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Introduction Approach
● Most successful applications of 

reinforcement learning (RL) 
involve dense environment 
rewards (e.g. Atari games like 
Breakout) and/or 
hand-engineered rewards (e.g. 
robot manipulation tasks).

● Environments with sparse
●  Rewards (e.g. Montezuma's 

Revenge) require a lot of 
samples!

➔ Goal: Use natural language to 
guide the agent's exploration 
via reward shaping.

“Jump over the skull
while going to the left.”

Data Collection
● Used 20 trajectories of human gameplay from the Atari 

Grand Challenge dataset.

● Amazon Mechanical Turk for collecting annotations: workers 
were shown short clips from the game and were asked to 
provide natural language descriptions.

● Minimal filtering to eliminate low quality descriptions.

● 6,780 descriptions after filtering.

● Example descriptions:
1. wait ⇒ Uninformative
2. using the ladder on standing ⇒ Ill-formed
3. going slow and climb down the ladder
4. move down the ladder and walk left
5. go left watch the trap and move on
6. climbling down the ladder ⇒ Spelling error
7. ladder dwon and running this away ⇒ Spelling error
8. stay in place on the ladder
9. go down the ladder

10. go right and climb up the ladder

● Standard MDP formalism, plus a natural language 
command describing the task.

● Using the agent’s trajectory so far in the current episode, 
generate an action-frequency vector -- vector of dimension 
|A| with component i equal to the fraction of times action i 
was performed.

● LEARN: scores the relatedness between the 
action-frequency vector and the language command.

● Use the relatedness scores as intermediate rewards 
⇒ Can be plugged into any standard RL algorithm.

LEARN module:
● Trained offline using supervised learning, on paired 

(trajectory, language) data collected using Amazon 
Mechanical Turk.

● Task-agnostic.

For example: If the command is “Jump over the skull while 
going to the left”, the trained LEARN module should assign 
high relatedness score to trajectories with actions “jump” and 
“left”. Therefore, using the relatedness scores as rewards 
encourages taking those actions more often.

Experiments
● 15 tasks : 3 descriptions 

per task collected using 
Mechanical Turk.

● Baseline: Only extrinsic 
reward (1 for reaching 
the goal, 0 otherwise).

● Using language-based 
rewards gives 60% 
relative improvement.
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“Move on spider 
and down on 
lader”

“Go to the left and 
then go down the 
ladder”


