
Using Natural Language for Reward
Shaping in Reinforcement Learning

Prasoon Goyal, Scott Niekum, Raymond J. Mooney
The University of Texas at Austin

Introduction Approach
● Most successful applications of

reinforcement learning (RL)
involve dense environment
rewards (e.g. Atari games like
Breakout) and/or
hand-engineered rewards (e.g.
robot manipulation tasks).

● Environments with sparse
● Rewards (e.g. Montezuma's

Revenge) require a lot of
samples!

➔ Goal: Use natural language to
guide the agent's exploration
via reward shaping.

“Jump over the skull
while going to the left.”

Data Collection
● Used 20 trajectories of human gameplay from the Atari

Grand Challenge dataset.

● Amazon Mechanical Turk for collecting annotations: workers
were shown short clips from the game and were asked to
provide natural language descriptions.

● Minimal filtering to eliminate low quality descriptions.

● 6,780 descriptions after filtering.

● Example descriptions:
1. wait ⇒ Uninformative
2. using the ladder on standing ⇒ Ill-formed
3. going slow and climb down the ladder
4. move down the ladder and walk left
5. go left watch the trap and move on
6. climbling down the ladder ⇒ Spelling error
7. ladder dwon and running this away ⇒ Spelling error
8. stay in place on the ladder
9. go down the ladder

10. go right and climb up the ladder

● Standard MDP formalism, plus a natural language
command describing the task.

● Using the agent’s trajectory so far in the current episode,
generate an action-frequency vector -- vector of dimension
|A| with component i equal to the fraction of times action i
was performed.

● LEARN: scores the relatedness between the
action-frequency vector and the language command.

● Use the relatedness scores as intermediate rewards
⇒ Can be plugged into any standard RL algorithm.

LEARN module:
● Trained offline using supervised learning, on paired

(trajectory, language) data collected using Amazon
Mechanical Turk.

● Task-agnostic.

For example: If the command is “Jump over the skull while
going to the left”, the trained LEARN module should assign
high relatedness score to trajectories with actions “jump” and
“left”. Therefore, using the relatedness scores as rewards
encourages taking those actions more often.

Experiments
● 15 tasks : 3 descriptions

per task collected using
Mechanical Turk.

● Baseline: Only extrinsic
reward (1 for reaching
the goal, 0 otherwise).

● Using language-based
rewards gives 60%
relative improvement.

Analysis:
(0 0 0 0 1 0 0 0) 0.2
(0 0 0.5 0 0.5 0 0 0) 0.1
.
.
.
(0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1) 0.3
.
.
.

“Move on spider
and down on
lader”

“Go to the left and
then go down the
ladder”

