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Approach
Step 1. We pretrain the animation decoder using an autoencoder objective. We train 

the autoencoder to reconstruct the input using the L2 distance between the predicted

and gold-standard animation as the loss function L:

We use the data representation proposed by Holden et al. [2]:

Network Architecture:

• The decoder is the GRU with residual connections proposed by Martinez et al. [4]

• Trajectory prediction module is inspired by Agrawal et al. [1]

Training data: KIT Motion-Language Dataset [5] and Human3.6M [3] 

Figure 3: (Left) The network architecture for the autoencoder. (Right) The network 

architecture for the trajectory prediction (TP) module. LP indicates a linear projection 

layer and FC indicates a fully connected layer.

Step 2: We train the end-to-end network for generating animations from text using the 

same loss function. 

Training data: KIT Motion-Language Dataset [5] and additional paired data that we 

collected on Amazon Mechanical Turk (AMT) 

Figure 4: Network architecture for our full pipeline.
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Introduction
Generating realistic character animations is of great importance in computer graphics 

and related domains. In this paper, we introduce a sequence-to-sequence model that 

maps a natural language (NL) description to an animation of a humanoid skeleton. 

Figure 1: Examples from our dataset. Solid arrows show 

the passage of time and dotted lines show movement in 

space.
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This problem is 

challenging because:

• the output is much 

longer and higher 

dimensional than input 

• language is ambiguous

• motion capture 

(mocap) data is limited

• there is a large 

imbalance in activities
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Trajectory Figure 2: (Left) The character’s 

pose is represented by the joint 

positions in the local coordinate 

frame. (Right) The character’s 

trajectory is represented by the 

rotational velocity about the z-axis 

and translational velocity on the 

yz-plane.

Experimental results
Baseline methods:

• Nearest neighbor: Our simplest baseline is a standard TF-IDF bag-of-words nearest 

neighbor method. 

• Plappert et al. [6]’s method: This method also generates animations from text 

descriptions, but their animated character moves in place because their model does 

not predict the character’s trajectory. 

Evaluation metrics:

Dynamic time warping mean absolute error (DTW-MAE): 

1. Use the dynamic time warping algorithm to warp animations to same length

2. Compute the absolute error at each time step and average across time

DTW-MAE-T is DTW-MAE on animations with the trajectory information removed.

Table 1: Dynamic time warping mean absolute error metric on the test set. (Lower is 

better)

Human evaluation: We conducted a crowd-sourced human evaluation of the generated 

animations using AMT to evaluate the generated animations for faithfulness to the 

description. Below is a diagram of how we set up the Human Intelligence Task:

The win rate is defined as the number of comparisons won by the method divided by 

the total number of comparisons for a particular pair of methods.
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Discussion
Evaluation metrics:

• DTW-MAE results do not agree well with human evaluation win rate

• We need better automatic metrics for comparing animations

• Our method outperforms Plappert et al. [6]’s method on the human evaluation win rate 

but it might not be fair because many descriptions describe global movement

• There is room for improvement for both animation generation methods

Main failure cases:

• Producing animations that fail to depict the description for rare activities

• Producing animations that are physically impossible

Future work:

• Improve our loss function to capture more semantic meaning

• Explore physically-based controller approaches to generate more realistic animations

DTW-MAE DTW-MAE-T

Nearest neighbors 9.80 ± 5.79 9.76 ± 5.77

Plappert et al.’s method N/A 8.44 ± 3.99

Our method 9.74 ± 4.34 9.71 ± 4.32

Our method

Plappert et al.’s method

Gold-standard

All methods to compare Template:

Select the animation that is the 

better depiction of the activity 

described in the text.

{Description of the animation}

Randomly 

select two 

methods and 

an animation

A person sneaking while crouched.

200 gold-standard 

description animation pairs

20 verification tasks

(description, gold-standard 

animation, random gold-

standard animation)
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