . . . . . . . . 25

3.5.3 How many demonstrations is language worth? . . . . . . . . . . 26

4



Chapter 4: Natural Language Can Help Bridge the Sim2Real Gap . . . . . . 27

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4.1 Cross-Domain Image-Language Pretraining . . . . . . . . . . . 31

4.4.2 Multitask, Multidomain Behavioral Cloning . . . . . . . . . . . 33

4.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 5: Mixed-Initiative Dialog for Human-Robot Collaborative Manipula-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 MICoBot: Mixed-Initiative Collaborative Robot . . . . . . . . . . . . 43

5.4.1 Collaborative Task Allocation as Optimization. . . . . . . . . . 43

5.4.2 MICoBot Framework . . . . . . . . . . . . . . . . . . . . . . . 45

5.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.6 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Chapter 6: Proposed Future Work . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1 Steering Policies and Accelerating Learning with Language Rules and
Guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1.1 Prior work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.1.2 Types of Guidelines . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Proposed Experiments and Metrics . . . . . . . . . . . . . . . . . . . 57

6.3 Long-term Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3.1 Information Asymmetry . . . . . . . . . . . . . . . . . . . . . . 58

6.3.2 Replanning from Dialog . . . . . . . . . . . . . . . . . . . . . . 59

6.3.3 Bi-directional Low-level Feedback . . . . . . . . . . . . . . . . . 60

Chapter 7: Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Works Cited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5



Chapter 1: Introduction

1.1 The Purpose of Robotics

Robots augment human physical capabilities. Autonomous vehicles help re-

duce traffic collisions and enable a future where drivers can perform other tasks during

their commuting time. Factory robots increase manufacturing production and ware-

house throughput while reducing worker fatigue. Rescue and relief robots respond to

natural and anthropogenic disasters, traveling to zones unsafe for humans to reach.

Household robots promise to enable the elderly and disabled to perform cleaning,

cooking, assistive feeding, and furniture assembly tasks, while saving everyone’s time

on undesirable tasks.

1.2 Robots in Unstructured Environments

Robots are generally deployed to two classes of domains—structured and un-

structured, to perform two broad categories of tasks—manipulation and navigation.

Across these four domain-task category pairs, current robotic capabilities vary widely.

Robots are generally seen as most competent in structured environments (e.g., factory

floors, where their motions can be programmed and executed fairly consistently and

reliably) on locomotion and navigation tasks (including autonomous driving) where

they must avoid obstacles while moving in the correct direction.

Manipulation tasks in unstructured environments seem more challenging for

robots to learn because the primary task is to avoid certain obstacles while making

contact to grasp and manipulate relevant objects on the scene. Unlike in structured

environments, unstructured (also known as open-world) settings such as households

contain infinite variations of object and scene configurations, making it quite difficult

to program a robot to perform manipulation reliably and safely.
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1.3 Data

For a robot to perform intelligently in unstructured settings, it must adapt to

a dynamically changing world. Instead of pre-programmed motions, data becomes

necessary for robots to learn patterns of acting intelligently, performing real-world

tasks, and recovering from failures. While fields such as natural language and com-

puter vision can leverage the entire internet’s text and images, there is a scarcity of

readily-available data that tells a robot the exact motor commands it should execute

when it encounters some observation in the world for a task it hopes to achieve.

Despite their potential in structured environments, the physical capabilities of

manipulation robots in unstructured environments still lag behind humans. This is

ironic given the purpose of robotics is to augment human capabilities (Section 1.1).

The longstanding data scarcity in robotics is a major reason for the shortcomings

of current robotics. Data hungry algorithms and architectures that serve well in

data-abundant fields may not be the easiest path forward for robotics, given the

expensiveness of collecting real-world data and training large models. How might we

confront these issues?

1.4 What Language Can Contribute to Robotics

To act in the world, the robot must first perceive the world through sight

and/or touch. After acting, the robot must observe the physical change it has caused

to decide its next action. This perception-action loop was the focus for robotic control

for several decades. However, as brought up in Section 1.3, paired perception and

action data for robotics is scarce and expensive, hindering the skills robots can learn.

Other sources of data must be leveraged.

For several decades, natural language processing (NLP) was constrained to

applications like translation, semantic parsing, and entity recognition. For robots

to augment human physical capabilities, they must understand human need and in-

tent, which are most easily specified through natural language. Robots that coexist
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with and serve humans must understand language, a modality not included in the

traditional perception-action paradigm.

Furthermore, language brings additional benefits to robotics. Individual words

are inherently more abstract, conceptual, and meaning-based than, for instance, in-

dividual image pixels. While images provide precision to guide robot movements,

language provides the ability for robots to extract semantic meaning from scarce

data, associate rules-based behavior to specific visual inputs, and enable object-based

reasoning in complex scenes and planning for long-horizon tasks.

Most importantly, freeform language data is plentiful, as evidenced by the suc-

cess of LLMs since 2022 trained on the textual soup of the internet. This wealth of

language-based knowledge has enabled incredible breakthroughs in automated pro-

gramming and writing and common-sense reasoning and world knowledge, but chal-

lenges remain in bringing the generalization power of LLMs to physical tasks.

1.5 Proposal Overview

Given these advantages of natural language, in this proposal, we investigate

two core lines of work to leverage natural language to expand robotic capabilities.

First, language is a compressed store of meaning through which we can more effi-

ciently learn from scarce robotics data. Second, language is a rich communicative

medium through which humans and robots can collaborate and adapt to each other

by expressing their intentions, preferences, and capabilities.

Along the first line of work, we explore how semantic meaning captured in

language can be exploited to enable efficient learning for few-shot generalization to

both new tasks and new domains. We take inspiration from how humans teach each

other in video tutorials, through simultaneous video and language streams, to more

efficiently teach robots new skills. We show that providing natural language instruc-

tions along with a single visual demonstration greatly improves sample efficiency when

learning novel tasks compared to previous methods that teach robots with only one
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modality. However, sometimes it is expensive for humans to teach robots through

multiple simultaneous modalities in the real-world. Researchers have tried to lever-

age cheap, abundant simulation data to train robots, but the sim2real domain gap

often degrades performance of simulation-trained policies. We show that language

can help shape the learning of visual representations to better bridge large visual

differences between sim and real, even when the sim2real gap is large and involves

hard-to-simulate deformable objects. This enables robots to generalize to real-world

domains with just a few real-world demonstrations.

Along the second line of work, we explore how language can enable smooth

human-robot collaboration to accomplish complex manipulation tasks that the robot

cannot easily learn during deployment. We argue that mixed-initiative dialog, which

enables either the robot or human to start a conversation thread, can greatly facilitate

human-robot collaboration, improving the adaptability of each agent to the other’s

capabilities. We develop a robotic framework capable of collaborating with a wide

range of real human participants through bidirectional, mixed-initiative, free-form

dialog. Our method achieves 50% more successful trials than the LLM baseline on

long-horizon mobile manipulation tasks and was preferred by more than 75% of the

18 participants.

Finally, we discuss avenues of future work that attempt to unify these two

lines of work. We propose a framework for using language-based guidelines from

manuals to enable robots to behave more safely and learn more quickly, which uses

both core advantages of language—language rules represent a compact distillation

of prior experience, advice, and know-how from the human, and language rules are

written by the human to communicate all the detailed preferences a human has for

robot behavior. We also propose additional problem settings to enhance human-robot

collaboration through mixed-initiative dialog: to address information asymmetry for

task completion, to replan, and to provide bidirectional motion feedback so both

agents can accomplish tasks together that neither can perform alone.
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Chapter 2: Background and Related Work

For robots to perform useful manipulation tasks in unstructured environments,

we established in Section 1.3 that robots need to learn intelligent patterns of behavior

from data. There are two main praadigms for doing so: imitation learning and

reinforcement learning.

2.1 Imitation Learning

In imitation learning (Pomerleau, 1988; Hussein et al., 2017), also known as

behavioral cloning (BC), we assume access to an expert teacher that provides demon-

strations of behaviors that the robot should imitate, conditioned on the observation

ot (i.e., RGB image, robot xyz end-effector position). Each expert demonstration

(usually a human teleoperation of the robot) is collected as a sequence of observation-

action tuples indexed by the timestep t: [(ot, at), ...], where at represents the action

taken from observation ot. at represents the robot command (i.e., desired change in

xyz position of its end effector).

The goal of imitation learning is to train a policy πθ : ot 7→ at that maps obser-

vations to actions, where ot ∈ Rdo and at ∈ Rda . More commonly, πθ : ot 7→ P (at|ot),

a probability distribution over possible actions. We want to learn the parameters θ

of π, namely the weights of the neural network representing π, such that the error ε

is minimized between the policy-predicted action ât, and the expert demonstration

action at: ε = ||at − ât||22, where ât ∼ π(·|ot). There are two losses to minimize ε:

either ℓ2 or log-likelihood. Let D be the set of demonstrations in our dataset, each of

which is a trajectory τi.

When using ℓ2 loss, the goal is to find the optimal policy parameters :

θ = argmin
θ

∑
τi∈D

∑
(ot,i,at,i)∼τi

||at,i − πθ(·|ot,i)||22 (2.1)
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Where the outer sum is over all expert trajectories in our dataset, and the inner sum

is over all observation-action transitions in our trajectory.

When using log-likelihood loss, the goal is to find optimal policy parameters:

θ = argmin
θ

∑
τi∈D

∑
(ot,i,at,i)∼τi

− log πθ(at,i|ot,i) (2.2)

Essentially, this seeks to maximize the product of the policy’s probabilities of pre-

dicting all actions at,i in expert demo τi. This is the same optimization problem as

maximizing the sum of log probabilities of the policy, which is equivalent to minimiz-

ing the negative sum of log probabilities.

By following either of these objectives, we train a policy πθ to follow the

expert’s actions in observations seen by the expert, and rely on the interpolative

power of neural networks to be robust to small deviations in the observation from the

training distribution.

2.2 Reinforcement Learning

Often, expert demonstrations are hard to obtain. For instance, human expert-

level teleoperation is difficult on multi-legged robots. Additionally, imitation learning

yields policies upperbounded by the expert’s performance. Sometimes these con-

siderations make reinforcement learning (RL) better for training robots. Instead of

expert demonstrations, RL requires a reward function (i.e. performance metric) that

measures how good or bad a state-action pair is toward achieving the task.

RL operates in a Markov-Decision Process (MDP), defined as a tuple M =

(S,A,R, S ′,P), where S is the set of start states from where actions A can be taken,

S ′ is the set of next states the agent lands in after taking an action, P : S×A 7→ P (S ′)

is the conditional probability distribution over next states after taking action a ∈ A

from state s ∈ S. At each timestep, the agent receives scalar reward R(s, a), where

R is a function mapping states and actions to a scalar.
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The policy randomly explores the state-action space and finds a sequence of

actions to maximize the sum of discounted rewards:

E(st,at,st+1)

[
∞∑
t=0

γtR(st, at)

]
(2.3)

Let π(·|st) represent the action predicted by the policy from state st. We

define two functions that correspond to the “goodness” of a state when acting under

a policy π. The first is the value function, or the expected sum of discounted rewards

that the policy collects from state s0 to termination.

V π(s0) = E

[
∞∑
t=0

γtR
(
st, π(·|st)

)]
(2.4)

= R(s0, π(·|s0)) + γE

[
∞∑
t=0

γtR
(
st+1, π(·|st+1)

)]
(2.5)

= R
(
s0, π(·|s0)

)
+ γV π(s1) (2.6)

The second is the quality function, or the expected reward from state s0, taking

action a0, with all future actions dictated by policy π.

Q(s0, a0) = R(s0, a0) + γQπ(s1, a1) (2.7)

Both V and Q can be defined recursively, as seen above, which is key to

learning these functions using one of many RL algorithms for the policy to learn to

perform optimal actions. We refer the reader to surveys detailing different classes of

RL algorithms (Arulkumaran et al., 2017; Ghasemi et al., 2024).

Multiple works have explored using language to shape the reward function

R for an RL agent (Nair et al., 2021; Goyal et al., 2019, 2020; Fan et al., 2022;

Ma et al., 2023, 2024a). Some researchers have specifically explored using language

models (LLMs) to generate code to tune a reward function when training robotic RL

policies (Ma et al., 2024b; Yu et al., 2023a).
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2.3 Multitask Learning

So far, we have discussed training our policy π to perform a specific task, either

through imitation learning or RL. However, in unstructured environments, we want

robots to be able to perform a wide range of tasks. Under the current tools discussed,

we would need to train a single-task policy from scratch for each new task we want

the robot to perform. This is unscalable and prevents us from leveraging data for

one task in learning a related second task. To overcome these problems, multitask

learning (Wilson et al., 2007a; Taylor and Stone, 2009) is necessary.

Earlier in the section, our policy was conditioned on only the state or obser-

vation π : S 7→ P (A). However, if we are trying to learn a multitask policy π, then

the same state may demand different actions, depending on what the task is. Thus,

we additionally condition π on a task conditioning vector C, so π : S × C 7→ P (A).

C can be as simple as a one-hot vector, goal image embedding, or natural language

instruction embedding.

Work in multi-task learning suggests that training on a wide range of tasks,

instead of the single target task, helps the robot learn shared perceptual representa-

tions across the different tasks, improving generalization (Kalashnikov et al., 2021; Yu

et al., 2019). The most straightforward way to condition multi-task policies is through

one-hot vectors (Ebert et al., 2021; Kalashnikov et al., 2021; Walke et al., 2022; Yu

et al., 2021b). Multi-task robotic policies have also been studied in other settings

and contexts, such as hierarchical goal-conditioned policies (Gupta et al., 2022a),

probabilistic modeling techniques (Wilson et al., 2007b), distillation and transfer

learning (Parisotto et al., 2015; Teh et al., 2017; Xu et al., 2020; Rusu et al., 2015),

data sharing (Espeholt et al., 2018; Hessel et al., 2019), gradient-based techniques (Yu

et al., 2020), policy modularization (Andreas et al., 2017; Devin et al., 2017) and task

modularization (Yang et al., 2020a). However, one-hot conditioning fails to leverage

similarity information between related tasks. We propose an approach to address this

issue in Section 3.
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2.4 Vision and Language

Researchers have explored how to ground natural language in visual con-

cepts or objects by developing models that can understand both visual and textual

modalities. Vision-language research first found success with problems like visual

question-answering (VQA; Agrawal et al. (2015); Marino et al. (2019)), image cap-

tioning (Socher et al., 2014; Kiros et al., 2014; Mao et al., 2014; Vinyals et al., 2014),

and video summarization (Venugopalan et al., 2015; Yao et al., 2015) in the mid 2010s.

The first attempts at training models for the inverse problems of text-to-image gen-

eration (Mansimov et al., 2015; Reed et al., 2016) and text-to-video generation (Pan

et al., 2017; Li et al., 2017) came shortly after.

Transformers arose as a neural architecture for pure language tasks but soon

unified the processing of both images and text with the first vision-language trans-

formers (Lu et al., 2019; Sun et al., 2019; Li et al., 2019; Tan and Bansal, 2019; Su

et al., 2019; Chen et al., 2019), some of which have been applied to robotic con-

trol (Shridhar et al., 2021; Zeng et al., 2020; Shridhar et al., 2022; Cui et al., 2022;

Zeng et al., 2022; Brohan et al., 2023, 2022). In addition to architectures, researchers

have also examined learning better vision-language joint representations (Radford

et al., 2021; Zhai et al., 2021; Zhu et al., 2023) to improve robotic control (Nair et al.,

2022; Shridhar et al., 2021, 2022).

These prior works in vision-language research form the technical basis of en-

abling language-conditioned, vision-based robotics in the real-world. However, visual

representations learned from these prior approaches yield robotic policies that largely

fail to generalize to large domain shifts. We address this problem in Section 4.

2.5 Natural Language for Robot Task Specification

As mentioned in Section 2.3, multitask policies can take in as context C a

natural language embedding of the task instruction, making it a language-conditioned

multitask policy (Jang et al., 2021; Lynch and Sermanet, 2021; Mees et al., 2021, 2022;
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Shao et al., 2020; Sodhani et al., 2021; Silva et al., 2021; Karamcheti et al., 2021; Garg

et al., 2022). Pretrained language embedding spaces normally preserve a notion of

semantic similarity through distance—that is, two strings similar in meaning will be

encoded into two language embeddings close in distance. This means that language-

conditioned multitask policies have two benefits: robustness (slight rewordings of

the language instruction do not meaningfully change the language embedding) and

generalizability to new tasks (a new, related task will have a language embedding

close to those of semantically related tasks that the policy has already trained on).

However, teaching robots only through language can lead to a lot of ambiguities,

which we address in Section 3.

LLMs have also been used as task planners (Huang et al., 2022; Ahn et al.,

2022; Chen et al., 2022; Raman et al., 2023; Choi et al., 2025; Luo et al., 2023), as

code generators that dictate a robotic policy’s behavior (Liang et al., 2022; Li et al.,

2024; Huang et al., 2023), and as part of a hierarchical policy where the higher level

produces language and the lower level produces fine-grained robot actions (Shi et al.,

2025, 2024; Belkhale et al., 2024).

2.6 Natural Language for Human-Robot Interaction

While language can serve as a monologic means to teach or instruct robots, it

can also serve as a medium for dialog to enable Human-Robot Interaction (HRI). Some

systems integrate LLMs as task planners or delegators (Wang et al., 2024a; Mandi

et al., 2023; Feng et al., 2024) for tasks like real-world cooking (Wang et al., 2024a) and

object sorting (Mandi et al., 2023), where task delegations are communicated through

dialog. Other systems implement a leader-follower paradigm in simulated worlds,

where the leader instructs the follower in natural language (Suhr et al., 2022; Kojima

et al., 2021; Team et al., 2022; Gao et al., 2023). Another line of work empowers the

robot to ask humans for clarifications (Ren et al., 2023), request assistance (Bennetot

et al., 2020; Knepper et al., 2013; Veloso et al., 2015), or inform humans of their
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observations (Chen et al., 2010; Mutlu et al., 2006; Cascianelli et al., 2018). We argue

that these prior works do not exploit the full flexibility of language as a communicative

medium and present a new framework for bidirectional dialog and HRI in Section 5.
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Chapter 3: Using Both Demonstrations and

Language Instructions to Efficiently Learn Robotic

Tasks

3.1 Introduction

We mentioned the two core lines of work in this proposal for leveraging natural

language to improve robotic capabilities in Section 1.5. This chapter describes our

initial work along the first area of leveraging language as a store of meaning to gener-

alize to new robotic tasks from scarce data, and it was published at ICLR 2023 (Yu

and Mooney, 2022).

Say we have a household robot, and we want to teach it new tasks. What is

the best way to do so? Looking at ourselves, we humans often learn complex tasks

through multiple concurrent modalities, such as simultaneous visual and linguistic

(speech/captioning) streams of a video tutorial. One might reasonably expect robotic

policies to also benefit from multi-modal task specification. However, previous work

in multitask policies condition only on a single modality during evaluation: one-hot

embeddings, language embeddings, or demonstration/goal-image embeddings. Each

has limitations.

One-hot encodings for each task (Kalashnikov et al., 2021; Ebert et al., 2021)

suffice for learning a repertoire of training tasks but generalize poorly to novel tasks,

since one-hot embedding spaces do not leverage semantic similarity between tasks

to more rapidly learn additional tasks. Conditioning policies on goal-images (Nair

et al., 2017, 2018; Nasiriany et al., 2019) or training on video demonstrations (Smith

et al., 2020; Young et al., 2020) often suffer from ambiguity, especially when there are

large differences between the environment of the demonstration and the environment

the robot is in, hindering the understanding of a demonstration’s true intention.

Language-conditioned policies (Blukis et al., 2018, 2019; Mees et al., 2021, 2022)
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Instruction: “Put black-
white object in left bin.”
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Instruction: “Put trape-
zoidal obj. in green bin.”
Single Demo: 

Figure 3.1: DeL-TaCo Overview. Unlike prior multitask methods that condition
on a single task specification modality, DeL-TaCo simultaneously conditions on both
language and demonstrations during training and testing to resolve any ambiguities
in either task specification modality, enabling better generalization to novel tasks and
significantly reducing teacher effort for specifying new tasks.

often face greater ambiguity challenges, since humans specify similar tasks in very

linguistically dissimilar ways at different levels of granularity, sometimes with novel

nouns and verbs not seen during training.

We posit that current unimodal task representations are often too inefficient

and ambiguous for novel task specification. In these tasks, current task-conditioning

methods would need either a large number of diverse demonstrations to disambiguate

the intended task, or a long, very detailed, fine-grained language instruction. Both

are difficult for novice users to provide. We argue that conditioning the policy on

both a demonstration and language not only ameliorates the ambiguity issues with

language-only and demonstration-only specifications, but is far cheaper to provide.

We propose DeL-TaCo (Figure 3.1), a new task embedding scheme comprised

of two component modalities that contextually complement each other: demonstra-
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tions of the target task and corresponding language descriptions. With bimodal task

embeddings, ambiguity is bidirectionally resolved: instructions disambiguate intent

in demonstrations, and demonstrations help ground novel noun and verb tokens by

conveying what to act on, and how. To summarize, we (1) propose DeL-TaCo for

training and integrating demonstrations and language into joint task embeddings

for few-shot novel task specification, and (2) show that DeL-TaCo significantly low-

ers teacher effort in novel task-specification and improves generalization performance

over previous unimodal task-conditioning methods.

3.2 Related Work

Our work is most related to BC-Z (Jang et al., 2021), which trains a video

demonstration encoder to predict the pretrained embeddings of corresponding lan-

guage instructions, while jointly training a multi-task imitation learning policy condi-

tioned on either the instruction or demonstration embeddings. Lynch and Sermanet

(2021); Mees et al. (2021) similarly learn a similar policy conditioned on either lan-

guage or goal images. However, during testing, these policies are conditioned on only

one of the two modalities, whereas ours uses both modalities during training and

testing, which we show improves generalization and reduces human teacher effort on

a broad category of tasks.

3.3 Problem Setting

3.3.1 Multi-task Imitation Learning

We define a set of n tasks {Ti}ni=1 and split them into training tasks U and test

tasks V , where (U, V ) is a bipartition of {Ti}ni=1. For each task Ti, we assume access

to a set of m expert trajectories {τij}mj=1 and a single language description li. Given

continuous state space S, continuous action space A, and task embedding space Z,

the goal is to train a Markovian policy π : S×Z → Π(A) that maps the current state

and task embeddings to a probability distribution over the continuous action space.
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During training, we assume access to a buffer Dtrain of trajectories for only the

tasks in U and their associated natural language descriptions. We define each trajec-

tory as a fixed-length sequence of state-action pairs τij =
[(

s
(i)
0,j, a

(i)
0,j

)
,
(
s
(i)
1,j, a

(i)
1,j

)
, ...

]
,

where j is the trajectory index for task Ti ∈ U with task embedding zi. We use be-

havioral cloning (BC) to update the parameters of π to maximize the log probability

of π
(
a
(i)
t,j

∣∣s(i)t,j , zi

)
, though our framework is agnostic to the learning algorithm and

would work for RL approaches as well.

During evaluation, we assume access to a buffer Dval of trajectories for only

the tasks in V and their associated natural language descriptions. Unlike Dtrain where

we have m demonstrations for each task, in Dval we have just a single demonstration

for each task. For all test tasks Ti ∈ V , we rollout the policy for a fixed number

of timesteps by taking action at ∼ π(a|st, zi). The zi for all test tasks is computed

beforehand and held constant throughout each test trajectory.

3.3.2 Task Encoder Networks

To obtain the task embedding zi, we have two encoders (either trained jointly

with policy π, or frozen from a pretrained model): a demonstration encoder, fdemo :

τij 7→ zdemo,i mapping trajectories of task Ti to demonstration embeddings, and a

language encoder, flang : li 7→ zlang,i mapping task instruction strings li to language

embeddings. Previous work has explored using language embedding zlang,i or goal

image/demonstration embedding zdemo,i as the task embedding zi, but DeL-TaCo

uses the bimodal task embedding zi = [zdemo,i, zlang,i] during training and testing.

3.4 Method

3.4.1 Architecture

Demonstration and Language Encoders. The encoder fdemo is a CNN

network trained from scratch. Following Jang et al. (2021), we input the demon-

stration as an array of m × n frames (in raster-scan order) from the trajectory for
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Figure 3.2: Method Architecture. DeL-TaCo uses three main networks: the policy
π, a demonstration encoder fdemo, and a language encoder flang. During both training
and testing, the policy is conditioned on the demonstration and language embeddings
for the task.

faster processing. (We use (m,n) = (1, 2) or (2, 2) in our experiments.) We freeze a

pretrained miniLM (Wang et al., 2020) as the encoder flang, where zlang,i is simply

the average of all miniLM-embedded tokens in li (we found this works better than

taking the [CLS] token embedding).

Policy Network. We use a ResNet-18 (He et al., 2015) as the visual backbone

for the policy π, followed by spatial softmax (Finn et al., 2016) and linear layers.

Task Conditioning Architecture. BC-Z (Jang et al., 2021) inputs the task

embedding into the ResNet backbone via FiLM (Perez et al., 2018) layers, which apply

a learned affine transformation to the intermediate image representations after each

residual block. BC-Z’s task embeddings are either from demonstrations or language.

Since our policy conditions on both, the main architectural decision was finding the

best way to feed task embeddings from multiple modalities into the policy.

Empirically, a simple approach performed best. The demonstration embed-

dings zdemo are fed into the policy’s ResNet backbone via FiLM, while the language
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task embeddings zlang and robot proprioceptive state (6 joint angles, end-effector

xyz coordinates, and gripper open/close state) are concatenated to the output of the

spatial softmax layer. Our full network architecture is shown in Figure 3.2.

3.4.2 Training and Losses

During each training iteration, we sample a size k subset of training tasksM =

{Tm1 , ..., Tmk
} ⊂ U . Given a trajectory τij for task Tmi

and corresponding natural lan-

guage instruction li, we compute the demonstration embeddings zemb,mi
= fdemo(τij)

and language embeddings zlang,mi
= flang(li). We collect the embeddings of tasks in

M in matrices Zdemo = [zdemo,m1 , ..., zdemo,mk
] and Zlang = [zlang,m1 , ..., zlang,mk

].

To train the demonstration encoder, Jang et al. (2021) use a cosine distance

loss to directly regress demonstration embeddings to their associated language embed-

dings. However, this causes demonstration embeddings to be essentially equivalent to

the associated language embeddings for each task, undercutting the value of passing

both to our policy. To preserve information unique to each modality while enabling

the language and demonstration embedding spaces to shape each other, we train with

a CLIP-style (Radford et al., 2021) contrastive loss for our demonstration encoder:

Ldemo(Zdemo, Zlang) = CrossEntropy

(
1

β
Z⊤

demoZlang, I

)
(3.1)

where I is the identity matrix and β is a tuned temperature scalar. For some tra-

jectory of state-[xyz action, gripper action] pairs xt,i,j =
(
s
(i)
t,j ,

[
a
(i)
t,j , g

(i)
t,j

])
extracted

from expert demonstration τij for task Tmi
, we use a weighted combination of stan-

dard BC log-likelihood loss for the xyz actions and MSE loss for the gripper actions.

We abbreviate zl and zd for zlang and zdemo:

Lπ(τij) =
∑

xt,i,j∈τij

− log π
(
a
(i)
t,j

∣∣s(i)t,j , zd,mi
, zl,mi

)
+ αg

∥∥∥g(i)t,j − πg

(
s
(i)
t,j , zd,mi

, zl,mi

)∥∥∥
2

(3.2)

π outputs a distribution over xyz actions, and the gripper head πg of the policy

network outputs a scalar ∈ [0, 1] for the gripper action trained on a tuned αg > 0.
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Example Training Tasks Example Test Tasks

Name

Color

Shape

Object
Identifier Type

“Put circular table in red bin.” “Put metal plate in front bin.”

“Put yellow colored object in left bin.” “Put black and white colored object in left bin.”

“Put vase-shaped object in back bin.” “Put trapezoidal-shaped object in green bin.”

Figure 3.3: Sample train+test tasks, grouped by object identifier types (under-
lined in instructions).

Both fdemo and π networks are trained jointly with the following loss, for a tuned

αd > 0:

L(π, fdemo, flang) = Lπ(τij) + αdLdemo(Zdemo, Zlang) (3.3)

Note Lπ(τij) is summed over all trajectories in the batch of training tasks M (double

summation in Equation 3.2 ommitted for brevity). flang has no loss term because we

freeze the pretrained language model and rely on its pretrained embedding space to

shape the demonstration encoding space.

3.4.3 Evaluation

During evaluation, we want the robot to perform some novel task Tv ∈ V .

Recall that Tv /∈ U , our set of training tasks. From Section 3.3.1, we have access to

a validation task buffer Dval with a single demonstration τv and a natural language

instruction lv of task Tv. We encode the demonstration with fdemo and the language

with flang and pass both task embeddings to the policy.

3.5 Experiments

We empirically investigate the following questions: (1) Does DeL-TaCo im-

prove generalization performance on novel tasks? (2) If so, how much teacher effort
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does DeL-TaCo reduce over specifying tasks with either modality alone?

3.5.1 Setup

Environment. We develop a Pybullet (Coumans and Bai, 2007-2022) simula-

tion environment with a WidowX 250 robot arm, 32 possible objects, and 2 containers.

The action space is end-effector (x, y, z) delta positions, plus the binary gripper state

(closed/opened). We subdivide the workspace into four quadrants. Two quadrants

are randomly chosen to contain the two containers, and three of the 32 possible ob-

jects are dropped at random locations in the remaining two quadrants. RGB image

observations are size 48× 48× 3.

Task Objective. We design a set of pick-and-place tasks where the objective

is to grasp the target object and place it in the target container. The scene contains

three visually distinct objects (one is the target object) and two visually distinct

containers (one is the target container). Thus, a robotic policy that disregards both

the task demonstration and instruction and picks any random object and places it

into any random container would succeed with 1-in-6 odds.

Language Instructions for Each Task. Figure 3.3 shows a selection of our

training and testing tasks. Each task is specified through language with a single

template-based instruction of the format “put [target object identifier] in [target

container identifier].”

We make this environment more challenging by having task instructions re-

fer to containers by either their color or quadrant position and objects by either

their name, color, or shape. The multiple identifiers help simulate ambiguity that

arises from informal human instructions, where different humans may refer to the

same object or container through different attributes, enabling demonstrations and

instructions to complement each other when the robot learns a new task. In total,

there are 50 target object identifiers and 6 target container identifiers, giving us 300

pick-and-place tasks. We train and evaluate on a bipartition of these 300 tasks.
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Table 3.1: Evaluation on Novel Objects, Colors, and Shapes. (p) = pretrained.
Demo Encoder Lang. Encoder Task Conditioning Success ± SD (%)

– – One-hot (lower bound) 4.9± 1.7
– – One-hot Oracle (upper bound) 69.3± 7.4

– miniLM (p) Lang.-only 17.1± 2.2
CNN – Demo-only 20.8± 2.4
CNN miniLM (p) DeL-TaCo (ours) 25.8 ± 3.4
CNN – BC-Z; Demo-only 6.7± 2.3
CNN miniLM (p) MCIL; Demo-only + Lang.-only 7.5± 1.2

Data. Using a scripted policy, we collect 200 successful demonstrations per

training task, and a single successful demonstration per test task. All demonstrations

are 30 timesteps long. Our training buffer contains roughly 40,000 trajectories.

3.5.2 Generalization Performance on Novel Tasks

Table 3.1 shows our generalization performance on 102 test tasks when trained

on 198 tasks. In this setting, the robot must not only know how to pick-and-place

the 8/32 objects it has never seen during training, but must also understand novel

instructions that refer to these objects by either their name, color, or shape.

We lower-bound the performance of our task conditioning methods by first

running a one-hot conditioned policy, with the expectation that it performs worse

than conditioning on language and/or demonstrations for the reasons mentioned in

Section 3.1. As an upper-bound, we directly train a one-hot oracle on only the 102

evaluation tasks and evaluate on those same tasks. No other method in the table is

trained on any evaluation tasks.

Next, we examine the performance of policies conditioned with only language,

with only one demonstration, and with both (DeL-TaCo). The language-only poli-

cies do not involve training fdemo, and only the language instruction embeddings are

fed into the policy via FiLM during training and testing. The demo-only policies

involve a trained fdemo, but during training and testing, only the demonstration em-

bedding zdemo is passed into the policy via FiLM. DeL-TaCo (ours) conditions on both

demonstration and language during training and testing.
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Table 3.2: Value of Language. Evaluation on Novel Objects, Colors, and Shapes.
Task Conditioning Demo-only DeL-TaCo (ours)

# demos per test-task finetuned on 0 10 25 50 100 0

Success Rate (%) 20.8 23.4 24.6 26.1 32.9 25.8
± SD (%) ±2.4 ±1.8 ±2.5 ±2.6 ±2.5 ±3.4

DeL-TaCo achieves the highest performance, increasing the success rate of the

second-best conditioning method, demo-only, from 20.8% to 25.8%. Both methods

using demonstration embeddings outperform the language-conditioned policy perhaps

because a visual demonstration is important in conveying the nature of the chosen

object and how the robot should manipulate it.

Prior methods like BC-Z (Jang et al., 2021) perform worse than DeL-TaCo

because its demo encoder is trained to directly regress zdemo to zlang, hindering it

from performing better than solely using zlang during testing. MCIL (Lynch and

Sermanet, 2021), also performs worse than DeL-TaCo because without any task en-

coder loss term, learning a well-shaped task embedding space is more difficult, hurting

generalization performance.

3.5.3 How many demonstrations is language worth?

To answer our second question, we further finetune the demo-only policy on

a variable number of test-task expert demonstrations. Results are shown in Table

3.2. The demo-only policy only starts to match and surpass DeL-TaCo (underlined)

when it is finetuned on 50 demonstrations (underlined) per evaluation task (a total

of around 5,000 demonstrations for all test tasks combined). This suggests that

surprisingly, specifying a new task to DeL-TaCo with a single demonstration and

language instruction performs as well as specifying a new task to a demo-only policy

with a single demonstration and finetuning it on 50 additional demonstrations of that

task. This showcases the immense value of language in supplementing demonstrations

for novel task specification, significantly reducing the effort involved in teaching robots

novel tasks over demonstration-only methods.
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Chapter 4: Natural Language Can Help Bridge the

Sim2Real Gap

4.1 Introduction

“gripper holding 
bread over square”

“gripper holding milk 
next to container”

“gripper wrapping 
blender wire”

Language 
emb. space

Domain-invariant 
learned image space

“gripper holding carrot 
above yellow mat”

Policy learning

𝐼!"#

𝐼$%&'

𝜋(𝑎|𝑓 𝐼 )

Figure 4.1: Bridging the sim2real gap
with language. Robot images from sim-
ulation and the real world with similar
language descriptions (green & purple bor-
ders) are mapped to similar features in lan-
guage embedding space, while sim and real
images with different language descriptions
(teal & red) are mapped to faraway loca-
tions. We learn a policy conditioned on
these image embeddings from both sim and
real images (right).

In Chapter 3, we saw how a sim-

ple language instruction could contain

information equivalent to 50 demonstra-

tions when training robots to perform

new tasks. We also saw that more

broadly, teaching robots new tasks is of-

ten better done with both demonstra-

tions and language, rather than a single

modality alone. In this chapter, we fur-

ther extend the idea of using language as

a store of meaning to learn from scarce

data, but instead of few-shot generaliza-

tion to new tasks, we demonstrate how

language can enable few-shot generaliza-

tion to new domains. This chapter rep-

resents work published in RSS 2024 (Yu

et al., 2024).

Researchers have recently achieved

significant success on household tasks with visual imitation learning (IL) (Schaal,

1999; Brohan et al., 2022). Some researchers are attempting to generalize visual IL

to any target domain by collecting large, expensive datasets of demonstrations from

many domains (Brohan et al., 2022, 2023; Padalkar et al., 2023). But can we instead

transfer a policy trained on cheaply acquired, diverse simulation data to a real-world

target task with just a few demonstrations?
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We propose creating a domain-agnostic visual representation for policy train-

ing. Such a representation should enable the policy to use the simulation image-action

data as an inductive bias to learn with few-shot real world data. This representation

must allow the policy to tap into the right distribution of actions by being broad

enough to capture the task-relevant semantic state from image observations, yet fine-

grained enough to be conducive to low-level control. For instance, a sim and real

image observation, both showing the robot gripper a few inches above a pan handle,

should lie close together in the image embedding space to lead to similar actions, even

if the two images have large differences in pixel space.

How might we acquire supervision for learning such a visual representation?

Language is an ideal medium for providing it. Descriptions of task-relevant features

in image observations, such as whether or not a gripper is close to a pan handle, serve

as a unifying signal to align the representations of images between sim and real. We

hypothesize that if a sim and real image have similar language descriptions (e.g., “the

gripper is open and right above the pan handle”), then their underlying semantic

states are also similar, and thus the actions the policy predicts conditioned on each

image should also be semantically similar (e.g., moving downward to reach the pan

handle). The pretrained embedding space of large language models (LLMs) offers a

well-tuned signal that can be leveraged to measure the semantic similarity between

real and sim images via their associated language descriptions (see Fig. 4.1). This

simple insight allows us to learn a domain-agnostic visual representation to bridge

the visual sim2real gap.

We introduce Lang4Sim2Real, a lightweight pretrain-finetune framework for

transferring between any two domains that have large visual differences but contain

data across a similar distribution of tasks. Lang4Sim2Real has the following main

advantages over prior sim2real efforts: (1) alleviates the need for the engineering-

intensive task of matching a sim environment to the real environment both visually

and semantically, (2) enables sim2real transfer on tasks involving hard-to-simulate,

deformable objects, and (3) bridges a wide sim2real gap that includes differences
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in: camera point-of-view (1st vs 3rd person), friction and damping coefficients, task

goals, robot control frequencies, and initial robot and object position distributions.

To our knowledge, this is the first work that shows that using language to learn a

domain-invariant visual representation can help improve the sample efficiency and

performance of sim2real transfer.

4.2 Related Work

Vision-only pretraining improves performance on image-based robotic poli-

cies with objectives ranging from masked image modeling (Radosavovic et al., 2023),

image reconstruction (Zhao et al., 2022; Gupta et al., 2022b; Seo et al., 2023), con-

trastive learning (Laskin et al., 2020; He et al., 2020), video frame temporal or-

dering (Jing et al., 2023), future frame prediction (Zhao et al., 2022), and image

classification (Yuan et al., 2022; Wang et al., 2022) on internet-scale datasets (Deng

et al., 2009; Grauman et al., 2021; Goyal et al., 2017; Damen et al., 2018). However,

vision-only representations are typically not robust to wide sim2real domain shifts.

Prior work in vision-language pretraining was described in Section 2.4.

Zhu et al. (2023) used language to align representations learned across multiple modal-

ities including depth and audio. Instead of using language to bridge modalities, our

approach uses language to bridge visual representations between domains.

While we approach sim2real through vision-language pretraining, domain

randomization (Andrychowicz et al., 2020; Matas et al., 2018; Tobin et al., 2017) and

system identification (Yu et al., 2017; Kaspar et al., 2020) remain popular approaches.

However, these are engineering-intensive procedures we seek to avoid.

Several methods have been proposed to learn domain invariant representa-

tions in pixel-space with GANs (James et al., 2019; Bousmalis et al., 2017; Ho et al.,

2021; Rao et al., 2020) or with semantic segmentation and depth maps (Müller et al.,

2018; Ai et al., 2023). However, these are high-dimensional and computationally

expensive representations, in the case of GANs.
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4.3 Problem Setting

In this work, we address the problem of few-shot visual imitation-learning (IL):

learning a visuomotor manipulation policy in the real world based on a few real-world

demonstrations. We cast sim2real as a k + 1 multi-task IL problem: k tasks from

simulation and the target task (with a few demonstrations) in the real world. In

general terms, we assume a source domain in which data can be acquired cheaply

and a target domain where data is expensive to collect.

In our setting, we consider access to two datasets across two domains: Ds,

which spans multiple tasks in the source domain, and Dt
target, demonstrations of the

target task in the target domain. Thus, we assume that |Ds | >> |Dt
target |, due to

how expensive target domain data collection is (such as in the real world). We make

two simple assumptions about the similarity of the two domains. First, we assume

the source and target tasks are all of the same general structure, such as multi-step

pick-and-place task compositions, but with different objects and containers across

different subtasks. Second, to train a common policy for both domains, we assume

the domains share state and action space dimensionality.

All of our datasets are in the form of expert trajectories. Each trajectory, τ =

{(It, st, [at, lt], ltask)}, is a sequence of tuples containing an image observation, It (128×

128 RGB), robot proprioceptive state, st (end effector position and joint angles), and

a language instruction of the task, ltask. Note that ltask is the same over all timesteps

of all trajectories in a given task. [at, lt] denotes that a trajectory may optionally also

include robot actions (in which case we consider the trajectory a full demonstration)

and/or a language description of the image It. In the following sections, we identify

with τ [L] a trajectory with language descriptions lt, but no actions at. Similarly, τ [A]

is a full demonstration with actions, at, but no language descriptions, lt. The language

labels for images (lt) can be automatically generated from a programmatic function

that maps image observations to language scene descriptions depending on the relative

position between the robot and the objects in the scene. During pretraining, we use
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τ [L] image-language (It, lt) pairs from Ds ∪Dt
target. During policy learning, we use

τ [A] data: (It, st, at, ltask) tuples from Ds ∪Dt
target.

4.4 Method
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Figure 4.2: Method. (i) Top: Image-
Language Pretraining. (ii) Bottom: Dur-
ing multitask, multidomain BC, we freeze
our pretrained fcnn, add adapter modules
and a policy head, then train the result-
ing multitask language-conditioned policy
on Ds ∪Dt

target.

In our method, we adopt the

common pretrain-then-finetune learning

paradigm (see Fig. 4.2). First, we pre-

train an image backbone encoder on

cross-domain language-annotated image

data (Sec. 4.4.1). Then, we freeze

this encoder and train a policy network

composed of trainable adapter modules

and a policy head to perform BC on

action-labeled data from both domains

(Sec. 4.4.2).

4.4.1 Cross-Domain Image-Language
Pretraining

We first automatically label tra-

jectories with language either during

data collection with heuristics, or in

hindsight with off-the-shelf-based object

detectors. After this data is collected,

our first step in Lang4Sim2Real involves

learning a domain-invariant representation that leverages simulation data for few shot

IL. For that, we need to learn an image observation encoder, fcnn : It → Rdcnn , that

preserves the semantic similarity of scenes in images between the two domains. For

instance, if both image Is from Ds (sim) and image I t from Dt
target (real world) show
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the robot’s gripper open and a few inches above the object to grasp, even if from

different viewing angles, then we want their image embeddings to be close together

in the learned image encoding space. This will facilitate policy learning later, as

the policy will need to draw from a similar distribution of actions for similar scene

semantics, which are now already mapped into similar visual features.

Theoretically, off-the-shelf pretrained vision-language models (VLMs) (Rad-

ford et al., 2021; Nair et al., 2022) should already possess these properties as they

were trained on a massive distribution of image and language data. However, in the

context of robot manipulation, pretrained VLMs tend to encode all observations of

the trajectory into a very narrow region of the embedding space without sufficient

distinction for task-relevant, semantic aspects of the image such as the location of the

gripper in relation to the manipulated objects. This renders them unsuitable without

additional finetuning for our application (see Sec. 4.6).

In Lang4Sim2Real, we propose an alternative approach to obtain a visual rep-

resentation that preserves the semantic similarity of scenes in images between the two

domains. We train a ResNet-18 (He et al., 2015) from scratch as our image encoder

using image-language tuples (Is, ls) from Ds and (I t, lt) from Dt
target. We denote this

vision language pretraining dataset as DV L = {(Id, ld) : (Id, ld) ∈ Ds ∪Dt
target}, where

d is either the source or target domain. The images are observations collected during

100 demonstrations from each of the tasks in Ds and 25-100 demonstrations from

Dt
target, totaling around 10k images per domain. We assume that the two sets of

language descriptions in Ds and Dt
prior are similarly distributed; otherwise, language

may not help learn domain-invariant features between Ds and Dt.

To effectively leverage language as a bridge between visually different domains,

we need a well-tuned (frozen) language model, flang : l → Rdlang , to map strings to

dlang−dimensional language embeddings. We use off-the-shelf miniLM (Wang et al.,

2020), since prior work (Mees et al., 2022) has demonstrated its effectiveness for

language-conditioned control policies.
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We propose two image-language pretraining variants in Lang4Sim2Real to

obtain a visual representation based on language supervision (see Fig. 4.2(i)A-B):

4.4.1.1 Language-Regression

Our first variant is a straightforward use of language supervision to shape

the image embedding space: predicting the language embedding of the description,

ld, given the embedding of the corresponding image, Id. Let g : Rdcnn → Rdlang be

a single linear layer (language predictor in Fig. 4.2(i)(A)) trained to minimize the

following loss:

Lcnn,reg(DV L) =
∥∥g (fcnn(Id))− flang(l

d)
∥∥2

2
(4.1)

This effectively makes the pretrained image encoder reflect the LLM embedding space.

4.4.1.2 Language-Distance Learning

We also experiment with a second variant of image-language pretraining that

provides a softer form of language supervision. We posit that the pairwise distances

between corresponding two language embeddings are what convey semantic meaning,

not the exact values of the language embeddings themselves. Thus, we design an

objective to regress the image embedding distances between a pair of images from

the two domains to their corresponding language distance:

Lcnn,dist(DV L) =
∥∥f⊤

cnn(I
s)fcnn(I

t)− d
(
ls, lt

)∥∥2

2
(4.2)

where the language distance function we use, d : l× l → R is BLEURT (Sellam et al.,

2020), a learned string similarity score commonly used in NLP. We found BLEURT

provided a richer signal than dot products or ℓ-2 distances.

4.4.2 Multitask, Multidomain Behavioral Cloning

Our second step in Lang4Sim2Real involves learning a multi-domain, multi-

task, language-conditioned BC policy (see Fig. 4.2(ii)) conditioned on our learned
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domain-invariant visual representation from Section 4.4.1. During this phase of pol-

icy learning, we freeze all but the last layer of fcnn, insert trainable FiLM adapter

modules (Perez et al., 2018) to process the language instruction embeddings, and a

fully-connected policy head to process the image feature, fcnn(It), and proprioceptive

state, st. We train the resulting policy π with BC loss to predict the mean and stan-

dard deviation of a multivariate Gaussian action distribution. The policy is trained

on k + 1 tasks: k from Ds (thousands of trajectories per task) and 1 from Dt
target

(≤ 100 trajectories, see Sec. 4.5).

4.5 Experimental Setup

We evaluate Lang4Sim2Real on sim2real settings, where the few shot IL is

defined in the real world and we use simulation to address the data scarcity. We aim

to use language to bridge a wide sim2real gap with differences in control frequency,

task goals, visual observation appearance, objects, and initial positions.

Evaluation Metrics. Task success rate is calculated through ten evaluation

trials (with different initial object positions and orientations) for each of two seeds

per task, for a total of 20 trials per table entry. For multi-step tasks, we also measure

partial credit—the number of consecutive subtasks completed from the start.

Environments. For each of our tasks, we design simulation environments in

Robosuite (Zhu et al., 2020; Todorov et al., 2012). In both simulation and real, we use

a 7-DOF Franka Emika Panda arm and use a common action space (Khatib, 1987)

consisting of the continuous xyz delta displacement and a continuous gripper closure

dimension. Robot proprioception is 22-dimensional and RGB images are 128× 128.

Tasks. For each task suite, we collect data from simulated domain Ds and

real target domain Dt. All demonstrations in sim and real are collected with a

scripted policy. Sim trajectories range from 200-320 timesteps long, at 50Hz, while

real trajectories run at 2Hz and range from 18-45 timesteps. Our three task suites

are simple stacking, multi-step long-horizon pick and place, and wrapping deformable,
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hard-to-simulate wires around a central object. See the visual sim2real gap in Fig. 4.3.

Figure 4.3: Top row: Simulation; bottom
row: real-world. Columns from Left to
Right: Stack Object, Multi-step Pick and
Place, and Wrap Wire tasks.

In the first and third tasks, we

collect and train on 400 demonstrations

per task (1600 total) as our Ds simula-

tion data, while we have 1400 demonstra-

tions per task (5600 total) for the second

task. We train and evaluate with 25, 50,

or 100 Dt
target demonstrations.

For the second task, the robot

must first put an object into a container,

and then put that container onto another

container. The objects and containers

are different in sim and real. The third

task is to wrap a wire around the blender by at least 5/6ths of a full revolution. In

simulation, we approximate the wire with a chain of spheres connected by free joints.

Table 4.1: sim2real: Performance by number of real world trajectories
Method Action-labeled Data Stack Object Multi-step Pick and Place Wrap Wire

Sim Real Success Rate (%) Success Rate (%) Subtasks Completed Success Rate (%)

Ds Dt
target 25 50 100 25 50 100 25 50 100 25 50 100

No Pretrain (Dt) – ✓ 20 30 45 0 30 35 0.45 1.05 1.05 20 15 45
No Pretrain (Ds +Dt) ✓ ✓ 35 20 55 45 25 55 1.15 1.0 1.4 25 20 20

MMD ✓ ✓ 25 35 80 20 10 35 0.8 0.9 1.1 5 10 20
Domain Random. ✓ ✓ 40 60 40 10 10 25 0.7 0.6 0.7 0 0 0

ADR+RNA ✓ ✓ 35 30 35 15 25 40 0.85 0.8 1.3 0 10 0

Lang Reg. (ours) ✓ ✓ 40 75 80 60 80 90 1.45 1.8 1.9 45 40 45
Lang Dist. (ours) ✓ ✓ 60 45 80 55 70 75 1.35 1.65 1.6 30 25 75
Stage Classif. ✓ ✓ 40 60 60 50 60 50 1.45 1.55 1.5 30 40 50

CLIP (frozen) ✓ ✓ 25 5 15 10 15 40 0.3 0.45 1.0 35 35 30
R3M (frozen) ✓ ✓ 30 45 65 15 60 55 0.7 1.4 1.5 5 25 25

Baselines. To evaluate the effectiveness of Lang4Sim2Real, we consider two

sets of baselines: non-pretrained baselines where the CNN is initialized from scratch,

and baselines with pre-trained visual encoders. For the non-pretrained baselines, we

examine training with only Dt data, and training with both Ds and Dt data. This
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enables us to understand the benefits of our proposed training procedure. We also

compare to popular prior sim2real baselines: MMD (Tzeng et al., 2014), Domain

randomization (Tobin et al., 2017) of the colors, textures, and physics of the Ds

environment, and Automatic Domain Randomization with Random Network Adver-

sary (ADR+RNA) (OpenAI et al., 2019). For the pretrained baselines, we consider

two strong foundation models as the visual backbone, CLIP (Radford et al., 2021)

and R3M (Nair et al., 2022).

4.6 Experimental Results

What is the impact of our pretraining approach? Lang4Sim2Real

nearly doubles the success rate of both non-pretrained baselines (first row-group in

Table 4.1) in most task suites, demonstrating the importance of our visual pretraining

procedure versus simply training a policy on all the data at once.

How do our two image-language pretraining variants compare? We

compare our two pretraining variants introduced in Sections 4.4.1.1 and 4.4.1.2. Lan-

guage regression performs better on average.

What is the effect of language in learning shared representations?

We ablate the effect of language during pretraining as the “stage classification” row in

Table 4.1, where the pretraining task is to predict the stage index of an image instead

the language embedding or embedding distance. Language provides a measurable

benefit in all task suites, especially in multi-step pick-and-place, perhaps because

Lang4Sim2Real leverages similarities in language descriptions between the first and

second steps of the pick-and-place task.

How does our method compare to prior works in sim2real and vision-

language pretraining? Lang4Sim2Real outperforms all of the prior sim2real base-

lines we tested against (second row-group in Table 4.1), which collectively do rela-

tively poorly in most settings, highlighting the difficulty of the sim2real problem in

our setup. Our method outperforms both vision-language, internet-scale pretrained
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baselines (fourth row-group) across the board. When trained on increasing amounts

of real-world data, both R3M and CLIP tend to plateau at 65% and 40% respec-

tively, while our method achieves up to 90%. This suggests that CLIP and R3M do

not scale as well as our method, despite being pretrained on internet-scale data while

our method was pretrained on images from just a few hundred sim and real trajec-

tories. These results, especially on the wire wrap task, show that Lang4Sim2Real is

able to bridge wide sim2real gaps even with deformable objects.
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Chapter 5: Mixed-Initiative Dialog for

Human-Robot Collaborative Manipulation

5.1 Introduction

Unlikely

IncapableExpert

Likely

> ≈ <
Robot Performs Skill Robot Negotiates for Human Help

Please open the package.

I can’t.

I can bring you scissors.

⋅⋅⋅

Robot Skill Capability

Probability of Human Helping
Based on Dialog History

Fetch Pour Use

Grab package

Go to kitchen

Place package

Who should perform this step?

~~~
~~~

Fetch Pour Use

Figure 5.1: We present MICoBot, a system
for human-robot collaboration where both
agents can initiate and carry out physical
and verbal actions. MICoBot uses both the
robot’s capability and the likelihood of hu-
man helping (inferred from previous dialog
history) to determine whether the robot is
better suited than the human to perform
the skill. If it is, it attempts the skill itself.
If not, it negotiates for human help.

In Chapters 3 and 4, we saw how

language, as a store of semantic mean-

ing, enables a surprising amount of few-

shot generalization to new tasks and new

domains. In this chapter (based on work

currently under review (Yu et al., 2025)),

we pivot to our second line of work men-

tioned in Section 1.5 to explore how lan-

guage can enable flexible communica-

tion paradigms for human-robot collabo-

ration. Why is collaboration important,

and how can effective communication ex-

pand physical robotic capabilities?

Imagine preparing for a dinner

party with a friend. Your friend might

excel at mixing drinks while you focus

on cooking the main dish. You are also

better at decorating, while both of you

reluctantly negotiate over less desirable

tasks like cleaning.

Now, imagine a helper robot in place of the friend. Current robots are not

fully autonomous for many household tasks, but they offer broad capabilities with

varying levels of reliability that can be leveraged through collaboration with humans.
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Robot-
Initiated 
Dialog

Could you open the package using 
the scissors?

There are no scissors on 
the coffee table.

I can bring the scissors for you! 
However, I am unable to open the 

package with the scissors.

Ok, if you bring the scissors, 
I will open the package.

Ok, I will do that now.Can you please open the package 
and place it on the coffee table?

scissors

package Robot action Human action

Human-
Initiated 
Dialog

Absolutely!

Thank you, please put 
the car in as well.

No worries! I’ll happily put them 
in for you.

Good job! We need to seal the 
box. Please bring the ribbons here

When that is done, I will close 
the box and seal it. 

I’m busy. I hope you put the 
tissue and the car in the box.

Thank you so much for covering 
the box and wrapping it!

No worries!

tissue 

ribbons

car
Human actionRobot action

Robot action

Figure 5.2: MICoBot supports both robot-initiated (top row) and human-initiated
(bottom row) task-directed speech2speech dialog, where both agents discuss who is
best suited to perform steps in a long-horizon task.

To be an effective partner, such a robot must communicate in physically grounded

natural language, decide when to take initiative or defer to the human, negotiate

task allocation based on strengths and preferences, and adapt to changing contexts.

These ingredients are essential not only for collaborative household robots, but also

for coding assistants, chatbots, and AI agents.

Long-horizon tasks, such as preparing for a party, require dynamic, bidirec-

tional collaboration across control, initiative, and communication. In particular, the

ability to both take initiative and yield control is central to effective human–AI team-

work. However, current AI systems (e.g., chatbots) typically rely on one-directional,

human-initiated interactions (Ouyang et al., 2022; Achiam et al., 2023), while prior

human–robot interaction (HRI) approaches often assume fixed collaboration plans

and full human compliance (Selvaggio et al., 2021). Such assumptions limit flexibility

and fail to account for the diverse preferences, capabilities, and strengths of differ-

ent human partners. We argue that effective human–robot collaboration requires a

paradigm shift toward mixed-initiative dialog as the communicative medium, enabling

both agents to initiate, negotiate, and respond to proposals in natural language.

To enable this paradigm shift, we introduce MICoBot (Mixed-Initiative Col-

laborative roBot), the first system that supports mixed-initiative dialog for seamless

human–robot collaboration in the physical world. MICoBot allocates task steps to the
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most suitable agent (see Fig. 5.1) to maximize overall success, minimize human effort,

and respect human-initiated requests. It achieves this by engaging in mixed-initiative

dialog and negotiation to decide step allocation (see Fig. 5.2), while coordinating the

physical and verbal actions required to execute the plan.

We validate MICoBot through real-world user studies, where 18 participants

collaborated with a TIAGo mobile manipulator on three household tasks. Our ap-

proach improves success rate by 50% over a pure LLM baseline and is preferred by

over 75% of participants. In summary, our contributions are: (1) A new problem

setting that integrates mixed-initiative natural language dialog with mixed-initiative

human–robot interaction. (2) A novel optimization framework for task alloca-

tion that balances human and robot effort with success through a unified metric. (3)

A hierarchical robotic system, MICoBot, that enables mixed-initiative speech-

to-speech human–robot collaboration and flexibly adapts to diverse real human col-

laborators in physically grounded, long-horizon tasks.

5.2 Related Work

Mixed-initiative dialog (Carbonell, 1970; Allen et al., 1999; Chu-Carroll,

2000) refers to communication with freeflowing questions and answers from both

parties. In the NLP field, the dominant chatbot paradigm adopted by large language

models (LLMs) largely eschews mixed-initiative interaction: humans pose substantive

questions, and the chatbot responds to these requests (Ouyang et al., 2022; Achiam

et al., 2023). Recent work has sought to make dialog systems more goal-directed

and persuasive toward some goal, such as soliciting donations (Wu et al., 2025; Deng

et al., 2023a; Yu et al., 2023b; Chen et al., 2023; Deng et al., 2024) or clarifying

ambiguous human requests (Qian et al., 2021; Deng et al., 2023b; Chen et al., 2024).

However, none of these systems addressed mixed-initiative dialog in grounded, real-

world collaborative manipulation tasks.

In human-robot interaction (HRI), researchers have developed human-robot

40



collaboration systems that interact through language but are restricted to single-

initiative dialog (see Section 2.6). Some works in HRI have explored mixed-

initiative collaborative systems without dialog, only with physical actions (Few

et al., 2006; Natarajan et al., 2024; Bishop et al., 2020; Rosero et al., 2021; Paleja

et al., 2024; Jiang and Arkin, 2015; Baraglia et al., 2016). These prior works overlook

the critical role of communication in effective collaboration.

Prior works have also studied human-robot optimal task allocation by

maximizing productive time and minimizing idle agents (Vats et al., 2022; Yu et al.,

2021a) or maintaining safety (Faccio et al., 2024; Singh et al., 2023). These solutions

assume availability of all agents. In contrast, MICoBot can adapt to the specific

human’s willingness to help by estimating its availability based on previous dialog.

5.3 Problem Setting

state

Verbal
action

MDP environment

state

Verbal
action

Phys.
action

Phys.
action

Figure 5.3: Proposed MDP for Mixed-
Initiative Collaboration.

MDP Formulation. We study

how human-robot collaborative manipu-

lation can be facilitated through mixed-

initiative dialog. We assume that both

agents can observe the state of the world,

s ∈ S, and perform actions, a ∈ A =

Ap ∪ Av, comprised of a physical ac-

tion space, Ap (e.g., move objects, open

them, etc.), that directly affect the phys-

ical state of the environment s, and a free-form, natural language verbal action space,

Av, which is directly observed by the other agent but does not change the physical

state. We model the problem as a Markov Decision Process (MDP) from the robot’s

point of view (see Fig. 5.3), where on each environment step, the robot performs some

action, aR ∈ Ap,R∪Av,R and receives an observation o = [I, av,H , sproprio ] consisting of

an RGB-D image I, an optional verbal action from the human partner av,H , and the

robot’s proprioceptive state sproprio . Within each environment step, the human may
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perform a series of actions, aH ∈ Ap,H ∪ Av,H , in its own physical and verbal action

space after perceiving the world state and robot’s previous dialog, av,R.

Physical and Verbal Action Spaces. The physical and verbal action

spaces, Ap and Av, are shared between both agents. Each element of these action

spaces is a parameterized action primitive represented by the pair, ap/v = (ωp/v, θp/v).

ωp is the type of the physical action primitive (open, pick-and-place, etc.) and

θp are the corresponding parameters (e.g., what object to open or pick and where

to place it). We assume that humans are fully competent in executing all steps of

a collaborative household manipulation task but may be unwilling or unavailable to

perform some or all required actions. Their behavior can range from indifferent (never

acting) to overly proactive (completing the entire task without robot involvement).

In contrast, robots often have limited manipulation capabilities and may be un-

able to execute more complex actions, in which case it uses verbal actions to communi-

cate with the human. ωv is the type of the verbal action primitive (ask human for help,

respond to human, etc.), and θv are the corresponding parameters defining the con-

text of the verbal primitive (e.g., what step the robot needs help on). While the types

of verbal actions are limited, each generates freeform and open-vocabulary language.

MICoBot first selects an abstract verbal action from this space, then translates it into

a natural language utterance to negotiate with the human—conveying its requests and

the assistance it requires for successful collaboration. This involves reasoning over

asymmetric human and robot physical capabilities to devise collaboration strategies

that maximize task success while minimizing human effort.

Collaborative Task Definition and Problem Statement. We assume the

collaborative task is defined by a task plan of length T , represented as a sequence of

unassigned physical action primitives, [ap,0, ..., ap,T−1], such as [(pick-and-place(box,

table), . . . , close(box)], obtained from the task instructions or off-the-shelf task

planner. To complete the manipulation task while minimizing human effort, the sys-

tem must allocate steps of the plan between the two agents—negotiating with the
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Iterative PlannerMeta Planner Action Executor

Action Plan
[bring( ), open( , ), …]

Symbolic State
The  is on the . The  is at (x, y)…

 

Dialog History
: “Could you please open the package?”
: “I want you to open it. And pour it too.”

Task Allocation Coder

Action Selection Coder

PhysicalInputs:

Exec. Task Alloc. Code

𝑄 functions
(learned from simulation)

Mobile Manipulation Primitives

Arm + Base
Joint Commands

help estimator

“I can bring scissors for you
to open the package.”

[  ,  , … ]

Best Allocation

Verbal

Execute Action
Selection Code

Next Action Inputs:
RGB-D Map

Constraint
Relaxation

H_dialog_type = “allocation”

Constraints_on_G = [ , , … ]
find_best_allocation(G)

…

R_dialog_type = “respond_to_H”

decide_next_action(…)

…

Figure 5.4: MICoBot consists of 3 decision-making modules: a meta-planner that
produces a collaborative strategy expressed through adaptive planning code, an iter-
ative planner that executes the code and optimizes our objective (Eq. 5.1) to decide
the next primitive action, and an action executor that outputs the low-level pose
trajectory or verbal utterance to say to the human.

human through robot-initiated dialog to suggest assignments, adapting to human

preferences through human-initiated dialog, and ultimately executing its assigned

physical actions. At each step t, the system must compute the best allocation of the

remaining steps of the plan, G = [gt, ..., gT−1], where ∀t, gt ∈ {H,R}. The optimal

allocation G∗ maximizes the expected task success probability while minimizing to-

tal human effort. The optimization also incorporates constraints conveyed through

the mixed-initiative dialog history, such as task allocation requests or proposed task

splits. The resulting allocation G∗ determines whether the robot executes the current

step (R) or negotiates for human help (H).

5.4 MICoBot: Mixed-Initiative Collaborative Robot

5.4.1 Collaborative Task Allocation as Optimization.

A helpful physical collaborator must aim for task success with minimal human

effort while adhering to human preferences expressed in dialog. We formulate collabo-

rative task allocation as a constrained optimization problem. To simplify, we combine

success probability and effort into a single Q-value inspired by temporal distances in
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RL (Myers et al., 2025).

We assume each task step is executed by a multi-task policy π that performs

continuous low-level control at a fixed control frequency. We define the reward as

r = −1 per control time step, terminating when the skill completes or times out. A

well-trained Q-function, Q : ot × at = (ωt, θt) 7→ R with a discount factor of 1, thus

represents the negative expected number of timesteps until skill completion from

a given state. We assign each agent a distinct Q-function: QR for the robot and QH

for the human. These agent-specific Q-functions thus provide a unified, interpretable

cost metric for comparing step allocations, jointly capturing both execution time

(effort) and likelihood of success.

However, directly optimizing step allocation with QH and QR diverges from

realistic human-robot collaboration in three ways: (1) human and robot effort are val-

ued equally, when human effort is more valuable; (2) the human is assumed to always

comply with robot-initiated requests, overlooking their willingness and availability;

and (3) human-initiated requests or preferences are not respected. To address (1), we

introduce a human-effort ratio, α, valuing human effort to robot effort. To address

(2), human Q-values are adjusted with an inferred probability, pH,t, of the human

agreeing to perform action aH,t = ωt(θt) when asked. To address (3), we enforce con-

straints, C1, . . . , Cn, extracted from human-initiated dialog—such as explicit requests

to perform specific steps themselves or delegate them to the robot. Altogether, we

propose the following objective to find the optimal task allocation G∗:

max
gt,...,gT

T−1∑
t

(
1gt=H · α

pH,t

+ 1gt=R

)
Qgt(st, at),

s.t. C1, . . . , Cn are satisfied

(5.1)

that minimizes expected time-to-success and human effort.
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Pour Package in Bowl
n = 6

Assemble Toy Car
n = 6

Pack Gift Box
n = 6

Average
n = 18

MICoBot LLM MICoBot LLM MICoBot LLM MICoBot (ours) LLM

Entire Task Success Rate (%, ↑) 100 83 67 0 67 0 77.8± 15.7 27.8± 39.3
% of task steps completed (↑) 100 93 94 31 88 50 93.8± 5.1 58.2± 26.0
% of steps performed by Human 27 29 60 5 35 21 40.5± 14.2 18.2± 9.7

Table 5.1: Comparison between MICoBot (ours) and the LLM baseline across three
real-world tasks.

5.4.2 MICoBot Framework

MICoBot is a three-level framework (Fig. 5.4) that includes 1) a meta-planner

(implemented as GPT-4o) that processes human dialog and generates a collaborative

strategy expressed in code, 2) an iterative planner that updates planning state vari-

ables and allocates and decides the next action to perform by executing the code, and

3) an action executor that carries out the action primitive, either through low-level

physical actions or by formulating a dialog utterance to the human.

Q Functions. To quantify Eq. 5.1, MICoBot requires accurate Q-functions

that capture each agent’s expected effort and success probability on each task step.

To collect data to learn the robot’s Q-function (QR), we use the OmniGibson simu-

lator (Li et al., 2022), recording both completion times and success rate. We train a

supervised network as QR that predicts the expected timesteps for an action primitive

a to succeed from a given symbolic state o. When estimating the human’s Q-function

(QH), we simply obtain time estimates for each step from an LLM predicting how

long a human needs to execute action at = ωt(θt), plus a travel time estimate based

on human-object distances.

Human Helpfulness Estimator. To adapt to temporally changing human

sentiment, MICoBot estimates the probability of human assistance at the current t-th

timestep, pH,t, using an LLM-based sentiment analysis over prior dialog.
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5.5 Experimental Evaluation

We evaluate MICoBot in the real-world on a Tiago mobile manipulator work-

ing with 18 unique human participants on household tasks. A successful robotic

collaborator must achieve task success (primary metric) while minimizing human

effort (secondary metric). We also report subjective user satisfaction measures.

Environment. In the real-world, we perform our experiments in a mock

apartment with a kitchen and living room area with commonplace furniture. In all

of our tasks, the robot and human work together on opposite sides of a coffee table.

Simulating a household setting, the participant mainly sits on the couch, doing their

personal (i.e., non-task-related) work. The human can be as inactive or proactive as

they wish. Each human user study consists of two 20-30 minute trials, in which they

collaborate with both our method and a pure LLM baseline, ordered randomly.

Skills. To perform long-horizon household tasks, the robot has access to

several mobile-manipulation action primitives relating to pick-and-place, pouring,

and folding. To initiate and respond within mixed-initiative dialog, the robot uses

open-vocabulary verbal action primitives to ask the human for help on a step, propose

to split up a few steps with the human, accept/reject human requests based on its

capability, and respond to the human for all other queries.

Baselines. Because multiple components of our method are powered by

LLMs, we compare our approach to a pure LLM baseline (LLM) given the same

information as our meta-planner: symbolic state, dialog history, task plan, α human-

robot effort tradeoff ratio, and a list of the robot’s skills. The LLM primarily optimizes

for task success and secondarily minimizes human effort.

Tasks. We perform user studies on 3 real-world tasks, each with 6 users for

a total of 18 unique participants. (1) Pour package into bowl: Fetch the bowl,

package, and scissors, cut open the package, and pour it into the bowl. (2) Assemble

toy car: bring the car parts, wheels, and drill from the shelf to the coffee table, drill

in the wheels, switch the drill bit, and finally drill in the windows and seats. (3)
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Pack gift box: fold the gift box, put tissue wrapping paper and a toy car in the

box, close the lid, wrap ribbons, and tape down a gift bow. Each task is 5-8 mobile

manipulation steps long and requires varying degrees of human involvement.

5.6 Experimental Analysis

(1) Does our method achieve the best trade-off between task success

and minimizing human effort? In our real-world user study (Table 5.1), MICoBot

achieves a 78% task success rate compared to 28% for the LLM baseline (statistically

significant with p-value 0.007 under Fisher’s exact test). Additionally, MICoBot

achieves a 94% task step completion rate compared to the baseline’s 58% (statisti-

cally significant with p-value 0.002 under the Wilcoxon-signed-rank test). MICoBot

understood its own limitations (through affordance functions trained in simulation),

and was hence better at leveraging human assistance effectively on the steps it was

ill-suited to perform. The LLM baseline tended to prioritize minimizing human effort

over task completion by allocating the robot multiple steps it was incapable of, since

the LLM lacked an understanding of the robot’s affordances. MICoBot uses roughly

double the amount of human effort (41% vs 18%) to achieve nearly triple the success

rate of the LLM baseline, demonstrating a better trade-off between maximizing task

success and minimizing human effort.

(2) How do users feel about working with our system? An A/B blind

preference test shows that 78% of users preferred our method over the LLM baseline.

Our method also significantly outperformed the baseline in user scores on overall

satisfaction, communicative ability, and capability in asking for a suitable amount

of help (statistically significant under the Wilcoxon-signed-rank test with p-values

ranging from 0.007 to 0.024; see Figure 5.5). In contrast, the LLM baseline often

failed to ask when it needed help and was unwilling to reject human requests it could

not fulfill, leading to over-promises and task failures.

(3) Is mixed-initiative dialog critical to our method’s performance?
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LLM
MICoBot

28% 33% 11% 11% 17%

11% 28% 50% 11%

Overall User Satisfaction

LLM
MICoBot

28% 33% 17% 6% 17%

11% 39% 28% 22%

Communicative Ability

LLM
MICoBot

28% 39% 11% 22%

6% 22% 44% 28%

Asked for Suitable Amount of Help

0 20 40 60 80 100
% of Ratings

LLM
MICoBot

44% 22% 11% 22%

11% 11% 17% 17% 44%

Awareness of Its Limitations

Likert Rating (↑)
1 2 3 4 5

Figure 5.5: Our method substantially out-
performs the LLM baseline in user ratings
averaged over all n = 18 participants.

In real-world user studies, MICoBot en-

gaged in 2.4 dialog initiative shifts per

trial, compared to the LLM baseline’s

1.1. This enabled MICoBot to boost

human acceptance of help requests from

55% to 86%. The LLM baseline made

far fewer help requests per trial (0.9 vs.

MICoBot’s 2.9) and achieved a smaller

acceptance increase (70% to 75%). This

demonstrates mixed-initiative dialog is

critical to collaborative discussion and

task success.
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Chapter 6: Proposed Future Work

We discussed in Sections 3 and 4 ways to use language for semantic under-

standing in robotics tasks, enabling a greater degree of few-shot generalization to

new tasks and domains. In Section 5, we discussed an entirely separate way to use

language—for freeform, flexible, bidirectional communication that enables robots to

accomplish long-horizon tasks with human collaboration. In our future work, we seek

to expand upon and combine these two separate lines of work.

6.1 Steering Policies and Accelerating Learning with Lan-
guage Rules and Guidance

When we bring helper robots into our homes, it is crucial for the robot to

operate under a set of rules that we specify—for example, to avoid running over

family members, avoid manipulating glass and other brittle objects, and generally

try to conserve water and electricity when cleaning and using appliances. It would be

very helpful if we could enumerate these desired behaviors in natural language, hand

over this manual to the robot, and train the robot to follow this manual.

As a problem setting, let G represent this manual (equivalently, “guidebook”

or “rulebook”). G contains natural language guidelines that specify the robot’s ob-

jectives, prohibited behaviors, and information about the expected dynamics of the

environment. We hope to leverage these guidelines to enable robots to learn faster,

behave more safely, and improve human satisfaction. The guidelines in G range in

importance from critical (e.g., “never cause physical harm to the human”) to rec-

ommendations of less importance (e.g., “try to move smoothly from one place to

another”), to purely informational guidelines (e.g., “the toaster becomes hot when

you turn the dial past 0”).

Learning from rules offers to bridge the two uses of language that we explored
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in Sections 3, 4, and 5. Along the first thread of leveraging language’s pretrained

embedding space, rules offers a compact, distilled representation of good and bad

behaviors, language knowledge, and know-how that can be leveraged to help the robot

learn faster. Along the second thread of using language as a communicative medium

between humans and robots, a rules manual is an extensive document communicating

detailed intent, preferences, directives, and knowledge to the robot.

Enabling robots to follow a complex system of ranked rules requires us to

develop a cost function to quantify the compliance of robot behavior. This makes

RL a natural learning paradigm to teach the robot good behaviors. In RL however,

exploration is difficult because policies randomly explore regions around the current

behavioral policy to discover optimal trajectories for achieving a task, which can be

computationally intractable for long-horizon tasks and continuous state and action

spaces.

To address the problem of exploration inefficiency and guideline compliance,

we propose factorizing the policy into two levels: a high-level policy πhi : ot × ltask 7→

lact that predicts an action expressed in language tokens every k timesteps, where

lact ∈ Rn×dl , and a low-level policy πlo : ot × ltask × lact 7→ at, which predicts a

low-level robot action (i.e., xyz delta positions) at ∈ Rda every timestep.

The goal of πlo is to predict a series of low-level actions at that follow the

intermediate-level action lact expressed in language tokens. The job of πhi is thus

to predict lact that induces πlo to make progress toward the goal expressed in ltask.

Having an intermediate action representation lact enables (1) better interpretability,

allowing us to judge whether the policy is following guidelines, and (2) enables more

semantically diverse exploration, since perturbations in lact token space leads to more

meaningful behavioral policy differences than perturbations in low-level action space.

50



6.1.1 Prior work

6.1.1.1 Constitutional AI

Before several LLMs were popularly released in late 2022, researchers worked

to prevent them from emitting hateful, discriminatory, or violent content. One of

these methods was Constitutional AI (Bai et al., 2022), where researchers developing

Claude wrote a list of 16 principles, referred to as a constitution. To encourage

their LLM to adhere to this constitution and produce safe responses, they iteratively

prompted the LLM to (1) provide a response r to an original prompt p, (2) determine

whether r had following a randomly sampled principle from the constitution, and

(3) if not, self-suggest modified responses r′ to the original prompt p to follow that

principle. This yielded LLM responses that were more likely to comply with the

constitution, and these prompt and modified response pairs (p, r′) were then used to

finetune the model.

In a sense, our proposal can be summarized as “Constitutional AI for Robotics,”

with one key difference. In constitutional AI, all principles are listed as equally im-

portant. However, in the physical world, some principles (such as minimizing harm

to the human) are much more important than others (such as minimizing damage to

objects on the scene). This means that rules within rulebooks should be ordered by

priority and importance (Censi et al., 2019).

6.1.1.2 Language as Intermediate Action Representation

Our proposed high-level policy architecture is inspired from RT-H (Belkhale

et al., 2024) and YAY-Robot (Shi et al., 2024), both of which use a high-level policy

that passes a language action for the low-level policy to execute. This intermediate

language action is a convenient interface for a human to provide on-the-fly verbal

feedback to correct the robot’s behavior in real time. However, these works only

perform imitation learning and do not consider the main problem of following robot

rules or using the rules and knowledge in a guidebook to help accelerate learning and
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RL exploration.

6.1.1.3 Symbolic Specifications

When a robot needs to learn to follow rules and guidelines, a key question

is how these rules can be represented in a manner compatible with the policy ar-

chitecture and learning algorithm. Much work has been done on task specification

in symbols. A popular representation is Linear Temporal Logic (LTL), which, as

its name suggests, can represent multi-step task specifications that can change with

time, such as “Go to three nearby restaurants and survey the prices, then buy the

cheapest entree above 800 calories that you saw and bring it to me.” Researchers have

used LTL for task specification and generalization to new tasks (Liu et al., 2023b,a,

2024b,a; Hsiung et al., 2021). Hu et al. (2023) proposed a spinoff on LTL that is more

compact and code-like, RoboEval Temporal Logic (RTL). However, these works focus

on task specification through symbolic and logical expressions and do not study how

a guidebook of multiple logical expressions can shape robot behavior during learning.

6.1.1.4 Constrained RL

The standard objective in RL is to maximize the expected sum of discounted

rewards (Equation 2.3). However, a policy that aims to maximize expected reward

does not guarantee safe behavior. Constrained Policy Optimization (CPO) (Achiam

et al., 2017) proposes modifying the standard RL objective by adding cost functions,

the analog of reward functions but indicating how undesirable a state-action pair is.

CPO can then learn value functions that are based on the discounted sum of these cost

functions. These cost-value functions must be maintained under some constant, pre-

determined threshold over the entire trajectory. The RL agent must then maximize

reward while visiting states that satisfy the cost-value function threshold constraints.

A separate concept called shielding was also proposed to encourage safe RL (Al-

shiekh et al., 2017). There are two shielding paradigms: a shield that precedes the
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policy whose responsibility is to provide a list of safe actions for the policy to choose

from, or a shield that follows the policy whose responsibility is to remediate unsafe

actions from the policy to make them safe to execute in the real world.

More relevant to our proposed work is training RL policies with explicit natural

language constraints. Yang et al. (2020b) learns a 2D binary mask, of the same

dimension as the state space, representing the states that the agent cannot visit.

Wang et al. (2024b); Lou et al. (2024) adopt CPO by comparing the cosine similarity

of language embeddings of language constraints and textual observations. However,

these works deal with simplified gridworld domains where a mask over the entire state

space is feasible to predict at each timestep, or in simple 2D pointmass domains,

and they only deal with negative rules pertaining to which states the agent should

not move to. We hope to learn from a much wider range of guidelines—not just

negative constraints on which states shouldn’t be visited, but also guidelines on what

behaviors are recommended, and dynamics information about the environment. We

are also interested in enabling faster RL exploration when following this guidebook,

which these prior works were unable to demonstrate.

6.1.1.5 Formal Methods

The field of formal methods (Woodcock et al., 2009) provides tools for ana-

lyzing and ensuring guarantees of each component of a program. These principles

could be applied to our setting of rule following robots, especially if the policy has an

intermediate planning stage that was written in code or symbolic form.

6.1.2 Types of Guidelines

What are the types of guidelines in a guidebook we provide our robot? We

propose some broad categories we want our robot to comply with and make use of

during the learning process.

First, we define three guidelines types: constant, conditional, and dynamics.
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A guideline is constant if it always applies under all situations (e.g., “Never collide

with the furniture”, or “Prioritize choosing shorter paths”). A guideline is conditional

if it applies under a specific state condition (e.g., “If the lights are off, turn them on”).

Finally, a dynamics guideline is one that describes a certain aspect of how the system

evolves over time, such as “if the cabinet is opened, objects can be placed inside.”

Second, we split the constant and conditional guidelines by their importance:

critical and non-critical. Critical guidelines must be followed and complied with at

all times, while non-critical guidelines can be ignored in service of obeying critical

guidelines. The notion of prioritization over rules is common in unstructured envi-

ronments. For instance, we may want a self-driving car to avoid abrupt lane changes

to ensure a smooth ride—a non-critical guideline. However, if there were a sudden

obstacle blocking its lane, we would prefer the car swerve out of its lane temporarily

to avoid it—a critical guideline (Censi et al., 2019).

6.1.3 Proposed Method

6.1.3.1 Measuring Rule Following

How would we ensure that the policy follows the rules and guidelines stipulated

in the guidebook G? We can leverage the fact that the high-level action lact produced

by the high-level policy πhi is a token-by-token prediction of what the robot intends to

do—making it of the same modality as the guidebook G written in natural language.

Recall that πhi predicts a probability distribution over language tokens, so we

can sample it to get candidate string predictions for lact. We want to shape these

probability distributions to achieve better compliance with rules most relevant to

the current state st. We would like to place more probability mass on performing a

language action lact that complies with guidelines and decrease the probability mass

on performing language actions that do not. To do this, we propose modifying the

predicted distribution of lact via a compliance score which evaluates how likely the

proposed lact complies with all relevant rules in G at the current state st.
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Let w(li) = compliance score of lact,i, one of the candidate lact predictions of

πhi. Say we have access to a rule retriever F : G × st 7→ R, which gives a subset

R = {rj}k−1
j=0 of the top-k most relevant guidelines G in the current state st. F can be

implemented as a RAG-based system (Lewis et al., 2020). We define the compliance

score as follows:

w(li) =
∑
rj∈R

P (sat(rj)|li, st)σ
(
P (rel(R)|st)

)
j

(6.1)

where P (sat(rj)|li, st) is the probability that rule rj is satisfied if action li is executed

by πlo from state st, and P (rel(R)|st) is a vector where element j is the probability

that rule rj is relevant given the current state st. The σ(·)j indicates the jth element

of the vector after the softmax operation.

The relevance scores are important because rules often vary in importance as

a function of the current state st. For instance, the rule “all dirty plates should go

in the dishwasher,” is most relevant after the robot has grasped a dirty plate. Other

rules like “do not move close to the wall” are more relevant the closer the robot is to

the wall.

Thus Equation 6.1 measures how well the proposed language action li satisfies

the rules in R, weighted by the relative relevance of the rules each other. Intuitively,

under this definition, satisfying a more relevant rule contributes more heavily to the

compliance score than satisfying a less relevant rule. w(li) ∈ [0, 1], where w(li) = 1

indicates perfect compliance to all top-k retrieved rules in R.

Finally, we can update the predicted logits from πhi(li|st) by pushing them

toward the softmax distribution induced by w(li). This moves more probability mass

toward sampled lacts from πhi that are more compliant to the relevant rules in the

rulebook G.

As initial steps, we plan to use an off-the-shelf VLM for P (rel(ri)|st) and an

LLM for P (sat(ri)|li), but for improved performance, we may need to consider training
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these from in-domain data as binary classifiers or state-based heuristics. We also plan

to initially treat all guidelines as equally important. After this works decently, as a

subsequent step, we will explore extracting and inferring the relative importance of

the rules from G as an additional multiplicative term in Equation 6.1. We can also

leverage dynamics guidelines from G to more accurately estimate the satisfaction

probability of rule rj when following language act li from state st.

6.1.3.2 Data Collection

We seek to train the robot to perform some task expressed in natural language

ltask while following guidebook G. We assume access to two datasets. The first, Dtask,

consists of a small number of target task demonstrations τi =
[
(s0, a0), ..., (oT−1, aT−1)

]
.

We also assume that there are language segmentations of each expert demonstration,

where each expert demonstration is divided into chunks [tstart, tend] that denote the

timesteps between which the robot is performing a movement with the language de-

scription lact. The language segmentation is either provided by a human oracle, or a

heuristic captioning method similar to Section 4.

The second datasetDplay is of the same format, except that it contains multiple

tasks that are somewhat related to ltask. This provides diversity of paired language

and action behaviors, useful for increasing the range of language inputs that πlo is

able to follow and language outputs πhi is able to generate.

6.1.3.3 Training

In the first phase, we learn πlo : st × lact 7→ at with imitation learning on

task data Dtask to get a good behavioral initialization. In the second phase, we learn

πhi : st× ltask 7→ lact, also with imitation learning, but this time on both task and play

data Dtask ∪ Dplay. This enables πhi to produce a broader distribution of language

actions.

In the third phase, we aim to improve the overall performance of our system
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beyond its imitation learning performance through RL. However, we want the explo-

ration to be rule-guided to learn faster. In this phase, we first perform RL finetuning

on πhi (while πlo is frozen), and then perform RL finetuning on πlo (while πhi is

frozen).

When finetuning πhi, we use a standard loss LRL (such as an advantage-based

loss in PPO (Schulman et al., 2017)), plus an auxiliary term that seeks to maximize

probability weight on language actions (lact) that have high rule compliance. Thus

the losses of πhi and πlo are:

Lhi = LRL − λ
(
log πhi(lact|st, ltask) + logw(lact)

)
(6.2)

Llo = LRL (6.3)

The second term in Lhi allows us to maximize the probability weight on lact

that comply with rules with a high compliance score, w(lact). This term is weighed

by a scalar hyperparameter λ. Training the two policies with RL in stages allows

us to first achieve large scale semantically meaningful exploration (e.g., “move to-

ward the apple” vs “close gripper around cup handle”), and then achieve fine-grained

exploration (i.e., within a gaussian ball around the behavior policy’s actions).

6.2 Proposed Experiments and Metrics

We propose to first develop and experimentally validate our proposed method

in minibehavior (Jin et al., 2023), a gridworld environment that supports simple

discrete symbols for articulated objects like furniture. We may also consider other

safety-focused benchmarks (Achiam and Amodei, 2019; Yang et al., 2020b; Zhou et al.,

2024). We then hope to experiment within a proper physics-based robot simulator,

such as robosuite Zhu et al. (2020), before finally bringing it into a real-world, real-

robot setting.

The primary baselines are prior works in performing RL from natural language

constraints (Yang et al., 2020b; Wang et al., 2024b; Lou et al., 2024). The primary
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metric is success rate at convergence. Secondary metrics can potentially include the

behavioral compliance of the trained policies to the guidebook as well as the number

of environment samples needed to achieve some performance threshold. It would also

be interesting to evaluate the generalization performance of the policy to changes in

the rulebook G, such as when rules are added or removed.

6.3 Long-term Future Work

In this section, we propose longer-term problems to work on that extend the

human-robot collaborative manipulation and bidirectional dialog setting described in

Section 5. In our earlier work described in that section, we focused on a setting where

both the human and robot have a shared understanding of where all the task-relevant

objects are as well as the high-level steps to perform the task. We assumed the human

is perfectly competent at every step of the task but not necessarily willing to help

the robot. Additionally, the mixed-initiative dialog focused on ways to negotiate and

propose allocating parts of the task to each agent. For more seamless human-robot

collaboration in unstructured household settings, we can expand the problem setting

along a number of fronts.

6.3.1 Information Asymmetry

We assumed in Section 5 that there was a capability asymmetry where the

robot could only perform a subset of the steps with varying success rates, whereas the

human could perform all of them perfectly competently. However, in a more realistic

setting, both agents not only have different capabilities but also have different levels

of knowledge about the world and different ideas for how to go about performing the

task.

For instance, the human sitting at their desk may ask the robot to go to

the kitchen area to find a fruit candy snack, pour some into a plate, and bring the

plate to the desk. The robot goes to the pantry and finds that there are no such
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fruit snacks. After some suggestions communicated remotely from the human about

potential other places in the kitchen area where the fruit snack package may be, and

unsuccessful attempts at locating the package at those places, the robot and human

conclude that the package must have been finished already. The human then asks

the robot what related snacks are available in the pantry. The robot scans over the

hundreds of visible items packed in the pantry and chooses a handful of snacks most

related to the human’s original request.

Here, the key technical challenges are to decide (1) when the robot needs

additional information from the human to succeed or be more efficient at the task,

(2) what the robot needs to know, and how to formulate dialog to ask the human for

this information, and (3) how much information to respond to a human’s request for

information (such as only providing the most relevant list of snacks instead of telling

the human about every snack in the pantry).

6.3.2 Replanning from Dialog

In the preceding example, we saw how the robot needed to adjust its plan from

getting a fruit snack to some other snack that the human specified later in the course

of dialog. Querying and receiving new information is not the only occasion for the

robot to replan in the world. Sometimes the human may change their mind midway

through a robot task execution and interrupt the robot to modify the current task.

Other times, when a human refuses a critical step, the robot must replan,

selecting the best new plan completion candidate to maximize partial task completion

success and meet as many user expectations as possible. For instance, if the robot

realizes that it is incapable of opening the fruit snack package because scissors are

needed, and the human is unwilling to help the robot open the package, the robot will

need to decide whether to (i) bring the scissors, plate, and unopened snack package

to the human, or (ii) look for a snack package with a fruity flavor that is already

opened that the robot can directly pour into a plate and bring to the human.
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Often, the robot may fail at executing a skill. To recover from its own failures,

replanning is also needed—it may need to ask the human for specific help on the skill

it failed at, or it may need to consider self-recovery behaviors.

The technical challenges in this problem setting are (1) being able to translate

the dialog history with the human into an edit of the plan, which is a sequence of

skill-parameter pairs executable with the robot’s library of skills, (2) proposing and

ranking candidate plan completions after issues during execution (e.g., human refusal

to help), based on their relevance, similarity, and feasibility compared to the original

plan, and (3) deciding whether to ask the human for help after an execution failure,

or how to recover from the failure itself.

6.3.3 Bi-directional Low-level Feedback

Prior work has explored humans providing natural language feedback to im-

prove the behavior of robotic agents. However, not only do robotic collaborators need

to follow human feedback, but the human may need to heed feedback from the robot

so that the robot can continue helping the human.

For instance, if the human were in the kitchen with the robot and the human

cuts the package with scissors, they may place the package back on the table for the

robot to pick up, but in a spot too far for the robot to reach. The robot must then

recognize that it cannot proceed from the current state, determine what distribution

of initial states would facilitate success on its next skill, and formulate a natural

language utterance asking the human to perform an adjustment to the state (e.g.,

“please move the package within 12 inches of my right gripper”) to enable the current

state to be brought within the distribution of high-success states for the robot.

We also hope to eventually tackle real-time simultaneous human-robot collab-

oration not just on tasks where the human is 100% competent, but also in cases where

neither the robot nor human working alone can accomplish the task, and simultane-

ous physical collaboration is needed. For instance, moving a heavy table from one
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room to another is usually a two-person job. What would it take for a human-robot

team to be able to perform the same task? Both agents must simultaneously provide

and follow low-level feedback to successfully coordinate as they lift the table so that

it is roughly level on both sides, carefully turn and move it through narrow doorways

and hallways, and delicately place it back on the floor without injuring the human.
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Chapter 7: Conclusion

The purpose of robotics is to augment human physical capabilities. To enable

robots to help humans beyond structured settings and to deploy them into unstruc-

tured environments like homes, robots must learn to act intelligently based on be-

haviors extracted from large amounts of data. However, real robot data is scarce and

expensive to collect. We argue that natural language is an abundant and powerful

data modality to augment robotic capabilities for two reasons: (1) language is a store

of semantic meaning important for a robot to generalize to new domains and tasks,

and (2) language forms the basis of human-robot communication and collaboration.

We demonstrated several promising results that leverage both benefits of lan-

guage. To leverage the first benefit, we demonstrated that simultaneous language and

demonstration task conditioning greatly improved sample efficiency when generaliz-

ing to new tasks, and that providing a single language instruction was as important

to final performance as finetuning on 50 test task demonstrations (Section 3). We

also showed that language can bridge wide sim2real gaps, including those involving

deformable objects, by providing a common grounding between visually dissimilar

but semantically similar images in simulation and real, boosting the performance and

sample-efficiency of sim2real policies (Section 4). To leverage the second benefit, we

showed that mixed-initiative dialog greatly improves human-robot collaboration on

mobile manipulation tasks by enabling the robot to use freeform dialog to negotiate

with the human on what steps each agent should accomplish (Section 5).

For near-term future work, we hope to bridge these two threads of work by

using natural language to guide exploration and push the robot toward user-specified

behaviors and guidelines. This leverages language in both of these threads: (1) pre-

trained language spaces determine which rules are most relevant given the current

state, and whether the predicted language action complies with the guidelines, and
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(2) language is used as a human-robot communicative medium, through which the hu-

man expresses its exact preferences and constraints, and the robot acts in accordance

with everything the human has communicated.

For long-term future work, we propose a number of problem extensions to the

mixed-initiative dialog framework that enhance human-robot communication beyond

task allocation to also support bidirectionally relaying information needed for task

completion, for replanning, and for low-level movement feedback. We hope that work

along these fronts will ultimately enable collaborative robots that can work seamlessly

and simultaneously with humans on tasks that neither agent can perform alone.
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