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Despite rapid advances in language and vision models, current robots still lag
far behind human physical capabilities due to the relative scarcity of real-world data
compared to online text and images. How can we leverage abundant language data to
advance robotic capabilities? Language provides semantic structure that facilitates
the understanding of diverse data, improving sample efficiency in scarce data regimes.
It also provides a natural communicative medium when interacting with and learning

from humans.

To leverage the first benefit of language, we first take inspiration from how
humans teach each other in video tutorials, through simultaneous video and language
streams, to more efficiently teach robots new skills. We then show that language can
bridge wide visual sim2real gaps, enabling robots to learn tasks with just a few real-
world demonstrations by leveraging knowledge from imperfect simulation data. To
leverage the second benefit of language, we explore how bidirectional dialog can enable
robots to solve complex manipulation tasks by communicating to and collaborating
with a wide distribution of human collaborators in the real-world. We develop a
robotic framework that requests and proactively offers help through mixed-initiative,
free-form dialog, enabling the robot to adapt to changing human preferences and each

agent’s physical capabilities to be strategically utilized. Finally, we discuss avenues of



future work, such as how human-robot collaboration can be facilitated through dialog-
based replanning, how both agents can improve through bidirectional feedback, and
how language-based guidelines extracted from manuals can enable robots to behave

more safely and learn more quickly.
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Chapter 1: Introduction

1.1 The Purpose of Robotics

Robots augment human physical capabilities. Autonomous vehicles help re-
duce traffic collisions and enable a future where drivers can perform other tasks during
their commuting time. Factory robots increase manufacturing production and ware-
house throughput while reducing worker fatigue. Rescue and relief robots respond to
natural and anthropogenic disasters, traveling to zones unsafe for humans to reach.
Household robots promise to enable the elderly and disabled to perform cleaning,
cooking, assistive feeding, and furniture assembly tasks, while saving everyone’s time

on undesirable tasks.

1.2 Robots in Unstructured Environments

Robots are generally deployed to two classes of domains—structured and un-
structured, to perform two broad categories of tasks—manipulation and navigation.
Across these four domain-task category pairs, current robotic capabilities vary widely.
Robots are generally seen as most competent in structured environments (e.g., factory
floors, where their motions can be programmed and executed fairly consistently and
reliably) on locomotion and navigation tasks (including autonomous driving) where

they must avoid obstacles while moving in the correct direction.

Manipulation tasks in unstructured environments seem more challenging for
robots to learn because the primary task is to avoid certain obstacles while making
contact to grasp and manipulate relevant objects on the scene. Unlike in structured
environments, unstructured (also known as open-world) settings such as households
contain infinite variations of object and scene configurations, making it quite difficult

to program a robot to perform manipulation reliably and safely.



1.3 Data

For a robot to perform intelligently in unstructured settings, it must adapt to
a dynamically changing world. Instead of pre-programmed motions, data becomes
necessary for robots to learn patterns of acting intelligently, performing real-world
tasks, and recovering from failures. While fields such as natural language and com-
puter vision can leverage the entire internet’s text and images, there is a scarcity of
readily-available data that tells a robot the exact motor commands it should execute

when it encounters some observation in the world for a task it hopes to achieve.

Despite their potential in structured environments, the physical capabilities of
manipulation robots in unstructured environments still lag behind humans. This is
ironic given the purpose of robotics is to augment human capabilities (Section .
The longstanding data scarcity in robotics is a major reason for the shortcomings
of current robotics. Data hungry algorithms and architectures that serve well in
data-abundant fields may not be the easiest path forward for robotics, given the
expensiveness of collecting real-world data and training large models. How might we

confront these issues?

1.4 What Language Can Contribute to Robotics

To act in the world, the robot must first perceive the world through sight
and/or touch. After acting, the robot must observe the physical change it has caused
to decide its next action. This perception-action loop was the focus for robotic control
for several decades. However, as brought up in Section paired perception and
action data for robotics is scarce and expensive, hindering the skills robots can learn.

Other sources of data must be leveraged.

For several decades, natural language processing (NLP) was constrained to
applications like translation, semantic parsing, and entity recognition. For robots
to augment human physical capabilities, they must understand human need and in-

tent, which are most easily specified through natural language. Robots that coexist
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with and serve humans must understand language, a modality not included in the

traditional perception-action paradigm.

Furthermore, language brings additional benefits to robotics. Individual words
are inherently more abstract, conceptual, and meaning-based than, for instance, in-
dividual image pixels. While images provide precision to guide robot movements,
language provides the ability for robots to extract semantic meaning from scarce
data, associate rules-based behavior to specific visual inputs, and enable object-based

reasoning in complex scenes and planning for long-horizon tasks.

Most importantly, freeform language data is plentiful, as evidenced by the suc-
cess of LLMs since 2022 trained on the textual soup of the internet. This wealth of
language-based knowledge has enabled incredible breakthroughs in automated pro-
gramming and writing and common-sense reasoning and world knowledge, but chal-

lenges remain in bringing the generalization power of LLMs to physical tasks.

1.5 Proposal Overview

Given these advantages of natural language, in this proposal, we investigate
two core lines of work to leverage natural language to expand robotic capabilities.
First, language is a compressed store of meaning through which we can more effi-
ciently learn from scarce robotics data. Second, language is a rich communicative
medium through which humans and robots can collaborate and adapt to each other

by expressing their intentions, preferences, and capabilities.

Along the first line of work, we explore how semantic meaning captured in
language can be exploited to enable efficient learning for few-shot generalization to
both new tasks and new domains. We take inspiration from how humans teach each
other in video tutorials, through simultaneous video and language streams, to more
efficiently teach robots new skills. We show that providing natural language instruc-
tions along with a single visual demonstration greatly improves sample efficiency when

learning novel tasks compared to previous methods that teach robots with only one
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modality. However, sometimes it is expensive for humans to teach robots through
multiple simultaneous modalities in the real-world. Researchers have tried to lever-
age cheap, abundant simulation data to train robots, but the sim2real domain gap
often degrades performance of simulation-trained policies. We show that language
can help shape the learning of visual representations to better bridge large visual
differences between sim and real, even when the sim2real gap is large and involves
hard-to-simulate deformable objects. This enables robots to generalize to real-world

domains with just a few real-world demonstrations.

Along the second line of work, we explore how language can enable smooth
human-robot collaboration to accomplish complex manipulation tasks that the robot
cannot easily learn during deployment. We argue that mixed-initiative dialog, which
enables either the robot or human to start a conversation thread, can greatly facilitate
human-robot collaboration, improving the adaptability of each agent to the other’s
capabilities. We develop a robotic framework capable of collaborating with a wide
range of real human participants through bidirectional, mixed-initiative, free-form
dialog. Our method achieves 50% more successful trials than the LLM baseline on
long-horizon mobile manipulation tasks and was preferred by more than 75% of the

18 participants.

Finally, we discuss avenues of future work that attempt to unify these two
lines of work. We propose a framework for using language-based guidelines from
manuals to enable robots to behave more safely and learn more quickly, which uses
both core advantages of language—language rules represent a compact distillation
of prior experience, advice, and know-how from the human, and language rules are
written by the human to communicate all the detailed preferences a human has for
robot behavior. We also propose additional problem settings to enhance human-robot
collaboration through mixed-initiative dialog: to address information asymmetry for
task completion, to replan, and to provide bidirectional motion feedback so both

agents can accomplish tasks together that neither can perform alone.



Chapter 2: Background and Related Work

For robots to perform useful manipulation tasks in unstructured environments,
we established in Section [L.3|that robots need to learn intelligent patterns of behavior
from data. There are two main praadigms for doing so: imitation learning and

reinforcement learning.

2.1 Imitation Learning

In imitation learning (Pomerleau, |1988; |Hussein et al., 2017), also known as
behavioral cloning (BC), we assume access to an expert teacher that provides demon-
strations of behaviors that the robot should imitate, conditioned on the observation
o; (i.e., RGB image, robot zyz end-effector position). Each expert demonstration
(usually a human teleoperation of the robot) is collected as a sequence of observation-
action tuples indexed by the timestep ¢: [(o:, a¢), ...], where a; represents the action
taken from observation o;. a; represents the robot command (i.e., desired change in

xyz position of its end effector).

The goal of imitation learning is to train a policy my : 0; — a; that maps obser-
vations to actions, where o, € R% and a, € R%. More commonly, 7y : 0; — P(a;|o;),
a probability distribution over possible actions. We want to learn the parameters 6
of 7, namely the weights of the neural network representing 7, such that the error
is minimized between the policy-predicted action a;, and the expert demonstration
action a;: € = ||a; — a;||3, where a; ~ 7(-|o;). There are two losses to minimize &:
either /5 or log-likelihood. Let D be the set of demonstrations in our dataset, each of

which is a trajectory 7;.

When using /5 loss, the goal is to find the optimal policy parameters :

ZaIg;ninZ Yo ey —ml-loa)ll3 (2.1)

T €D (01,5,at,i)~T;i
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Where the outer sum is over all expert trajectories in our dataset, and the inner sum

is over all observation-action transitions in our trajectory.

When using log-likelihood loss, the goal is to find optimal policy parameters:

0= arg;nin Z Z —log mg(az;|or;) (2.2)

T €D (04,4,a1,4)~Ti

Essentially, this seeks to maximize the product of the policy’s probabilities of pre-
dicting all actions a;; in expert demo 7;. This is the same optimization problem as
maximizing the sum of log probabilities of the policy, which is equivalent to minimiz-

ing the negative sum of log probabilities.

By following either of these objectives, we train a policy my to follow the
expert’s actions in observations seen by the expert, and rely on the interpolative
power of neural networks to be robust to small deviations in the observation from the

training distribution.

2.2 Reinforcement Learning

Often, expert demonstrations are hard to obtain. For instance, human expert-
level teleoperation is difficult on multi-legged robots. Additionally, imitation learning
yields policies upperbounded by the expert’s performance. Sometimes these con-
siderations make reinforcement learning (RL) better for training robots. Instead of
expert demonstrations, RL requires a reward function (i.e. performance metric) that

measures how good or bad a state-action pair is toward achieving the task.

RL operates in a Markov-Decision Process (MDP), defined as a tuple M =
(S, A, R, S, P), where S is the set of start states from where actions A can be taken,
S’ is the set of next states the agent lands in after taking an action, P : Sx A — P(S5")
is the conditional probability distribution over next states after taking action a € A
from state s € S. At each timestep, the agent receives scalar reward R(s,a), where

R is a function mapping states and actions to a scalar.
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The policy randomly explores the state-action space and finds a sequence of

actions to maximize the sum of discounted rewards:

o0
E(st,at,su—l) [Z ’VtR(Sta at)] (23)
t=0

Let 7(-|s¢) represent the action predicted by the policy from state s;. We
define two functions that correspond to the “goodness” of a state when acting under
a policy 7. The first is the value function, or the expected sum of discounted rewards

that the policy collects from state sy to termination.

V™(sg) =E

thR(st,W(-|st))] (2.4)

= R(so,7("|s0)) +VE
=0

= R(s0,m(:|50)) + vV (s1) (2.6)

ZVtR(St+177T(‘|St+1))] (2.5)

The second is the quality function, or the expected reward from state sq, taking

action ag, with all future actions dictated by policy 7.
Q(50, a0) = R(s0,a0) + Q" (s1,a1) (2.7)

Both V and @) can be defined recursively, as seen above, which is key to
learning these functions using one of many RL algorithms for the policy to learn to
perform optimal actions. We refer the reader to surveys detailing different classes of

RL algorithms (Arulkumaran et al., [2017; Ghasemi et al., [2024)).

Multiple works have explored using language to shape the reward function
R for an RL agent (Nair et al., 2021 |Goyal et al., 2019 [2020; Fan et al., 2022;
Ma et al., 2023, 2024a). Some researchers have specifically explored using language
models (LLMs) to generate code to tune a reward function when training robotic RL

policies (Ma et al., [2024bj Yu et al., 2023a).
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2.3 Multitask Learning

So far, we have discussed training our policy 7 to perform a specific task, either
through imitation learning or RL. However, in unstructured environments, we want
robots to be able to perform a wide range of tasks. Under the current tools discussed,
we would need to train a single-task policy from scratch for each new task we want
the robot to perform. This is unscalable and prevents us from leveraging data for

one task in learning a related second task. To overcome these problems, multitask

learning (Wilson et al., 2007a; Taylor and Stone| [2009)) is necessary.

Earlier in the section, our policy was conditioned on only the state or obser-
vation 7 : S — P(A). However, if we are trying to learn a multitask policy m, then
the same state may demand different actions, depending on what the task is. Thus,
we additionally condition 7 on a task conditioning vector C, so w : S x C' — P(A).
C can be as simple as a one-hot vector, goal image embedding, or natural language

instruction embedding.

Work in multi-task learning suggests that training on a wide range of tasks,

instead of the single target task, helps the robot learn shared perceptual representa-

tions across the different tasks, improving generalization (Kalashnikov et al., 2021}
. The most straightforward way to condition multi-task policies is through
one-hot vectors (Ebert et al 2021} Kalashnikov et al. 2021; [Walke et al., [2022}
, . Multi-task robotic policies have also been studied in other settings

and contexts, such as hierarchical goal-conditioned policies (Gupta et al. 2022a)),

probabilistic modeling techniques (Wilson et al., 2007b)), distillation and transfer
learning (Parisotto et al., 2015; [Teh et al., 2017; Xu et all 2020; Rusu et al., 2015),
data sharing (Espeholt et al.,[2018; Hessel et al., 2019)), gradient-based techniques
et al [2020), policy modularization (Andreas et al,[2017; Devin et al,2017) and task

modularization (Yang et al.| [2020a)). However, one-hot conditioning fails to leverage

similarity information between related tasks. We propose an approach to address this

issue in Section
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2.4 Vision and Language

Researchers have explored how to ground natural language in visual con-
cepts or objects by developing models that can understand both visual and textual

modalities. Vision-language research first found success with problems like visual

question-answering (VQA; Agrawal et al. (2015); Marino et al.| (2019)), image cap-
tioning (Socher et al.| 2014; Kiros et al., [2014; [Mao et al., 2014} |Vinyals et al., 2014)),
and video summarization (Venugopalan et al.,[2015} Yao et al., 2015)) in the mid 2010s.

The first attempts at training models for the inverse problems of text-to-image gen-
eration (Mansimov et al., 2015; Reed et al, 2016]) and text-to-video generation (Pan
et al., 2017; [Li et al., 2017)) came shortly after.

Transformers arose as a neural architecture for pure language tasks but soon
unified the processing of both images and text with the first vision-language trans-
formers (Lu et al 2019; [Sun et al., [2019; [Li et al. 2019; Tan and Bansal, 2019;
et al), 2019; (Chen et al. [2019), some of which have been applied to robotic con-
trol (Shridhar et al., 2021; |Zeng et al., 2020; Shridhar et al., 2022; |Cui et al. 2022;
Zeng et al.,[2022; Brohan et al., 2023, 2022). In addition to architectures, researchers
have also examined learning better vision-language joint representations
et al 2021} |Zhai et al [2021} [Zhu et all, 2023) to improve robotic control (Nair et al.|
2022; Shridhar et al., 2021} 2022)).

These prior works in vision-language research form the technical basis of en-
abling language-conditioned, vision-based robotics in the real-world. However, visual
representations learned from these prior approaches yield robotic policies that largely

fail to generalize to large domain shifts. We address this problem in Section [4]

2.5 Natural Language for Robot Task Specification

As mentioned in Section [2.3] multitask policies can take in as context C a
natural language embedding of the task instruction, making it a language-conditioned

multitask policy (Jang et al[2021; Lynch and Sermanet), 2021} Mees et al., 2021}, 2022;
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Shao et al., [2020; Sodhani et all 2021} [Silva et al., 2021} Karamcheti et al., 2021}, |Garg]
, 2022)). Pretrained language embedding spaces normally preserve a notion of

semantic similarity through distance—that is, two strings similar in meaning will be
encoded into two language embeddings close in distance. This means that language-
conditioned multitask policies have two benefits: robustness (slight rewordings of
the language instruction do not meaningfully change the language embedding) and
generalizability to new tasks (a new, related task will have a language embedding
close to those of semantically related tasks that the policy has already trained on).
However, teaching robots only through language can lead to a lot of ambiguities,

which we address in Section B

LLMs have also been used as task planners (Huang et al., 2022; Ahn et al,
2022; (Chen et al|, [2022; Raman et al., 2023; (Choi et al., 2025; Luo et al., 2023), as

code generators that dictate a robotic policy’s behavior (Liang et al., 2022; |Li et al.|

2024; Huang et al., [2023), and as part of a hierarchical policy where the higher level

produces language and the lower level produces fine-grained robot actions (Shi et al.,
2025|, |2024; Belkhale et al., [2024]).

2.6 Natural Language for Human-Robot Interaction

While language can serve as a monologic means to teach or instruct robots, it

can also serve as a medium for dialog to enable Human-Robot Interaction (HRI). Some

systems integrate LLMs as task planners or delegators (Wang et al., 2024a; Mandi
et al., 2023; Feng et al.||2024]) for tasks like real-world cooking (Wang et al., 2024a)) and

object sorting (Mandi et al., 2023), where task delegations are communicated through

dialog. Other systems implement a leader-follower paradigm in simulated worlds,

where the leader instructs the follower in natural language (Suhr et al., [2022; Kojima,

et al., 2021} Team et al., 2022} (Gao et al., [2023). Another line of work empowers the

robot to ask humans for clarifications (Ren et al.l 2023), request assistance (Bennetot

et al., [2020; [Knepper et al., [2013; [Veloso et al., [2015), or inform humans of their

15



observations (Chen et al.,|2010; Mutlu et al., 2006; Cascianelli et al.,|2018). We argue

that these prior works do not exploit the full flexibility of language as a communicative

medium and present a new framework for bidirectional dialog and HRI in Section [5]
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Chapter 3: Using Both Demonstrations and
Language Instructions to Efficiently Learn Robotic
Tasks

3.1 Introduction

We mentioned the two core lines of work in this proposal for leveraging natural
language to improve robotic capabilities in Section [I.5] This chapter describes our
initial work along the first area of leveraging language as a store of meaning to gener-
alize to new robotic tasks from scarce data, and it was published at ICLR 2023 (Yu
and Mooney, 2022)).

Say we have a household robot, and we want to teach it new tasks. What is
the best way to do so? Looking at ourselves, we humans often learn complex tasks
through multiple concurrent modalities, such as simultaneous visual and linguistic
(speech/captioning) streams of a video tutorial. One might reasonably expect robotic
policies to also benefit from multi-modal task specification. However, previous work
in multitask policies condition only on a single modality during evaluation: one-hot
embeddings, language embeddings, or demonstration/goal-image embeddings. Each

has limitations.

One-hot encodings for each task (Kalashnikov et al., [2021; Ebert et al., [2021)
suffice for learning a repertoire of training tasks but generalize poorly to novel tasks,
since one-hot embedding spaces do not leverage semantic similarity between tasks
to more rapidly learn additional tasks. Conditioning policies on goal-images (Nair
et al, 2017, |2018; Nasiriany et al} 2019) or training on video demonstrations (Smith
et al., [2020; [Young et al., 2020)) often suffer from ambiguity, especially when there are
large differences between the environment of the demonstration and the environment
the robot is in, hindering the understanding of a demonstration’s true intention.

Language-conditioned policies (Blukis et al., 2018, 2019; [Mees et al., 2021, 2022)

17
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Figure 3.1: DeL-TaCo Overview. Unlike prior multitask methods that condition
on a single task specification modality, Del.-TaCo simultaneously conditions on both
language and demonstrations during training and testing to resolve any ambiguities
in either task specification modality, enabling better generalization to novel tasks and
significantly reducing teacher effort for specifying new tasks.

often face greater ambiguity challenges, since humans specify similar tasks in very
linguistically dissimilar ways at different levels of granularity, sometimes with novel

nouns and verbs not seen during training.

We posit that current unimodal task representations are often too inefficient
and ambiguous for novel task specification. In these tasks, current task-conditioning
methods would need either a large number of diverse demonstrations to disambiguate
the intended task, or a long, very detailed, fine-grained language instruction. Both
are difficult for novice users to provide. We argue that conditioning the policy on
both a demonstration and language not only ameliorates the ambiguity issues with

language-only and demonstration-only specifications, but is far cheaper to provide.

We propose Del.-TaCo (Figure , a new task embedding scheme comprised

of two component modalities that contextually complement each other: demonstra-
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tions of the target task and corresponding language descriptions. With bimodal task
embeddings, ambiguity is bidirectionally resolved: instructions disambiguate intent
in demonstrations, and demonstrations help ground novel noun and verb tokens by
conveying what to act on, and how. To summarize, we (1) propose Del-TaCo for
training and integrating demonstrations and language into joint task embeddings
for few-shot novel task specification, and (2) show that DeL-TaCo significantly low-
ers teacher effort in novel task-specification and improves generalization performance

over previous unimodal task-conditioning methods.

3.2 Related Work

Our work is most related to BC-Z (Jang et al., 2021)), which trains a video
demonstration encoder to predict the pretrained embeddings of corresponding lan-
guage instructions, while jointly training a multi-task imitation learning policy condi-
tioned on either the instruction or demonstration embeddings. |Lynch and Sermanet
(2021); Mees et al.| (2021) similarly learn a similar policy conditioned on either lan-
guage or goal images. However, during testing, these policies are conditioned on only
one of the two modalities, whereas ours uses both modalities during training and
testing, which we show improves generalization and reduces human teacher effort on

a broad category of tasks.

3.3 Problem Setting
3.3.1 Multi-task Imitation Learning

We define a set of n tasks {7;}!_; and split them into training tasks U and test
tasks V', where (U, V') is a bipartition of {T;}" ;. For each task T}, we assume access
to a set of m expert trajectories {Tij}}”:l and a single language description /;. Given
continuous state space 8, continuous action space A, and task embedding space Z,
the goal is to train a Markovian policy 7 : 8 x Z — II(A) that maps the current state

and task embeddings to a probability distribution over the continuous action space.

19



During training, we assume access to a buffer Dy,,;, of trajectories for only the
tasks in U and their associated natural language descriptions. We define each trajec-
tory as a fixed-length sequence of state-action pairs 7;; = [(sgz, a,((]g) , (s@, a@) , } ,
where 7 is the trajectory index for task T; € U with task embedding z;. We use be-
havioral cloning (BC) to update the parameters of 7 to maximize the log probability
of (agl])’sfj), zi), though our framework is agnostic to the learning algorithm and
would work for RL approaches as well.

During evaluation, we assume access to a buffer Dy, of trajectories for only
the tasks in V' and their associated natural language descriptions. Unlike Dy,,i, where
we have m demonstrations for each task, in D, we have just a single demonstration
for each task. For all test tasks T; € V, we rollout the policy for a fixed number

of timesteps by taking action a; ~ m(als;, z;). The z; for all test tasks is computed

beforehand and held constant throughout each test trajectory.

3.3.2 Task Encoder Networks

To obtain the task embedding z;, we have two encoders (either trained jointly
with policy , or frozen from a pretrained model): a demonstration encoder, faemo :
Tij V> Zdemo; Mapping trajectories of task 7; to demonstration embeddings, and a
language encoder, fiang : li = Ziang,; mapping task instruction strings /; to language
embeddings. Previous work has explored using language embedding 24,4 or goal
image/demonstration embedding Zgem.; as the task embedding z;, but DeL-TaCo

uses the bimodal task embedding 2; = [Zdemo.is Ziang,i] during training and testing.

3.4 Method
3.4.1 Architecture

Demonstration and Language Encoders. The encoder fyem, is a CNN
network trained from scratch. Following Jang et al. (2021), we input the demon-

stration as an array of m x n frames (in raster-scan order) from the trajectory for
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Figure 3.2: Method Architecture. Del-TaCo uses three main networks: the policy
7, a demonstration encoder fgemo, and a language encoder fi,,,,. During both training
and testing, the policy is conditioned on the demonstration and language embeddings
for the task.

Task Demonstration

faster processing. (We use (m,n) = (1,2) or (2,2) in our experiments.) We freeze a

pretrained miniLM (Wang et al., 2020) as the encoder fiang, where 24,4, is simply

the average of all miniLM-embedded tokens in [; (we found this works better than

taking the [CLS] token embedding).

Policy Network. We use a ResNet-18 (He et al., 2015) as the visual backbone

for the policy , followed by spatial softmax (Finn et al 2016)) and linear layers.

Task Conditioning Architecture. BC-Z (Jang et al., 2021)) inputs the task
embedding into the ResNet backbone via FiLM (Perez et al.,2018)) layers, which apply

a learned affine transformation to the intermediate image representations after each
residual block. BC-Z’s task embeddings are either from demonstrations or language.
Since our policy conditions on both, the main architectural decision was finding the

best way to feed task embeddings from multiple modalities into the policy.

Empirically, a simple approach performed best. The demonstration embed-

dings zgemo are fed into the policy’s ResNet backbone via FiLM, while the language
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task embeddings zj4,, and robot proprioceptive state (6 joint angles, end-effector
xyz coordinates, and gripper open/close state) are concatenated to the output of the

spatial softmax layer. Our full network architecture is shown in Figure [3.2]

3.4.2 Training and Losses

During each training iteration, we sample a size k subset of training tasks M =
{Tys s T, } C U. Given a trajectory 7;; for task 7}, and corresponding natural lan-
guage instruction /;, we compute the demonstration embeddings zempm; = faemo(Tij)
and language embeddings ziangm; = flang(li). We collect the embeddings of tasks in

M in matrices Zdemo - {Zdemo,mu [ED) Zdemo,mk] and Zlang - [Zlang,m17 L3 Zlang,mk]-

To train the demonstration encoder, Jang et al.| (2021) use a cosine distance
loss to directly regress demonstration embeddings to their associated language embed-
dings. However, this causes demonstration embeddings to be essentially equivalent to
the associated language embeddings for each task, undercutting the value of passing
both to our policy. To preserve information unique to each modality while enabling
the language and demonstration embedding spaces to shape each other, we train with

a CLIP-style (Radford et al., 2021) contrastive loss for our demonstration encoder:

1
Ldemo(Zdemm Zlang) = CTOSSEW?“OPZJ (EZJ@mOZlang, I) (31)

where [ is the identity matrix and § is a tuned temperature scalar. For some tra-
jectory of state-[xyz action, gripper action| pairs x;;; = (ngj)’ [agf])-, giﬂ) extracted
from expert demonstration 7;; for task 7T;,,, we use a weighted combination of stan-
dard BC log-likelihood loss for the xyz actions and MSE loss for the gripper actions.

We abbreviate z; and zq for zjang and Zgemo:

Lr(7i5) = Z —logm <a§?‘8§?, Zdm; s Zl,rm-) + ay gt(lj) — Ty <S§ZJ), Zd,m; Zlm) H2

Tt,i,5 € Tij

(3.2)
7 outputs a distribution over xyz actions, and the gripper head m, of the policy

network outputs a scalar € [0,1] for the gripper action trained on a tuned o, > 0.

22



Object ..
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“Put vase-shaped object in back bin.” “Put trapezoidal-shaped object in green bin.”

Figure 3.3: Sample train-+test tasks, grouped by object identifier types (under-
lined in instructions).

Both fiemo and m networks are trained jointly with the following loss, for a tuned
ag > 0:

L(ﬂ-; fdemm flang) = Lﬂ(Tij) + O5d'£demo<Zdemo; Zlang) (33)

Note L£,(7;;) is summed over all trajectories in the batch of training tasks M (double
summation in Equation ommitted for brevity). fiung has no loss term because we
freeze the pretrained language model and rely on its pretrained embedding space to

shape the demonstration encoding space.

3.4.3 Evaluation

During evaluation, we want the robot to perform some novel task T, € V.
Recall that T, ¢ U, our set of training tasks. From Section [3.3.1] we have access to
a validation task buffer D, with a single demonstration 7, and a natural language
instruction [, of task T,. We encode the demonstration with f4.,,, and the language

with fiung and pass both task embeddings to the policy.

3.5 Experiments

We empirically investigate the following questions: (1) Does DeL-TaCo im-

prove generalization performance on novel tasks? (2) If so, how much teacher effort
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does Del.-TaCo reduce over specifying tasks with either modality alone?

3.5.1 Setup

Environment. We develop a Pybullet (Coumans and Bai, [2007-2022) simula~
tion environment with a WidowX 250 robot arm, 32 possible objects, and 2 containers.
The action space is end-effector (z,y, z) delta positions, plus the binary gripper state
(closed/opened). We subdivide the workspace into four quadrants. Two quadrants
are randomly chosen to contain the two containers, and three of the 32 possible ob-
jects are dropped at random locations in the remaining two quadrants. RGB image

observations are size 48 x 48 x 3.

Task Objective. We design a set of pick-and-place tasks where the objective
is to grasp the target object and place it in the target container. The scene contains
three visually distinct objects (one is the target object) and two visually distinct
containers (one is the target container). Thus, a robotic policy that disregards both
the task demonstration and instruction and picks any random object and places it

into any random container would succeed with 1-in-6 odds.

Language Instructions for Each Task. Figure[3.3|shows a selection of our
training and testing tasks. Each task is specified through language with a single
template-based instruction of the format “put [target object identifier| in [target

container identifier].”

We make this environment more challenging by having task instructions re-
fer to containers by either their color or quadrant position and objects by either
their name, color, or shape. The multiple identifiers help simulate ambiguity that
arises from informal human instructions, where different humans may refer to the
same object or container through different attributes, enabling demonstrations and
instructions to complement each other when the robot learns a new task. In total,
there are 50 target object identifiers and 6 target container identifiers, giving us 300

pick-and-place tasks. We train and evaluate on a bipartition of these 300 tasks.
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Table 3.1: Evaluation on Novel Objects, Colors, and Shapes. (p) = pretrained.

Demo Encoder Lang. Encoder Task Conditioning Success = SD (%)

- - One-hot (lower bound) 49+ 1.7

- - One-hot Oracle (upper bound) 69.3+7.4

- miniLM (p) Lang.-only 171422
CNN - Demo-only 20.8+24
CNN miniLM (p) DeL-TaCo (ours) 25.8 + 3.4
CNN - BC-Z; Demo-only 6.7£2.3
CNN miniLM (p)  MCIL; Demo-only + Lang.-only 75+1.2

Data. Using a scripted policy, we collect 200 successful demonstrations per
training task, and a single successful demonstration per test task. All demonstrations

are 30 timesteps long. Our training buffer contains roughly 40,000 trajectories.
3.5.2 Generalization Performance on Novel Tasks

Table [3.1] shows our generalization performance on 102 test tasks when trained
on 198 tasks. In this setting, the robot must not only know how to pick-and-place
the 8/32 objects it has never seen during training, but must also understand novel

instructions that refer to these objects by either their name, color, or shape.

We lower-bound the performance of our task conditioning methods by first
running a one-hot conditioned policy, with the expectation that it performs worse
than conditioning on language and/or demonstrations for the reasons mentioned in

Section As an upper-bound, we directly train a one-hot oracle on only the 102

evaluation tasks and evaluate on those same tasks. No other method in the table is

trained on any evaluation tasks.

Next, we examine the performance of policies conditioned with only language,
with only one demonstration, and with both (DeL-TaCo). The language-only poli-
cies do not involve training fzemo, and only the language instruction embeddings are
fed into the policy via FiLM during training and testing. The demo-only policies
involve a trained fgemo, but during training and testing, only the demonstration em-

bedding zgemo is passed into the policy via FiLM. DeL-TaCo (ours) conditions on both

demonstration and language during training and testing.
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Table 3.2: Value of Language. Evaluation on Novel Objects, Colors, and Shapes.

Task Conditioning Demo-only DeL-TaCo (ours)
# demos per test-task finetuned on| 0 10 25 50 100 0
Success Rate (%) 20.8 234 24.6 26.1 329 25.8
+ SD (%) +2.4 +1.8 £2.5 £2.6 +£2.5 +3.4

DeL-TaCo achieves the highest performance, increasing the success rate of the
second-best conditioning method, demo-only, from 20.8% to 25.8%. Both methods
using demonstration embeddings outperform the language-conditioned policy perhaps
because a visual demonstration is important in conveying the nature of the chosen

object and how the robot should manipulate it.

Prior methods like BC-Z (Jang et al., [2021)) perform worse than DeL-TaCo
because its demo encoder is trained to directly regress zgemo tO Ziang, hindering it
from performing better than solely using z,,, during testing. MCIL (Lynch and
Sermanet|, [2021), also performs worse than Del.-TaCo because without any task en-
coder loss term, learning a well-shaped task embedding space is more difficult, hurting

generalization performance.

3.5.3 How many demonstrations is language worth?

To answer our second question, we further finetune the demo-only policy on
a variable number of test-task expert demonstrations. Results are shown in Table
. The demo-only policy only starts to match and surpass Del.-TaCo (underlined)
when it is finetuned on 50 demonstrations (underlined) per evaluation task (a total
of around 5,000 demonstrations for all test tasks combined). This suggests that
surprisingly, specifying a new task to Del-TaCo with a single demonstration and
language instruction performs as well as specifying a new task to a demo-only policy
with a single demonstration and finetuning it on 50 additional demonstrations of that
task. This showcases the immense value of language in supplementing demonstrations
for novel task specification, significantly reducing the effort involved in teaching robots

novel tasks over demonstration-only methods.
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Chapter 4: Natural Language Can Help Bridge the
Sim2Real Gap

4.1 Introduction

In Chapter [3, we saw how a sim-
ple language instruction could contain
information equivalent to 50 demonstra-
tions when training robots to perform
new tasks. We also saw that more
broadly, teaching robots new tasks is of-
ten better done with both demonstra-
tions and language, rather than a single
modality alone. In this chapter, we fur-
ther extend the idea of using language as
a store of meaning to learn from scarce
data, but instead of few-shot generaliza-
tion to new tasks, we demonstrate how
language can enable few-shot generaliza-
tion to new domains. This chapter rep-

resents work published in RSS 2024
et al. 2024)).

)) (, ,‘4

m(alf (1))

Policy learnin g

Language
emb. space

“gripper holding milk
next to container”

Figure 4.1: Bridging the sim2real gap
with language. Robot images from sim-
ulation and the real world with similar
language descriptions (green & purple bor-
ders) are mapped to similar features in lan-
guage embedding space, while sim and real
images with different language descriptions
(teal € red) are mapped to faraway loca-
tions. We learn a policy conditioned on
these image embeddings from both sim and

Researchers have recently achieved real images (right).

significant success on household tasks with visual imitation learning (IL) (Schaal,

11999; Brohan et al., 2022)). Some researchers are attempting to generalize visual IL

to any target domain by collecting large, expensive datasets of demonstrations from

many domains (Brohan et al., 2022, 2023; |Padalkar et al., 2023)). But can we instead

transfer a policy trained on cheaply acquired, diverse simulation data to a real-world

target task with just a few demonstrations?
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We propose creating a domain-agnostic visual representation for policy train-
ing. Such a representation should enable the policy to use the simulation image-action
data as an inductive bias to learn with few-shot real world data. This representation
must allow the policy to tap into the right distribution of actions by being broad
enough to capture the task-relevant semantic state from image observations, yet fine-
grained enough to be conducive to low-level control. For instance, a sim and real
image observation, both showing the robot gripper a few inches above a pan handle,
should lie close together in the image embedding space to lead to similar actions, even

if the two images have large differences in pixel space.

How might we acquire supervision for learning such a visual representation?
Language is an ideal medium for providing it. Descriptions of task-relevant features
in image observations, such as whether or not a gripper is close to a pan handle, serve
as a unifying signal to align the representations of images between sim and real. We
hypothesize that if a sim and real image have similar language descriptions (e.g., “the
gripper is open and right above the pan handle”), then their underlying semantic
states are also similar, and thus the actions the policy predicts conditioned on each
image should also be semantically similar (e.g., moving downward to reach the pan
handle). The pretrained embedding space of large language models (LLMs) offers a
well-tuned signal that can be leveraged to measure the semantic similarity between
real and sim images via their associated language descriptions (see Fig. [4.1)). This
simple insight allows us to learn a domain-agnostic visual representation to bridge

the visual sim2real gap.

We introduce Lang4Sim2Real, a lightweight pretrain-finetune framework for
transferring between any two domains that have large visual differences but contain
data across a similar distribution of tasks. Lang4Sim2Real has the following main
advantages over prior sim2real efforts: (1) alleviates the need for the engineering-
intensive task of matching a sim environment to the real environment both visually
and semantically, (2) enables sim2real transfer on tasks involving hard-to-simulate,

deformable objects, and (3) bridges a wide sim2real gap that includes differences
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in: camera point-of-view (1st vs 3rd person), friction and damping coefficients, task
goals, robot control frequencies, and initial robot and object position distributions.
To our knowledge, this is the first work that shows that using language to learn a
domain-invariant visual representation can help improve the sample efficiency and

performance of sim2real transfer.

4.2 Related Work

Vision-only pretraining improves performance on image-based robotic poli-

cies with objectives ranging from masked image modeling (Radosavovic et al., 2023)),

image reconstruction (Zhao et al., |2022; |Gupta et al., 2022b; |Seo et al., [2023), con-

trastive learning (Laskin et al., 2020} [He et al. [2020), video frame temporal or-

dering (Jing et al., [2023), future frame prediction (Zhao et al. 2022), and image
classification (Yuan et al., 2022} Wang et al., [2022) on internet-scale datasets (Deng
et al. |2009; Grauman et al., 2021; |Goyal et al., 2017; Damen et al., 2018)). However,

vision-only representations are typically not robust to wide sim2real domain shifts.

Prior work in vision-language pretraining was described in Section [2.4]

Zhu et al.|(2023) used language to align representations learned across multiple modal-

ities including depth and audio. Instead of using language to bridge modalities, our

approach uses language to bridge visual representations between domains.

While we approach sim2real through vision-language pretraining, domain

randomization (Andrychowicz et al., 2020; Matas et al., 2018; [Tobin et al.,2017) and

system identification (Yu et al., 2017; Kaspar et al.,|2020) remain popular approaches.

However, these are engineering-intensive procedures we seek to avoid.

Several methods have been proposed to learn domain invariant representa-

tions in pixel-space with GANs (James et al., 2019; Bousmalis et al., 2017; Ho et al.|

2021}; Rao et al., 2020) or with semantic segmentation and depth maps (Miiller et al.,
2018; |Ai et all) 2023). However, these are high-dimensional and computationally

expensive representations, in the case of GANs.
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4.3 Problem Setting

In this work, we address the problem of few-shot visual imitation-learning (IL):
learning a visuomotor manipulation policy in the real world based on a few real-world
demonstrations. We cast sim2real as a k + 1 multi-task IL problem: k tasks from
simulation and the target task (with a few demonstrations) in the real world. In
general terms, we assume a source domain in which data can be acquired cheaply
and a target domain where data is expensive to collect.

In our setting, we consider access to two datasets across two domains: D®

t

target> demonstrations of the

which spans multiple tasks in the source domain, and D

target task in the target domain. Thus, we assume that | D®| >> | D} due to

arget |
how expensive target domain data collection is (such as in the real world). We make
two simple assumptions about the similarity of the two domains. First, we assume
the source and target tasks are all of the same general structure, such as multi-step
pick-and-place task compositions, but with different objects and containers across
different subtasks. Second, to train a common policy for both domains, we assume

the domains share state and action space dimensionality.

All of our datasets are in the form of expert trajectories. Each trajectory, 7 =
{14, s, [at, U], Liask) }, 1s a sequence of tuples containing an image observation, I; (128
128 RGB), robot proprioceptive state, s; (end effector position and joint angles), and
a language instruction of the task, l;,s1. Note that [, is the same over all timesteps
of all trajectories in a given task. [as,l;] denotes that a trajectory may optionally also
include robot actions (in which case we consider the trajectory a full demonstration)
and/or a language description of the image I;. In the following sections, we identify
with 7[L] a trajectory with language descriptions [, but no actions a;. Similarly, 7[A]
is a full demonstration with actions, a;, but no language descriptions, ;. The language
labels for images (l;) can be automatically generated from a programmatic function
that maps image observations to language scene descriptions depending on the relative

position between the robot and the objects in the scene. During pretraining, we use
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7[L] image-language (I;,1;) pairs from D*

7[A] data: (I, s;, ay, liasi) tuples from D°U D!

4.4 Method

In our method, we adopt the
common pretrain-then-finetune learning
paradigm (see Fig. 4.2]). First, we pre-
train an image backbone encoder on
cross-domain language-annotated image
data (Sec. [4.4.1).  Then, we freeze
this encoder and train a policy network
composed of trainable adapter modules
and a policy head to perform BC on

action-labeled data from both domains

(Sec. [.4.2).

4.4.1 Cross-Domain Image-Languag ;

Pretraining

We first automatically label tra-
jectories with language either during
data collection with heuristics, or in
hindsight with off-the-shelf-based object
detectors. After this data is collected,

our first step in Lang4Sim2Real involves

U Dt

target- DUring policy learning, we use

target "
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Figure 4.2: Method. (i) Top: Image-
Language Pretraining. (ii) Bottom: Dur-
ing multitask, multidomain BC, we freeze
our pretrained f.,,, add adapter modules
and a policy head, then train the result-
ing multitask language-conditioned policy
on D*U D}

target*

learning a domain-invariant representation that leverages simulation data for few shot
IL. For that, we need to learn an image observation encoder, fe,, : I; — R that

preserves the semantic similarity of scenes in images between the two domains. For

t

instance, if both image I° from D* (sim) and image I* from Dy,

(real world) show
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the robot’s gripper open and a few inches above the object to grasp, even if from
different viewing angles, then we want their image embeddings to be close together
in the learned image encoding space. This will facilitate policy learning later, as
the policy will need to draw from a similar distribution of actions for similar scene

semantics, which are now already mapped into similar visual features.

Theoretically, off-the-shelf pretrained vision-language models (VLMs) (Rad-
ford et al., 2021; |[Nair et al., 2022)) should already possess these properties as they
were trained on a massive distribution of image and language data. However, in the
context of robot manipulation, pretrained VLMs tend to encode all observations of
the trajectory into a very narrow region of the embedding space without sufficient
distinction for task-relevant, semantic aspects of the image such as the location of the
gripper in relation to the manipulated objects. This renders them unsuitable without

additional finetuning for our application (see Sec. [4.6]).

In Lang4Sim2Real, we propose an alternative approach to obtain a visual rep-
resentation that preserves the semantic similarity of scenes in images between the two
domains. We train a ResNet-18 (He et al., 2015) from scratch as our image encoder

using image-language tuples (I°,1%) from D® and (I*,1') from D;} We denote this

target"®
vision language pretraining dataset as Dy = {(I4,19) : (I?,1%) € D* U Dy, pet }> Where
d is either the source or target domain. The images are observations collected during
100 demonstrations from each of the tasks in D® and 25-100 demonstrations from
Dt

target> tOtaling around 10k images per domain. We assume that the two sets of

t

language descriptions in D and D,

are similarly distributed; otherwise, language

may not help learn domain-invariant features between D°® and D".

To effectively leverage language as a bridge between visually different domains,
we need a well-tuned (frozen) language model, fiu,, : [ — R%ns, to map strings to
djang—dimensional language embeddings. We use off-the-shelf miniLM (Wang et al.,
2020)), since prior work (Mees et al., 2022)) has demonstrated its effectiveness for

language-conditioned control policies.
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We propose two image-language pretraining variants in Lang4Sim2Real to

obtain a visual representation based on language supervision (see Fig. [1.21)A-B):

4.4.1.1 Language-Regression

Our first variant is a straightforward use of language supervision to shape
the image embedding space: predicting the language embedding of the description,
[?, given the embedding of the corresponding image, I¢. Let g : R%nr — Rdiang bhe
a single linear layer (language predictor in Fig. [£.2(i)(A)) trained to minimize the

following loss:
Lcnn,reg(DVL) = ||g (fcnn(jd)) - flang(ld)Hz (41)

This effectively makes the pretrained image encoder reflect the LLM embedding space.

4.4.1.2 Language-Distance Learning

We also experiment with a second variant of image-language pretraining that
provides a softer form of language supervision. We posit that the pairwise distances
between corresponding two language embeddings are what convey semantic meaning,
not the exact values of the language embeddings themselves. Thus, we design an
objective to regress the image embedding distances between a pair of images from

the two domains to their corresponding language distance:
S S 2
Lcnn,dist(DVL) = H c—7rzn<j )fmln(jt) - d<l ’lt) H2 (42)

where the language distance function we use, d : [ x [ — R is BLEURT (Sellam et al.|
2020)), a learned string similarity score commonly used in NLP. We found BLEURT

provided a richer signal than dot products or /-2 distances.

4.4.2 Multitask, Multidomain Behavioral Cloning

Our second step in Lang4Sim2Real involves learning a multi-domain, multi-

task, language-conditioned BC policy (see Fig. [£.2(ii)) conditioned on our learned
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domain-invariant visual representation from Section During this phase of pol-
icy learning, we freeze all but the last layer of f.,,, insert trainable FiLM adapter
modules (Perez et al., 2018) to process the language instruction embeddings, and a
fully-connected policy head to process the image feature, fe,,(I;), and proprioceptive
state, s;. We train the resulting policy 7 with BC loss to predict the mean and stan-
dard deviation of a multivariate Gaussian action distribution. The policy is trained
on k + 1 tasks: k from D° (thousands of trajectories per task) and 1 from Dy,
(< 100 trajectories, see Sec. .

4.5 Experimental Setup

We evaluate Lang4dSim2Real on sim2real settings, where the few shot IL is
defined in the real world and we use simulation to address the data scarcity. We aim
to use language to bridge a wide sim2real gap with differences in control frequency,

task goals, visual observation appearance, objects, and initial positions.

Evaluation Metrics. Task success rate is calculated through ten evaluation
trials (with different initial object positions and orientations) for each of two seeds
per task, for a total of 20 trials per table entry. For multi-step tasks, we also measure

partial credit—the number of consecutive subtasks completed from the start.

Environments. For each of our tasks, we design simulation environments in
Robosuite (Zhu et al., [2020; Todorov et al.| 2012). In both simulation and real, we use
a 7-DOF Franka Emika Panda arm and use a common action space (Khatibl 1987)
consisting of the continuous xyz delta displacement and a continuous gripper closure

dimension. Robot proprioception is 22-dimensional and RGB images are 128 x 128.

Tasks. For each task suite, we collect data from simulated domain D* and
real target domain D'. All demonstrations in sim and real are collected with a
scripted policy. Sim trajectories range from 200-320 timesteps long, at 50 Hz, while
real trajectories run at 2 Hz and range from 18-45 timesteps. Our three task suites

are simple stacking, multi-step long-horizon pick and place, and wrapping deformable,
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hard-to-simulate wires around a central object. See the visual sim2real gap in Fig. [4.3|

In the first and third tasks, we
collect and train on 400 demonstrations
per task (1600 total) as our D*® simula-
tion data, while we have 1400 demonstra-
tions per task (5600 total) for the second
task. We train and evaluate with 25, 50,

or 100 @:arget demonstrations.

For the second task, the robot
must first put an object into a container,
and then put that container onto another
container. The objects and containers

are different in sim and real. The third

Figure 4.3: Top row: Simulation; bottom
row: real-world. Columns from Left to
Right: Stack Object, Multi-step Pick and
Place, and Wrap Wire tasks.

task is to wrap a wire around the blender by at least 5/6ths of a full revolution. In

simulation, we approximate the wire with a chain of spheres connected by free joints.

Table 4.1: sim2real: Performance by number of real world trajectories

Method Action-labeled Data Stack Object Multi-step Pick and Place Wrap Wire
Sim Real Success Rate (%) Success Rate (%) Subtasks Completed Success Rate (%)
D Dt et 25 50 100 25 50 100 25 50 100 25 50 100
No Pretrain (D") - 4 20 30 45 0 30 35 045 1.05 1.05 20 15 45
No Pretrain (D°+D') v v 35 20 55 45 25 55 115 10 14 25 20 20
MMD v v 25 35 80 20 10 35 08 09 1.1 5 10 20
Domain Random. 4 4 40 60 40 10 10 25 0.7 06 0.7 0 0 0
ADR+RNA v v 35 30 35 15 25 40 0.85 0.8 1.3 0 10 0
Lang Reg. (ours) 4 4 40 75 80 60 80 90 1.45 1.8 1.9 45 40 45
Lang Dist. (ours) v v 60 45 80 55 70 75 1.35 1.65 1.6 30 25 75
Stage Classif. v v 40 60 60 50 60 50 1.45 1.55 1.5 30 40 50
CLIP (frozen) v v 25 5 15 10 15 40 0.3 045 1.0 35 35 30
R3M (frozen) v v 30 45 65 15 60 55 07 14 1.5 5 25 25

Baselines. To evaluate the effectiveness of Lang4Sim2Real, we consider two

sets of baselines: non-pretrained baselines where the CNN is initialized from scratch,

and baselines with pre-trained visual encoders. For the non-pretrained baselines, we

examine training with only D' data, and training with both D and D' data. This
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enables us to understand the benefits of our proposed training procedure. We also
compare to popular prior sim2real baselines: MMD (Tzeng et al.l 2014), Domain
randomization (Tobin et al.| [2017)) of the colors, textures, and physics of the D®
environment, and Automatic Domain Randomization with Random Network Adver-
sary (ADR+RNA) (OpenAl et al., 2019). For the pretrained baselines, we consider
two strong foundation models as the visual backbone, CLIP (Radford et al., |2021)
and R3M (Nair et al., 2022)).

4.6 Experimental Results

What is the impact of our pretraining approach? Lang4Sim2Real
nearly doubles the success rate of both non-pretrained baselines (first row-group in
Table in most task suites, demonstrating the importance of our visual pretraining

procedure versus simply training a policy on all the data at once.

How do our two image-language pretraining variants compare? We

compare our two pretraining variants introduced in Sections 4.4.1.1)and |4.4.1.2] Lan-

guage regression performs better on average.

What is the effect of language in learning shared representations?
We ablate the effect of language during pretraining as the “stage classification” row in
Table [4.1] where the pretraining task is to predict the stage index of an image instead
the language embedding or embedding distance. Language provides a measurable
benefit in all task suites, especially in multi-step pick-and-place, perhaps because
Lang4Sim2Real leverages similarities in language descriptions between the first and

second steps of the pick-and-place task.

How does our method compare to prior works in sim2real and vision-
language pretraining? Lang4Sim2Real outperforms all of the prior sim2real base-
lines we tested against (second row-group in Table , which collectively do rela-
tively poorly in most settings, highlighting the difficulty of the sim2real problem in

our setup. Our method outperforms both vision-language, internet-scale pretrained
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baselines (fourth row-group) across the board. When trained on increasing amounts
of real-world data, both R3M and CLIP tend to plateau at 65% and 40% respec-
tively, while our method achieves up to 90%. This suggests that CLIP and R3M do
not scale as well as our method, despite being pretrained on internet-scale data while
our method was pretrained on images from just a few hundred sim and real trajec-
tories. These results, especially on the wire wrap task, show that Lang4Sim2Real is

able to bridge wide sim2real gaps even with deformable objects.

37



Chapter 5: Mixed-Initiative Dialog for
Human-Robot Collaborative Manipulation

5.1 Introduction

In Chapters [3] and ], we saw how

- Robot Skill Capability
language, as a store of semantic mean- & R Use €
xpert Incapable
. bl P t of f Probability of Human Helping
ing, enables a surprising amount of few- Based on Dialog History
. . - &=
shot generalization to new tasks and new € : (1 @
: . “Likely
Fetch € Pour [ e A Use €

currently under review (Yu et al., 2025)),

> =~ <
Robot Negotiates for Human Help

we pivot to our second line of work men-

tioned in Section [L.5 to explore how lan-

guage can enable flexible communica-
tion paradigms for human-robot collabo-

ration. Why is collaboration important,

and how can effective communication ex-
Figure 5.1: We present MICoBot, a system

for human-robot collaboration where both
agents can initiate and carry out physical
and verbal actions. MICoBot uses both the
party with a friend. Your friend might .}, capability and the likelihood of hu-
excel at mixing drinks while you focus man helping (inferred from previous dialog
history) to determine whether the robot is
better suited than the human to perform
better at decorating, while both of you the skill. If it is, it attempts the skill itself.
If not, it negotiates for human help.

pand physical robotic capabilities?

Imagine preparing for a dinner

on cooking the main dish. You are also

reluctantly negotiate over less desirable

tasks like cleaning.

Now, imagine a helper robot in place of the friend. Current robots are not
fully autonomous for many household tasks, but they offer broad capabilities with

varying levels of reliability that can be leveraged through collaboration with humans.
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Tcan bring the scissors for you! ¥

Could you open the package usin
Robot- 0 tﬁe Scissoprs7 ° g However, | am unable to open the Can you please open the package ~ -
"ﬁﬁated . -4 package with tl esu:iss’o.r'si [
Dialog [
ol [ ~
o) = b A '
= % There are no scissors on Ok, if you bring the scissors, =&
[ i esicaEsh, | will open the package. ”
Thank you, please put Good job! We need to seal the Thank you so much for covering
Human- the car in as well. box. Please bring the ribbons here Ji* the box and wrapping it!
Initiated ! u “u -

Dialog

e e “d — " ‘ — Rwld
No worries! I'll happily put them = \ ~ When that is done, | will close

in for you. e = | '» the box and seal it.

Figure 5.2: MICoBot supports both robot-initiated (top row) and human-initiated
(bottom row) task-directed speech2speech dialog, where both agents discuss who is
best suited to perform steps in a long-horizon task.

To be an effective partner, such a robot must communicate in physically grounded
natural language, decide when to take initiative or defer to the human, negotiate
task allocation based on strengths and preferences, and adapt to changing contexts.
These ingredients are essential not only for collaborative household robots, but also

for coding assistants, chatbots, and Al agents.

Long-horizon tasks, such as preparing for a party, require dynamic, bidirec-
tional collaboration across control, initiative, and communication. In particular, the
ability to both take initiative and yield control is central to effective human—Al team-

work. However, current Al systems (e.g., chatbots) typically rely on one-directional,

human-initiated interactions (Ouyang et al., 2022; Achiam et al. 2023)), while prior

human-robot interaction (HRI) approaches often assume fixed collaboration plans

and full human compliance (Selvaggio et al. 2021). Such assumptions limit flexibility

and fail to account for the diverse preferences, capabilities, and strengths of differ-
ent human partners. We argue that effective human-robot collaboration requires a
paradigm shift toward mixed-initiative dialog as the communicative medium, enabling

both agents to initiate, negotiate, and respond to proposals in natural language.

To enable this paradigm shift, we introduce MICoBot (Mixed-Initiative Col-
laborative roBot), the first system that supports mixed-initiative dialog for seamless

human-robot collaboration in the physical world. MICoBot allocates task steps to the
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most suitable agent (see Fig. |5.1]) to maximize overall success, minimize human effort,
and respect human-initiated requests. It achieves this by engaging in mixed-initiative
dialog and negotiation to decide step allocation (see Fig.|5.2)), while coordinating the

physical and verbal actions required to execute the plan.

We validate MICoBot through real-world user studies, where 18 participants
collaborated with a TIAGo mobile manipulator on three household tasks. Our ap-
proach improves success rate by 50% over a pure LLM baseline and is preferred by
over 75% of participants. In summary, our contributions are: (1) A new problem
setting that integrates mixed-initiative natural language dialog with mixed-initiative
human-robot interaction. (2) A novel optimization framework for task alloca-
tion that balances human and robot effort with success through a unified metric. (3)
A hierarchical robotic system, MICoBot, that enables mixed-initiative speech-
to-speech human-robot collaboration and flexibly adapts to diverse real human col-

laborators in physically grounded, long-horizon tasks.

5.2 Related Work

Mixed-initiative dialog (Carbonell, 1970; |Allen et al., [1999; Chu-Carroll,
2000)) refers to communication with freeflowing questions and answers from both
parties. In the NLP field, the dominant chatbot paradigm adopted by large language
models (LLMs) largely eschews mixed-initiative interaction: humans pose substantive
questions, and the chatbot responds to these requests (Ouyang et al., 2022; |Achiam
et all 2023). Recent work has sought to make dialog systems more goal-directed
and persuasive toward some goal, such as soliciting donations (Wu et al., 2025; Deng
et al., |2023a; [Yu et al., 2023b; |Chen et al. 2023} Deng et al., 2024) or clarifying
ambiguous human requests (Qian et al., 2021; |[Deng et al., 2023b; |Chen et al., [2024).
However, none of these systems addressed mixed-initiative dialog in grounded, real-

world collaborative manipulation tasks.
In human-robot interaction (HRI), researchers have developed human-robot
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collaboration systems that interact through language but are restricted to single-
initiative dialog (see Section [2.6). Some works in HRI have explored mixed-
initiative collaborative systems without dialog, only with physical actions (Few
et al.l 20006; Natarajan et al.l 2024; Bishop et al., 2020; [Rosero et al., [2021; Palejal
et al., 2024} |Jiang and Arkin, 2015 Baraglia et al.| [2016)). These prior works overlook

the critical role of communication in effective collaboration.

Prior works have also studied human-robot optimal task allocation by
maximizing productive time and minimizing idle agents (Vats et al., [2022; Yu et al.
2021al) or maintaining safety (Faccio et al., |2024; Singh et al., 2023)). These solutions
assume availability of all agents. In contrast, MICoBot can adapt to the specific

human’s willingness to help by estimating its availability based on previous dialog.

5.3 Problem Setting
MDP Formulation. We study

o
@) Verbal y MDP environment ,
H

H

how human-robot collaborative manipu- }/_\

lation can be facilitated through mixed- = T
\ s, §

action 1

state

Phys.
action

initiative dialog. We assume that both

agents can observe the state of the world,
s € 8, and perform actions, a € A = («Q \?/irmt;z‘.
A, U A,, comprised of a physical ac-

tion space, A, (e.g., move objects, open Figure 5.3: Proposed MDP for Mixed-
them, etc.), that directly affect the phys- Initiative Collaboration.

ical state of the environment s, and a free-form, natural language verbal action space,
Ay, which is directly observed by the other agent but does not change the physical
state. We model the problem as a Markov Decision Process (MDP) from the robot’s
point of view (see Fig.|5.3|), where on each environment step, the robot performs some
action, ar € A, RUA, r and receives an observation o = [I, 4y, Sproprio] consisting of
an RGB-D image I, an optional verbal action from the human partner a, 5, and the

robot’s proprioceptive state Spoprio. Within each environment step, the human may
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perform a series of actions, ay € A, g U A, g, in its own physical and verbal action

space after perceiving the world state and robot’s previous dialog, a, g.

Physical and Verbal Action Spaces. The physical and verbal action
spaces, A, and A,, are shared between both agents. Each element of these action
spaces is a parameterized action primitive represented by the pair, a,/, = (Wp/v, Op/v)-
w, is the type of the physical action primitive (open, pick-and-place, etc.) and
g, are the corresponding parameters (e.g., what object to open or pick and where
to place it). We assume that humans are fully competent in executing all steps of
a collaborative household manipulation task but may be unwilling or unavailable to
perform some or all required actions. Their behavior can range from indifferent (never

acting) to overly proactive (completing the entire task without robot involvement).

In contrast, robots often have limited manipulation capabilities and may be un-
able to execute more complex actions, in which case it uses verbal actions to communi-
cate with the human. w, is the type of the verbal action primitive (ask_human for_help,
respond_to_human, etc.), and 6, are the corresponding parameters defining the con-
text of the verbal primitive (e.g., what step the robot needs help on). While the types
of verbal actions are limited, each generates freeform and open-vocabulary language.
MICoBot first selects an abstract verbal action from this space, then translates it into
a natural language utterance to negotiate with the human—conveying its requests and
the assistance it requires for successful collaboration. This involves reasoning over
asymmetric human and robot physical capabilities to devise collaboration strategies

that maximize task success while minimizing human effort.

Collaborative Task Definition and Problem Statement. We assume the
collaborative task is defined by a task plan of length 7', represented as a sequence of
unassigned physical action primitives, [a,., ..., ap 1], such as [(pick-and-place(box,
table), ..., close(box)|, obtained from the task instructions or off-the-shelf task
planner. To complete the manipulation task while minimizing human effort, the sys-

tem must allocate steps of the plan between the two agents—mnegotiating with the
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Figure 5.4: MICoBot consists of 3 decision-making modules: a meta-planner that
produces a collaborative strategy expressed through adaptive planning code, an iter-
ative planner that executes the code and optimizes our objective (Eq. to decide
the next primitive action, and an action executor that outputs the low-level pose
trajectory or verbal utterance to say to the human.

human through robot-initiated dialog to suggest assignments, adapting to human
preferences through human-initiated dialog, and ultimately executing its assigned
physical actions. At each step t, the system must compute the best allocation of the
remaining steps of the plan, G = ¢, ..., gr_1], where Vt, g, € {H, R}. The optimal
allocation G* maximizes the expected task success probability while minimizing to-
tal human effort. The optimization also incorporates constraints conveyed through
the mixed-initiative dialog history, such as task allocation requests or proposed task
splits. The resulting allocation G* determines whether the robot executes the current

step (R) or negotiates for human help (H).

5.4 MICoBot: Mixed-Initiative Collaborative Robot
5.4.1 Collaborative Task Allocation as Optimization.

A helpful physical collaborator must aim for task success with minimal human
effort while adhering to human preferences expressed in dialog. We formulate collabo-
rative task allocation as a constrained optimization problem. To simplify, we combine

success probability and effort into a single Q-value inspired by temporal distances in
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RL (Myers et al., [2025).

We assume each task step is executed by a multi-task policy 7 that performs
continuous low-level control at a fixed control frequency. We define the reward as
r = —1 per control time step, terminating when the skill completes or times out. A
well-trained Q-function, @ : o; X a; = (wy, 0;) — R with a discount factor of 1, thus
represents the negative expected number of timesteps until skill completion from
a given state. We assign each agent a distinct Q-function: Qg for the robot and Qg
for the human. These agent-specific Q-functions thus provide a unified, interpretable
cost metric for comparing step allocations, jointly capturing both execution time

(effort) and likelihood of success.

However, directly optimizing step allocation with @y and Qg diverges from
realistic human-robot collaboration in three ways: (1) human and robot effort are val-
ued equally, when human effort is more valuable; (2) the human is assumed to always
comply with robot-initiated requests, overlooking their willingness and availability;
and (3) human-initiated requests or preferences are not respected. To address (1), we
introduce a human-effort ratio, o, valuing human effort to robot effort. To address
(2), human Q-values are adjusted with an inferred probability, pg,, of the human
agreeing to perform action ay; = wi(#;) when asked. To address (3), we enforce con-
straints, (', ..., C,, extracted from human-initiated dialog—such as explicit requests
to perform specific steps themselves or delegate them to the robot. Altogether, we

propose the following objective to find the optimal task allocation G*:

«

T—1
max Z (1QtH ' p_ + ]lgtR) ng(st7 at)a

tye- 9T
g g P

s.t. (C4,...,C, are satisfied

(5.1)

)

that minimizes expected time-to-success and human effort.
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Pour Package in Bowl Assemble Toy Car Pack Gift Box Average

n==6 n=>06 n=>06 n=18
MICoBot LLM MICoBot LLM MICoBot LLM MICoBot (ours) LLM
Entire Task Success Rate (%, 1) 100 83 67 0 67 0 77.8+15.7 27.8 £39.3
% of task steps completed (1) 100 93 94 31 88 50 93.8+5.1 58.2+26.0
% of steps performed by Human 27 29 60 5 35 21 40.5+14.2 182 +9.7

Table 5.1: Comparison between MICoBot (ours) and the LLM baseline across three
real-world tasks.

5.4.2 MICoBot Framework

MICoBot is a three-level framework (Fig. that includes 1) a meta-planner
(implemented as GPT-40) that processes human dialog and generates a collaborative
strategy expressed in code, 2) an iterative planner that updates planning state vari-
ables and allocates and decides the next action to perform by executing the code, and
3) an action executor that carries out the action primitive, either through low-level

physical actions or by formulating a dialog utterance to the human.

Q Functions. To quantify Eq. MICoBot requires accurate Q-functions
that capture each agent’s expected effort and success probability on each task step.
To collect data to learn the robot’s Q-function (Qr), we use the OmniGibson simu-
lator (Li et al., [2022), recording both completion times and success rate. We train a
supervised network as (Jr that predicts the expected timesteps for an action primitive
a to succeed from a given symbolic state 0. When estimating the human’s Q-function
(Qu), we simply obtain time estimates for each step from an LLM predicting how
long a human needs to execute action a; = w;(6;), plus a travel time estimate based

on human-object distances.

Human Helpfulness Estimator. To adapt to temporally changing human
sentiment, MICoBot estimates the probability of human assistance at the current ¢-th

timestep, pm+, using an LLM-based sentiment analysis over prior dialog.
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5.5 Experimental Evaluation

We evaluate MICoBot in the real-world on a Tiago mobile manipulator work-
ing with 18 unique human participants on household tasks. A successful robotic
collaborator must achieve task success (primary metric) while minimizing human

effort (secondary metric). We also report subjective user satisfaction measures.

Environment. In the real-world, we perform our experiments in a mock
apartment with a kitchen and living room area with commonplace furniture. In all
of our tasks, the robot and human work together on opposite sides of a coffee table.
Simulating a household setting, the participant mainly sits on the couch, doing their
personal (i.e., non-task-related) work. The human can be as inactive or proactive as
they wish. Each human user study consists of two 20-30 minute trials, in which they

collaborate with both our method and a pure LLM baseline, ordered randomly.

Skills. To perform long-horizon household tasks, the robot has access to
several mobile-manipulation action primitives relating to pick-and-place, pouring,
and folding. To initiate and respond within mixed-initiative dialog, the robot uses
open-vocabulary verbal action primitives to ask the human for help on a step, propose
to split up a few steps with the human, accept/reject human requests based on its

capability, and respond to the human for all other queries.

Baselines. Because multiple components of our method are powered by
LLMs, we compare our approach to a pure LLM baseline (LLM) given the same
information as our meta-planner: symbolic state, dialog history, task plan, a human-
robot effort tradeoff ratio, and a list of the robot’s skills. The LLM primarily optimizes

for task success and secondarily minimizes human effort.

Tasks. We perform user studies on 3 real-world tasks, each with 6 users for
a total of 18 unique participants. (1) Pour package into bowl: Fetch the bowl,
package, and scissors, cut open the package, and pour it into the bowl. (2) Assemble
toy car: bring the car parts, wheels, and drill from the shelf to the coffee table, drill
in the wheels, switch the drill bit, and finally drill in the windows and seats. (3)
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Pack gift box: fold the gift box, put tissue wrapping paper and a toy car in the
box, close the lid, wrap ribbons, and tape down a gift bow. Each task is 5-8 mobile

manipulation steps long and requires varying degrees of human involvement.

5.6 Experimental Analysis

(1) Does our method achieve the best trade-off between task success
and minimizing human effort? In our real-world user study (Table , MICoBot
achieves a 78% task success rate compared to 28% for the LLM baseline (statistically
significant with p-value 0.007 under Fisher’s exact test). Additionally, MICoBot
achieves a 94% task step completion rate compared to the baseline’s 58% (statisti-
cally significant with p-value 0.002 under the Wilcoxon-signed-rank test). MICoBot
understood its own limitations (through affordance functions trained in simulation),
and was hence better at leveraging human assistance effectively on the steps it was
ill-suited to perform. The LLM baseline tended to prioritize minimizing human effort
over task completion by allocating the robot multiple steps it was incapable of, since
the LLM lacked an understanding of the robot’s affordances. MICoBot uses roughly
double the amount of human effort (41% vs 18%) to achieve nearly triple the success
rate of the LLM baseline, demonstrating a better trade-off between maximizing task

success and minimizing human effort.

(2) How do users feel about working with our system? An A/B blind
preference test shows that 78% of users preferred our method over the LLM baseline.
Our method also significantly outperformed the baseline in user scores on overall
satisfaction, communicative ability, and capability in asking for a suitable amount
of help (statistically significant under the Wilcoxon-signed-rank test with p-values
ranging from 0.007 to 0.024; see Figure [5.5). In contrast, the LLM baseline often
failed to ask when it needed help and was unwilling to reject human requests it could

not fulfill, leading to over-promises and task failures.
(3) Is mixed-initiative dialog critical to our method’s performance?
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In real-world user studies, MICoBot en-
gaged in 2.4 dialog initiative shifts per
trial, compared to the LLM baseline’s
1.1. This enabled MICoBot to boost
human acceptance of help requests from
55% to 86%. The LLM baseline made
far fewer help requests per trial (0.9 vs.
MICoBot’s 2.9) and achieved a smaller
acceptance increase (70% to 75%). This
demonstrates mixed-initiative dialog is
critical to collaborative discussion and

task success.

Overall User Satisfaction

MiCoBot- 11% 28% 50% 11%
LLM - 28% 33% 11% 11% 17%

Communicative Ability
MiCoBot - 11% 39% 28% 22%
LLM - 28% 33% 17% 6% 17%
Asked for Suitable Amount of Help
MiCoBot - 6% 22% 44% 28%
LLM - 28% 39% 11% 22%

Awareness of Its Limitations

MiCoBot- 11% 11% 17% 17% 44%
LLM - 44% 22% 11% 22%

I 0 g ] g .
0 20 40 60 80 100
% of Ratings

Likert Rating (1)
1 2 3 4 5

Figure 5.5: Our method substantially out-

performs the LLM baseline in user ratings
averaged over all n = 18 participants.
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Chapter 6: Proposed Future Work

We discussed in Sections [3| and [4] ways to use language for semantic under-
standing in robotics tasks, enabling a greater degree of few-shot generalization to
new tasks and domains. In Section [5] we discussed an entirely separate way to use
language—for freeform, flexible, bidirectional communication that enables robots to
accomplish long-horizon tasks with human collaboration. In our future work, we seek

to expand upon and combine these two separate lines of work.

6.1 Steering Policies and Accelerating Learning with Lan-
guage Rules and Guidance

When we bring helper robots into our homes, it is crucial for the robot to
operate under a set of rules that we specify—for example, to avoid running over
family members, avoid manipulating glass and other brittle objects, and generally
try to conserve water and electricity when cleaning and using appliances. It would be
very helpful if we could enumerate these desired behaviors in natural language, hand

over this manual to the robot, and train the robot to follow this manual.

As a problem setting, let G represent this manual (equivalently, “guidebook”
or “rulebook”). G contains natural language guidelines that specify the robot’s ob-
jectives, prohibited behaviors, and information about the expected dynamics of the
environment. We hope to leverage these guidelines to enable robots to learn faster,
behave more safely, and improve human satisfaction. The guidelines in G range in
importance from critical (e.g., “never cause physical harm to the human”) to rec-
ommendations of less importance (e.g., “try to move smoothly from one place to
another”), to purely informational guidelines (e.g., “the toaster becomes hot when

you turn the dial past 07).

Learning from rules offers to bridge the two uses of language that we explored
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in Sections [3] [, and 5] Along the first thread of leveraging language’s pretrained
embedding space, rules offers a compact, distilled representation of good and bad
behaviors, language knowledge, and know-how that can be leveraged to help the robot
learn faster. Along the second thread of using language as a communicative medium
between humans and robots, a rules manual is an extensive document communicating

detailed intent, preferences, directives, and knowledge to the robot.

Enabling robots to follow a complex system of ranked rules requires us to
develop a cost function to quantify the compliance of robot behavior. This makes
RL a natural learning paradigm to teach the robot good behaviors. In RL however,
exploration is difficult because policies randomly explore regions around the current
behavioral policy to discover optimal trajectories for achieving a task, which can be
computationally intractable for long-horizon tasks and continuous state and action

spaces.

To address the problem of exploration inefficiency and guideline compliance,
we propose factorizing the policy into two levels: a high-level policy mp; @ 0f X liqsk —>
lqoet that predicts an action expressed in language tokens every k timesteps, where
low € R™% and a low-level policy 7, : 0t X liask X leet +— @y, which predicts a

low-level robot action (i.e., xyz delta positions) a; € R% every timestep.

The goal of 7, is to predict a series of low-level actions a; that follow the
intermediate-level action [, expressed in language tokens. The job of my; is thus
to predict [, that induces 7, to make progress toward the goal expressed in l;,q.
Having an intermediate action representation I, enables (1) better interpretability,
allowing us to judge whether the policy is following guidelines, and (2) enables more
semantically diverse exploration, since perturbations in [, token space leads to more

meaningful behavioral policy differences than perturbations in low-level action space.
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6.1.1 Prior work
6.1.1.1 Constitutional Al

Before several LLMs were popularly released in late 2022, researchers worked
to prevent them from emitting hateful, discriminatory, or violent content. One of
these methods was Constitutional Al (Bai et al., 2022), where researchers developing
Claude wrote a list of 16 principles, referred to as a constitution. To encourage
their LLM to adhere to this constitution and produce safe responses, they iteratively
prompted the LLM to (1) provide a response r to an original prompt p, (2) determine
whether r had following a randomly sampled principle from the constitution, and
(3) if not, self-suggest modified responses r’ to the original prompt p to follow that
principle. This yielded LLM responses that were more likely to comply with the
constitution, and these prompt and modified response pairs (p, ') were then used to
finetune the model.

In a sense, our proposal can be summarized as “Constitutional Al for Robotics,”

with one key difference. In constitutional Al, all principles are listed as equally im-
portant. However, in the physical world, some principles (such as minimizing harm
to the human) are much more important than others (such as minimizing damage to
objects on the scene). This means that rules within rulebooks should be ordered by

priority and importance (Censi et al., [2019)).

6.1.1.2 Language as Intermediate Action Representation

Our proposed high-level policy architecture is inspired from RT-H (Belkhale
et al., 2024) and YAY-Robot (Shi et al., 2024)), both of which use a high-level policy
that passes a language action for the low-level policy to execute. This intermediate
language action is a convenient interface for a human to provide on-the-fly verbal
feedback to correct the robot’s behavior in real time. However, these works only
perform imitation learning and do not consider the main problem of following robot

rules or using the rules and knowledge in a guidebook to help accelerate learning and
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RL exploration.

6.1.1.3 Symbolic Specifications

When a robot needs to learn to follow rules and guidelines, a key question
is how these rules can be represented in a manner compatible with the policy ar-
chitecture and learning algorithm. Much work has been done on task specification
in symbols. A popular representation is Linear Temporal Logic (LTL), which, as
its name suggests, can represent multi-step task specifications that can change with
time, such as “Go to three nearby restaurants and survey the prices, then buy the
cheapest entree above 800 calories that you saw and bring it to me.” Researchers have
used LTL for task specification and generalization to new tasks (Liu et al., 2023bja,
2024blja; Hsiung et al., [2021). Hu et al.| (2023) proposed a spinoff on LTL that is more
compact and code-like, RoboEval Temporal Logic (RTL). However, these works focus
on task specification through symbolic and logical expressions and do not study how

a guidebook of multiple logical expressions can shape robot behavior during learning.

6.1.1.4 Constrained RL

The standard objective in RL is to maximize the expected sum of discounted
rewards (Equation . However, a policy that aims to maximize expected reward
does not guarantee safe behavior. Constrained Policy Optimization (CPO) (Achiam
et al., 2017) proposes modifying the standard RL objective by adding cost functions,
the analog of reward functions but indicating how undesirable a state-action pair is.
CPO can then learn value functions that are based on the discounted sum of these cost
functions. These cost-value functions must be maintained under some constant, pre-
determined threshold over the entire trajectory. The RL agent must then maximize

reward while visiting states that satisfy the cost-value function threshold constraints.

A separate concept called shielding was also proposed to encourage safe RL (Al-

shiekh et al., [2017). There are two shielding paradigms: a shield that precedes the
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policy whose responsibility is to provide a list of safe actions for the policy to choose
from, or a shield that follows the policy whose responsibility is to remediate unsafe

actions from the policy to make them safe to execute in the real world.

More relevant to our proposed work is training RL policies with explicit natural
language constraints. |Yang et al.| (2020b) learns a 2D binary mask, of the same
dimension as the state space, representing the states that the agent cannot visit.
Wang et al.| (2024b)); |Lou et al.| (2024) adopt CPO by comparing the cosine similarity
of language embeddings of language constraints and textual observations. However,
these works deal with simplified gridworld domains where a mask over the entire state
space is feasible to predict at each timestep, or in simple 2D pointmass domains,
and they only deal with negative rules pertaining to which states the agent should
not move to. We hope to learn from a much wider range of guidelines—mnot just
negative constraints on which states shouldn’t be visited, but also guidelines on what
behaviors are recommended, and dynamics information about the environment. We
are also interested in enabling faster RL exploration when following this guidebook,

which these prior works were unable to demonstrate.

6.1.1.5 Formal Methods

The field of formal methods (Woodcock et al., [2009) provides tools for ana-
lyzing and ensuring guarantees of each component of a program. These principles
could be applied to our setting of rule following robots, especially if the policy has an

intermediate planning stage that was written in code or symbolic form.

6.1.2 Types of Guidelines

What are the types of guidelines in a guidebook we provide our robot? We
propose some broad categories we want our robot to comply with and make use of

during the learning process.

First, we define three guidelines types: constant, conditional, and dynamics.
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A guideline is constant if it always applies under all situations (e.g., “Never collide
with the furniture”, or “Prioritize choosing shorter paths”). A guideline is conditional
if it applies under a specific state condition (e.g., “If the lights are off, turn them on”).
Finally, a dynamics guideline is one that describes a certain aspect of how the system

evolves over time, such as “if the cabinet is opened, objects can be placed inside.”

Second, we split the constant and conditional guidelines by their importance:
critical and non-critical. Critical guidelines must be followed and complied with at
all times, while non-critical guidelines can be ignored in service of obeying critical
guidelines. The notion of prioritization over rules is common in unstructured envi-
ronments. For instance, we may want a self-driving car to avoid abrupt lane changes
to ensure a smooth ride—a non-critical guideline. However, if there were a sudden
obstacle blocking its lane, we would prefer the car swerve out of its lane temporarily

to avoid it—a critical guideline (Censi et al., [2019).

6.1.3 Proposed Method
6.1.3.1 Measuring Rule Following

How would we ensure that the policy follows the rules and guidelines stipulated
in the guidebook GG? We can leverage the fact that the high-level action [, produced
by the high-level policy 7, is a token-by-token prediction of what the robot intends to

do—making it of the same modality as the guidebook GG written in natural language.

Recall that 7p,; predicts a probability distribution over language tokens, so we
can sample it to get candidate string predictions for l,.;. We want to shape these
probability distributions to achieve better compliance with rules most relevant to
the current state s;. We would like to place more probability mass on performing a
language action [, that complies with guidelines and decrease the probability mass
on performing language actions that do not. To do this, we propose modifying the
predicted distribution of [, via a compliance score which evaluates how likely the

proposed [,.; complies with all relevant rules in G at the current state s;.
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Let w(l;) = compliance score of l,.;, one of the candidate [, predictions of
Thi- Say we have access to a rule retriever F' : G x s; — R, which gives a subset
R={r, ?;& of the top-k most relevant guidelines G in the current state s;. I’ can be
implemented as a RAG-based system (Lewis et al., [2020). We define the compliance

score as follows:

w(li) =Y P(sat(r))|li, st)o (P(rel(R)]sy)) (6.1)

TjER

where P(sat(r;)|l;, s) is the probability that rule r; is satisfied if action /; is executed
by m, from state s;, and P(rel(R)|s;) is a vector where element j is the probability
that rule r; is relevant given the current state s;. The o(-); indicates the jth element

of the vector after the softmax operation.

The relevance scores are important because rules often vary in importance as
a function of the current state s;. For instance, the rule “all dirty plates should go

Y

in the dishwasher,” is most relevant after the robot has grasped a dirty plate. Other
rules like “do not move close to the wall” are more relevant the closer the robot is to

the wall.

Thus Equation measures how well the proposed language action [; satisfies
the rules in R, weighted by the relative relevance of the rules each other. Intuitively,
under this definition, satisfying a more relevant rule contributes more heavily to the
compliance score than satisfying a less relevant rule. w(l;) € [0, 1], where w(l;) =1

indicates perfect compliance to all top-£ retrieved rules in R.

Finally, we can update the predicted logits from m;(l;|s;) by pushing them
toward the softmax distribution induced by w(l;). This moves more probability mass
toward sampled [, from m,; that are more compliant to the relevant rules in the

rulebook G.

As initial steps, we plan to use an off-the-shelf VLM for P(rel(r;)|s;) and an

LLM for P(sat(r;)|l;), but for improved performance, we may need to consider training
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these from in-domain data as binary classifiers or state-based heuristics. We also plan
to initially treat all guidelines as equally important. After this works decently, as a
subsequent step, we will explore extracting and inferring the relative importance of
the rules from G as an additional multiplicative term in Equation [6.1] We can also
leverage dynamics guidelines from G to more accurately estimate the satisfaction

probability of rule r; when following language act [; from state s;.

6.1.3.2 Data Collection

We seek to train the robot to perform some task expressed in natural language
liask While following guidebook G. We assume access to two datasets. The first, D;qsk,
consists of a small number of target task demonstrations 7; = [(30, ap), ..., (or—1, aT,l)] )
We also assume that there are language segmentations of each expert demonstration,
where each expert demonstration is divided into chunks [tsar, tena] that denote the
timesteps between which the robot is performing a movement with the language de-
scription l,;. The language segmentation is either provided by a human oracle, or a

heuristic captioning method similar to Section [

The second dataset D4, is of the same format, except that it contains multiple
tasks that are somewhat related to [;,s. This provides diversity of paired language
and action behaviors, useful for increasing the range of language inputs that m, is

able to follow and language outputs 7y, is able to generate.

6.1.3.3 Training

In the first phase, we learn m, : s; X las — a; with imitation learning on
task data D;.q to get a good behavioral initialization. In the second phase, we learn
Thi + St X liask —> laet, also with imitation learning, but this time on both task and play
data Dyigep U Dyjay. This enables mp,; to produce a broader distribution of language

actions.

In the third phase, we aim to improve the overall performance of our system
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beyond its imitation learning performance through RL. However, we want the explo-
ration to be rule-guided to learn faster. In this phase, we first perform RL finetuning
on m; (while 7, is frozen), and then perform RL finetuning on m, (while m; is

frozen).

When finetuning 7y, we use a standard loss L gy, (such as an advantage-based
loss in PPO (Schulman et al., [2017))), plus an auxiliary term that seeks to maximize
probability weight on language actions (l) that have high rule compliance. Thus

the losses of m; and m, are:

Lni =Lpr — A(log Thi(lact| St Lrask) + 1ng(lact)> (6.2)
Lo = LR (6.3)

The second term in £; allows us to maximize the probability weight on [,
that comply with rules with a high compliance score, w(lye). This term is weighed
by a scalar hyperparameter \. Training the two policies with RL in stages allows
us to first achieve large scale semantically meaningful exploration (e.g., “move to-
ward the apple” vs “close gripper around cup handle”), and then achieve fine-grained

exploration (i.e., within a gaussian ball around the behavior policy’s actions).

6.2 Proposed Experiments and Metrics

We propose to first develop and experimentally validate our proposed method
in minibehavior (Jin et al., 2023)), a gridworld environment that supports simple
discrete symbols for articulated objects like furniture. We may also consider other
safety-focused benchmarks (Achiam and Amodei|, 2019; Yang et al., 2020b; Zhou et al.|
2024)). We then hope to experiment within a proper physics-based robot simulator,
such as robosuite Zhu et al.| (2020), before finally bringing it into a real-world, real-

robot setting.

The primary baselines are prior works in performing RL from natural language

constraints (Yang et al.| 2020b; Wang et al., [2024b; Lou et al., 2024). The primary
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metric is success rate at convergence. Secondary metrics can potentially include the
behavioral compliance of the trained policies to the guidebook as well as the number
of environment samples needed to achieve some performance threshold. It would also
be interesting to evaluate the generalization performance of the policy to changes in

the rulebook G, such as when rules are added or removed.

6.3 Long-term Future Work

In this section, we propose longer-term problems to work on that extend the
human-robot collaborative manipulation and bidirectional dialog setting described in
Section[p] In our earlier work described in that section, we focused on a setting where
both the human and robot have a shared understanding of where all the task-relevant
objects are as well as the high-level steps to perform the task. We assumed the human
is perfectly competent at every step of the task but not necessarily willing to help
the robot. Additionally, the mixed-initiative dialog focused on ways to negotiate and
propose allocating parts of the task to each agent. For more seamless human-robot
collaboration in unstructured household settings, we can expand the problem setting

along a number of fronts.

6.3.1 Information Asymmetry

We assumed in Section |5| that there was a capability asymmetry where the
robot could only perform a subset of the steps with varying success rates, whereas the
human could perform all of them perfectly competently. However, in a more realistic
setting, both agents not only have different capabilities but also have different levels
of knowledge about the world and different ideas for how to go about performing the

task.

For instance, the human sitting at their desk may ask the robot to go to
the kitchen area to find a fruit candy snack, pour some into a plate, and bring the

plate to the desk. The robot goes to the pantry and finds that there are no such
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fruit snacks. After some suggestions communicated remotely from the human about
potential other places in the kitchen area where the fruit snack package may be, and
unsuccessful attempts at locating the package at those places, the robot and human
conclude that the package must have been finished already. The human then asks
the robot what related snacks are available in the pantry. The robot scans over the
hundreds of visible items packed in the pantry and chooses a handful of snacks most

related to the human’s original request.

Here, the key technical challenges are to decide (1) when the robot needs
additional information from the human to succeed or be more efficient at the task,
(2) what the robot needs to know, and how to formulate dialog to ask the human for
this information, and (3) how much information to respond to a human’s request for
information (such as only providing the most relevant list of snacks instead of telling

the human about every snack in the pantry).

6.3.2 Replanning from Dialog

In the preceding example, we saw how the robot needed to adjust its plan from
getting a fruit snack to some other snack that the human specified later in the course
of dialog. Querying and receiving new information is not the only occasion for the
robot to replan in the world. Sometimes the human may change their mind midway

through a robot task execution and interrupt the robot to modify the current task.

Other times, when a human refuses a critical step, the robot must replan,
selecting the best new plan completion candidate to maximize partial task completion
success and meet as many user expectations as possible. For instance, if the robot
realizes that it is incapable of opening the fruit snack package because scissors are
needed, and the human is unwilling to help the robot open the package, the robot will
need to decide whether to (i) bring the scissors, plate, and unopened snack package
to the human, or (ii) look for a snack package with a fruity flavor that is already

opened that the robot can directly pour into a plate and bring to the human.
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Often, the robot may fail at executing a skill. To recover from its own failures,
replanning is also needed—it may need to ask the human for specific help on the skill

it failed at, or it may need to consider self-recovery behaviors.

The technical challenges in this problem setting are (1) being able to translate
the dialog history with the human into an edit of the plan, which is a sequence of
skill-parameter pairs executable with the robot’s library of skills, (2) proposing and
ranking candidate plan completions after issues during execution (e.g., human refusal
to help), based on their relevance, similarity, and feasibility compared to the original
plan, and (3) deciding whether to ask the human for help after an execution failure,

or how to recover from the failure itself.

6.3.3 Bi-directional Low-level Feedback

Prior work has explored humans providing natural language feedback to im-
prove the behavior of robotic agents. However, not only do robotic collaborators need
to follow human feedback, but the human may need to heed feedback from the robot

so that the robot can continue helping the human.

For instance, if the human were in the kitchen with the robot and the human
cuts the package with scissors, they may place the package back on the table for the
robot to pick up, but in a spot too far for the robot to reach. The robot must then
recognize that it cannot proceed from the current state, determine what distribution
of initial states would facilitate success on its next skill, and formulate a natural
language utterance asking the human to perform an adjustment to the state (e.g.,
“please move the package within 12 inches of my right gripper”) to enable the current

state to be brought within the distribution of high-success states for the robot.

We also hope to eventually tackle real-time simultaneous human-robot collab-
oration not just on tasks where the human is 100% competent, but also in cases where
neither the robot nor human working alone can accomplish the task, and simultane-

ous physical collaboration is needed. For instance, moving a heavy table from one
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room to another is usually a two-person job. What would it take for a human-robot
team to be able to perform the same task? Both agents must simultaneously provide
and follow low-level feedback to successfully coordinate as they lift the table so that
it is roughly level on both sides, carefully turn and move it through narrow doorways

and hallways, and delicately place it back on the floor without injuring the human.
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Chapter 7: Conclusion

The purpose of robotics is to augment human physical capabilities. To enable
robots to help humans beyond structured settings and to deploy them into unstruc-
tured environments like homes, robots must learn to act intelligently based on be-
haviors extracted from large amounts of data. However, real robot data is scarce and
expensive to collect. We argue that natural language is an abundant and powerful
data modality to augment robotic capabilities for two reasons: (1) language is a store
of semantic meaning important for a robot to generalize to new domains and tasks,

and (2) language forms the basis of human-robot communication and collaboration.

We demonstrated several promising results that leverage both benefits of lan-
guage. To leverage the first benefit, we demonstrated that simultaneous language and
demonstration task conditioning greatly improved sample efficiency when generaliz-
ing to new tasks, and that providing a single language instruction was as important
to final performance as finetuning on 50 test task demonstrations (Section . We
also showed that language can bridge wide sim2real gaps, including those involving
deformable objects, by providing a common grounding between visually dissimilar
but semantically similar images in simulation and real, boosting the performance and
sample-efficiency of sim2real policies (Section [4)). To leverage the second benefit, we
showed that mixed-initiative dialog greatly improves human-robot collaboration on
mobile manipulation tasks by enabling the robot to use freeform dialog to negotiate

with the human on what steps each agent should accomplish (Section .

For near-term future work, we hope to bridge these two threads of work by
using natural language to guide exploration and push the robot toward user-specified
behaviors and guidelines. This leverages language in both of these threads: (1) pre-
trained language spaces determine which rules are most relevant given the current

state, and whether the predicted language action complies with the guidelines, and
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(2) language is used as a human-robot communicative medium, through which the hu-
man expresses its exact preferences and constraints, and the robot acts in accordance

with everything the human has communicated.

For long-term future work, we propose a number of problem extensions to the
mixed-initiative dialog framework that enhance human-robot communication beyond
task allocation to also support bidirectionally relaying information needed for task
completion, for replanning, and for low-level movement feedback. We hope that work
along these fronts will ultimately enable collaborative robots that can work seamlessly

and simultaneously with humans on tasks that neither agent can perform alone.
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