Associating Natural Language Comment and Source Code Entities

Code and data available at: http://bit.ly/NLCodeAssociations

Sheena Panthaplackel¹(spantha@cs.utexas.edu), Milos Gligoric², Raymond J. Mooney¹, Junyi Jessy Li³ Department of Computer Science¹, Department of Electrical and Computer Engineering², Department of Linguistics³ The University of Texas at Austin

Problem

Motivation: Learning to relate comment and code elements is critical to automated systems for generating comments and code and detecting inconsistent comments and code.

Noisy Supervision

We propose obtaining noisy labels for this task by isolating parts of the comment and code that are edited at the same time, using GitHub's commit history feature.


```
} catch (InterruptedException e) {
  Thread.currentThread().interrupt();
}
```

return latestConfig;

Task: Given a noun phrase (NP) in a comment, we classify the relationship between the NP and each candidate code token in the corresponding method as either associated or not associated.

Features + Model

- Independent classification per candidate code token
- Feature vector captures:
 - Code structure: grammar and API relevant to Java
 - <u>Comment and code</u>
 <u>context</u>: averaged pretrained embeddings

We mine simultaneous comment/code updates from ~1,000 Java projects on GitHub, and one of the authors manually annotated a test set by re-labeling positive labels in the primary dataset.

similarity between comment and code representations

<u>Lexical characteristics</u>:
 overlap with NP and return
 statement tokens

	Candidate Code Tokens			
Partition	Examples	Total	Unique	Average
Train	776	23,188	5,908	29.9
Validation	77	2,488	911	32.3
Test (annotated)	117	3,592	1,266	30.7
Deletions	867	25,203	6,186	29.1

Results

Conclusions:

Learning from noisy supervision, our system outperforms multiple baselines
"More noisy" data provides a valuable training signal, improving the scope for collecting data and training models

Comparing to rule-based baselines

Augmenting training with varying numbers of "more noisy" examples from deletions

Number of examples from deletions