Impact of Evaluation Methodologies on Code Summarization

TEXAS

Pengyu Nie, Jiyang Zhang, Junyi Jessy Li, Raymond |. Mooney, Milos Gligoric

THE UNIVERSITY OF TEXAS AT AUSTIN

Introduction
Temporal relations are not explicitly modeled in the evaluation of

machine learning (ML) models for coc
lead to evaluations inconsistent with t

@ written in 2018

/** Returns total number of connec
public synchronized int connection

return connections.size();
¥

@ written in 2019

/** Returns the number of idle connec

public synchronized int idleCo
int total = 0
for (RealConnec tion connec tton :

tions in the pool. */
Count() {

tions in the pool. */
ectionCount() {

cccccc tions) {

if (connection.allocations E mpty()) total++

return total;
}

Our contribut

I0NS

N 4
tramlng trammg

-

validation validation

\OOO / OOO

N
test test

-
- J

mixed-project Cross-project
using future to predict past too strong assumption

e summarization. This may
ne Intended use cases.

|

train model on

i

use model on 1

Intended use case
of the ML model

* Study the evaluation methodologies in prior work:

Use Cases
We argue that evaluation methodology should be designed

according to the intenc

obtained In ba
obtained In co

methodology

mixed-project

cross-project

mixed-project and cross-project
Propose a time-aware methodo
-mpirically experiment the three

ogy: time-segmented
methodologies

ed use case of the ML model. Results

tch-mode could be very different from those
ntinuous-mode.

time-segmented continuou

Experiments

understand thel

used to judge

studied code su

Task

Mode

oublicly availab
frequently repo

comment generation

DeepComHybrid Hu et al. ESE’20

in-project
batch-mode

cross-project
batch-mode

use Case

* does not consider software evolution
(temporal relations among samples)
* only happen once in the lifecycle of a project

e train on past samples and use on new samples
s-mode * may be more practical in the context of
continuously developing software

method naming

We run several existing ML models using different methodologies to
r impact on automatic metrics, which are commonly
the pertormance of models. We focus on the two most
mmarization tasks: comment generation and method
naming. For each task, we select several we
e models, and use automatic metrics that are
rted In prior work.

Code2Vec Alon et al. POPL’19

Transf ,
ls ngr;z:(;mer Ahmad et al ACL20 Code2Seq Alon et al. ICLR'19

BLEU Precision

ROUGE-L F1

EM (exact match) EM (exact match)

We collect a dataset of (code, comment) samp
-source Java projects on Git

timestamps f

the dataset to get traini
test (TestS) sets for eac
CP = cross-project, T = time-segmented), and a co

‘om oper

ng (Train), validation (Va

N methodology (MP = m

(TestC) set for each pair of methodologies.

. Train Val . TestS TestC

(:I) ||||||||||||| |||||||||||||| -
oy @&y

.

Conclusion

T
I o |||||||
N

* We need to more diligently choose evaluation methodology and

rep

\

* Time-segmented evaluatl
evaluation of ML models for code summarization.

MPNT

CPNT

IXeOo

), a

es with

ub. We sp
nd standarc
-project,

mMmon test

) WD

U

The University of Texas at Austin

|-studied, representative,

It

Evaluation Methodologies

T
d

Q

ne mixed-project methodology randomly shuffles the samples
nd splits them Into training, validation, and test sets.

@ Training (J) Validation €@ Test

‘@00 | (@@ | (e@n| [(0e® | [@C®
0200 @0ee |eecel - eene® |oeee
@08 | (800 | (100 | |@80 | 000

project 1 project 2 project 3 project n-1 project n

ne cross-project methodology randomly shuffles the projects
nd splits them Into training, validation, and test sets.

4 ™ ' ™ ' ™ 4 ™ 4 ™
000 OO0 OO0 OO eee
000 OO0 OO0 OO eSS

. J . J . J \. J . J

0000 0000 0000 - OV0D| e

project 1 project 2 project 3 project m project n

The time-segmented methodology Is time-aware: the samples
IN the training set were available in the projects before the
samples in the validation set, which were In turn available before
the samples In the test set.

| (ooe| (eee| eee| [eee (ee®
s (OO0 OO OO0 - OO0 (OO
ims | k...) k...,; k...j k...,; k...)
project 1 project2 project 3 project n-1 projectn
We studied 18 recent papers on developing new ML models for
code summarization: 15 used the mixed-project methodology, 4

used the cross-project methodology, but none used the time-

segmented methodology.

FiInding 1: different methodologies may lead to conflicting

evaluation results. For example, Code?Vec Is better than

Code’ZSeq under the mixed-project and time-segmented
methodologies, but Is worse under the cross-project
methodology.

100

75

50 39 8 50
25 I 18.9 25
0 0

100

79

39.5
I 14 4

mixed-project Cross-project time-segmented Cross-project

Code2Vec mCode2Seq m Code2Vec m(Code2Seq

FiInding 2: absolute values for automatic metrics vary widely

across the three methodologies. Results under the mixed-

project

methodology are inflated, and results under the

cross-project methodology may be an under-estimation of
the more realistic continuous-mode use case.

Htime-

100 100
75 65.6 617 75
56.3 53,2 52.6 20.1 53.3
50 43.2 45.6
25
||||| ““\ ||||| :LZ1.£3 ||||| jLE%.Zl ““\]_]_
; B B m
Transformer Seqg2Seq DeepComHybrid Transformer SeqlsSeq DeepComHybrid

segmented Emixed-project B time-segmented Mcross-project

data and code: github.com/

ort results of ML models according to the intended use cases. EngineeringSoftware/time-segmented -evaluation

on methodology should be adopted in the | preprint: arxiv.org/abs/2108.09619

Pengyu Nie pynie@utexas.edu

https://github.com/EngineeringSoftware/time-segmented-evaluation
https://arxiv.org/abs/2108.09619
mailto:pynie@utexas.edu

Obijectives

The evaluation methodologies of prior work on developing ML
models for code summarization do not consider the
timestamps of code and comments, which may lead to
misunderstanding If a model might be useful once adopted. In
this work, we investigate a time-aware evaluation methodology
for code summarization and empirically study the impact of
different methodologies.

* Study two evaluation methodologies used in prior work:
mixed-project and cross-project

* Propose a time-aware evaluation methodology:
time-segmentec

* Experiment seve

al ML models using the methodologies

Intfroduction

Task comment generation method naming comment generat

DeepComHybrid Hu et al. ESE’20
Models Transformer

Code2Vec Alon et al. POPL’19

Seq2Seq Ahmad et al. ACL’20 Code2Seq Alon et al. ICLR’19
BLEU Precision
Metrics METEOR Recall
ROUGE-L F1
EM (exact match) EM (exact match)

We argue that evaluation methodology should be designed
according to the intended use case of the ML model. We defined
the /n-project and cross-project batch-mode use cases (see
paper tor definition) which can be evaluated by the mix-project
and cross-project methodologies, but they do not consider
software evolution. As such, we define a more practical
continuous-mode use case which can be evaluated using the
time-segmented methodology: training the model with code
avallable at a timestamp, and using the model on new code after
that timestamp.

commonly used.

methodology use case
ed act in-project
mixed-projec batch-mode * does not consider software evolution
_ - (temporal relations among samples)
cross-project Cross-project « only happen once in the lifecycle of a project

batch-mode
e train on past samples and use on new samples

time-segmented continuous-mode * may be more practical in the context of
continuously developing software

O

There has been a growing interest in developing machine
learning (ML) mode

s for code

N and met

Increase In the effectiveness o
methodologies, I.e., the way people split datasets into training,
validation, and test sets, were not well studied. Specifically, no
prior work on code summarization considered the

timestamps of code and comments during evaluation. This
may lead to evaluations that are inconsistent with the intended
use cases. In this work, we introduce the time-segmented
evaluation methodology, whi
Use Cases summarization research com

summarization tasks, e.g.,
nod naming. Despite substantial

" ML models, the evaluation

iIch 1s novel to the code

munity, and compare it with the
mixed-project and cross-project methodologies that have been

