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ne mixed-project methodology randomly shuffles the samples
nd splits them Into training, validation, and test sets.
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ne cross-project methodology randomly shuffles the projects
nd splits them Into training, validation, and test sets.
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The time-segmented methodology Is time-aware: the samples
IN the training set were available in the projects before the
samples in the validation set, which were In turn available before
the samples In the test set.
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We studied 18 recent papers on developing new ML models for
code summarization: 15 used the mixed-project methodology, 4

used the cross-project methodology, but none used the time-

segmented methodology.

FiInding 1: different methodologies may lead to conflicting

evaluation results. For example, Code?Vec Is better than

Code’ZSeq under the mixed-project and time-segmented
methodologies, but Is worse under the cross-project
methodology.
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FiInding 2: absolute values for automatic metrics vary widely

across the three methodologies. Results under the mixed-

project

methodology are inflated, and results under the

cross-project methodology may be an under-estimation of
the more realistic continuous-mode use case.
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Obijectives

The evaluation methodologies of prior work on developing ML
models for code summarization do not consider the
timestamps of code and comments, which may lead to
misunderstanding If a model might be useful once adopted. In
this work, we investigate a time-aware evaluation methodology
for code summarization and empirically study the impact of
different methodologies.

* Study two evaluation methodologies used in prior work:
mixed-project and cross-project

* Propose a time-aware evaluation methodology:
time-segmentec

* Experiment seve
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We argue that evaluation methodology should be designed
according to the intended use case of the ML model. We defined
the /n-project and cross-project batch-mode use cases (see
paper tor definition) which can be evaluated by the mix-project
and cross-project methodologies, but they do not consider
software evolution. As such, we define a more practical
continuous-mode use case which can be evaluated using the
time-segmented methodology: training the model with code
avallable at a timestamp, and using the model on new code after
that timestamp.
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