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The mixed-project methodology randomly shuffles the samples 
and splits them into training, validation, and test sets.

The cross-project methodology randomly shuffles the projects 
and splits them into training, validation, and test sets.

The time-segmented methodology is time-aware:  the samples 
in the training set were available in the projects before the 
samples in the validation set, which were in turn available before
the samples in the test set.

We studied 18 recent papers on developing new ML models for 
code summarization: 15 used the mixed-project methodology, 4 
used the cross-project methodology, but none used the time-
segmented methodology.

Evaluation Methodologies

We argue that evaluation methodology should be designed 
according to the intended use case of the ML model. Results 
obtained in batch-mode could be very different from those 
obtained in continuous-mode.

Use Cases

Experiments
We run several existing ML models using different methodologies to 
understand their impact on automatic metrics, which are commonly 
used to judge the performance of models. We focus on the two most 
studied code summarization tasks: comment generation and method 
naming. For each task, we select several well-studied, representative, 
publicly available models, and use automatic metrics that are 
frequently reported in prior work.

We collect a dataset of (code, comment) samples with 
timestamps from open-source Java projects on GitHub. We split 
the dataset to get training (Train), validation (Val), and standard 
test (TestS) sets for each methodology (MP = mixed-project, 
CP = cross-project, T = time-segmented), and a common test 
(TestC) set for each pair of methodologies.

comment generation method naming

Metrics

BLEU
METEOR
ROUGE-L
EM (exact match)

Precision
Recall
F1
EM (exact match)

Models

DeepComHybrid
Transformer
Seq2Seq

Code2Vec
Code2Seq

Hu et al. ESE’20

Ahmad et al. ACL’20

Alon et al. POPL’19
Alon et al. ICLR’19

Task

Finding 1: different methodologies may lead to conflicting 
evaluation results. For example, Code2Vec is better than 
Code2Seq under the mixed-project and time-segmented 
methodologies, but is worse under the cross-project 
methodology.

Finding 2: absolute values for automatic metrics vary widely 
across the three methodologies. Results under the mixed-
project methodology are inflated, and results under the 
cross-project methodology may be an under-estimation of 
the more realistic continuous-mode use case.
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• We need to more diligently choose evaluation methodology and 
report results of ML models according to the intended use cases.

• Time-segmented evaluation methodology should be adopted in the 
evaluation of ML models for code summarization.

Conclusion

data and code: github.com/
EngineeringSoftware/time-segmented-evaluation
preprint: arxiv.org/abs/2108.09619
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Temporal relations are not explicitly modeled in the evaluation of 
machine learning (ML) models for code summarization. This may 
lead to evaluations inconsistent with the intended use cases.

Introduction
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Our contributions
• Study the evaluation methodologies in prior work: 

mixed-project and cross-project
• Propose a time-aware methodology: time-segmented
• Empirically experiment the three methodologies

methodology use case

mixed-project
in-project

batch-mode

cross-project
cross-project
batch-mode

time-segmented continuous-mode

• does not consider software evolution
(temporal relations among samples)

• only happen once in the lifecycle of a project

• train on past samples and use on new samples
• may be more practical in the context of 

continuously developing software

https://github.com/EngineeringSoftware/time-segmented-evaluation
https://arxiv.org/abs/2108.09619
mailto:pynie@utexas.edu


The evaluation methodologies of prior work on developing ML 
models for code summarization do not consider the 
timestamps of code and comments, which may lead to 
misunderstanding if a model might be useful once adopted. In 
this work, we investigate a time-aware evaluation methodology 
for code summarization and empirically study the impact of 
different methodologies.

• Study two evaluation methodologies used in prior work: 
mixed-project and cross-project

• Propose a time-aware evaluation methodology: 
time-segmented

• Experiment several ML models using the methodologies

Objectives

comment generation method naming
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Task

There has been a growing interest in developing machine 
learning (ML) models for code summarization tasks, e.g., 
comment generation and method naming. Despite substantial 
increase in the effectiveness of ML models, the evaluation 
methodologies, i.e., the way people split datasets into training, 
validation, and test sets, were not well studied. Specifically, no 
prior work on code summarization considered the 
timestamps of code and comments during evaluation. This 
may lead to evaluations that are inconsistent with the intended 
use cases. In this work, we introduce the time-segmented 
evaluation methodology, which is novel to the code 
summarization research community, and compare it with the 
mixed-project and cross-project methodologies that have been 
commonly used.

Introduction

We argue that evaluation methodology should be designed 
according to the intended use case of the ML model. We defined 
the in-project and cross-project batch-mode use cases (see 
paper for definition) which can be evaluated by the mix-project 
and cross-project methodologies, but they do not consider 
software evolution. As such, we define a more practical 
continuous-mode use case which can be evaluated using the 
time-segmented methodology: training the model with code 
available at a timestamp, and using the model on new code after 
that timestamp.

Use Cases

methodology use case

mixed-project
in-project

batch-mode

cross-project
cross-project
batch-mode

time-segmented continuous-mode

• does not consider software evolution
(temporal relations among samples)

• only happen once in the lifecycle of a project

• train on past samples and use on new samples
• may be more practical in the context of 

continuously developing software


