

Abstract

- Using Markov Logic Networks (MLN) to represent Natural Language Semantics results in complex inference problems involving **large ground network** and **complex formulae**.
- We address this problem through:
 - MCW**: A modified closed-world assumption (MCW) that removes **unnecessary** ground atoms, which significantly reduces the size of the ground network
 - QF**: Inference algorithm that utilizes **SampleSearch** to compute **probabilities of complete formulae** not just individual ground atoms
- Evaluation: on the recognizing textual entailment (**RTE**) task

Modified Closed-World Assumption (MCW)

Query Formula (QF): inference with complex queries Q

Standard work-around
Extra rule: $Q \leftrightarrow \text{result}(\text{"dummyConst"})$
Query: $\text{result}(\text{"dummyConst"})$

New inference method with Query formula
 $\Pr(Q | R) = Z(R \cup \{(Q, \infty)\}) / Z(R)$ = ratio between Z of the ground network of the MLN with and without Q added as a hard rule.
Estimate Z using **SampleSearch**. Why ?

Evaluation: 10,000 RTE pairs

System	Accuracy	CPU Time	Timeouts
mln	57%	2min 27sec	96%
mln+qf	69%	1min 51sec	30%
mln+mcw	66%	10sec	2.5%
mln+qf+mcw	72%	7sec	2.1%

Conclusion

The MCW significantly reduces size of the ground network and makes inference tractable.
Inference with query formula is faster and more accurate.