

Semantics

-**PSL** is the probabilistic logic framework we use -Evaluate on the **STS** task: judge sentence similarity

	Heuristic G	roundi						
Evidence: I(man(M)) = 1, I(d	Const							
Rule: man(x) \land drive(y) \land agent(y, x) \rightarrow result()								
score(x=D) = 0 + 0 = 0	man(D) ∧ agent(D, D) ∧ drive(D						
	man(D) ∧ agent(M, D) <pre></pre>						
score(x=M)	man(M) ∧ agent(M, N	<mark>∕)</mark> ∧ drive(N						
<pre>score(x=M) = 1 + 0 = 1</pre>	man(M) ∧ agent(D, M	1) ∧ drive(D						
Best ground clause is when $x=M, y=D$: man(M) \land agent(D, M								

Probabilistic Soft Logic for Semantic Textual Similarity Islam Beltagy, Katrin Erk, Raymond Mooney The University of Texas at Austin

Abstract

-Using probabilistic logic for semantic representation, combining Formal Semantics and Distributional

-represent words as vectors in high dimensional space -capture the "graded" nature of linguistic meaning, but do not adequately capture logical structure -similarity(water, tea) = cos(water, tea)

Distributional Semantics

(robust but shallow)

System Architecture

S1: $\exists x, y, z$. man(x) \land drive(y) \land agent(y, x) \land convertible(z) \land patient(y, z)

S2: $\exists x, y, z$. $guy(x) \land own(y) \land$ agent(y, x) \land nice(z) \land car(z) \land patient(y, z)

Vector Space

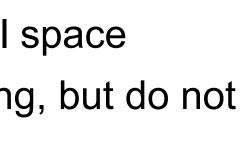
Distributional **Rules Constructor**

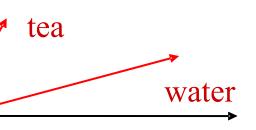
Uses distributional information to generate an **on-the**fly soft rule base

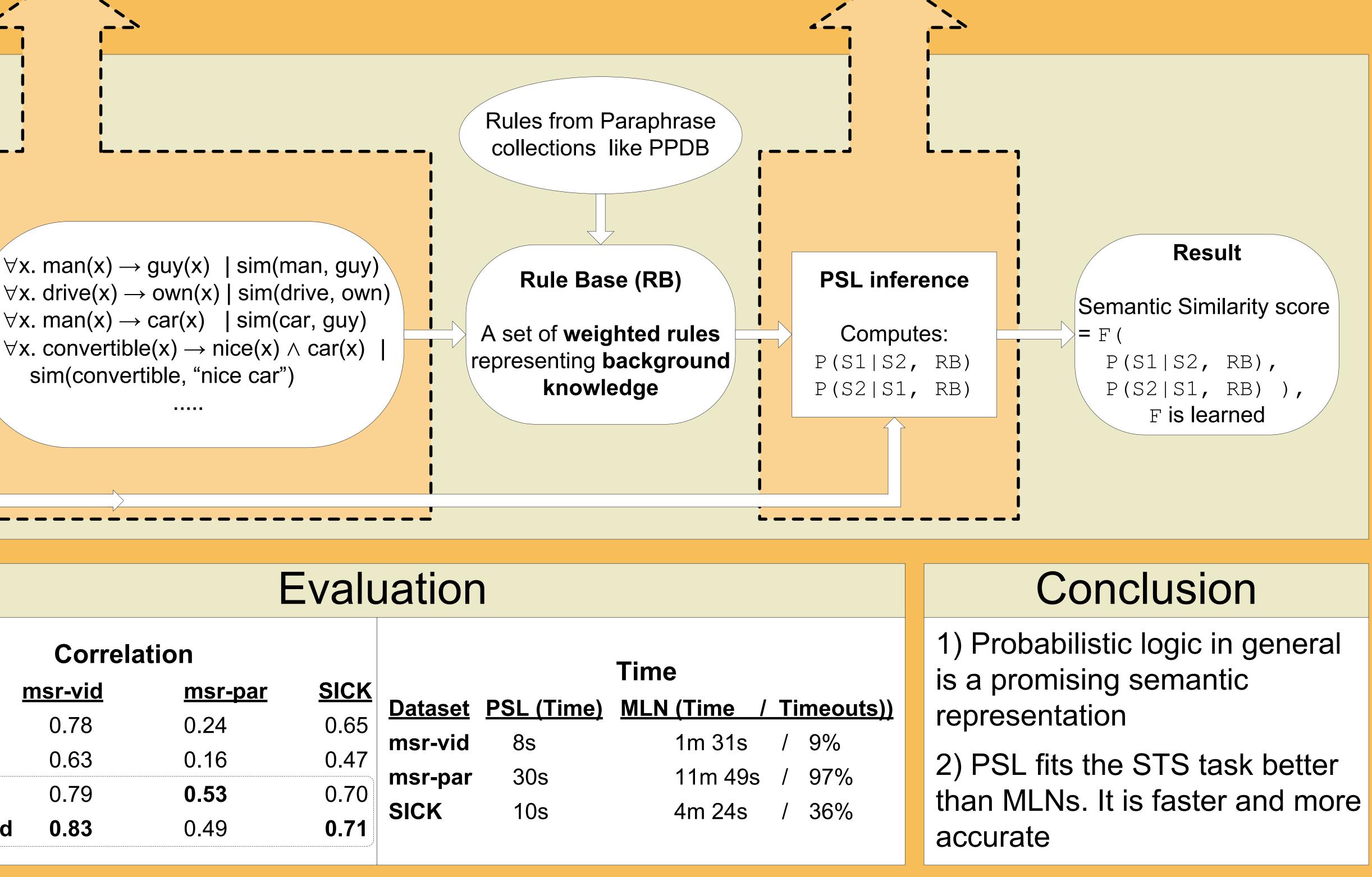
stants: M, D Correlatio <u>System</u> <u>msr-vid</u> score(y=D) = vec-add 0.78 0.8 + 0 = 0.8MLN 0.63 score(y=M) = 0.79 PSL 0 + 0 = 00.83 PSL+vec-add Λ) \wedge drive(D)

References [PSL] S. Bach, M. Broecheler, L. Getoor, D. O'Leary. 2012. Scaling MPE Inference for Constrained Continuous Markov Random Fields with Consensus Optimization. NIPS 2012

-Probabilistic Logic combines Formal Semantics and Distributional Semantics -Probabilistic Logic offers a **deep and robust** semantic representation **Probabilistic Soft Logic (PSL)**


-PSL is the probabilistic logic framework we use -Atoms have **continuous truth values** in interval [0,1] (in contrast with boolean atoms in MLNs) -Efficient inference (100 times faster than MLN in our experiments) -Logical operators are replaced with Łukasiewicz logic: $I(\neg l 1) = 1 - I(l 1)$


-Implication via distance to satisfaction d: $d(l \rightarrow l^2) = max \{0, l(l) - l(l^2)\}$ -PDF: $f(I) = \frac{1}{Z} \exp[-\sum \lambda_r (d_r(I))^p]$


-MPE inference is a **linear program** when p = 1

-PSL does not work out-of-the-box for STS -Replace conjunction with average: $I(l1 \land ... \land ln) = avg(I(l1), ..., I(ln))$ -Inference remains a linear program

-Replace PSL grounding with a heuristic grounding that find the n best groundings (grounding limit)

		Time				
<u>sr-par</u>	<u>SICK</u>	Dataset	PSL (Time)		Ti	med
24	0.65		-			
16	0.47				-	
53	0.70					369
49	0.71					
	24 16 53	24 0.65 16 0.47 53 0.70	24 0.65 Dataset 16 0.47 msr-vid 53 0.70 SICK	24 0.65 Dataset PSL (Time) 16 0.47 msr-vid 8s 53 0.70 msr-par 30s 53 0.70 SICK 10s	24 0.65 16 0.47 53 0.70 Dataset PSL (Time) MLN (Time / msr-vid 8s 1m 31s 53 0.70 msr-par 30s 11m 49s SICK 10s 4m 24s	sr-par SICK 24 0.65 16 0.47 53 0.70 SICK Dataset PSL (Time) MLN (Time / Time) 16 0.47 53 0.70

Probabilistic Logic

 $I(l1 \land l2) = max \{0, I(l1) + I(l2) - 1\}$ $I(l1 \lor l2) = \min \{1, I(l1) + I(l2)\}$

Adapting PSL for STS