Statistical Script Learning with Recurrent Neural Networks

Simplifying Events to Make Event Co-occurrence Learnable

Scripts [Schank & Abelson 1975] are an influential early encoding of situation-specific world event

script:	restaurant
roles:	customer, waitress, chef, cas
reason:	to get food so as to go up in
	and down in hunger
scene 1:	entering
beene 21	PTRANS self into restaurant
	ATTEND eves to where empty ta
	MBUTI D shore to oft
	PTPANS colf to toblo
	MOVE of a dama
	MOVE SIT down
scene 2:	ordering
	ATRANS receive menu
	MTRANS read menu
	MBUILD decide what self wants
	MTRANS order to waitress
•	
scene 3:	eating
	ATRANS receive food
	INGEST food
scene 4:	exiting
	MTRANS ask for check
	ATRANS receive check
	ATRANS tip to waitress
	PTRANS celf to caphier
	ATRANS money to cachier
	PTPANS calf out of restaurant
	TINNIS SETT OUT OF TESTAURANT

- In order to learn scripts automatically from data, one must simplify events: • [Chambers & Jurafsky 2008]: (verb, dependency) pairs (e.g. (*receive*, subject))
- [Pichotta & Mooney 2014]: *n*-ary verb-with-arguments relations (e.g. (receive, X, Y))
- Build statistical models of event co-occurrence from large corpus of documents.

Karl Pichotta and Raymond J. Mooney The University of Texas at Austin

{pichotta,mooney}@cs.utexas.edu

cashier p in pleasure

y tables are

ants

(From [Schank & Abelson 1975])

- No parser needed.
- Can evaluate on ability to predict either events (accuracy) or raw text (BLEU).

Future Work

- The competitiveness of the raw-text models indicates we should investigate other **extrinsic evaluations**.
- Modeling event sequences in **documents** and in the **world** are different tasks.
- How to enrich event representation?
- How to enrich co-occurrence structure?

References

[Chambers & Jurafsky 2008] Nathanael Chambers and Daniel Jurafsky. 2008. Unsupervised learning of narrative event chains. ACL 2008. [Kiros et al. 15] Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Antonio Torralba, Raquel Urtasun, and Sanja Fidler. 2015. Skip-thought vectors. NIPS 2015. [Pichotta & Mooney 2014] Karl Pichotta and Raymond J. Mooney. 2014. Statistical script learning with multi-argument events. EACL 2014. [Pichotta & Mooney 2016a] Karl Pichotta and Raymond J. Mooney. 2016. Learning statistical scripts with LSTM recurrent neural networks. AAAI 2016. [Pichotta & Mooney 2016b] Karl Pichotta and Raymond J. Mooney. 2016. Using sentence-level LSTM language models for script inference. ACL 2016. [Schank & Abelson 1975] Roger C. Schank, and Robert P. Abelson. 1975. Scripts, plans, and knowledge. Yale University.