
Impact of Evaluation Methodologies on Code Summarization
Pengyu Nie, Jiyang Zhang, Junyi Jessy Li, Raymond J. Mooney, Milos Gligoric

THE UNIVERSITY OF TEXAS AT AUSTIN

The mixed-project methodology randomly shuffles the samples
and splits them into training, validation, and test sets.

The cross-project methodology randomly shuffles the projects
and splits them into training, validation, and test sets.

The time-segmented methodology is time-aware: the samples
in the training set were available in the projects before the
samples in the validation set, which were in turn available before
the samples in the test set.

We studied 18 recent papers on developing new ML models for
code summarization: 15 used the mixed-project methodology, 4
used the cross-project methodology, but none used the time-
segmented methodology.

Evaluation Methodologies

We argue that evaluation methodology should be designed
according to the intended use case of the ML model. Results
obtained in batch-mode could be very different from those
obtained in continuous-mode.

Use Cases

Experiments
We run several existing ML models using different methodologies to
understand their impact on automatic metrics, which are commonly
used to judge the performance of models. We focus on the two most
studied code summarization tasks: comment generation and method
naming. For each task, we select several well-studied, representative,
publicly available models, and use automatic metrics that are
frequently reported in prior work.

We collect a dataset of (code, comment) samples with
timestamps from open-source Java projects on GitHub. We split
the dataset to get training (Train), validation (Val), and standard
test (TestS) sets for each methodology (MP = mixed-project,
CP = cross-project, T = time-segmented), and a common test
(TestC) set for each pair of methodologies.

comment generation method naming

Metrics

BLEU
METEOR
ROUGE-L
EM (exact match)

Precision
Recall
F1
EM (exact match)

Models

DeepComHybrid
Transformer
Seq2Seq

Code2Vec
Code2Seq

Hu et al. ESE’20

Ahmad et al. ACL’20

Alon et al. POPL’19
Alon et al. ICLR’19

Task

Finding 1: different methodologies may lead to conflicting
evaluation results. For example, Code2Vec is better than
Code2Seq under the mixed-project and time-segmented
methodologies, but is worse under the cross-project
methodology.

Finding 2: absolute values for automatic metrics vary widely
across the three methodologies. Results under the mixed-
project methodology are inflated, and results under the
cross-project methodology may be an under-estimation of
the more realistic continuous-mode use case.

59.3

18.9

52.6

39.8

0

25

50

75

100

mixed-project cross-project

Code2Vec Code2Seq

55.3

14.4

46.2
35.5

0

25

50

75

100

time-segmented cross-project

Code2Vec Code2Seq

56.3 53.2
43.2

65.6 61.7
52.6

0

25

50

75

100

Transformer Seq2Seq DeepComHybrid

time-segmented mixed-project

56.1 53.3
45.6

14.3 13.4 11

0

25

50

75

100

Transformer Seq2Seq DeepComHybrid

time-segmented cross-project

• We need to more diligently choose evaluation methodology and
report results of ML models according to the intended use cases.

• Time-segmented evaluation methodology should be adopted in the
evaluation of ML models for code summarization.

Conclusion

data and code: github.com/
EngineeringSoftware/time-segmented-evaluation
preprint: arxiv.org/abs/2108.09619

Pengyu Nie pynie@utexas.edu

Temporal relations are not explicitly modeled in the evaluation of
machine learning (ML) models for code summarization. This may
lead to evaluations inconsistent with the intended use cases.

Introduction

1 written in 2018

2 written in 2019

training

2 …
validation

…

test

1 …

mixed-project
using future to predict past

training

1 2 …
validation

a b …

test

𝛼 𝛽 …

cross-project
too strong assumption

time

train model on

1 …

use model on

2 …

intended use case
of the ML model

Our contributions
• Study the evaluation methodologies in prior work:

mixed-project and cross-project
• Propose a time-aware methodology: time-segmented
• Empirically experiment the three methodologies

methodology use case

mixed-project
in-project

batch-mode

cross-project
cross-project
batch-mode

time-segmented continuous-mode

• does not consider software evolution
(temporal relations among samples)

• only happen once in the lifecycle of a project

• train on past samples and use on new samples
• may be more practical in the context of

continuously developing software

https://github.com/EngineeringSoftware/time-segmented-evaluation
https://arxiv.org/abs/2108.09619
mailto:pynie@utexas.edu

The evaluation methodologies of prior work on developing ML
models for code summarization do not consider the
timestamps of code and comments, which may lead to
misunderstanding if a model might be useful once adopted. In
this work, we investigate a time-aware evaluation methodology
for code summarization and empirically study the impact of
different methodologies.

• Study two evaluation methodologies used in prior work:
mixed-project and cross-project

• Propose a time-aware evaluation methodology:
time-segmented

• Experiment several ML models using the methodologies

Objectives

comment generation method naming

Metrics

BLEU
METEOR
ROUGE-L
EM (exact match)

Precision
Recall
F1
EM (exact match)

Models

DeepComHybrid
Transformer
Seq2Seq

Code2Vec
Code2Seq

Hu et al. ESE’20

Ahmad et al. ACL’20

Alon et al. POPL’19
Alon et al. ICLR’19

Task

There has been a growing interest in developing machine
learning (ML) models for code summarization tasks, e.g.,
comment generation and method naming. Despite substantial
increase in the effectiveness of ML models, the evaluation
methodologies, i.e., the way people split datasets into training,
validation, and test sets, were not well studied. Specifically, no
prior work on code summarization considered the
timestamps of code and comments during evaluation. This
may lead to evaluations that are inconsistent with the intended
use cases. In this work, we introduce the time-segmented
evaluation methodology, which is novel to the code
summarization research community, and compare it with the
mixed-project and cross-project methodologies that have been
commonly used.

Introduction

We argue that evaluation methodology should be designed
according to the intended use case of the ML model. We defined
the in-project and cross-project batch-mode use cases (see
paper for definition) which can be evaluated by the mix-project
and cross-project methodologies, but they do not consider
software evolution. As such, we define a more practical
continuous-mode use case which can be evaluated using the
time-segmented methodology: training the model with code
available at a timestamp, and using the model on new code after
that timestamp.

Use Cases

methodology use case

mixed-project
in-project

batch-mode

cross-project
cross-project
batch-mode

time-segmented continuous-mode

• does not consider software evolution
(temporal relations among samples)

• only happen once in the lifecycle of a project

• train on past samples and use on new samples
• may be more practical in the context of

continuously developing software

